PNAS Nexus, 2023, 2, 1-9

PNAS

Y NEXUS

Recursive neural programs: A differentiable framework
for learning compositional part-whole hierarchies and
image grammars

https://doi.org/10.1093/pnasnexus/pgad337
Advance access publication 14 October 2023

Research Report

Ares Fisher and Rajesh P. N. Rao([2)*

Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
*To whom correspondence should be addressed: Email: rao@cs.washington.edu
Edited By: Derek Abbott

Abstract

Human vision, thought, and planning involve parsing and representing objects and scenes using structured representations based on
part-whole hierarchies. Computer vision and machine learning researchers have recently sought to emulate this capability using
neural networks, but a generative model formulation has been lacking. Generative models that leverage compositionality, recursion,
and part-whole hierarchies are thought to underlie human concept learning and the ability to construct and represent flexible mental
concepts. We introduce Recursive Neural Programs (RNPs), a neural generative model that addresses the part-whole hierarchy
learning problem by modeling images as hierarchical trees of probabilistic sensory-motor programs. These programs recursively
reuse learned sensory-motor primitives to model an image within different spatial reference frames, enabling hierarchical
composition of objects from parts and implementing a grammar for images. We show that RNPs can learn part-whole hierarchies for
a variety of image datasets, allowing rich compositionality and intuitive parts-based explanations of objects. Our model also suggests
a cognitive framework for understanding how human brains can potentially learn and represent concepts in terms of recursively
defined primitives and their relations with each other.

Keywords: artificial intelligence, program synthesis, deep learning, cognitive science

Significance Statement

A crucial aspect of intelligent, symbolic behavior is the ability to recursively compose known elements into unseen objects and rep-
resentations, enabling imagination, language, and other creative abilities. A primary limitation of modern deep learning models is the
lack of such explicit compositionality, which also makes their learned representations very difficult to interpret. We introduce a novel
model architecture that learns to represent images as recursive transformations of differentiable “programs,” allowing interpretable
and intuitive generation of images through a process resembling a visual grammar.

Introduction

Human visual cognition exploits hierarchical relationships be-
tween objects and their parts. For example, a human face can
bemodeled as a hierarchical tree of parts, each part’s relative pos-
ition specified within a local reference frame: eyes, nose, mouth,
etc. positioned within the face’s reference frame, the parts of an
eye (such as eyebrow, eyelid, iris, and pupil) positioned within
the eye’s reference frame, and so on. To emulate such a capability,
a computer vision system needs to not only learn what a part
looks like (as in current deep convolutional networks) but also
the relative transformations of the parts within a local reference
frame, and do this recursively in order to compose a human
face (or a Picasso painting).

Beyond vision, nested structure and hierarchical parts-based
decompositions are ubiquitous in human attributes such as nat-
ural language (texts, chapters, paragraphs, sentences, words,

characters) and complex behaviors (such as cooking a recipe or
driving to work). For example, driving to work consists of “high-
level” behaviors (e.g. get to the car, start the car, etc.), which are
in turn composed of “lower-level” behaviors such as “walk to the
house door,” “open the door,” etc. which are in turn composed of
other actions: “put left foot in front of the right,” “grasp door han-
dle,” and so on. Recursive modeling confers the important prop-
erty of compositionality (1-3): the same building blocks can be
hierarchically and recursively composed into an endless variety
of possible patterns, allowing an agent to “imagine” novel config-
urations of parts (e.g. for creating new solutions to problems), and
recognize new configurations of known parts for zero-shot gener-
alization (Fig. 1A,B). The challenge lies in learning a model of the
parts and their transformations that is recursive and composable.
Generative models (4-9) capture rich structure to represent

Received: March 30, 2023. Accepted: October 5, 2023

OXFORD

UNIVERSITY PRESS

Competing Interest: The authors declare no competing interest.

© The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

https://orcid.org/0000-0003-0682-8952
mailto:rao@cs.washington.edu
https://creativecommons.org/licenses/by/4.0/

2 | PNAS Nexus, 2023, Vol. 2, No. 11

A

O » 0 ¢
%" %"

k-1 1
roticy e

k-2
2 jar

°> %

'y

=l

dy o0 6

N

\
Faie

)

_-'_l

Fig. 1. Parsing and generating images with a sequence of transformed primitives. A) A “4” can be constructed by generating three identical straight lines
(within black circles) and transforming them according to parameters a to place them in the appropriate locations within a reference frame for the digit.
B) Humans can recognize individual parts of objects (left) and transform them in new ways to create novel objects (right). (Adapted from (1)). C) Left: A
handwritten digit from the MNIST dataset decomposed into an abstraction tree of parts, each part being further decomposed into smaller subparts. Right:
Schematic representation of the hierarchical structure of a recursive neural program. A higher-level “program,” represented here by the vector z* at level
k, generates (via hypernetworks Hgtare and Hpejiey) the lower-level state and action functions f&;1, and fggﬁcy respectively, to construct an object (e.g. a digit)
by generating a sequence of parts z*-! and transforming them according to their respective action vectors a*~! (transformation parameters such as
position, scale, etc.). Each part z¢-! is in turn a program vector which generates (via state and action networks for level k — 2) the subparts z*~2,
transformed according to a*-?, within that part’s reference frame. The recursive program reaches a chosen depth (here k — 2), whereupon the latent
vector z*-? is decoded into an image patch using a network parameterized by z*-*. D) Two example images generated by a RNP showing how the model can
learn to construct digits by sequential transformation of multiple copies of a single part (here, a straightline). Top: Demonstration that the idea expressed
n (A) can be learned by RNPs: a “4” reconstructed by transforming four strokes, each of which is made up of four transformed lines (right panel, bordered
boxes). Bottom: A three-level architecture (as above) can generate more complex digits like an “8”. For both digits, the strokes were generated in the order

blue — red — green — orange.

images but are not explicitly composable. Previous studies have
used various approaches to exploit the compositionality of im-
ages, including bilinear sparse coding (10-14) and Lie groups
(15-17). However, these models do not capture the recursive and
tree-like structure of the modeled data. Existing approaches for
parsing and generating tree-structured data such as images and
natural language (1, 18-23) are either not recursive (18, 21), not
compositional (8, 9, 18, 22), not generative (19, 20), or not differen-
tiable (1, 23). Indeed, the lack of a differentiable “program space”
has been a major challenge in the field.

Here, we introduce recursive neural programs (RNPs), which
address these problems using a generative model for fully differ-
entiable, recursive tree representations of objects and their parts.
Our model relies on hypernetworks (24), which are neural net-
works that generate parameters for other neural networks, to gen-
erate neural programs. Our model also builds on recent work on
Active Predictive Coding (25-27) in using a state and action hier-
archy butis fully generative, recursive, and probabilistic, allowing
a structured variational approach to inference and sampling of
neural programs. The key differences between our approach
and existing approaches are: (i) Our approach can be extended
to arbitrary tree depth, creating a grammar for images that can
be recursively applied (Fig. 1C), (ii) our approach provides a

sensible way to perform gradient descent in hierarchical “pro-
gram” space, and (iil) our model can be made adaptive by letting
information flow from children to parents in the tree, e.g. via pre-
diction errors, emulating predictive coding models (26-29).

The architecture of our model departs from conventional neur-
al networks in that it generates sequences in a recursive and hier-
archical fashion. A latent state at one level of our model generates
a sequence of states at the level below, with each lower-level state
itself representing a sequence. For example, in representing a hu-
man face, a latent state can correspond to an entire face, its sub-
states could correspond to features (like eyes, nose, etc.), and their
sub-states in turn can correspond to lines, curves, and other prim-
itives that are composed to form these features. Each state con-
sists of two attributes: a sequence of lower-level states (here,
image primitives or features), and a sequence of “actions” which
correspond to transformations of these states (e.g. rotating or
translating a line or a nose on an image “canvas”). We call a func-
tion that generates state sequences a state transition function and
the corresponding action generating function a “policy.” In our
model, each state generates both a transition function and a pol-
icy, and therefore represents a “program” for generating states
and actions. In a hierarchical, recursive setting, such programs al-
low for abstraction: for example, a program for drawing a nose

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

FisherandRao | 3

does not need to “know” about the placement of the nose or a
whole face, only the subparts that will result in a nose.

The separation between states and actions is characteristic of
recent conceptual models of vision and action (20, 25, 26). It is
alsoinspired by the observation that the cortical visual processing
pathway is roughly separated into two streams: a “what” or ven-
tral stream that flows into the inferior temporal cortex, and a
“where” or dorsal stream that flows into the posterior parietal cor-
tex (30). Although there exist interactions between the two
streams, making the separation less clear-cut than originally be-
lieved, the separation does conceptually lend itself to recursion
and compositionality: object features (“what”) can be used at
any scale to compose a new object by transforming each feature
(“where”) independently of other features, and a new scene can
be created by recursively applying this idea to the newly com-
posed objects. Our model makes testable predictions for the func-
tion of the cortical visual system: the model predicts cortical
representations of objects are inherently sensory-motor, i.e.
they explicitly contain information regarding sensory features
as well as their transformations. This is consistent with recent
theories about the cortex (27, 31). Our model also suggests the
need to bind the information between the dorsal and ventral
streams into state representations at multiple hierarchical levels,
a prediction that is in line with recent suggestions regarding the
role of the hippocampus in binding cortical “what” and “where” in-
formation (32).

Recursive neural programs

To illustrate our approach, we describe a 3-level RNP, though the
recursive nature of the architecture can easily be generalized to
more levels (Algorithm 1). Consider the problem of parsing an im-
age of a digit using three levels of an abstraction tree (Fig. 1C (left)),
e.g. in terms of a full digit level (k=2), a parts level (k=1) and a
subparts (or strokes) level (k = 0). A top-level vector representation
(atk =2) generates the digit using a lower-level neural program (at
k=1) that generates parts and their transformations within the
digit's reference frame (31). The lower-level neural program is
generated by the top-level representation using hypernetworks
(see below). Each partin turn is generated by a further lower-level
neural program (at k=0) that generates a sequence of subparts
and their transformations within that part’s reference frame.
The “neural program” at each level is implemented by two mu-
tually interacting recurrent neural networks, one implementing a

Algorithm 1 Recursive Neural Program

1: procedure RNP (input = x, levels = K)

2 u, loguar = Encoder(x)

3 7% ~ N(u, exp (loguar))

4: return RNPdecoder(z¥, K)

5: procedure RNPdecoder(z, level = k)

6: enc?ta%e fsktatle dec?ta%e g P HStﬂtE(Z)
7
8
9

encpnhcy pohcy decpnhcy B Hpohcy(z)
pit= > canvas for image reconstruction
. for t =1 rk‘l do
10: Zt sktatle(a]tz—ll Zt_l)
1L]te t= ;nhlcy(at 1 Zt 1)
12: Rt = deckil, (2871
13: if k> 0 then
14: pEt < p&f + RNPdecoder(zf*, k — 1)
15: else
16: Pt < i & at)

17: returnp!

state transition function (or “forward model” for the state) that
predicts the next state z&,, = X, (zt , a¥); and another implement-
ing an action function (“policy”) af,; = fgohcy(zt, ab) (Fig. 1C (right),
Fig. 2, Algorithm 1). In this article, we assume actions correspond
to transformations of parts, but the framework is more general
and can be applied to other problems as well (e.g. planning (27)).
The state transition and policy functions in our model follow the
framework used in a partially observable Markov decision process
(POMDP) (33). At each time point, f&_,. and f* policy receive as input
the state-action pair (z¥, a¥) from the previous timepoint. For im-
age modeling, using both the state vector and action vector (affine
transforms) as inputs helps disambiguate between identical
patches that could be used in different locations: for example, a
straight line (state) can occur in multiple locations (actions) in
the digit “7”.

We use hypernetworks (24) to provide our framework with the
flexibility to create different “programs” for different levels of ab-
straction. Hypernetworks are neural networks that generate the pa-
rameters for other neural networks, creating networks specialized
for a specific task (encoded as a vector input to the hypernetwork).
In the RNP model, we use two hypernetworks, a “state hypernet-
work” Hgtare and a “policy hypernetwork” Hpjicy, Which are together
responsible for generating the corresponding parts given a higher-
level program (state vector) as input. Each hypernetwork generates
a network whose components include an encoder, a recurrent net-
work (RNN) and a decoder. At each time-step, the encoder receives
the state-action pair generated in the previous time-step and feeds it
to the RNN, which in turn generates the next state or action; Figs. 1
and 5). The decoder then decodes the state or action into an image
patch or affine transform parameters, respectively. After each time-
step, the resultant image patch is transformed by the affine trans-
form parameters to be placed in the desired configuration within
the state’s reference frame (“canvas”). For an MNIST digit, a state
at the level k=1 corresponds to a composition of parts/image
patches &9 that are each manipulated by affine transform parame-
ters a?. A sequence of transformed patches is then summed and
added to the canvas: Y f_; g(%?, a?). Hypernetworks allow the model
to parameterize different “what’-“where” sequence generation
models at each level of the image hierarchy, while also enabling
full recursion with abstraction: the same hypernetworks can
be used at each level to enable the possibility of generating an iden-
tical sequence at different spatial scales. For example, a
circle “program” can be shared between scales to create an eye at
a lower level and a face at a higher level with appropriate
parameterizations.

Note that both the state zk and action a® are vectors: z* is a vec-
tor that, when passed into the Hgate and Hyoliey hypernetworks,
generates a “program” that produces a sequence of lower-level
states. For our results, we trained the model so that, for
0 <k<?2, an image patch decoder generated by Hgite decodes z*
into an appropriate image patch. The dimensionality of z varied
based on the task, with |z| =8, 16 for the MNIST and Fashion-
MNIST datasets, |z| =32 for the ETH-80 dataset, and |z| = 64 for
the Omniglot dataset. a® € [— 1, 1] is a 6D vector that explicitly
encodes the affine transforms (scaling, offset, rotation, and shear)
used to appropriately position an image patch on a larger canvas.

We first demonstrate how our RNPs can learn to recursively
parse images of handwritten digits from the MNIST dataset (34),
characters from the Omniglot dataset (1), and objects from the
Fashion-MNIST and ETH-80 datasets (35, 36); in each of these
cases, RNPs parse input images not only into parts and subparts
but also their transformations within their respective reference
frames. We then characterize the embedding space of the part-

k

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

4 | PNAS Nexus, 2023, Vol. 2, No. 11

[V TR VI TR VTV VIR VR VR S

6eeci82222222

2233%%/72222
5554 %1717171719

Dimension 2

-120 Dimension 1 120

Digit 1 Digit 2 Combined Digit 1 Digit 2 z* Combined

ALl
2™ B

2

-

=remw Y 222 I IIJII
YOoOEIAMAONITIITanT
BREEEEEEESRSAAAN

|

Fig. 2. Hierarchical parts-based decomposition and clustering in neural program space A) Parsing of MNIST digits (top left), Omniglot characters (top
right), Fashion-MNIST objects (bottom left), and ETH-80 objects (bottom right) by trained RNP models. Two levels of the hierarchical representation are
shown: parts generated by each z? (left: each part is denoted by a different color); and subparts generated by each z* (right, bordered boxes, each subpartis
denoted by a different color). Order as in Fig. 1D. Each bordered box shows the output of a program generated by z* to construct a part as a combination of
subparts. B) t-SNE clustering of z? and z! vectors in an RNP model trained on MNIST. A representative image is shown for each cluster. Note that the z?
vectors (blue) cluster separately from the z* vectors (orange). z° vectors, which also occupy the same space as z? and z* in the recursive model, are omitted
to prevent clutter. C) Example clusters of sampled images from z? (leftmost column) and z' (remaining columns), sampled unconditionally from the
generative model learned by an RNP trained on Omniglot, illustrating a variety of digit and part-level representations. D) Example linear interpolations in
z space from the center of one cluster (leftmost image) to the center of another cluster (rightmost image), showing novel generated images from neural
programs in the intermediate space. Left: MNIST; right: Omniglot. E) Left: Example images (third column) created by combinations of two z? vectors
generated by an encoder (first two columns). Right: As in left, but first z? vector is combined with a z' vector from another digit.

and subpart-generating state vectors at two hierarchical levels of
abstractions and show how learned representations at various
tree depths can be composed to generate previously unseen
objects.

Finally, we demonstrate the expressive power of our model by
generating new images with a “grammar” based on recursive
transformations (through fp.iicy) of image primitives generated

by fstate-

Results

Image parsing into parts and subparts

We trained three-level RNPs to reconstruct MNIST digits,
Omniglot characters, Fashion-MNIST objects, and ETH-80 objects.
An encoder network was trained to map the input image to the
top-level program (embedding vector) z?. This encoder consisted
of four convolutional layers, followed by four residual layers
(37), and three linear layers with ELU activations. The final layer
was splitinto two heads, one for generating the mean and the oth-
er for log variance of z2. As described above, z? parameterizes two
neural networks, f2,.. and gohcy, via the hypernetworks Hgate and
Hpilicy Tespectively. The network f&... produces latent vectors z',
corresponding to the parts (decoded as larger patches, 6 x 6to 12 x
12 pixels). Each z' is then passed through the same hypernetworks to
recursively generate networks f3... and fJ;;., which synthesize
the subparts as latent vectors at k =0. These vectors at k=0 are

not fed back into the hypernet, thereby ending the recursion,

and are instead passed through a decoder to generate image
patches (2 x 2 to 4 x 4 pixels). The RNP learns a part-wise represen-
tation since each part or subpartis constrained to be smaller than
its parent, therefore requiring a sequence of steps to reconstruct
it. Figure 2A shows examples of MNIST digits (top left),
Omniglot characters (top right), Fashion-MNIST objects (bottom
left), and ETH-80 objects (bottom right) generated by trained
RNPs given an input image, with reconstructions at the level of
parts (untiled-) and subparts (tiled images).

Clustering of neural program space
Previous approaches to compositional representations have relied
on powerful formalisms such as probabilistic programs (1) but a
notable challenge has been the absence of a continuous program
space that can be interpretably manipulated and optimized. RNPs
address this challenge by using hypernetworks to generate neural
programs from vector representations. Since RNPs use the same
hypernetworks to generate programs at all levels, we investigated
whether programs at different tree depths inhabit different re-
gions of |z|-dimensional space. Specifically, do programs repre-
senting digits cluster separately from programs representing
parts? Analyzing the embedding space of z> and z' vectors for
MNIST digits and Omniglot characters, we found that the z> and
z! “neural program” vectors do cluster separately (Fig. 2B and C).
To test whether this “neural program” embedding space is
smooth enough to allow interpolation for novel programs to be
generated, we investigated the regions between learned z° and

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

FisherandRao | 5

Fig. 3. Compositionality and transfer learning. A) Sampling z? from the prior distribution (0, I) for models trained on MNIST (first-), Omniglot (second-),
Fashion-MNIST (third-), and ETH-80 (fourth column) datasets. Part order as in Fig. 1. B) RNPs trained on a training subset of MNIST digit classes (top; see
text) and Omniglot character classes (bottom) are able to explain novel examples from unseen classes and synthesize their parts. C) Example
Fashion-MNIST objects generated by an RNP with its hypernetwork Hgiate trained on the ETH-80 dataset.

z' program clusters. Specifically, we used linear interpolation be-
tween the centers of two clusters to sample new program vectors.
These vectors, when passed through the trained hypernetworks,
produced programs that generated novel images (Fig. 2D), show-
ing that the model can exploit the latent structure of the program
embedding space to synthesize previously unseen patterns by
combining the learned parts.

Compositionality and transfer learning

Compositionality is the ability to compose a large (possibly infin-
ite) number of objects using a finite set of compositional elements.
The RNP model was designed with compositionality as an import-
ant goal. We have already demonstrated how the model can sam-
ple program space in regions outside those representing the
trained data to generate new objects and compositional elements
by interpolating between clusters of z? and z! vectors (Fig. 2D).
Additionally, by sampling z? ~ A(0, I) (the prior distribution as-
sumed in the RNP model for z?), the model can generate novel

characters and objects by synthesizing learned primitives in dif-
ferent, often novel, combinations of parts (Fig. 3A).

We also tested the compositional ability of our model in two
transfer learning tasks. Firstly, we trained RNPs on all MNIST
classes but one (e.g. 7 or 8), and on the Omniglot training dataset
(1) designed to test transfer learning. By adapting only the weights
of the encoder network (but not the decoder hypernetworks Hstate
and Hplicy), RNPs were able to synthesize parts for unseen classes
(Fig. 3B).

To further explore generative transfer in the model, we adapted
an RNP trained on the ETH-80 dataset to generate colored
Fashion-MNIST objects by keeping the Hgate Network the same
and training new encoder and Hpjic, networks. The model’s ability
to achieve this task is illustrated in Fig. 3C.

We next investigated whether the hierarchical, recursive com-
positionality used by RNPs confers on them any advantages over
traditional noncompositional generative models such as a vari-
ational autoencoder (VAE). We trained an RNP with only one or
two primitives—a straight line, or a straight line and a curve—
and compared the generative performance of such an RNP to a

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

6 | PNAS Nexus, 2023, Vol. 2, No. 11

A

Line primitive One primitive

60

Two primitives

60

3 Conv VAE =3 Conv VAE

50 1 RNP 2-level 50 | RNP 2-level
aof | of |

@ 30 \ A 30f I\

Curve primitive Z \\‘ = W
& 20 \ A A ibetateraban doslo - ous 20F \ ,\ﬂ\
10 10 e S e
0 0 25 50 75 100 0 o 25 50 75 100
Epoch Epoch
original reconstruction original reconstruction

Fig. 4. Recursion and transformations enable efficient reuse of primitives. A) RNPs were trained to reconstruct MNIST digits using either a single line
primitive (left, top) or the line primitive and a curve primitive (left, bottom). RNPs with one or two primitives outperform convolutional VAEs with a
similar number of parameters when both models are constrained to use the provided primitive(s), as demonstrated by the plots on the right showing the
MSE reconstruction loss on the test set for each training epoch. Solid lines indicate mean, ribbons indicate standard deviation (three models per group).
Epochs correspond to training on the full MNIST training set (50,000 images). B) A four-level RNP can generate digit pairs at different locations and
transformations in a larger image. Left columns: original pair; right columns: RNP model reconstruction. C) MNIST digits generated by the three-level
truncation of the learned four-level model in (B) using the output of an encoder trained on centered (non-transformed) MNIST digit input images (see text

for details).

standard convolutional VAE with a similar number of parameters
as the RNP and using the same primitive(s) as filters in the final de-
convolution layer. We found that RNPs outperform VAEs in terms
of mean squared error (MSE) reconstruction loss on MNIST data-
sets (Fig. 4A).

Finally, to illustrate the recursive ability of the model, we
trained a four-level RNP (recursion depth =3) on larger images
containing pairs of MNIST digits at different locations (Fig. 4B,
left panels). We found that the RNP model was able to successfully
learn to encode and generate these larger images (Fig. 4B, right
panels). Furthermore, examining the learned four-level RNP re-
vealed that it had learned a three-level RNP on individual
MNIST digits—it was sufficient to train an encoder network on
centered MNIST digits to utilize this three-level RNP (taken from
the trained four-level model) to generate individual MNIST digits
without any additional training (Fig. 4C).

Discussion

This article introduces RNPs, a new model for learning hierarchic-
al and tree-structured representations. The model uses hypernet-
works, neural networks that generate other neural networks, to
learn state-action sequences at multiple levels of abstraction,

allowing flexible composition of learned primitives and imple-
menting a recursive “‘grammar.” We demonstrated the model’s
ability to explain objects in images using a hierarchy of learned
parts and their transformations. Beyond images, we expect the
model to be useful for learning hierarchical solutions to problems
in other domains as well, such as audio and video analysis, and
modeling sensory-motor behavior.

The general architecture of RNPs (Fig. 1) is consistent with
recent models of the neocortex that emphasize sensory-motor
representations across cortical areas (27, 31, 38, 39). Indeed, the
recursive, language-like information-processing architecture
used by RNPs may suggest new ways of modeling how the human
brain could learn and represent concepts by composing sensory-
motor primitives into a dynamic parsing tree. Composing continu-
ous primitives like lines, curves, faces, etc. (which in this scheme
are also recursively defined) with representations of sensory-
motor programs can also account for the flexibility and fluidity
of the concepts humans can construct.

We note that the RNP architecture is strongly related to deep
active inference (40, 41), which infers actions necessary to minim-
ize prediction errors (6, 42, 43). In RNPs, the hypernetwork Hyjicy
plays the same role, though it generates functions (policies) in-
stead of individual actions. Inferring policies provides a type of

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

Fisherand Rao | 7

f:a‘-;w. :{;L . i E\ ! (. .
. RNP module +

Hpoticy ‘

v

k-2 |
\ Jatate |
—_ @

Hytaze Hipolicy

l i l z,
=

| s [=" k-
i (e g

9
k1
B-1 . 1 nf ¥

i |
. —
rotation }-l e
shear [

scale

translation > f:ﬂ;;y — dec;;(:q;

) o

Fig.5. RNP model implementation. A) Schematic representation of a recursive neural program using state-action (“sensory-motor”) networks at multiple
levels (identical to Fig. 1C, right). B) The generative process for an RNP. Images are encoded into z* program vectors using an encoder network. z* generates
the parameters for an RNP module (see C), which receives the previous predicted image patch %%} and previous affine transform parameters a¥= to
generate a sequence of z*~! program vectors representing parts and their transformations. C) An RNP module consists of two neural networks
(“hypernetworks”) Hstate and Hqjie, that each generate the parameters for the following networks as shown: (1) an encoder network that concatenates the

previous generated image 2~} and affine transform parameters a*~} and feeds them into (2) the fsate and fpolicy recurrent neural networks (RNNs); and (3)

decoder networks that decode the hidden state of the fstate and fpoicy RNNs into an image patch and affine transform parameters, respectively.

hierarchical generalization over inferring actions. Furthermore,
our model operates in a continuous state-space, allowing inter-
polation and generalization, whereas most implementations of
active inference have been discrete.

The results presented in this article suggest several potential
directions for future research. Hypernetworks describing different
data modalities (e.g. audio and visual) could be combined to gen-
erate richer multi-modal neural programs. Alternate neural im-
plementations of RNPs, using, for example, an embedding
approach (44, 45) or gain modulation (46, 47) instead of hypernet-
works, are also worthy of investigation, given their neurobiologic-
al plausibility (27). In the work presented here, RNPs were trained
on simple image datasets containing images of single objects
without background clutter. From such images, the model was

able to learn parts of objects and the relationship between parts.
Parsing more complex images containing multiple objects and
background clutter would require changes to the model that allow
for multiple objects with different statistics, as well as figure-
ground segregation. We are exploring incorporating such capabil-
ities into the RNP model to enable part-whole learning for com-

plex image datasets.
For our results, we used end-to-end backpropagation to train
our multi-level RNP networks. However, following predictive cod-

ing (48), gradient descent can also be performed using local predic-
tion errors (49-51). We intend to explore this more biologically

plausible implementation of learning in RNPs in future work.

In this article, we used a deep encoder network that translated
animage into the mean and log variance of a top-level state vector
z? that hierarchically reconstructs the image in a single top-down
pass through the generative part of the RNP. An alternative encod-
ing strategy could be to use Active Predictive Coding (APC) (25, 26),
which intelligently and hierarchically samples the input image
and uses prediction errors to infer an appropriate encoding vector.
A related method in line with the predictive coding model (48) is to
use an iterative gradient-based procedure, starting from a zero or
random z? vector, computing prediction errors made by the gen-
erative model, and integrating them to eventually arrive at an es-
timate for z? that best reconstructs the input image. We are
currently exploring these prediction error-driven approaches.

Also worth investigating are predictive coding-based alterna-
tives to the variational approach to RNPs used in this article; in
a predictive coding implementation of RNPs, predictions from
parent nodes would be conveyed to child nodes and prediction er-
rors from child nodes to parent nodes would be used to continual-
ly update state and action estimates at all levels (25, 26, 28, 29, 48).
Finally, the RNP loss function could be modified to include re-
wards and costs, potentially opening the door to modeling difficul-
ties in concept learning and planning observed in psychiatric
disorders such as anxiety and depression.

Materials and methods

A program at tree depth k is represented by a “state” vector zf,
which generates (via neural networks—see below) a fixed-length

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

8 | PNAS Nexus, 2023, Vol. 2, No. 11

sequence of 7*~! lower level states St* = [z5~?, ..., Z%7]] and corre-
; ; k-1 _ [qk-1 k=11 (3
sponding actions T*"* = [a{™", ..., ai;{] (in the current paper, the

states are parts and actions are transformations of the parts).
Each lower level state zF-! can be decoded into an image patch
x¥~1 that corresponds to a part (e.g. stroke or other image feature),
which is then transformed according to g(xf~?, af1) to place iton a
“canvas” (here a refers to parameters of an affine transform on a
grid and g is the bilinear interpolation function (52)). The trans-
formed images are added together on the canvas at each time
step to generate the targetimage represented by higher-level state
z® (Fig. 5B). This method allows the model to reuse the same parts
with different transformations. For example, if zf represents an
image of the digit “4”, S*-! can represent three straight lines, and
T*! represents the transformations that orient and place them
in the configuration of a “4” (Fig. 1A).

The above model can be made recursive, with generation per-
formed in a depth-first manner (Algorithm 1): each zf~! above gen-
erates lower level states S*2=[z52 ... z5?] and actions
T2 =1[a5~?, ..., a%7?], and so on for each level until the lowest lev-
el. The next state zf} begins after the current state zf™?
terminates.

In a three-level RNP (Fig. 5A,B), the top-level program z? param-
eterizes two recurrent neural networks (RNN) f,. and f; ., via
hypemetworks (state hypernetwork Hgwte and policy hypernet-
work Hpoiey) (24). As shown in Fig. 5C, each hypernetwork gener-
ates the following set of parameters for the neural networks at
the lower level: single-layer encoders encl,.,. spolicy Which compute
é;Atate/policy:enc;tate/policy(5\(2’ atl) and feed into the fsltate/policy net-
works respectively; fl_ Jpolicy: RNNs with hidden state of size |z;
and decoders decl_,. Jpolicy that generate respectively an image
patch &%, for the state network and affine transform parameters
aj,, for the policy network (scaling, translation, rotation, and
shear for each patch). The hypernetworks also provide initializa-
tion values &3, a} to initialize the sequence generation.

We train the model described above by exploiting the
end-to-end differentiability of the architecture, minimizing the
reconstruction loss between the canvas containing the sum of
all transformed parts and the input image x.

2

L= ()

Tz ‘[1
zg(zg@;, i),) x
t=1 \ti=l

2

where 7% and ¢! are the number of level-2 and level-1 time steps,
respectively. We note that RNPs can be trained one depth at a
time to decrease training time and computational resources. In
order to facilitate a more interpretable program space, we can
regularize Eq. 1 by adding the reconstruction error at the level of
parts to the loss:

2

2

1
2

2
T
582 2 patch
Z 9(&;,, ag,) —xg,
t=1

2

where xf’zamh

is the image patch generated by performing bilinear
interpolation on x with the inverse of the affine transform param-
eters a . This is equivalent to zooming into the image at those co-
ordinates, as opposed to scaling down.

To allow probabilistic sampling of programs, we can express an
RNP as a structured form of variational autoencoder (VAE) (7) to
learn an approximate posterior q(z|x) ~ p(z¥|x) of an image x given
prior p(z¥) ~ N(0, I), where z¥ is the highest level state vector and I
is the identity matrix. Following the standard approach for VAEs,

we use an encoder network to parameterize the approximate pos-
terior q(zF|x) and regularize Eq. 1 by adding the Kullback-Leibler
term KL(qllp) (7).

Algorithm 1 summarizes the inference process for a recursive
neural program given an inputimage. The results of this inference
are used for training the model as described above (training steps
are not shown in Algorithm 1).

Acknowledgments

We thank Dimitrios Gklezakos for his help with hypernetworks,
and Preston Jiang for feedback on probabilistic aspects of the
model.

Funding

This material is based upon work supported by the National Science
Foundation (NSF) EFRI Grant no. 2223495, the Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR001120
C0021, a University of Washington + Amazon Science Hub grant, a
Weill Neurohub Investigator award, a “Frameworks” grant from
the Templeton World Charity Foundation, and a Cherng Jia &
Elizabeth Yun Hwang Professorship to RP.N.R. The opinions ex-
pressed in this publication are those of the authors and do not ne-
cessarily reflect the views of the funders.

Author Contributions

AF.and R.P.N.R. designed the research. A.F. performed the simu-
lations and analysis. A.F. and R.P.N.R. wrote the article.

Data and Code Availability
All code is publicly available at https://github.com/FishAres/RNP6

References

1 Lake BM, Salakhutdinov R, Tenenbaum JB. 2015. Human-level
concept learning through probabilistic program induction.
Science. 350(6266):1332-1338. doi: 10.1126/science.aab3050.

2 Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. 2017.
Building machines that learn and think like people. Behav Brain
Sci. 40:e253. doi: 10.1017/50140525X16001837.

3 Smolensky P, McCoy R, Fernandez R, Goldrick M, Gao J. 2022.
Neurocompositional computing: from the central paradox of
cognition to a new generation of Al systems. Al Mag. 43(3):
308-322.

4 Ackley DH, Hinton GE, Sejnowski TJ. 1985. A learning algorithm
for Boltzmann machines. Cogn Sci. 9(1):147-169.

5 Dayan P, Hinton GE, Neal RM, Zemel RS. 1995. The Helmholtz
machine. Neural Comput. 7(5):889-904.

6 Friston K. 2010. The free-energy principle: a unified brain theory?
Nat Rev Neurosci. 11(2):127-138. ISSN 1471-003X, 1471-0048 doi:
10.1038/nrn2787.

7 Kingma DP, Welling M. 2014. Auto-encoding variational Bayes.
ICLR (arXiv:1312.6114).

8 Goodfellow I, et al. 2020. Generative adversarial networks.
Commun ACM. 63(11):139-144.

9 Ho], Jain A, Abbeel P. 2020. Denoising diffusion probabilistic
models. Adv Neural Inf Process Syst. 33:6840-6851.

10 Grimes DB, Rao RPN. 2005. Bilinear sparse coding for invariant vi-
sion. Neural Comput. 17(1):47-73.

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

https://github.com/FishAres/RNP6
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1017/S0140525X16001837

FisherandRao | 9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Olshausen BA, Cadieu C, Culpepper J, Warland DK. 2007. Bilinear
models of natural images. In: Rogowitz BE, Pappas TN, Daly 5],
editors. Human vision and electronic imaging XII. SPIE Proceedings,
Vol. 6492, San Jose, CA. SPIE. p. 67-76.

Rao RPN, Ballard DH. 1998. Development of localized oriented re-
ceptive fields by learning a translation-invariant code for natural
images. Netw Comput Neural Syst. 9(2):219.

Tenenbaum JB, Freeman WT. 2000. Separating style and content
with bilinear models. Neural Comput. 12(6):1247-1283.

Gklezakos DC, Rao RPN. 2017. Transformational sparse coding,
arXiv:1712.03257, preprint: not peer reviewed.

Rao R, Ruderman D. 1998. Learning Lie groups for invariant vis-
ual perception. Adv Neural Inf Process Syst. 11:810-816.

Chau HY, Qiu F, Chen Y, Olshausen B. 2020. Disentangling im-
ages with Lie group transformations and sparse coding,
arXiv:2012.12071, preprint: not peer reviewed.

Culpepper B, Olshausen B. 2009. Learning transport operators for
image manifolds. Adv Neural Inf Process Syst. 22:423-431.

Eslami SMA, et al. 2016. Attend, infer, repeat: fast scene under-
standing with generative models. Adv Neural Inf Process Syst. 30:
3225-3233.

Hinton GE, Sabour S, Frosst N. 2018. Matrix capsules with EM
routing. International Conference On Learning Representations.
Hinton G. 2023. How to represent part-whole hierarchies in a
neural network. Neural Comput. 35(3):413-452.

Mnih V, Heess N, Graves A. 2014. Recurrent models of visual at-
tention. Adv Neural Inf Process Syst. 27:2204-2212.

Socher R, Lin CC, Manning C, Ng AY. 2011. Parsing natural scenes
and natural language with recursive neural networks. https:/
openreview.net/forum?id=SyEeunWObH.

George D, et al. 2017. A generative vision model that trains with
high data efficiency and breaks text-based CAPTCHASs. Science.
358(6368):eaag2612. doi: 10.1126/science.aag2612.

Ha D, Dai AM, Le QV. 2017. Hypernetworks. 5th International
Conference On Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net. https:/openreview.net/forum?id=rkpACellx.
Gklezakos DC, Rao RPN. 2022. Active predictive coding networks:
a neural solution to the problem of learning reference frames
and part-whole hierarchies, arXiv:2201.08813, preprint: not
peer reviewed.

Rao RPN, Gklezakos DC, Sathish V. 2023. Active predictive cod-
ing: a unifying neural model for active perception, compositional
learning and hierarchical planning. Neural Computation (to
appear).

Rao RPN. 2022. A sensory-motor theory of the neocortex based on
active predictive coding, arXiv:2022.12.30.522267, preprint: not
peer reviewed.

Jiang LP, Gklezakos D, Rao RPN. 2021. Dynamic predictive coding
with hypernetworks, arXiv:2021.02.22.432194, preprint: not peer
reviewed.

Jiang LP, Rao RPN. 2022. Dynamic predictive coding: a new model
of hierarchical sequence learning and prediction in the cortex,
arXiv:2022.06.23.497415, preprint: not peer reviewed.
Ungerleider LG, Haxby JV. 1994. ‘What’ and ‘where’ in the human
brain. Curr Opin Neurobiol. 4(2):157-165.

Hawkins J. 2021. A thousand brains: a new theory of intelligence. New
York (NY): Basic Books.

Whittington JCR, et al. 2020. The Tolman-Eichenbaum machine:
unifying space and relational memory through generalization in
the hippocampal formation. Cell. 183(5):1249-1263.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Kaelbling LP, Littman ML, Cassandra AR. 1998. Planning and act-
ing in partially observable stochastic domains. Artif Intell. 101(1):
99-134. ISSN 00043702. doi: 10.1016/S0004-3702(98)00023-X.
LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based
learning applied to document recognition. Proceedings of the
[EEE, Vol. 86. p. 2278-2324.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,
arXiv:1708.07747, preprint: not peer reviewed.

Leibe B, Schiele B. 2003. Analyzing appearance and contour
based methods for object categorization. 2003 IEEE Computer
Society Conference On Computer Vision And Pattern
Recognition, 2003. Proceedings. Volume 2, p. II-409. ISSN: 1063-
6919. doi: 10.1109/CVPR.2003.1211497.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for im-
age recognition. Proceedings of 2016 IEEE Conference On
Computer Vision And Pattern Recognition. CVPR '16. IEEE. p.
770-778.

Sherman SM, Guillery RW. 2013. Functional connections of cortical
areas: a new view from the thalamus. Cambridge (MA): MIT Press.
Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. 2019. A frame-
work for intelligence and cortical function based on grid cells in
the neocortex. Front Neural Circuits. 12:121.

Mazzaglia P, Verbelen T, Catal O, Dhoedt B. 2022. The free energy
principle for perception and action: a deep learning perspective.
Entropy. 24(2):301.

Fountas Z, Sajid N, Mediano P, Friston K. 2020. Deep active infer-
ence agents using Monte-Carlo methods. Adv Neural Inf Process
Syst. 33:11662-11675.

Friston K, MattoutJ, Kilner J. 2011. Action understanding and ac-
tive inference. Biol Cybern. 104:137-160.

Friston K, Adams RA, Perrinet L, Breakspear M. 2012. Perceptions
as hypotheses: saccades as experiments. Front Psychol. 3:151.
Galanti T, Wolf L. 2020. On the modularity of hypernetworks. Adv
Neural Inf Process Syst. 33:10409-10419.

Yang GR, Joglekar MR, Song HF, Newsome WT, Wang X-J. 2019.
Task representations in neural networks trained to perform
many cognitive tasks. Nat Neurosci. 22(2):297-306.

Ferguson KA, Cardin JA. 2020. Mechanisms underlying gain
modulation in the cortex. Nat Rev Neurosci. 21(2):80-92. ISSN
1471-0048. doi: 10.1038/541583-019-0253-y.

Stroud JP, Porter MA, Hennequin G, Vogels TP. 2018. Motor prim-
itives in space and time via targeted gain modulation in cortical
networks. Nat Neurosci. 21(12):1774-1783. ISSN 1546-1726. doi:
10.1038/s41593-018-0276-0.

Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-
field effects. Nat Neurosci. 2(1):79-87. ISSN 1546-1726. doi:
10.1038/4580.

Whittington JCR, Bogacz R. 2017. An approximation of the error
backpropagation algorithm in a predictive coding network with
local Hebbian synaptic plasticity. Neural Comput. 29(5):
1229-1262.

Salvatori T, Song Y, Xu Z, Lukasiewicz T, Bogacz R. 2022. Reverse
differentiation via predictive coding. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, 8150-8158.
Millidge B, Tschantz A, Buckley CL. 2022. Predictive coding ap-
proximates backprop along arbitrary computation graphs.
Neural Comput. 34(6):1329-1368.

Jaderberg M, Simonyan K, Zisserman A. 2015. Spatial transform-
er networks. Adv Neural Inf Process Syst. 28:2017-2025.

€20z Jaquieoa(|0 uo Jasn uojbuiysepn 1o Ausiaaiun Aq zev /L €2/.cspebd/) | /z/eone/snxauseud/wod dnotolwapeoe//:sdny wodl papeojumoq

https://openreview.net/forum?id=SyEeunWObH
https://openreview.net/forum?id=SyEeunWObH
https://doi.org/10.1126/science.aag2612
https://openreview.net/forum?id=rkpACe1lx

	Recursive neural programs: A differentiable framework for learning compositional part-whole hierarchies and image grammars
	Recursive neural programs
	Results
	Image parsing into parts and subparts
	Clustering of neural program space
	Compositionality and transfer learning

	Discussion
	Materials and methods
	Acknowledgments
	Funding
	Author Contributions
	Data and Code Availability
	References

