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Abstract
Human vision, thought, and planning involve parsing and representing objects and scenes using structured representations based on 
part-whole hierarchies. Computer vision and machine learning researchers have recently sought to emulate this capability using 
neural networks, but a generative model formulation has been lacking. Generative models that leverage compositionality, recursion, 
and part-whole hierarchies are thought to underlie human concept learning and the ability to construct and represent flexible mental 
concepts. We introduce Recursive Neural Programs (RNPs), a neural generative model that addresses the part-whole hierarchy 
learning problem by modeling images as hierarchical trees of probabilistic sensory-motor programs. These programs recursively 
reuse learned sensory-motor primitives to model an image within different spatial reference frames, enabling hierarchical 
composition of objects from parts and implementing a grammar for images. We show that RNPs can learn part-whole hierarchies for 
a variety of image datasets, allowing rich compositionality and intuitive parts-based explanations of objects. Our model also suggests 
a cognitive framework for understanding how human brains can potentially learn and represent concepts in terms of recursively 
defined primitives and their relations with each other.
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Significance Statement

A crucial aspect of intelligent, symbolic behavior is the ability to recursively compose known elements into unseen objects and rep
resentations, enabling imagination, language, and other creative abilities. A primary limitation of modern deep learning models is the 
lack of such explicit compositionality, which also makes their learned representations very difficult to interpret. We introduce a novel 
model architecture that learns to represent images as recursive transformations of differentiable “programs,” allowing interpretable 
and intuitive generation of images through a process resembling a visual grammar.
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Introduction
Human visual cognition exploits hierarchical relationships be
tween objects and their parts. For example, a human face can 
be modeled as a hierarchical tree of parts, each part’s relative pos
ition specified within a local reference frame: eyes, nose, mouth, 
etc. positioned within the face’s reference frame, the parts of an 
eye (such as eyebrow, eyelid, iris, and pupil) positioned within 
the eye’s reference frame, and so on. To emulate such a capability, 
a computer vision system needs to not only learn what a part 
looks like (as in current deep convolutional networks) but also 
the relative transformations of the parts within a local reference 
frame, and do this recursively in order to compose a human 
face (or a Picasso painting).

Beyond vision, nested structure and hierarchical parts-based 
decompositions are ubiquitous in human attributes such as nat
ural language (texts, chapters, paragraphs, sentences, words, 

characters) and complex behaviors (such as cooking a recipe or 
driving to work). For example, driving to work consists of “high- 
level” behaviors (e.g. get to the car, start the car, etc.), which are 
in turn composed of “lower-level” behaviors such as “walk to the 
house door,” “open the door,” etc. which are in turn composed of 
other actions: “put left foot in front of the right,” “grasp door han
dle,” and so on. Recursive modeling confers the important prop
erty of compositionality (1–3): the same building blocks can be 
hierarchically and recursively composed into an endless variety 
of possible patterns, allowing an agent to “imagine” novel config
urations of parts (e.g. for creating new solutions to problems), and 
recognize new configurations of known parts for zero-shot gener
alization (Fig. 1A,B). The challenge lies in learning a model of the 
parts and their transformations that is recursive and composable. 
Generative models (4–9) capture rich structure to represent 
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images but are not explicitly composable. Previous studies have 
used various approaches to exploit the compositionality of im
ages, including bilinear sparse coding (10–14) and Lie groups 
(15–17). However, these models do not capture the recursive and 
tree-like structure of the modeled data. Existing approaches for 
parsing and generating tree-structured data such as images and 
natural language (1, 18–23) are either not recursive (18, 21), not 
compositional (8, 9, 18, 22), not generative (19, 20), or not differen
tiable (1, 23). Indeed, the lack of a differentiable “program space” 
has been a major challenge in the field.

Here, we introduce recursive neural programs (RNPs), which 
address these problems using a generative model for fully differ
entiable, recursive tree representations of objects and their parts. 
Our model relies on hypernetworks (24), which are neural net
works that generate parameters for other neural networks, to gen
erate neural programs. Our model also builds on recent work on 
Active Predictive Coding (25–27) in using a state and action hier
archy but is fully generative, recursive, and probabilistic, allowing 
a structured variational approach to inference and sampling of 
neural programs. The key differences between our approach 
and existing approaches are: (i) Our approach can be extended 
to arbitrary tree depth, creating a grammar for images that can 
be recursively applied (Fig. 1C), (ii) our approach provides a 

sensible way to perform gradient descent in hierarchical “pro
gram” space, and (iii) our model can be made adaptive by letting 
information flow from children to parents in the tree, e.g. via pre
diction errors, emulating predictive coding models (26–29).

The architecture of our model departs from conventional neur
al networks in that it generates sequences in a recursive and hier
archical fashion. A latent state at one level of our model generates 
a sequence of states at the level below, with each lower-level state 
itself representing a sequence. For example, in representing a hu
man face, a latent state can correspond to an entire face, its sub- 
states could correspond to features (like eyes, nose, etc.), and their 
sub-states in turn can correspond to lines, curves, and other prim
itives that are composed to form these features. Each state con
sists of two attributes: a sequence of lower-level states (here, 
image primitives or features), and a sequence of “actions” which 
correspond to transformations of these states (e.g. rotating or 
translating a line or a nose on an image “canvas”). We call a func
tion that generates state sequences a state transition function and 
the corresponding action generating function a “policy.” In our 
model, each state generates both a transition function and a pol
icy, and therefore represents a “program” for generating states 
and actions. In a hierarchical, recursive setting, such programs al
low for abstraction: for example, a program for drawing a nose 

Fig. 1. Parsing and generating images with a sequence of transformed primitives. A) A “4” can be constructed by generating three identical straight lines 
(within black circles) and transforming them according to parameters a to place them in the appropriate locations within a reference frame for the digit. 
B) Humans can recognize individual parts of objects (left) and transform them in new ways to create novel objects (right). (Adapted from (1)). C) Left: A 
handwritten digit from the MNIST dataset decomposed into an abstraction tree of parts, each part being further decomposed into smaller subparts. Right: 
Schematic representation of the hierarchical structure of a recursive neural program. A higher-level “program,” represented here by the vector zk at level 
k, generates (via hypernetworks Hstate and Hpolicy) the lower-level state and action functions fk−1

state and fk−1
policy respectively, to construct an object (e.g. a digit) 

by generating a sequence of parts zk−1 and transforming them according to their respective action vectors ak−1 (transformation parameters such as 
position, scale, etc.). Each part zk−1 is in turn a program vector which generates (via state and action networks for level k − 2) the subparts zk−2, 
transformed according to ak−2, within that part’s reference frame. The recursive program reaches a chosen depth (here k − 2), whereupon the latent 
vector zk−2 is decoded into an image patch using a network parameterized by zk−1. D) Two example images generated by a RNP showing how the model can 
learn to construct digits by sequential transformation of multiple copies of a single part (here, a straight line). Top: Demonstration that the idea expressed 
in (A) can be learned by RNPs: a “4” reconstructed by transforming four strokes, each of which is made up of four transformed lines (right panel, bordered 
boxes). Bottom: A three-level architecture (as above) can generate more complex digits like an “8”. For both digits, the strokes were generated in the order 
blue → red → green → orange.
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does not need to “know” about the placement of the nose or a 
whole face, only the subparts that will result in a nose.

The separation between states and actions is characteristic of 
recent conceptual models of vision and action (20, 25, 26). It is 
also inspired by the observation that the cortical visual processing 
pathway is roughly separated into two streams: a “what” or ven
tral stream that flows into the inferior temporal cortex, and a 
“where” or dorsal stream that flows into the posterior parietal cor
tex (30). Although there exist interactions between the two 
streams, making the separation less clear-cut than originally be
lieved, the separation does conceptually lend itself to recursion 
and compositionality: object features (“what”) can be used at 
any scale to compose a new object by transforming each feature 
(“where”) independently of other features, and a new scene can 
be created by recursively applying this idea to the newly com
posed objects. Our model makes testable predictions for the func
tion of the cortical visual system: the model predicts cortical 
representations of objects are inherently sensory-motor, i.e. 
they explicitly contain information regarding sensory features 
as well as their transformations. This is consistent with recent 
theories about the cortex (27, 31). Our model also suggests the 
need to bind the information between the dorsal and ventral 
streams into state representations at multiple hierarchical levels, 
a prediction that is in line with recent suggestions regarding the 
role of the hippocampus in binding cortical “what” and “where” in
formation (32).

Recursive neural programs
To illustrate our approach, we describe a 3-level RNP, though the 
recursive nature of the architecture can easily be generalized to 
more levels (Algorithm 1). Consider the problem of parsing an im
age of a digit using three levels of an abstraction tree (Fig. 1C (left)), 
e.g. in terms of a full digit level (k = 2), a parts level (k = 1) and a 
subparts (or strokes) level (k = 0). A top-level vector representation 
(at k = 2) generates the digit using a lower-level neural program (at 
k = 1) that generates parts and their transformations within the 
digit’s reference frame (31). The lower-level neural program is 
generated by the top-level representation using hypernetworks 
(see below). Each part in turn is generated by a further lower-level 
neural program (at k = 0) that generates a sequence of subparts 
and their transformations within that part’s reference frame.

The “neural program” at each level is implemented by two mu
tually interacting recurrent neural networks, one implementing a 

state transition function (or “forward model” for the state) that 
predicts the next state zk

t+1 = fk
state(zk

t , ak
t ); and another implement

ing an action function (“policy”) ak
t+1 = fk

policy(zk
t , ak

t ) (Fig. 1C (right), 
Fig. 2, Algorithm 1). In this article, we assume actions correspond 
to transformations of parts, but the framework is more general 
and can be applied to other problems as well (e.g. planning (27)). 
The state transition and policy functions in our model follow the 
framework used in a partially observable Markov decision process 
(POMDP) (33). At each time point, fk

state and fk
policy receive as input 

the state-action pair (zk
t , ak

t ) from the previous timepoint. For im
age modeling, using both the state vector and action vector (affine 
transforms) as inputs helps disambiguate between identical 
patches that could be used in different locations: for example, a 
straight line (state) can occur in multiple locations (actions) in 
the digit “7”.

We use hypernetworks (24) to provide our framework with the 
flexibility to create different “programs” for different levels of ab
straction. Hypernetworks are neural networks that generate the pa
rameters for other neural networks, creating networks specialized 
for a specific task (encoded as a vector input to the hypernetwork). 
In the RNP model, we use two hypernetworks, a “state hypernet
work” Hstate and a “policy hypernetwork” Hpolicy, which are together 
responsible for generating the corresponding parts given a higher- 
level program (state vector) as input. Each hypernetwork generates 
a network whose components include an encoder, a recurrent net
work (RNN) and a decoder. At each time-step, the encoder receives 
the state-action pair generated in the previous time-step and feeds it 
to the RNN, which in turn generates the next state or action; Figs. 1
and 5). The decoder then decodes the state or action into an image 
patch or affine transform parameters, respectively. After each time- 
step, the resultant image patch is transformed by the affine trans
form parameters to be placed in the desired configuration within 
the state’s reference frame (“canvas”). For an MNIST digit, a state 
at the level k = 1 corresponds to a composition of parts/image 
patches x̂0

t that are each manipulated by affine transform parame
ters a0

t . A sequence of transformed patches is then summed and 
added to the canvas: 

􏽐τ
t=1 g(x̂0

t , a0
t ). Hypernetworks allow the model 

to parameterize different “what”-“where” sequence generation 
models at each level of the image hierarchy, while also enabling 
full recursion with abstraction: the same hypernetworks can 
be used at each level to enable the possibility of generating an iden
tical sequence at different spatial scales. For example, a 
circle “program” can be shared between scales to create an eye at 
a lower level and a face at a higher level with appropriate 
parameterizations.

Note that both the state zk and action ak are vectors: zk is a vec
tor that, when passed into the Hstate and Hpolicy hypernetworks, 
generates a “program” that produces a sequence of lower-level 
states. For our results, we trained the model so that, for 
0 ≤ k < 2, an image patch decoder generated by Hstate decodes zk 

into an appropriate image patch. The dimensionality of z varied 
based on the task, with |z| = 8, 16 for the MNIST and Fashion- 
MNIST datasets, |z| = 32 for the ETH-80 dataset, and |z| = 64 for 
the Omniglot dataset. ak ∈ [ − 1, 1] is a 6D vector that explicitly 
encodes the affine transforms (scaling, offset, rotation, and shear) 
used to appropriately position an image patch on a larger canvas.

We first demonstrate how our RNPs can learn to recursively 
parse images of handwritten digits from the MNIST dataset (34), 
characters from the Omniglot dataset (1), and objects from the 
Fashion-MNIST and ETH-80 datasets (35, 36); in each of these 
cases, RNPs parse input images not only into parts and subparts 
but also their transformations within their respective reference 
frames. We then characterize the embedding space of the part- 

Algorithm 1 Recursive Neural Program

1: procedure RNP (input = x, levels = K)
2:  μ, logvar = Encoder(x)
3:  zK ∼ N (μ, exp (logvar))
4:  return RNPdecoder(zK, K)
5: procedure RNPdecoder(z, level = k)
6:  enck−1

state, fk−1
state, deck−1

state, zk−1
0 ← Hstate(z)

7:  enck−1
policy, fk−1

policy, deck−1
policy, ak−1

0 ← Hpolicy(z)

8:  pk−1
t = 0      ⊳ canvas for image reconstruction

9:  for t = 1:τk−1 do
10:   zk−1

t = fk−1
state(a

k−1
t−1 , zk−1

t−1 )

11:   ak−1
t = fk−1

policy(ak−1
t−1 , zk−1

t−1 )

12:   x̂k−1
t = deck−1

state(z
k−1
t )

13:   if k > 0 then
14:     pk−1

t ← pk−1
t−1 + RNPdecoder(zk−1

t , k − 1)
15:   else
16:     pk−1

t ← pk−1
t−1 + g(x̂k−1

t , ak−1
t )

17:  return pk−1
t
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and subpart-generating state vectors at two hierarchical levels of 
abstractions and show how learned representations at various 
tree depths can be composed to generate previously unseen 
objects.

Finally, we demonstrate the expressive power of our model by 
generating new images with a “grammar” based on recursive 
transformations (through fpolicy) of image primitives generated 
by fstate.

Results
Image parsing into parts and subparts
We trained three-level RNPs to reconstruct MNIST digits, 
Omniglot characters, Fashion-MNIST objects, and ETH-80 objects. 
An encoder network was trained to map the input image to the 
top-level program (embedding vector) z2. This encoder consisted 
of four convolutional layers, followed by four residual layers 
(37), and three linear layers with ELU activations. The final layer 
was split into two heads, one for generating the mean and the oth
er for log variance of z2. As described above, z2 parameterizes two 
neural networks, f1

state and f1
policy, via the hypernetworks Hstate and 

Hpolicy respectively. The network f1
state produces latent vectors z1, 

corresponding to the parts (decoded as larger patches, 6 × 6 to 12 × 
12 pixels). Each z1 is then passed through the same hypernetworks to 
recursively generate networks f0

state and f0
policy which synthesize 

the subparts as latent vectors at k = 0. These vectors at k = 0 are 
not fed back into the hypernet, thereby ending the recursion, 

and are instead passed through a decoder to generate image 
patches (2 × 2 to 4 × 4 pixels). The RNP learns a part-wise represen
tation since each part or subpart is constrained to be smaller than 
its parent, therefore requiring a sequence of steps to reconstruct 
it. Figure 2A  shows examples of MNIST digits (top left), 
Omniglot characters (top right), Fashion-MNIST objects (bottom 
left), and ETH-80 objects (bottom right) generated by trained 
RNPs given an input image, with reconstructions at the level of 
parts (untiled-) and subparts (tiled images).

Clustering of neural program space
Previous approaches to compositional representations have relied 
on powerful formalisms such as probabilistic programs (1) but a 
notable challenge has been the absence of a continuous program 
space that can be interpretably manipulated and optimized. RNPs 
address this challenge by using hypernetworks to generate neural 
programs from vector representations. Since RNPs use the same 
hypernetworks to generate programs at all levels, we investigated 
whether programs at different tree depths inhabit different re
gions of |z|-dimensional space. Specifically, do programs repre
senting digits cluster separately from programs representing 
parts? Analyzing the embedding space of z2 and z1 vectors for 
MNIST digits and Omniglot characters, we found that the z2 and 
z1 “neural program” vectors do cluster separately (Fig. 2B and C).

To test whether this “neural program” embedding space is 
smooth enough to allow interpolation for novel programs to be 
generated, we investigated the regions between learned z2 and 

Fig. 2. Hierarchical parts-based decomposition and clustering in neural program space A) Parsing of MNIST digits (top left), Omniglot characters (top 
right), Fashion-MNIST objects (bottom left), and ETH-80 objects (bottom right) by trained RNP models. Two levels of the hierarchical representation are 
shown: parts generated by each z2 (left: each part is denoted by a different color); and subparts generated by each z1 (right, bordered boxes, each subpart is 
denoted by a different color). Order as in Fig. 1D. Each bordered box shows the output of a program generated by z1 to construct a part as a combination of 
subparts. B) t-SNE clustering of z2 and z1 vectors in an RNP model trained on MNIST. A representative image is shown for each cluster. Note that the z2 

vectors (blue) cluster separately from the z1 vectors (orange). z0 vectors, which also occupy the same space as z2 and z1 in the recursive model, are omitted 
to prevent clutter. C) Example clusters of sampled images from z2 (leftmost column) and z1 (remaining columns), sampled unconditionally from the 
generative model learned by an RNP trained on Omniglot, illustrating a variety of digit and part-level representations. D) Example linear interpolations in 
z space from the center of one cluster (leftmost image) to the center of another cluster (rightmost image), showing novel generated images from neural 
programs in the intermediate space. Left: MNIST; right: Omniglot. E) Left: Example images (third column) created by combinations of two z2 vectors 
generated by an encoder (first two columns). Right: As in left, but first z2 vector is combined with a z1 vector from another digit.
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z1 program clusters. Specifically, we used linear interpolation be
tween the centers of two clusters to sample new program vectors. 
These vectors, when passed through the trained hypernetworks, 
produced programs that generated novel images (Fig. 2D), show
ing that the model can exploit the latent structure of the program 
embedding space to synthesize previously unseen patterns by 
combining the learned parts.

Compositionality and transfer learning
Compositionality is the ability to compose a large (possibly infin
ite) number of objects using a finite set of compositional elements. 
The RNP model was designed with compositionality as an import
ant goal. We have already demonstrated how the model can sam
ple program space in regions outside those representing the 
trained data to generate new objects and compositional elements 
by interpolating between clusters of z2 and z1 vectors (Fig. 2D). 
Additionally, by sampling z2 ∼ N (0, I) (the prior distribution as
sumed in the RNP model for z2), the model can generate novel 

characters and objects by synthesizing learned primitives in dif
ferent, often novel, combinations of parts (Fig. 3A).

We also tested the compositional ability of our model in two 
transfer learning tasks. Firstly, we trained RNPs on all MNIST 
classes but one (e.g. 7 or 8), and on the Omniglot training dataset 
(1) designed to test transfer learning. By adapting only the weights 
of the encoder network (but not the decoder hypernetworks Hstate 

and Hpolicy), RNPs were able to synthesize parts for unseen classes 
(Fig. 3B).

To further explore generative transfer in the model, we adapted 
an RNP trained on the ETH-80 dataset to generate colored 
Fashion-MNIST objects by keeping the Hstate network the same 
and training new encoder and Hpolicy networks. The model’s ability 
to achieve this task is illustrated in Fig. 3C.

We next investigated whether the hierarchical, recursive com
positionality used by RNPs confers on them any advantages over 
traditional noncompositional generative models such as a vari
ational autoencoder (VAE). We trained an RNP with only one or 
two primitives—a straight line, or a straight line and a curve— 
and compared the generative performance of such an RNP to a 

Fig. 3. Compositionality and transfer learning. A) Sampling z2 from the prior distribution N (0, I) for models trained on MNIST (first-), Omniglot (second-), 
Fashion-MNIST (third-), and ETH-80 (fourth column) datasets. Part order as in Fig. 1. B) RNPs trained on a training subset of MNIST digit classes (top; see 
text) and Omniglot character classes (bottom) are able to explain novel examples from unseen classes and synthesize their parts. C) Example 
Fashion-MNIST objects generated by an RNP with its hypernetwork Hstate trained on the ETH-80 dataset.
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standard convolutional VAE with a similar number of parameters 
as the RNP and using the same primitive(s) as filters in the final de
convolution layer. We found that RNPs outperform VAEs in terms 
of mean squared error (MSE) reconstruction loss on MNIST data
sets (Fig. 4A).

Finally, to illustrate the recursive ability of the model, we 
trained a four-level RNP (recursion depth = 3) on larger images 
containing pairs of MNIST digits at different locations (Fig. 4B, 
left panels). We found that the RNP model was able to successfully 
learn to encode and generate these larger images (Fig. 4B, right 
panels). Furthermore, examining the learned four-level RNP re
vealed that it had learned a three-level RNP on individual 
MNIST digits—it was sufficient to train an encoder network on 
centered MNIST digits to utilize this three-level RNP (taken from 
the trained four-level model) to generate individual MNIST digits 
without any additional training (Fig. 4C).

Discussion
This article introduces RNPs, a new model for learning hierarchic
al and tree-structured representations. The model uses hypernet
works, neural networks that generate other neural networks, to 
learn state-action sequences at multiple levels of abstraction, 

allowing flexible composition of learned primitives and imple
menting a recursive “grammar.” We demonstrated the model’s 
ability to explain objects in images using a hierarchy of learned 
parts and their transformations. Beyond images, we expect the 
model to be useful for learning hierarchical solutions to problems 
in other domains as well, such as audio and video analysis, and 
modeling sensory-motor behavior.

The general architecture of RNPs (Fig. 1) is consistent with 
recent models of the neocortex that emphasize sensory-motor 
representations across cortical areas (27, 31, 38, 39). Indeed, the 
recursive, language-like information-processing architecture 
used by RNPs may suggest new ways of modeling how the human 
brain could learn and represent concepts by composing sensory- 
motor primitives into a dynamic parsing tree. Composing continu
ous primitives like lines, curves, faces, etc. (which in this scheme 
are also recursively defined) with representations of sensory- 
motor programs can also account for the flexibility and fluidity 
of the concepts humans can construct.

We note that the RNP architecture is strongly related to deep 
active inference (40, 41), which infers actions necessary to minim
ize prediction errors (6, 42, 43). In RNPs, the hypernetwork Hpolicy 

plays the same role, though it generates functions (policies) in
stead of individual actions. Inferring policies provides a type of 

Fig. 4. Recursion and transformations enable efficient reuse of primitives. A) RNPs were trained to reconstruct MNIST digits using either a single line 
primitive (left, top) or the line primitive and a curve primitive (left, bottom). RNPs with one or two primitives outperform convolutional VAEs with a 
similar number of parameters when both models are constrained to use the provided primitive(s), as demonstrated by the plots on the right showing the 
MSE reconstruction loss on the test set for each training epoch. Solid lines indicate mean, ribbons indicate standard deviation (three models per group). 
Epochs correspond to training on the full MNIST training set (50,000 images). B) A four-level RNP can generate digit pairs at different locations and 
transformations in a larger image. Left columns: original pair; right columns: RNP model reconstruction. C) MNIST digits generated by the three-level 
truncation of the learned four-level model in (B) using the output of an encoder trained on centered (non-transformed) MNIST digit input images (see text 
for details).
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hierarchical generalization over inferring actions. Furthermore, 
our model operates in a continuous state-space, allowing inter
polation and generalization, whereas most implementations of 
active inference have been discrete.

The results presented in this article suggest several potential 
directions for future research. Hypernetworks describing different 
data modalities (e.g. audio and visual) could be combined to gen
erate richer multi-modal neural programs. Alternate neural im
plementations of RNPs, using, for example, an embedding 
approach (44, 45) or gain modulation (46, 47) instead of hypernet
works, are also worthy of investigation, given their neurobiologic
al plausibility (27). In the work presented here, RNPs were trained 
on simple image datasets containing images of single objects 
without background clutter. From such images, the model was 

able to learn parts of objects and the relationship between parts. 

Parsing more complex images containing multiple objects and 

background clutter would require changes to the model that allow 

for multiple objects with different statistics, as well as figure- 

ground segregation. We are exploring incorporating such capabil

ities into the RNP model to enable part-whole learning for com

plex image datasets.
For our results, we used end-to-end backpropagation to train 

our multi-level RNP networks. However, following predictive cod

ing (48), gradient descent can also be performed using local predic

tion errors (49–51). We intend to explore this more biologically 

plausible implementation of learning in RNPs in future work.

In this article, we used a deep encoder network that translated 
an image into the mean and log variance of a top-level state vector 
z2 that hierarchically reconstructs the image in a single top-down 
pass through the generative part of the RNP. An alternative encod
ing strategy could be to use Active Predictive Coding (APC) (25, 26), 
which intelligently and hierarchically samples the input image 
and uses prediction errors to infer an appropriate encoding vector. 
A related method in line with the predictive coding model (48) is to 
use an iterative gradient-based procedure, starting from a zero or 
random z2 vector, computing prediction errors made by the gen
erative model, and integrating them to eventually arrive at an es
timate for z2 that best reconstructs the input image. We are 
currently exploring these prediction error-driven approaches.

Also worth investigating are predictive coding-based alterna
tives to the variational approach to RNPs used in this article; in 
a predictive coding implementation of RNPs, predictions from 
parent nodes would be conveyed to child nodes and prediction er
rors from child nodes to parent nodes would be used to continual
ly update state and action estimates at all levels (25, 26, 28, 29, 48). 
Finally, the RNP loss function could be modified to include re
wards and costs, potentially opening the door to modeling difficul
ties in concept learning and planning observed in psychiatric 
disorders such as anxiety and depression.

Materials and methods
A program at tree depth k is represented by a “state” vector zk

t , 
which generates (via neural networks—see below) a fixed-length 

Fig. 5. RNP model implementation. A) Schematic representation of a recursive neural program using state-action (“sensory-motor”) networks at multiple 
levels (identical to Fig. 1C, right). B) The generative process for an RNP. Images are encoded into zk program vectors using an encoder network. zk generates 
the parameters for an RNP module (see C), which receives the previous predicted image patch x̂k−1

t−1 and previous affine transform parameters ak−1
t−1 to 

generate a sequence of zk 1 program vectors representing parts and their transformations. C) An RNP module consists of two neural networks 
(“hypernetworks”) Hstate and Hpolicy that each generate the parameters for the following networks as shown: (1) an encoder network that concatenates the 
previous generated image x̂k−1

t−1 and affine transform parameters ak−1
t−1 and feeds them into (2) the fstate and fpolicy recurrent neural networks (RNNs); and (3) 

decoder networks that decode the hidden state of the fstate and fpolicy RNNs into an image patch and affine transform parameters, respectively.
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sequence of τk−1 lower level states Sk−1 = [zk−1
1 , . . . , zk−1

τk−1 ] and corre
sponding actions Tk−1 = [ak−1

1 , . . . , ak−1
τk−1 ] (in the current paper, the 

states are parts and actions are transformations of the parts). 
Each lower level state zk−1

t can be decoded into an image patch 
xk−1

t that corresponds to a part (e.g. stroke or other image feature), 
which is then transformed according to g(xk−1

t , ak−1
t ) to place it on a 

“canvas” (here a refers to parameters of an affine transform on a 
grid and g is the bilinear interpolation function (52)). The trans
formed images are added together on the canvas at each time 
step to generate the target image represented by higher-level state 
zk (Fig. 5B). This method allows the model to reuse the same parts 
with different transformations. For example, if zk

t represents an 
image of the digit “4”, Sk−1 can represent three straight lines, and 
Tk−1 represents the transformations that orient and place them 
in the configuration of a “4” (Fig. 1A).

The above model can be made recursive, with generation per
formed in a depth-first manner (Algorithm 1): each zk−1

t above gen
erates lower level states Sk−2 = [zk−2

1 , . . . , zk−2
τk−2 ] and actions 

Tk−2 = [ak−2
1 , . . . , ak−2

τk−2 ], and so on for each level until the lowest lev
el. The next state zk−1

t+1 begins after the current state zk−1
t 

terminates.
In a three-level RNP (Fig. 5A,B), the top-level program z2 param

eterizes two recurrent neural networks (RNNs) f1
state and f1

policy via 
hypernetworks (state hypernetwork Hstate and policy hypernet
work Hpolicy) (24). As shown in Fig. 5C, each hypernetwork gener
ates the following set of parameters for the neural networks at 
the lower level: single-layer encoders enc1

state/policy which compute 
ê1

state/policy = enc1
state/policy(x̂1

t , a1
t ) and feed into the f1

state/policy net
works respectively; f1

state/policy, RNNs with hidden state of size |z|; 
and decoders dec1

state/policy that generate respectively an image 
patch x̂1

t+1 for the state network and affine transform parameters 
a1

t+1 for the policy network (scaling, translation, rotation, and 
shear for each patch). The hypernetworks also provide initializa
tion values x̂1

0, a1
0 to initialize the sequence generation.

We train the model described above by exploiting the 
end-to-end differentiability of the architecture, minimizing the 
reconstruction loss between the canvas containing the sum of 
all transformed parts and the input image x.

L =
􏽘τ2

t2=1

g
􏽘τ1

t1=1

g(x̂1
t1

, a1
t1

), a2
t2

􏼠 􏼡

− x

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

2

(1) 

where τ2 and τ1 are the number of level-2 and level-1 time steps, 
respectively. We note that RNPs can be trained one depth at a 
time to decrease training time and computational resources. In 
order to facilitate a more interpretable program space, we can 
regularize Eq. 1 by adding the reconstruction error at the level of 
parts to the loss:

1
τ2

􏽘τ2

t2=1

g(x̂2
t2

, a2
t2

) − xpatch
t2

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

2

(2) 

where xpatch
t2 

is the image patch generated by performing bilinear 

interpolation on x with the inverse of the affine transform param

eters a2
t2

. This is equivalent to zooming into the image at those co

ordinates, as opposed to scaling down.
To allow probabilistic sampling of programs, we can express an 

RNP as a structured form of variational autoencoder (VAE) (7) to 
learn an approximate posterior q(zK|x) ≈ p(zK|x) of an image x given 
prior p(zK) ∼ N (0, I), where zK is the highest level state vector and I 
is the identity matrix. Following the standard approach for VAEs, 

we use an encoder network to parameterize the approximate pos
terior q(zK|x) and regularize Eq. 1 by adding the Kullback–Leibler 
term KL(q‖p) (7).

Algorithm 1 summarizes the inference process for a recursive 
neural program given an input image. The results of this inference 
are used for training the model as described above (training steps 
are not shown in Algorithm 1).
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