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Abstract

Biometric databases collect people’s information and allow users to perform
proximity searches (nding all records within a bounded distance of the query
point) with few cryptographic protections. This work studies proximity search-
able encryption applied to the iris biometric.

Prior work proposed inner product functional encryption as a technique to
build proximity biometric databases (Kim et al., SCN 2018). This is because
binary Hamming distance is computable using an inner product. This work
identies and closes two gaps in using inner product encryption for biometric
search:

1. Biometrics naturally use long vectors often with thousands of bits. Many
inner product encryption schemes generate a random matrix whose dimen-
sion scales with vector size and have to invert this matrix. As a result,
setup is not feasible on commodity hardware unless we reduce the dimen-
sion of the vectors. We explore state-of-the-art techniques to reduce the
dimension of the iris biometric and show that all known techniques harm
the accuracy of the resulting system. That is, for small vector sizes multi-
ple unrelated biometrics are returned in the search. For length 64 vectors,
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at a 90% probability of the searched biometric being returned, 10% of
stored records are erroneously returned on average.

Rather than changing the feature extractor, we introduce a new crypto-
graphic technique that allows one to generate several smaller matrices.
For vectors of length 1024 this reduces the time to run setup from 23 days
to 4 minutes. At this vector length, for the same 90% probability of the
searched biometric being returned, :02% of stored records are erroneously
returned on average.

2. Prior inner product approaches leak distance between the query and all
stored records. We refer to these as distance-revealing. We show a natural
construction from function hiding, secret-key, predicate, inner product
encryption (Shen, Shi, and Waters, TCC 2009). Our construction only
leaks access patterns and which returned records are the same distance
from the query. We refer to this scheme as distance-hiding.

We implement and benchmark one distance-revealing and one distance-hiding
scheme. The distance-revealing scheme can search a small (hundreds) database
in 4 minutes while the distance-hiding scheme is not yet practical, requiring 3:5
hours.

As a technical contribution of independent interest, we show that our scheme
can be instantiated using symmetric pairing groups reducing the cost of search
by roughly a factor of three. We believe this analysis extends to other schemes
based on projections to a random linear map and its inverse analyzed in the
generic group model.

Keywords: Searchable encryption, biometrics, proximity search, inner prod-
uct encryption.

1. Introduction

Biometrics are measurements of physical phenomena of the human body.
We focus on the iris biometric in this work. The iris is an interesting biometric
because it has high entropy, stays stable throughout life, is not determined
genetically, and is easily accessible [2]. Iris data, like all biometric data, is noisy,
which means that two readings from the same iris are unlikely to be identical.
Feature extractors convert such physical phenomena to a digital representation
that is more stable but still noisy. The output of feature extractors is called a
template. Biometric databases are used for both security critical applications
(such as access control) and privacy critical applications (such as immigration).
Let D be some distance metric and t be some distance threshold. Applications
building on biometric templates require:

1. Low False Reject Rate (FRR) templates from the same biometric are
within distance t with high probability, and

2. Low False Accept Rate (FAR) templates from two dierent biometrics
are within distance t with low probability.



Learning stored biometric templates enables an attacker to reverse this value
into a convincing biometric [3, 4, 5], enabling presentation attacks [6, 7, 8]
that can compromise users’ accounts and devices. Since biometrics cannot be
updated, such a compromise lasts a lifetime.

Securing biometric data is not straightforward. Using plain encryption or
hashes (as for passwords storage) would eectively protect compromised tem-
plates but also prevents the server from performing any distance comparison.
Another option is for the server to hold a key to decrypt the data either in plain-
text or inside a trusted execution environment (TEE). Attacks show protecting
such information even inside a TEE is dicult [9, 10, 11].

Searchable encryption [12, 13, 14, 15] enables servers to be queried without
decrypting the data. For a distance metric D, proximity searchable encryption
returns all records that are within distance t. That is, for a dataset xi1;:::; x-
and a query y, one should return all x; such that D(x;; y) t. Since biometric data
is inherently noisy, proximity searchable encryption is a key tool to secure
biometric databases while allowing queries.

Iris feature extractors usually produce binary vectors that are similar in
Hamming distance® (ngerprints are usually compared by set dierence, faces with
L2 norm). Kim et al. proposed to use secret-key, function-hiding inner product
encryption or IPEsh.sk for encrypted comparison of binary Hamming bio-metrics
[16, 17]. IPEth;sk allows computation of inner product without revealing
underlying values. Inner product of vectors x;y in f 1;1g" encodes Hamming
distance:

D(x;y) = (n hx;yi)=2:

More formally the functionality of IPE¢n;sk is as follows: as in standard en-
cryption, one generates a secret key sk Setup() and a ciphertext cty
Encrypt(x; sk). Then one can generate a token tky TokGen(y; sk), and use
this token in Decrypt (without sk) to learn the inner product hx;yi. That is,

Decrypt(cty; tky) = hx; yi:

One can use IPE¢h;sk to build proximity search by encrypting ct; Encrypt(xi; sk)
and providing all ct; to the database server (additional data can be associ-
ated with x; using traditional encryption). For queries y the client provides tky
TokGen(y; sk) to the server. The server can compute the inner product
between the query and each stored record and should return all records with the
appropriate inner product. The server does work proportional to the database
size. This is in contrast to keyword searchable encryption where the desiderata is
for the server’s work to be proportional to the result set size.
We identify and close two gaps in the use of inner product encryption to
build proximity searchable encryption for the iris.

_ 1Note that real-valued vectors for the Euclidean distance can be converted to binary vec-
tors for the Hamming distance using mean or median thresholding, where values above the
mean/median are encoded as 1 and values below as 0.



1.1. Our Contribution

Multi Random Projection Inner Product Encryption. Daugman’s seminal iris
feature extractor [18, 19] produces a vector of length n = 1024, the open source
OSIRIS [20] system uses n = 32768 by default, and recent neural network feature
extractors [21] use n = 2048.

The most ecient IPEfh;sk schemes rely on dual pairing vector spaces [22] in
bilinear groups. The secret key for such constructions is a random matrix A
2 F"" and its inverse A ;g is a large prime that is the order of the bilinear
pairing. Setup for the scheme must invert a random A 2 F"".

This operation is prohibitive for n > 1000, as is the case for iris feature ex-
tractors. For the most ecient known scheme which we call Random Projection
with Check or RProjC [16], the authors’ parallel implementation of key genera-
tion in FLINT [23] (on a modern 16 core machine), generating keys for n = 240,
took 4:6 hours. In our experiments, Setup time grows cubicly as expected.?
Through interpolation, we estimate the time to generate keys for n = 1024 at
23 days.

While one can train feature extractors with smaller n, we show (in Section 4)
that known techniques harm the quality of the biometric features, making the
irises of dierent people appear similar. The false accept vs false reject rate
tradeo degrades, leaving the application with the choice of either not matching
readings of the same iris or matching readings of dierence individuals’ irises.
Both choices have consequences for the resulting application.

In Section 4.1 and Table 3, we show that for a small size dataset of 356 in-
dividuals using a feature extractor with n = 64 and a distance t that enables a
90% true accept rate, searching for an individual in the dataset returns 40 incor-
rect biometrics with an average query! By comparison when n = 1024, queries
return :06 incorrect biometrics on average. Datasets with more individuals are
not available; we expect this rate to be consistent across dataset sizes.

Section 5 introduces a new transform for inner product encryption that gen-
erates multiple matrices A1;:::;; A and their inverses during key generation
where each Aj is an (N + 1) (N + 1) matrix, where N = dn=e, instead of a
single large pair A; A 1. Recall that the encryption and token generation
algorithms take as input vectors x and y respectively. Vectors x and y are then
split into component vectors of size N. Correctness then relies on the fact that

1
hx; yi = kx; vyiii=o
where xi; y; are component vectors of x and y. To hide partial information,
both x and y are augmented when they are split into component vectors:

xic= LjixinG i Xine(n 1) Yi
Co= YN D YINGN 1)

2We have not evaluated sub-cubic matrix inversion in nite elds.




fori = 0;::; 1 and o;:::; 1 is a linear secret sharing of 0 that is chosen in
TokGen. The intuition is that any collection of 1 or fewer components
represents a random group element, so one cannot learn information about inner
products between vector components. We show security of a prior IPE scheme
with multi random projection in Section 5 (we also apply the technique to a
scheme of Okamoto and Takashima [24, Section 4] in the ePrint version of this
work [25]). This technique is not generic, our construction modies the internal
working of the underlying IPE scheme. The intuition is that to preserve cor-
rectness internal randomness needs to be stripped and replaced by a global one.
This prevents an attacker from mixing and matching ciphertext components
(or token components). Such mixing and matching is allowed for multi-input
inner-product encryption. We compare the two notions in Section 3.1.

We implemented two versions of proximity search building on this form of
IPEth;sk. The rstis a direct application of the RProjC [16] scheme and the second is
our new multi random projection version, called Multi Random Projection with
Check or MRProjC. To benchmark, we encrypted a single reading of each
individual (“ = 356) from the ND0405 dataset [26, 27] which is a superset of
the NIST Iris Evaluation Challenge [28]. Queries are drawn from other read-
ings in the NDO405 dataset. This performance is summarized in Table 1 with
search taking approximately 4 minutes. Our multi random projection technique
reduces time for Setup by four orders of magnitude with minimal impact
on the timings of the rest of the algorithms. This multi random projection
technique makes proximity searchable encryption on a 350 biometric dataset
feasible.

Distance Hiding Proximity Search. By design, for any searched value y, prox-
imity search from IPE¢h;sk allows the server to compute the distance [16] between
y and all stored records.® This establishes a geometry on the space of stored
records. If the server has side information on the stored records xi, they may be
able to reconstruct global geometry from the local geometry revealed by pair-
wise distances [31, 32]. While we are not aware of any leakage abuse attacks
directly against proximity search, there are attacks against k-nearest neighbor
databases [33, 34].% Distance allows one to easily compute the k-nearest points so
attacks that can exploit this leakage apply. Like most leakage abuse attacks, the
ecacy of these attacks depends on what the adversary knows about the stored
data. We discuss these attacks more in Section 3.

For applications where such leakage is unacceptable (or the adversary has
side information on the encrypted data), we show a transform from a predicate
version of inner product encryption to proximity search that does not reveal

3Some prior work allows computation of approximate distance [29] using locality sensi-
tive hashes [30], allowing the server to see how many hashes match, the number of matches
approximates distance.

4Here we focus on attacks that apply to proximity searchable encryption. There is a rich
history of leakage abuse attacks against dierent types of searchable encryption [35, 36, 37, 38,
39, 40, 33, 41, 34, 42, 43].




Scheme IPE Type MRProj Hide Operation Time
Name ‘ IPE ‘ fh | sk | pred ‘ used ‘ D ‘ Setup | Bindex | Trpdr | Search |
RProjC [16] X X 2M 10.8 .07 235268
MRProjC [16] X X X 10.8 .0 241 268
MRProj (asym.) | [44] | X | X X X X 10.8 22.4 | 12600 225
MRProj (sym.) [44] X X X X X 4.3 52 3580

Table 1: Time (in seconds) for operations with * = 356 records stored at n = 1024. All

algorithms are naturally parallelizable. Timing for the single base scheme RProjC is interpo-
lated from smaller vector lengths. BIndex encrypts the dataset at initialization time, Trpdr
generates a search token, and Search nds the resulting indices. fh, sk and pred indicate that the
underlying IPE scheme is respectively a function-hiding, secret key and/or predicate only
scheme. Hide D indicates that the scheme does not reveal the distance between the stored
value and the query. The symmetric version of MRProj uses the SS512 curve and the asym-
metric version uses the MNT159 curve.

pairwise distance. A predicate |PE scheme produces ciphertexts cty and tokens
tky which allow one to eectively check if hx;yi = 0 (instead of revealing the
inner product). Barbosa et al. [44] recently proposed such a scheme that is
a modication of Kim et al.’s construction [16]. Their construction simply
removes the group elements that allow one to check the inner product, so we
call this Random Projection or RProj. We call such a scheme an IPEsh;sk;pred
scheme. Applying our multi random projection technique to this scheme yields
a new predicate IPE scheme that we call Multi Random Projection or MRProj.
IPEth;sk;pred allows one to test if the inner—productis equat to some value i as
follows: add an n+ 1th element as 1 to x, denoted x°, and create y; = vyijji.
Then, hx%vyii = hx jj -1;y jj ii = 0 if and only if hx;yi = i. One can check
all values in a set | by generating a token tky for each i 2 |. Setting | =
fn 2 0;::5n 2 tg, yields a proximity check (these tokens are permuted before
being sent to the server). We show that with such a construction, an adversary
cannot distinguish between two sets of encrypted records and queries as long as
they have the same leakage discussed below.

The simplicity and generality of this construction is an advantage, it imme-
diately benets from eciency improvements in inner product encryption and can
be built from multiple computational assumptions.> However, the size of tk,
and the search time now grow linearly with t. For the iris t is usually around :3n.

Since the server can see if the same tky matches dierent records, when two
records are both within distance t, the server learns if they match the same
distance (but not the specic distance). Thus, the resulting proximity scheme
leaks two pieces of information:

Access Pattern [35, 36] The set of records returned by the query. If x; and
Xj are both returned by a query it must be the case that D(xi; xj) 2t.

5Throughout this work, we refer to proximity searchable encryption constructions by the
name of the underlying IPE scheme. As an example, MRProj will be used to denote both
Barbosa et al’s IPE scheme with our multi random projection technique applied to it and the
distance-hiding proximity search built using it.




Preventing attacks that only require access pattern usually requires obliv-
ious RAM [45]. This is the high level approach taken by Boldyreva and
Tang [46] in parallel work. They proposed a scheme that hides all leak-
age using oblivious data structures in conjunction with locality-sensitive
hashes [30]. Their scheme is interactive, requiring several rounds of com-
munication, but only uses symmetric key cryptography and is faster in a
network with short round trip times.

Distance Equality Leakage For adatabasexs; :::; x- and for a searched valuey,
if there are multiple records x;; xj such that D(xi; y) tand D(x;;y) t then
our scheme additionally reveals if D(xi; y) = D(xj; V).

No information is leaked about data that is not returned (beyond that it was
not returned). Biometrics are well spread®, so one does not expect readings
of two biometrics to be close to a query. As mentioned, the vector size has
a large impact on the number of improper records that will be returned by a
query (recall for n = 64, 40 improper records are returned, when n = 1024,
:06 improper records are returned). Since MRProj only leaks when multiple
records are returned it is critical to ensure an accurate system, underscoring the
importance of our multi random projection approach enabling Setup for large n
where high correctness is possible.

In RProjC and MRProjC, the server learns the pairwise distance between the
query y and all records xi. So in that setting, n only aects correctness, not
security.

The search complexity of MRProj is roughly a multiplicative of t :3n
slower than for MRProjC. See the dierence in concrete timing in Table 1. Forn =
1024, corresponding to a t 307, the measured multiplicative overhead is only
52:5. Closing this performance gap is the main open problem resulting from this
work; MRProj search is not fast enough.

Our analysis of MRProj is secure and correct with either a symmetric or
asymmetric pairing. We implement both options. In our search implemen-
tation, the symmetric pairing instantiation is roughly 3 times faster than the
asymmetric pairing instantiation. To the best of our knowledge, this is the
rst time that a function hiding inner product encryption has been analyzedin a
symmetric pairing group, this analysis may be of independent interest. In
Section 8 we posit additional avenues for improving search eciency.

1.2. Dierences between [1] and this work

A conference version of this work appeared at AsiaCCS 2022 [1]. There are two
major dierences between this manuscript and that article:

1. This work now considers symmetric bilinear groups throughout. All prior
works including the conference version of this work [1] considered an asym-
metric bilinear group. The evaluation section is also updated to contain

®Section 4 goes over the characteristics of the iris biometric in more details.



new timing results. The scheme based on symmetric bilinear groups im-
proves search time by a factor of roughly 3.

2. We discuss in more details the multi random projection technique, and
specically why it is not black-box applicable.

1.3. Organization

The rest of this work is organized as follows: Section 2 describes mathemat-
ical and cryptographic preliminaries, Section 3 reviews further related work,
Section 4 describes the n vs accuracy tradeo for the iris and its impact on
security, Section 5 introduces the multi random projection technique, Section 6
shows that IPEh;sk;pred Suces to build proximity search, Section 7 discusses our
implementation, and Section 8 concludes.

2. Preliminaries

Let be the security parameter throughout the paper. We use poly() and negl()
to denote unspecied functions that are polynomial and negligible in ,

respectively. For some n 2 N, [n] denotes the set f1; ;ng. Let x $ denote
sampling x uniformly at random from the nite set S. Let q= q() 2 N be a
prime, then G4 denotes a cyclic group of order gq. Let x denote a vector over Z4
such that x = (x1; ;xn) 2 Z", the dimension of vectors should be apparent
from context. Consider vectors x = (x1; ;xn) and y = (y1; ;yn), their
inner-product is denoted by hx;vyi = P N Xjyi. Let X be a matrix, then X T
denotes its transpose. =1

Hamming distance is dened as the distance between the bit vectors x andy
of length n: D(x;y) = jfijx; = yigj. We note that if a vector over f0; 1g is
encoded as x1;; = 1if x; = 1 and x1;i = 1 if x; = 0 then it is true that
hxi;yii= n  2D(x;y):

Our proofs rely on the Schwartz-Zippel lemma [47, 48]. We use the version
from Kim et al.’s work [17, Lemma 2.9]:

Lemma 1 (Schwartz-Zippel Lemma). Fix a prime p and let f 2 Fp[x1; ; Xn] be
an n-variate polynomial with degree at most d and which is not identically zero.
Then,

Prxi; ; Xn Fsp :f(x1; ;xn) = 0] d=p

We dene symmetric bilinear groups.

Denition 1 (Symmetric Bilinear Group). Suppose Gi and Gt are two groups
(respectively) of prime order q with generators g1 2 Gi and gt 2 Gt re-
spectively. We denote a value x encoded in Gi with either glX or [x]1, we
denote values encoded in Gt similarly. Let e : G1 G1 ! Gt be a non-
degenerate (i:e: e(g1;g1) = 1) bilinear pairing operation such that for all x;y 2



Zq, e([x]1; [yl1) = e(g1;g1)*Y. Assume the group operations in G1 and Gt and
the pairing operation e are eciently computable, then (G1; Gt ;q;e) denes an
symmetric bilinear group.

As we show in Section 5, our scheme is secure in a symmetric bilinear generic
group. However, we also present timing results with an asymmetric group that
was used to argue the security of previous function-hiding inner product en-
cryption schemes [16, 17, 44]. Proofs of security in a symmetric bilinear group
extend to an asymmetric bilinear group. Correctness of our scheme follows in
either setting.

2.1. Generic Group Model

The constructions presented in Figures 5 is based on a original construction
proved secure in the asymmetric generic bilinear group model [49, 50]. However,
we show security directly in the symmetric generic bilinear group model which
is presented below. The particularity of the generic group model is to replace
actual group elements by handles. Using these handles, the adversary is able to
perform group and pairing operations. We adapt Kim et al.’s generic bilinear
group oracle denition to the symmetric setting:

Denition 2 (Generic Bilinear Group Oracle). The generic bilinear group or-
acle is a stateful oracle dened as follows:

e Setup(1): Generate two fresh nonces pp; sp fé; 1g and a prime g, and store
them. Initialize an empty table Tab = fg and set the internal state to
subsequent call of Setup to fail. Finally, return (pp;sp;q).

e Encode(k; x;i): Receive k 2 f0;1g;x 2 Zq and i 2 f1;Tg. If k = sp
return ?. Else, generate a fresh nonce h 3 f0; 1g and add the entry h
I (x;1) to table Tab. Return the handle h.

e Add(k; h1; hy): Receive k; hi;hy 2 f0; 1g.

1. If k = pp or one of the handles hi; hy is absent from table Tab or
h1; hz do not map to values (x1;i1) and (x1;i2) with i1 = i, return
?
2. Compute x = x1 + X2 2 Zgq.
(@) If h! (x;i1) in Tab return h.
(b) Else, generate a fresh handle h *® f0;1g, set h! (x;i1) in Tab
and return h

e Pair(k; h1; hy): Receive k; hi;hy 2 f0; 1g.
1. If k = pp or one of the handles hj; hy is absent from table Tab or do
not map to values (x1;1) and (x2; 1) respectively, return ?.
2. Else, compute x = Xx1X2 2 Zq
(@) f h! (x;T)in T return h.



(b) Else, generate a fresh handle h $ fO;1g, seth! (x;T) in Tab
and return h

e ZeroTest(k; x): Receive k;x 2 f0;1g. If k = pp or h is absent from table
T, return ?. Else, return \zero" if x 2 Z4 is 0 and \non-zero" otherwise.

As in previous works [16, 17, 44], we will analyze security by viewing each
query as forming a formal polynomial. We re-state Remark 2.8 from Kim et
al. [17]:

The generic bilinear group oracle is formally dened in terms of handles,
however one can view oracle queries as formal polynomials. Each Encode query
species a new formal variable for the polynomial. The adversary can then build
terms for the polynomial by making Add and Pair oracle queries. The ZeroTest
query outputs zero when the previously built polynomial evaluates to zero.

2.2. Inner Product Encryption

Functional encryption allows to compute a function on an encrypted input
(the attribute), and retrieve the result without revealing more on the input.
Predicate encryption is restricted to predicates, functions that output a single
bit. While some works try to build schemes for general functionalities, others
focus on specic ones. In the latter, one line of work aims to build ecient and
secure schemes for inner products. In such schemes, the ciphertext and token
encode vectors x and y, respectively, allowing to compute hx;yi, the inner
product between x and y, when running the decryption algorithm on the
corresponding ciphertext and token. These schemes are called inner-product
functional encryption schemes.

The predicate version of inner product encryption [51, 52] works in a similar
manner, but instead of the decryption outputting the inner product value, it
outputs 1 if hx;yi = 0, 0 otherwise. 7 Secret-key predicate encryption with
function privacy supporting inner products queries was rst proposed by Shen et
al. [52]. The scheme they presented is both attribute and function hiding,
meaning that an adversary running the decryption algorithm gains no knowledge
on either the attribute or the predicate.

We dene secret-key inner production functional encryption (IPEth;sk) and
secret-key inner product predicate encryption (IPEth;sk;pred) Over the message
space ZZ.

Denition 3 (Secret key inner product functional encryption). Let 2 N be the
security parameter. Dene IPEf;sk = (Setup; Encrypt; TokGen; Decrypt), a secret-
key inner product functional encryption scheme over Z, as

* (pp;sk)  Setup(l): Generate public parameter pp and secret key sk.

—ZXn—some-works,predicate-inner-product encryption outputs a message m when hx;yi = 0

instead of a single bit.

10



® Cty Encrypt(sk; x): Take secret key sk and input vector x 2 Z’; and
generate ciphertext cty.

o tky TokGen(sk; y): Take secret key sk and input vector y 2 Z’; and
generate token tky.

° z Decrypt(pp; tky; ctx): Take public parameters pp, ciphertext ctx and
token tky and outputs value z 2 Z4.

Correctness:. For any x 2 Z';;y 227y,

ctx  Encrypt(sk;x)
Pr z= hx;yi tky TokGen(sk;y) 1 neg|():
z  Decrypt(pp;tky;ctx)

Security of admissible queries:. Let r = poly() and s = poly(). Any PPT
adversary A has only negl() advantage in the Exp'"f, , game (dened in Fig-
ure 1). Token and encryption queries must meet the following admissibility
requirements, 8i 2 [1;r]; 8) 2 [1;s],

hXi(O); yj(O)i - hXi(l);yj(l)i:
Denition 4 (Secret key inner product predicate encryption). Secret key in-ner
product predicate encryption (IPEfh;sk;pred) is dened similarly to secret key inner
product functional encryption, with the dierence that the output of the decryption
algorithm is now z 2 f0; 1g.

Correctness. For any x 2 Zg;y2 2,

> cty Encrypt(sk;x)
Pr z= hx;yi=0 tky TokGen(sk;y) 1  negl():

b Decrypt(pp;tky;ctx)
Security of admissible queries:. Let r = poly() and s = poly(). Any PPT
adversary A has only negl() advantage in the Exp'’f, , game (dened in Fig-
ure 1). Token and encryption queries must meet one of the two following ad-
missibility requirements, 8i 2 [1;r]; 8j 2 [1;s],
hxi(o);yj(o)i =0~ hxi(l);yj(l)i =0
or

(0), ,,(0): _ (1), ,(1): _ A.
hx; Y i=0 " hx Y i=0:

The above denition is called full security in the language of Shen, Shi, and
Waters [52]. Note that this denition is selective (not adaptive), as the adversary
species two sets of attributes and token values apriori. When discussing privacy it
can be interesting to use a simulation-based security denition as it allows to
specify exactly which amount of information is leaked.

11



We dene the following game between challenger C and adversary A:

1. C draws $fO; 1g.
2. C computes (sk; pp)  Setup(1), sends pp to A.

3. For 1 i r, A chooses attribute vectors x(o); ;(‘1) 2z". 4q

For 1 j s, A chooses vectors y(o);y(lz 2 Zj”.
5. Denote

q

D xS
0 1

=y @y y oy

1 1 s s

R := )g(

6. A sends R and S to C.
7. A loses the game if R and S are not admissible.
8. A receives from C a list of ciphertexts

() n 0 Encryptsk'x“
C':= ct P

[
and a list of tokens

n
70 .2 kY TokGen sk;y()
: i j

9. A returns °2 f0; 1g.
10. A’s advantage is

AdvEFo () = PrIA(L; T, @) = 1] PriA(; TW;cM) = 1)

Figure 1: Denition of Exp N § for inner product encryption.

Denition 5 (Simulation-based security for IPE). Let IPE = (Setup; TokGen,
Encrypt; Decrypt) be an inner product encryption scheme over Zg. Then IPE is

SIM-secure if for all PPT adversaries A, there exists a simulator S such that for
PE
the experiment Exp'ffy, described in Figure 2, the advantage of A (adv:XdS'“")

is Pr[1 Realipe.a(1)]  Pr(1 Idealipe.a(1)] negl():
Kim et. al. [17, Remark 2.5] show that Denition 5 implies Denition 3.

2.3. Proximity searchable encryption

In this section we dene proximity searchable encryption (PSE), a variant of
searchable encryption that supports proximity queries.

Denition 6 (History). Let X 2 M be a list of keywords drawn from space M, let
F be a class of predicates over M. An m-query history over W is a tuple History
= (X; F), with F = (f1; ;fm) a list of m predicates, f; 2 F.
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ReahpE;A(l)
(sk; pp) IPE:Setup(1)
b AIPE:TokGen(sk;);IPE:Encrypt(sk;)(1)

Output b

Idealipg;a(l)
(sk; pp) IPE:Setup(1) b
ASt0) (1) Output b
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simulator S such that (i;j) = hxj;yji= 0 for all i;j.

Denition 7 (Access pattern). Let X 2 M be a list of keywords. The access
pattern induced by an m-query history History = (X; F) is the tuple
AccPatt(History) = (f1(X); ; fm(X)).
Denition 8 (Distance Equality). Let History(®); History*) be m-query histories
?
for predicates of the type fy;¢(x) = (D(x;y) t).
Let DisEq(History!®; History'")) = 1 if and only if for each j it is true that
(
Oy =D Py D (x Py ) =D (x (v )

i; k ;
(l )(D(x(o_);y(f”)=D(x(°k);y(9))“'0(x‘1_';y(_l))=D(x(1:;y(1_’)) ’
i j i i i i

is the empty set.
Denition 9 (Proximity Searchable Encryption). Let

e 2 N be the security parameter,

e DB = (M31; ; M) be a database of size ,

e Keywords X = (x1; ;x¢), such that x; 2 Z, rklates to M;,

o F = ffy,t jy2 Z‘;; t 2 Ng be a family of predicates such that, for a
keyword x 2 Z§, fy;¢(x) = 1if D(x;y) t, O otherwise.

The algorithms PSE = (PSE:Setup; PSE:BIndex, PSE:Trpdr; PSE:Search) denes a
proximity searchable encryption scheme:

e PSE:Setup(1) ! (sk;pp),
PSE:BlIndex(sk; X) ! Ix,

e PSE:Trpdr(sk;fy;t) ! tky;, and

e PSE:Search(pp; Qy;t; Ix) ! Jx;y;t-

We require the scheme to have the following properties:

13



We dene the following game between challenger C and adversary A:

1. C draws $fO; 1g.

2. C computes (sk; pp) PSE:Setup(1) and sends pp to A.
3. A chooses and sends History'®); History*) to C.

4. A loses the game if

AccPatt(History®)) = AccPatt(History'*))_DisEq(History®; History*)) = 0

5. A receives |0 and Q! from C. 6.
A outputs °2 f0; 1g.
7. A’s advantage in the game is:

AdvEPe () = pria(1;119;Q@) = 1] pria(1;11M; QM) = 1]

Figure 3: Denition of Exp,R%.

Correctness. Dene Jx;y;t = fijfy;c(xi) = 1;%x 2 Xg. PSE is correct if for all
X and fy;t 2 F:
I x PSE:BIndex(sk;X)
Qy;t PSE:Trpdr(sk;fy;t)
pr J ‘= Jx;y;e 0, PSE:search(ppiQyiil) 1 negl():
Security for Admissible Queries. Any PPT adversary A has only negl() ad-
vantage in the experiment ExpP3t  dened in Figure 3, for * = poly() andm

IND
= poly().

‘

3. Further Related Work

3.1. Functional encryption
We review further related work on functional and predicate encryption.

Function privacy for public key schemes. Building distance-hiding proximity
searchable encryption from inner product encryption requires the latter to be
function-hiding. The PSE scheme presented in this work is secret key, but one
could want to build a public-key variant. Such a scheme would require public
key function-hiding IPE.

Achieving function privacy for public key functional encryption is not straight-
forward. The adversary can encrypt ciphertexts on its own and run the function
on the corresponding inputs, allowing them to learn information on the func-
tion’s behavior.

Boneh et al. [53] presented a function-hiding identity-based encryption scheme
which requires token inputs to be sampled from a distribution with super-
logarithmic min-entropy. Their function privacy notion then requires that for
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y sampled from such a distribution, the corresponding token tky, must be indis-
tinguishable from a token tk, where u was independently and uniformly sam-
pled. In a subsequent work [54], Boneh et al. consider the notion of function-
hiding public key subspace-membership encryption which supports subspace-
membership predicates, a generalization of inner products.

Multi-input functional encryption. Readers familiar with multi-input functional
encryption for the inner product may notice some similarities between this line
of work and the multi-random projection technique.

Multi-input functional encryption (MIFE) [55] is a generalization of func-
tional encryption that supports functions with multiple inputs. Token gen-
eration works as in standard functional encryption but encryption allows for
multiple users to encrypt their inputs independently. Decryption then takes the
token tks and the multiple ciphertexts cti; ; ctn and computes f(x1; ; Xn). In the
case of multi-input IPE [56, 57], the supported function is of the form

X
hxi; vyii:
i=0

The main challenge to building MIFE schemes is to combine ciphertexts gener-
ated using independent randomness in a secure manner.

Although multi-input IPE and multi-random projection seem to achieve sim-
ilar goals they are dierent concepts. In multi-input IPE, one should be able to
decrypt cti with any available value for cty;:::; ctn. In the multi-random pro-
jection all components of a single ciphertext should only work with each other.
In other words, multi-input IPE allows for mix-and-matches whereas MRProj
must prevent it. Mix-an-matching would indeed allow the adversary to create
ciphertexts and tokens that are not admissible, resulting in a break of security.
To prevent this, multi-random projection requires global randomness to tie the
multiple ciphertexts (respectively tokens) together.

3.2. Proximity search

We review further related work on proximity search. Li et al. [58], Wang et
al. [59] and Boldyreva and Chenette [60] reduced proximity search to keyword
equality search. These works propose two complimentary approaches:

1. When adding a record x; to a database, also insert all close values as
keywords, that is fxj j D(xi; x;) tg are added as keywords associated to
Xi.

2. The second approach requires searchable encryption supporting disjunc-
tive search. Disjunctive search generally allows to perform search using a
set of keywords, returning a record when at least one of those keywords
is a match. This approach inserts just xj, but when searching for y it
searches for the disjunction _,,jp(x;;y)t Xi:

Either approach can be instantiated using a searchable encryption scheme that
supports disjunction over keyword equality (inheriting any leakage). However,
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for biometrics, the number of keywords _, jp(x ;y)tfxig usually grows expo-
nentially in t. In existing disjunctive schemes, the size of the query grows with
the size of the disjunction [15], making this approach only viable for constant
values of t.

Kuzu et al.’s [29] solution relies on locality sensitive hashes [30]. A locality
sensitive hash ensures that close values have a higher probability to produce
collisions than values that are far apart. Thus, proximity search can be built
from any scheme supporting disjunctive keyword equality, inheriting any leak-
age. The server learns the number of matching locality sensitive hashes for each
record (which is expected to be more than 0). The number of matching locality
sensitive hashes is a proxy for the distance between the query value and the
records. More matching locality sensitive hashes implies smaller distance. This
allows the server to establish the approximate distance between each record and
the query.

Zhou and Ren [61] propose a variant of inner product encryption that reveals
if the distance is less than t only. However, their security is based on Ax; and
y B hiding xi and y for secret square matrices A and B. Security is heuristic
with no underlying assumption or proof of information theoretic security.

Abuse Attacks. Searchable encryption achieves acceptable performance by leaking
information to the server. See Kamara, Moataz, and Ohrimenko for an overview
of leakage types in structured encryption [62]. The key to attacks is combining
leakage with auxiliary data, such as the frequency of values stored in the data
set. Together these sources can prove catastrophic { allowing the attacker to
recover either the queries being made or the data stored in the database. We
consider attacks that rely on injecting les or queries [63] to be out of scope.
Common, attackable, relevant leakage proles are:

1. Response length leakage [37, 40] Often known as volumetric leakage, the
attacker is given access to only the number of records returned for each
query. Based on this information, attacks cross-correlate with auxiliary
information about the dataset, and identify high frequency items in both
the encrypted database and the auxiliary dataset.

2. Query equality leakage [38] the attacker is able to glean which queries are
querying the same value, but not necessarily the value itself. Attacks on
this prole rely on having information about the query distribution, and
much like the response length leakage attacks, match that with auxiliary
information based on frequency.

3. Access pattern leakage [35, 36] here the attacker is given knowledge if
the same dataset element is returned for dierent queries. This allows the
attacker to build a co-occurrence matrix, mapping which records are
returned for pairs of queries. Based on the frequencies of the co-occurrence
matrix for the encrypted dataset, and the co-occurrence matrix for the
auxiliary dataset, the attack can identify records.

Recent attacks have targeted the geometry present in range search [39, 64,
40, 42, 43]. Building on the co-occurrence matrix (available with access pattern
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leakage) consider the case when records a;b; c are returned by a rst query and
c;d; e are returned by a second query. One can immediately infer that the
comparison relation between a and d is the same as the comparison relation
between b and e. As more constraints of this type are collected one can build
an ordering of all records (up to reection).

In two (or three) dimensional Euclidean space, trilateration has been prac-
ticed for hundreds of years: one is assumed to know the location of x1;:::; Xk
and the pairwise distances D(x;i;y) and is trying to nd the location of y. De-
termining the location of y requires k to be one larger than the dimension. The
problem is more dicult but well studied for approximate distances [65]. Simi-lar
ideas can be applied in discrete metrics with each learned distance reducing the
set of possible y. In the Hamming metric of dimension n, k = (n) suces [66, 67,
68].

4. Iris Statistics and Leakage

This section introduces iris feature extractors and shows that reducing the
length of the feature extractor harms the uniqueness of the resulting biometric.
Reduced uniqueness harms both the correctness (because the wrong set of irises
is returned) and security of the MRProj construction (because the server learns
information about returned irises). Daugman [18, 19] introduced the seminal iris
processing pipeline. This pipeline assumes a near infrared camera. Iris images
in near infrared are believed to be independent from the visible light pattern;
the near-infrared iris pattern is epigenetic, irises of identical twins are believed
to be independent [19, 69]. Traditional iris recognition consists of three phases:

Segmentation takes the image and identies which pixels should be included as
part of the iris. This produces a f0; 1g matrix of the same size as the input
image with 1s corresponding to iris pixels.

Normalization takes the variable size set of iris pixels and maps them to a
xed size rectangular array. This can roughly be thought of as unrolling the
iris.

Feature Extraction transforms the rectangular array into a xed number of
features. In Daugman’s original work this consisted of convolving small
areas of the rectangle with a 2D wavelet. Modern feature extractors are
usually convolutional neural networks.

In identication systems the tradeo is between FRR and FAR. FRR is how
frequently readings of the same biometric are regarded as dierent. FAR is how
frequently readings of dierent biometrics are regarded as the same. As de-
scribed above, when one wishes to match a biometric y against a database one
considers matches as the set fx;jD(xi;y) tg for some metric D and distance
parameter t. Selecting a small t increases FRR and reduces FAR. Before inves-
tigating the dependence on feature vector length and the FRR/FAR tradeo we
introduce the feature extractor and dataset used in this analysis.
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Figure 4: Hamming distance distribution for images from the same iris in blue, and dierent
irises in red. Histograms are produced using ThirdEye [21]. Resulting histograms for the ND
0405 dataset. Figure 4(a) shows the histogram when n = 1024 with a small overlap between
distances comparisons of the same iris and dierent irises. This overlaps is increased
substantially when n = 64 in in Figure 3b). Figure 3b) is produced using the E method.

Feature Extractor. For the feature extractor, we use the recent pipeline called
ThirdEye [70, 21], which is publicly available [71]. The software produces a
1024 dimensional real valued feature vector. We convert this to a binary vector
by setting f? = 1if fi > Exp[fi] where the Exp[fi] is the expectation of the
individual feature, otherwise f? = 0. We train the feature extractor as specied in
[21].

Biometric Database. There are many iris datasets collected across a variety of
conditions. In this work we use the NotreDame 0405 dataset [26, 27] which is
a superset of the NIST Iris Evaluation Challenge [28]. This dataset consists of
images from 356 biometrics (we consider left and right eyes as separate biomet-
rics) with 64964 images in total. (See Appendix 4.2 for similar results with the
IITD dataset [72].) Figure 4(a) shows the histograms for the testing portions
of the feature extractor outputs. The blue histogram contains comparisons be-
tween dierent readings of the same biometric while the red histogram contains
comparisons between dierent biometrics. Let t© = t=1024 be the fractional
Hamming distance, the FRR is the fraction of the blue histogram to the right
of t and the FAR is the fraction of the red histogram to the left of t. There is
overlap between the red and blue histogram indicating that there is a tradeo
between FRR and FAR.

4.1. Performance of Biometric ldentication with Small Dimension

The eciency of IPE based proximity search critically depends on the num-
ber of features n (see Table 5). In our experiments we estimate Setup for
n = 1024 for the schemes of Kim et al. [17] and Barbosa et al. [44] to take
23 days on a modern server machine (see details in Section 7). It is tempting
to consider statistical methods to produce feature vectors of reduced size. We
show this comes at a cost to the quality of the resulting feature vectors. This
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motivates our approach to reduce the complexity of Setup in Section 5. Our
analysis consists of two major parts:

1. We compare dierent mechanisms for reducing the size of feature vectors
using n = 64 as the target dimension.

2. Using the best feature reduction mechanism we compare the FRR/FAR
tradeo for n < 1024, showing direct impacts for the correctness and
security of the resulting biometric search.

4.1.1. Dimensionality Reduction Method

We consider four dierent mechanisms for dimension reduction and consider
their impact on FRR/FAR. For all techniques, the most important phenomena
is that variance of Dierent comparisons increases as the sample size decreases.®
Compare Figure 4(a) and Figure 4(b). This makes the tails of Same and Dif-
ferent wider, leading to worse identication. The four mechanisms we consider
are”:

Random Sample Select a random subset of positions of size 64 and use this
as the feature extractor. We denote this technique by R-64 (for random).

Error Rate Minimization Hollingsworth et al. [74] and Bolle et al. [75] pro-
pose the concept of \fragile bits" which are more likely to be susceptible
to bit ips. Their work is based on the Gabor based feature extractor
(described at the beginning of this section) while ThirdEye [21] is a con-
volutional neural network.

We select the 64 bits which have the least probability of ipping. Results
for this approach are shown in Table 2 and denoted by S-64 (for stable).

Surprisingly, this approach is worse than random sampling. We believe
this approach to be appropriate for the Gabor based feature extractor
since it produces large number of noisy features due to noise in dierent
readings of an iris. This is in contrast to our feature extractor which
outputs a succinct feature vector where the CNN tries to make individuals
features independent.

Error Delta Maximization This approach uses bits which maximize the dif-
ference between the means of the intra and inter class distributions. These
are bits where the dierence between intra class and inter class error is the
highest. That is, we select the bits that maximize the following dierence:

max Pr [xi = il Pr  [xi= vil
i x;y Di erent X;y Same

8This is consistent with previous observations that sampling from the iris red histogram
behaves similarly to a binomial distribution where the number of trials is proportional the
included entropy of the iris [73].

9For all experiments we computed the mechanism four times and report the average in
Table 2.
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False Accept Rate (FAR)

Size | 0] .01].02|.03].04].05|.06]|.07]|.08].09].10
1024 [ 50[.03[.02].01[.01].01[.01[.01].01] 0] O
R-64 | .99 | 38 | 29 | .24 | 22 | .18 | .17 | .16 | .14 | .13 | .12
S-64 | 1| .61 | .61 | .51 | .41 | .41 | .41 | .32 | .32 | .32 .26
E-64 | .97 | .30 | .24 | .18 | .14 | .14 | .10 | .10 | .10 | .07 | .07
T-64 | .96 | .27 | .16 | .13 | .13 | .09 | .09 | .06 | .06 | .06 | .04

Table 2: False reject rate (FRR) for the ND0405 datasets, for output size n = 64 and for
dierent dimensionality reduction techniques. Queries are drawn from Same distribution. We
vary a threshold t and report the FRR when allowing for the corresponding FAR. The originaln
= 1024 system is presented for comparison.

Here, \Same" indicates that the readings x;y come from the same iris
and\Dierent" means that they came from distinct irises. The intuition is
that bits are the most useful as they maximize the dierence in probability of
error between the same and dierent comparisons. The hope is to
overcome the weakness of the prior approach which did not consider the
entropy of bits across dierent biometrics. The top 64 bits are used. This
approach is denoted by E-64 (for error). This approach improves over
both R and S techniques.

Training Network Lastly, we train the ThirdEye architecture [21] from scratch
to output a smaller feature vector of size n = 64 for both datasets. Es-
sentially we train a new feature extractor on the same training data to
reduce dimensions. The feature extractor remains the same but is now
constrained to learn 64 features. This is achieved by changing the number
of neurons in the second last layer of our convolutional neural network.
We can expect this to perform better than random sampling since the
feature extractor is explicitly learning to classify using 64 features. We
use T-64 (for train) to denote this technique.

Results are summarized in Table 2. The E and T techniques outperform the
R and S techniques. Going forward we use the E dimensionality reduction
technique for the rest of this work because it is simpler to compute for dierent
vector sizes.

4.1.2. Impact of reducing n

We now show that decreasing n using the E method hurts the identication
quality of the iris biometric. First we note that an FRR of :10 requires a
distance tolerance of t :3n (see the histograms in Figure 4). However,
comparisons between dierent irises are tightly centered around t = :5n. This
means for a dataset fxig;:1 for most pairs xi; xj there exists some value x such
that D(xi; x) tand D(x;; x) t. This means for most pairs xi; xj, there is some
query that will cause them both to be returned.

The goal of this subsection is to understand behavior on actual queries.

We consider a distribution over x of dierent readings of individuals stored in
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Vector Length
ACount | 64 | 96 | 128 | 256 | 384 | 512 | 768 | 1024 |
Avg. [ 408345130603 [3.86 | 1.03| 53| .06

2 .75 74 A2 .23 .17 | .083 | .076 | .019

Table 3: Eect of dimensionality reduction on the correctness and security of the resulting
biometric search system. ACount is the average number of improperly records when searching
for a biometric that is in the dataset. All feature extractors with n < 1024 use the E method to
select features.

the dataset to see how frequently multiple records are returned. Recall that
multiple records being returned impacts the system correctness for both the
MRProjC and MRProj constructions. It additionally aects leakage for MRProj.
For these analysis we consider the ND-0405 dataset with the E mechanism for
reducing the size of a feature vector (see the previous subsection).

We use the value ACount, which represents how frequently a record of a
dierent biometric would be returned by an in use search system, to evaluate the
impact of the dimensionality reduction. To achieve both correctness and
security, one needs ACount to be as close to 0 as possible, assuming randomly
distributed queries.

We consider correctness of the system at dierent feature vector lengths
n. We select a random reading of each biometric to represent the encrypted
dataset. We rst select a t that yields at most 10% FRR (for comparisons of the
same iris on the training dataset). We then use the following procedure:

1. Initialize matrix C;;; = 03°63%6,
2. Pick I f1;::::;356g of size 150 randomly. 3.
For each i in I:
(a) Select 3 random readings of iris i, denoted xi(removing reading that
is encrypted):1°
(b) Forallj if D(x;x;) tand D(x;xi) tCi; = Ci;j + 1.

4. Compute ACount = P 358 P 2281 Cisi =(3 150):
We ran this experiment 40 times and report the mean and standard deviation of
ACount in Table 3. As one can see keeping a vector size of n = 1024 has a three
order of magnitude reduction in the average number of improperly returned
records, underscoring the importance of inner product encryption to work with
large n.

Leakage on readings of the same iris. There are two types of biometric databases,
those which associate a single reading x; of a biometric with each record r; and
those where multiple readings of a biometric xi;1; :::; Xi;x are associated with a
single record. Until now, we’ve implicitly assumed that the database has only

—*Everyiris im the NDO405 dataset has at least 4 readings so this is the maximum number

of queries that will have an equal number of readings from the size 150 subset.
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FRR False Accept Rate

Size | 0] .01].02|.03].04].05|.06]|.07].08].09].10
102470 [ 1 1] 1] 1 1] 1] 1] 1] 1
512 | 57 | 1| 1| 1| 1| 1| 1| 1| 1| 1| 1
256 | 47 |99 | 1| 1| 1| 1| 1| 1| 1| 1| 1
192 | 48 | 99 | 1| 1| 1| 1| 1| 1| 1| 1] 1
12854 .99 .99 | 1| 1| 1| 1| 1| 1| 1] 1

9 | .40 | .99 | .99 | 99 | 1| 1| 1| 1| 1| 1| 1

64 | 27 .97 .99 | .99 | 99| .99 | .99 | 1| 1| 1| 1

Table 4: TAR for dierent output sizes and probabilities of leakage for the IITD Dataset.
Summary of FAR for queries drawn from Same distribution for noise tolerance parameters.
We vary a threshold t, report the FRR when FAR is as listed. All sizes use the R methodology.

one reading of a biometric. We now briey consider the implications of leakage
between readings of the same biometric. That is, xj;1; :::; x;;x are readings from
the same biometric and associated with a record r; in the biometric database.
First note that x;; and x;; are likely to be close together (because readings of the
same biometric are similar).

One may able to infer information about x;;1; :::; x;;k from access pattern
and distance equality leakage. One may be able to learn the relative position-ing
of the dierent readings by which values | are return by a query y (if itis not all
values). Similarly, we expect the adversary to learn distance equality leakage for
the entire set xj;1; :::; Xi.k. Both of these leakage proles allow an adversary to
construct geometry of a biometric’s dierent readings. This may allow the
adversary to determine the type of noise present in that individual’s biometric.
It may be possible to use noise rates to draw conclusions about sen-sitive
attributes about the corresponding person. Biometric systems frequently
demonstrate systemic bias [76]. As one example most datasets draw from vol-
unteer undergraduates students. Systems accuracy varies based on sensitive
attributes such as gender, race, and age (see [76, Table 1]). Thus one may be
able to infer sensitive attributes based on the relative size of jlj=k.

If one stores multiple readings, it seems important to use cryptographic
techniques to hide such leakage. A potential solution is to instead store a single
reading that is the average of the multiple readings [77] and make other values
associated data that are not searchable.

4.2. Statistical Analysis for IITD Dataset

The IITD dataset which consists of 224 persons and 2240 images. The
IITD dataset is considered \easier" than the ND0405 dataset because images
are collected in more controlled environments leading to less noise and variation
between images. Table 4 shows the FAR/FRR tradeo for || TD dataset akin to
Table 2. We additionally measured the number of improperly returned records
as in Table 3; improper records where only observed for length 64. Since IITD is
easier than ND0405, this indicates that the needed biometric dimension depends
on collection conditions.
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5. Multi Random Projection IPE

As described in the Introduction, we show a general technique improving
Setup eciency for IPE schemes where ciphertexts and tokens are projected into
dual vector spaces by a pair of matrices A; A 1. When applied to a secret-key
function hiding predicate | PE (respectively secret-key function hiding IPE), this
technique yields an IPE scheme with the same security properties. We call this
multi random projection technique. The key idea is to create multiple pairs of
matrices of smaller dimension for subvectors of the inputs. These independent
encodings are then combined with an additive secret sharing of 0 in the en-
cryption so that computation with ciphertexts and tokens is only useful when
using all of the components. Without this additional step, an adversary could
discard some subvectors of the inputs and still learn the inner products of the
remaining ones. In this section we show security of the technique when applied
to the RProj scheme of Barbosa et al. [44, Section 4].11

This scheme from Barbosa et al. is built upon an asymmetric bilinear pair-
ing. In the conference version of this work, we applied the multi-random projec-
tion technique to this asymmetric scheme. This work will shows the construc-
tion is secure with a symmetric bilinear pairing. This analysis allows one to
choose between a Type 1, 2 or 3 pairing'?, whichever provides the best perfor-
mance. In our experiments using the Charm library [78], presented in Section 7,
the symmetric pairing is more ecient. Other recent implementations using
Charm [79, 80, 81] found superior performance with a symmetric pairing.

Construction. The construction is in Figure 5. We rst argue correctness and
then security. For security, we show the scheme satises a stronger simulation-
based denition of security, as in the work of Barbosa et al. [44]. Unlike Kim et
al. [16, 17] and Barbosa et al. [44] we work directly with symmetric bilinear
groups. They both argued security assuming asymmetric bilinear groups.®3

P
Correctness. First note that hx;yi= ._;hx;yi, and thus

. . ,P(XU)TBB,, (y). = ._°
'=1i=1e(‘tk1[|];ct1[|]) =g, ! =g 7!
)Py _ g , P +hxyi

- T
hxyis P hx;yi
= 8 =8 T

If hx;yi = 0 then . e(tk[i];ct[i]) = e(g1;82)° = 1; which is the iden-tity
element in Gt and is easily detectible and > Decrypt(pp; tk; ct) with

—Functionatencryptionfororthogonality (OFE) as dened by Barbosa et al. is equal to

predicate inner product encryption, as dened in this work.

12Type 1 pairing denotes a symmetric bilinear pairing whereas type 2 and 3 are asymmetric
bilinear pairings.

13Both symmetric and asymmetric pairings work for functionality. For security, a symmetric
pairing suces.
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Setup(1; n;):

1. Sample a symmetric bilinear group (G1; G7;q;e) and choose generator
g2 Gy.

2. Output pp = (Gi1;Gr;q;e;n;) as public parameters and sk =
(g;fB;B.g._y).

TokGen(pp; sk; y):

1. Sample $Zq.

2. Split input y 2 Z into subvectors y- of size dn=e and pad with zeroes if
needed.

3. For1l “ ,deney’= 1jjy andsettk = [ (y°)" B ]z.4.

Output tk = (tkq; ;tk).

Encrypt(pp; sk; x):

1. Sample qu.
2. Split input x 2 Z7 into subvectors x- of size dn=e, and pad with zeroes
if needed.
‘ P 1
3. For 1 1, sample - Zq then set = ioq'e
4. For1 * denex®= - jjx- andsetct-= [ (x°)T B ]1.5. Output
ct = (cty; ;ct).

Decrypt(pp; tk; ct):

Compute z = ._;,_;e(tk¥il; ct-[i]) .
2. Return > if zis equal to 12 Gt, ? otherwise.

Figure 5: Construction of MRProj.

probability 1. If hx;yi = 0, then the probability that > Decrypt(pp; tk; ct) is
Pr[ hx;yi= 0] 2=q:
We argue that the scheme in Figure 5 satises Denition 5.

Theorem 1. In the Generic Group Model (Denition 2) for symmetric bilinear
groups the construction in Figure 5 is a secure IPEfh;sk;pred SCheme according to
Denition 5.

Proof of Theorem 1. Our scheme builds on the scheme of Barbosa et al. [44]
built in turn on the work Kim et al.[17]. Our proof uses similar denitions of
formal variables. The scheme works by having a challenger interact with a
simulator S and two oracles, O‘%okGen and O‘éncrypt in the ideal scheme, and a
pair of oracles, Otokgen and Oencrypt, in the real scheme. For this proof, we will
build the simulator S which can correctly simulate the distribution of tokens and
ciphertexts only using the predicate evaluation on whether the inner product of

the two vectors is 0. This information is supplied to the simulator by the oracles
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O‘%okGen and OEncr ot 1O match the functionality of the encryption scheme. This

is the mformatnon Ieakage described in Figure 2.

Inner-product collection. Let i;j be shared counters between the token gener-
ation and encryption oracles. Let x{") 2 Z7 and y(i) 2 Z7 denote respectively
the adversary’s ith query to the token generation oracle and jth query to the
encryption oracle. The collection of mappings Cip is dened as

( o
o - (i;j)! 0 if hx(V;yji= 0
T (i;j) ! 1 otherwise.

Formal variables. The simulator constructs formal variables for the unknowns
of the system in order to respond as correctly as possible. Consider the following
notation:

e Let Q be the maximum number of queries made by an adversary.

e Let and N be as in the construction in Figure 5.

For alli 2 [Q], “ 2 [] and k 2 [N], let "(”;“);"k,;k;w;k Pdpresent the
hidden variables (; (); x, ;¥ 1"

Let B k.m and B, ., represent the entry in position (k, m) of the B+ and
B. matrices respectlvely,

e Let (A,) be the formal variables f%r (i),where the simulator tracks the
constraints that for each i 2 [Q]; .., (",) = 0, and

Let &) and f('fﬂ represent formal polynomials as constructed below,

,m
) XN XN
9"31” = V‘O(') m = Bam + y\('?;-kl b%:m (1)
k=1 k=2
) XN
(i) 0(.) Ali) (i) A
fn= o ® krrb = ‘1rh’k1+ Rekem g (2)
k=2
Then the universe of formal variablesis U = R [ T, where
n o n o
R = MW 9(’{) ; f‘(l)
i2[q] [ im ‘M i2[Q); “2[1; m2([N]
and
T = nAm;m 0
iZ[Q]
[ 0(|) v0(|)
A P i2[Q]; 2[]; k2[N]
n o
[ B’;k;m ; 6’,-k;m

2[]; m;k2([N]
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5.1. Specication of simulator, S

Let A be a PPT adversary that makes at most Q = poly() queries to the
oracles. The simulator S starts by initializing an empty set of inner products
Cip and two empty tables T1; Tt which map handles to the polynomials over
the variables of R. The state of the simulator consists of these three objects,
(Cip; T1; T1), which are updated after each query received. The simulator S
answers the adversary’s queries as follows.

Token generation queries. On input x'") 2 27, O
to the simulator.

0 : 0
TokGen S€Nds the collection Cip

1. S updates Cip  Cj,.

2. For1 “ ,1 m N, S generates a new handle h-;m fo; 1g &nd
adds the mapping h«;m | A1) 8 () to Ty,

3. S then sets tk- = h+1; ; hon.

4. Finally, S returns the token tk = (tki; ;tk).

Encryption queries. On input y' 2 71,

1. Of,crypt SeNds the collection C{ to the simulator.
2. S updates Cip  Cf,.
3.Forl “ ,1 m N,
S generates a new handle h-;n 3 f0; 1g and adds the mapping h:;m !
Wt Ao T.
4. S setsct- = h.q; ;hen.
5. Finally, S returns the ciphertext ct = (ct1; ;ct).

Addition oracle queries. Given hi;h; 2 f0;1g, S

1. Veries that formal polynomials p1;p2 exist in table T, 2 f1;Tg such
that h1 ! p1 and hy ! p2. If it is not the case S returns ?.
2. If a handle for (p1 + p2) already exists in T S returns it.

3. Otherwise, S generates a new handle h 5 f0; 1g, adds the mapping h
I (p1+ p2) to T and returns h.

Pairing oracle queries. Given hy;hy 2 f0;1g, S
1. Veries that formal polynomials p1; p2 exist in table T1, such that hy ! p;
and hz [ P2 in T1.
2. If it is not the case S returns ?.
3. If a handle for (p1 p2) already exists in Tt, S returns it.

4. Otherwise, S generates a new handle h s f0; 1g, adds the mapping h
I (p1 p2) to Tt and returns h.
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Zero-testing oracle queries. Given h 2 f0;1g, S veries that formal polynomi-als
p exists in T, 2 f1;Tg, such that h'! p. If it is not the case S returns?. S
then works as follows.

1. It \canonicalizes" the polynomial p by expressing it as a sum of products
of formal variables in T with poly() terms.
2. If = 1and pis the zero polynomial, S outputs \zero." Otherwise output
\non-zero".
3. If = T the simulator decomposes p into the form
A NG g gg;‘ln; f“r)n 2 ULsm2IN]
I

(i A0
+ i S B amimaig (3)

where for 1 i;j Q, pi;j is dened as

L S
Pisi = Cijj el )
;m=1
where ci;j 2 Zq is the coecient of the term ¢ DGUA and fi;j consists of

.. ;1 11
the remaining terms.

4. If for all 1 i;j Q, (i;j) = 0 in Cip (corresponding to a zero inner
product) and fi;j does not contain any non-zero term, S outputs \zero".
Otherwise it outputs \non-zero".

5.2. Correctness of S

Canonicalization is ecient. We rst need to show that the canonicalization
process in step 1 of Zero-testing oracle queries is ecient. First, note that vari-
ables in R are ultimately written as variables in the elements of the underlying
matrices B+ and their inverses, which can be tracked eciently as each entry in the
inverse is polynomial size. Since the adversary can only obtain handles to new
monomials using token generation and encryption queries, the monomials are all
over formal variables in R. Also, since the adversary can make Q queries at most,
the polynomial p they can build and submit to the zero-testing oracle has at
most poly(Q) terms and degree 2.

Then using Equations 1 and 2, the formal polynomial p can be expressed as a
polynomial over formal variables in T . Since p has degree at most 2 over vari-
ables in R, it can be expressed as a sum of at most poly(Q; n) monomials over
variables in T and has degree at most poly(n). Since both the polynomial over R
and the canonical polynomial over T are polynomially-sized, this is ecient.

Correctness of token, encryption, and group queries. The simulator’s responses
to token generation, encryption and group oracle queries are distributed identi-
cally as in the real experiment.
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Correctness of zero-test queries. We now show correctness of the simulator’s
answers to zero-testing oracle queries. In this argument we formalize several
claims made in Kim et al.’s proof [16]. These statements are not separate
claims in Kim et al. so we refer to the page of the ePrint [17] where the claim is
made. Unlike prior work we use symmetric bilinear groups. This means, we must
argue, that the simulator is correct with the additional exibility provided to the
adversary by the ability to take linear combinations of TokGen and Encrypt which
are now both in G1 and to pair these elements. Concretely, this means that the
adversary has the ability to ask to pair elements of tk with other elements of
tk and elements of ct with elements of ct which was not possible before. In the
asymmetric group setting, the adversary was limited to pairing elements in ct
with elements in tk. Equation 3 shows how the simulator splits each query into
two parts pi;; which consists of valid decryptions (scaled by some values) and
fi.j which consist of some other elements. The goal of the proof is to show that
for the polynomial fi;j, the following two points hold:

1. The terms of fi;j are low degree polynomials of the hidden variables B -
and the values ;;. The polynomial fi;; is either O for all values of x;y
encrypted by the adversary or non-zero across all values of x;y.

2. That the polynomials are low-degree enough that we can use the Schwartz-
Zippel lemma (Lemma 1) to show that the nonzero polynomial fi;; eval-
uates to 0 with low probability. The probability space is the hidden ran-
domness of the scheme, specically the choice of B+ and the values ;;.

3. The newly available monomials created by the use of a symmetric bilinear
pairing have a dierent degree than the monomials available by properly
pairing between tokens and ciphertexts, so we do not have to worry about
these canceling each other.

Lemma 2. For = 1 the simulator’s behavior is correct with overwhelming
probability.

Proof of Lemma 2. Note that the only monomials that the adversary obtains are
in response to key generation and ciphertext queries. The canonical polynomial
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is of the form

xe  ox . ‘ ‘ ‘
p= A (i) CS;Ir)n;l 9“% + MO Cf;lr)n;z t'\")m (4)
i=1 im=1 ";m=1
X! . '
= A0) cli) 9,9(;) Pk
i=1 sm=1 k=1 |
+ W il R?;(l'() B m
m=1 k=1 U
X2 (i) (i) X' (i) .
- " Cima Biim + Yok Pim
i=1 “m=1 k=2
11
+ o CSI:\’I 2 ’(I) bA’;l;m + *sl)k bA’;k;m
m=1 k=2
where the variables n o
. ™
Cim17 Com.n 2 Zq:

Note that the sums

X! (i)
6';1;m + ¥ “k bI};k;m

k=2

can not be the identically zero polynomial over the formal variables
B k;m8 201, kim2(N]:

The sums

N
O P AP i
k=2

can only be the identically zero polynomial over the formal variables
8k, m 82015 kim2In]

if )= 0which happens with negligible probability. Both of these facts are true
regardless of the actual values of the adversary’s queries. Recall f"(”giz[Q],
fBgiara;, and fo;mg2[); k.m2(n] are sampled uniformly and independently in
the real game. Furthermore, the values fb ’\,.k_mg'z[]; k;m2[n] in the real game
are products formed by the inverse computation which are the sum of monomials
of degree N. Thus, under the assumption that the above sums are nonzero, the
entire value of p can be expressed as a nonzero polynomial of degree at most
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N +1 = poly() in;;b. BY Lemma 1 (Schwartz-Zippel), p evaluates to non-zero
with overwhelming probability for random ;;b. This ifnplies that the simulator
is correct with overwhelming probability. This completes the proof of Lemma 2.

Lemma 3. For = T the simulator’s behavior is correct with overwhelming
probability.

Proof of Lemma 3. We prove Lemma 3 by two claims Claims 1 and 2 that
consider whether f;;; has any non-zero terms.

Claim 1. If fi;; does not contain any non-zero term then S outputs the correct
value.

Proof of Claim 1. If f;;; does not contain any term, then p is of the form
!

X2 N
- AN A (i) (i)
P Ci;j X ““m m
= vmets £ I I
. X ) X
_ Al (N Cisj V‘S(k') B m *?;(li) K o
i;j=1 m=1 k=1 | k=1
X . Lo
= AW ¢ (20U g gT o) 71
i;j=1 |
xQ ) ) .
- AW ¢ X )y phpl) i)y
ijj=1 =1
- ADB ¢l gl
i;j=1

p is the zero polynomial when all (i;j) inner products are zero, which can be
known by checking if (i;j) ! 0in Ci. This completes the proof of Claim 1. [

Claim 2. If fi;; has at least one nonzero term then S’s output is correct with
overwhelming probability.

Now suppose that for some i; j 2 [Q] the polynomial f;i;j contains at least one
term. Then we claim that fi;; cannot be the identically zero polynomial over the
formal variables f ®;k;m g2(;k;m2[n], irrespective of the adversary’s choice of
admissible queries. To show this we rst need to describe all the possible types of
terms in fi;;. This is a generalization of [16, Lemma 3.3] to the symmetric
pairing setting.

Proposition 1. The polynomial fi;; must contain
Cross-Terms A \cross-term" of the form ¢ ¢ () t A ) ‘where ¢ 2 Z4 is non-

7m i ;jm j
zero and (‘i; mi) = (‘;; mj).
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Square Terms A \square-term" of the form c §i!_$‘j9_ or c t(i)”t_m",
1 ] 1

2 Z4 is non-zero.

where ¢
J

Partial Inner Products Some \partial inner product" of the form c & i!}(u‘,),k

where c2 Zq and ‘ 2 [];k 2 [n].

Basic Polynomial No cross-terms, square-terms, or partial inner products
and must be a polynomial of only & or ).

We must show that in the 4 cases, fi;; cannot be identically zero. If the
polynomials are nonzero with a degree polynomial in the security parameter,
they are unlikely to evaluate to 0.

Note that in all settings we need to consider the fact that the fi;j can contain

terms of the form ¢ ¢ ”fs 10 or c t(i)‘t(_j)",where c 2 Zq is non-zero. Note in the
above that ‘i; ‘; may be the'same or dierent. The goal is to show that f;;; cannot
be identically zero in each of the above cases regardless of the adversary’s choice of
fx(i); ylilg.

The intuition for this part of the proof is that s terms are formal variables in
B - and are thus degree 1 polynomials of those values. However, B ,is an inverse
of B+ and thus each entry of B ,is a degree N polynomial in the entries of B-.
Recall that s terms are formed from B and t terms are formed from B. This
means that cross-terms and square terms are distinct polynomials with degree
N +1, 2 (for s cross terms) and 2N (for t cross terms). Thus, they never cancel
each other.

Cross-Terms and Square Terms. In this case there is some cross term dd4 ',m
i A
f‘,“_)m_ where ¢ 2 Zq is non-zero and (‘i; mi) = (‘j; mj). The cross-terms values
j ]

c$ '° . ﬂ(?)_m, were constructed by strictly multiplying elements of B+ with B, 1.
SpecicaII\/, one can rewrite the above as
cs$ !) t(”)J

imi mp |

woo I ) )
0 (i) W) ()
(v Bitm+ WV )_‘;k B km ' bl yim, + 2V ko m,
k=2 k=2

(5)

We now recall the form of bterms. For a value k2 [N], let S.«x denote [N]nkand
let ;- denote the set of bijections from S.x ! S.-, and sgn represent a sign
function that maps inputs to f 1;1g. The variable

Q
6 k;m Isgn(; k; mi) rzs:k bli;r;(r)
ikm det(B) : (6)

Consider the expansion of Equation 5 into monomials of . Each monomial

‘

in the expansion contains the product of exactly two variables in column *;

‘

of B but no variables in column ‘j. However, we now evaluate whether f;;;
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can be identically zero should these cross-terms include polynomials multiples
elements from B together and/or elements of B. 1 together. First, we must
show that these newly formed cross-terms do not contain terms that would
cancel with terms from previously constructed cross-terms. This can be shown
by evaluating the degrees of the polynomials. All of the monomials in numerator
of the denition of Equation 5 have degree exactly N, the new polynomials
available to the adversary do not. From Kim et al. [16], we obtain the following

claim [17 Page 17, Case 1]4We—Fefer—t-he—Feaeler—te—[-Lé]—£er—why—d+eFent—eFess

Claim 3. Non-zero \cross-terms" of the form c 9(' f‘“) , with (‘i; mj) =

(5, mj), cannot cancel one another, irrespective of the adversarys choice of
admissible queries.

We can then focus on why the newly available terms cannot cancel any
cross term. Specically, all terms of the form ¢ 9f_')$‘§_” consist of monomials of

J
degree exactly 2. All terms of the form c ﬁ(i')ﬁ(j” consist of monomials of total
degree exactly 2N (see Equation 6). Therefore, if you have a combination of all
these types of cross terms, the resulting polynomial f;.j could not be identically
zero.

Basic and Square Terms. We consider the case where f;.j consists of nonzero
terms that have no products between ¢ and €. Kim et al. [16] showed non-zero
terms of the form é(') or 't‘(” will not cancel out with each other in fi,;. We
formalize this with the foIIowmg claim [17, Page 18, Case 3].

Claim 4. Non-zero terms of the form § . " t(") w consisting of monomials of

degree 1 and N respectively, are Imearly mdependent and cannot cancel one
another, irrespective of the adversary’s choice of admissible queries.

However, we now need to consider the case in which we have squared terms.
Consider the canonical polynomial in Lemma 2 as described in Equation 4 where
there are additionally square terms. That is,

! " !
p= Al sl (al)2 c. bl (s
i=1 sm=1 | sm=1 |
+ ™ (I) tMln)] + ((4\))2 (I) t/\ll) (7)

;m;3

‘ ‘

;m=1 ;m=1

Recall, that the expansion of £ terms are monomials of degree exactly N as
described in Equation 6. Thus, note that terms of the type & have degree
exactly 1, terms of the type 42 have degree exactly 2, terms of the type £ have
degree exactly N and terms of the type £2 have degree exactly 2N. Thus,

expanding Equation 7 in terms of B yields a polynomial that is not identically
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zero and whose monomials are linearly independent. So since there is at least
one nonzero coecient the resulting polynomial fi;; could not be identically
zero.

Partial Inner Product. In this case there is some partial inner product c§(')’t“)
where c2 Zq and “ 2 [];k 2 [n], but no cross or square terms. From Kim et aI

[16], we obtain the following claim [17, Page 18, Case 2].Kirm-etat-{36}showed
that—ne#emw#ﬂ#s%eﬂm—sﬂtuems%&ehmmn%eﬁdegme—eemm

Tk Tk g
Claim 5. In fj;j, non-zero terms of the form 9('1('(‘“& cannot cancel one another,
irrespective of the adversary’s choice of admissible’ queries.

As before, these terms (of degree N + 1) will not cancel with the terms avail-
able to the adversary which consist of monomials of degree exactly 1,NN—+1;
2 and 2N. Therefore, if you have a combination of partial inner products, the
resulting polynomial fi;; could not be identically zero.

. 4 gEP,- i ind I IF-,-'[ :
. cal

Since the polynomlal fi.j has non-zero degree it is not identically zero Sinee
we—haVHhewn%at—me—pelynemaJ—ﬁm—em%beﬂdﬂqﬂea#y—zeFe—and it has
polynomial degree in all cases, the simulator’s output of \non-zero" is correct
with overwhelming probability by the Schwartz-Zippel lemma (Lemma 1). This
completes the proof of Lemma 3. 0

This completes the proof of Theorem 1.

5.3. Limitation of the multirandom projection technique

The technique presented in this section requires to modify the internal work-
ings of the underlying IPE scheme. Thus it is not a black-box technique.

To give an intuition on why it cannot be applied in a black-box manner
we’ll consider Barbosa et al.’s predicate IPE scheme. Ciphertexts and tokens in
Barbosa et al.’s scheme are of the form

cty = [XT B]1

and
tky = [ VT Bl2

where ; are independently and randomly sampled in Z4 for each ciphertext and
token. Decryption yields [ xT B BT y]r. Since hx;yi is a multiplicative factor
there, can be ignored when the inner product evaluates to zero.

If we tried to apply our technique in a black box manner, these random
values would be preserved. Then each sub-ciphertext and token would have
independent randomness from the underlying IPE scheme. During decryption,
this would cause an issue as we would not be able to factorize the randomness
(since it was sampled independently) and thus the sum of the inner products
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would not cancel out when needed. We would indeed end up with something of
the form: 11 hxi;yii+ + hx;yi, which would not evaluate to zero when the
partial inner products are not zero (with high probability), even though the
overall inner product hx;yi is itself zero. We thus need to remove this internal
randomness and replace it by a global one. O

6. Building distance hiding PSE

As mentioned in Section 2, Hamming distance can be calculated using the inner
product between the two biometric vectors. As such, we can use a range of
possible inner product values as the distance threshold.

Predicate function-hiding secret key IPE [52], or IPE¢h;sk;pred, allows one to

test if the inner product between two vectors is equal to zero. By appending a
value to the rst vector and -1 to the second vector, we can support equality
testing for non-zero values. Generating several tokens or ciphertexts, one per
distance in the range, allows to test if the inner product is below the chosen
threshold.
We show that one can use IPEsn;sk;pred to construct PSE for Hamming distance®.
At a high level, each keyword is encoded as a f-1; 1g vector and -1 is appended
to it, which in turn is encrypted with IPEfn;sk;pred. Keywords are similarly en-
coded but this time a distance from the range is appended to them, and tokens
generated as part of the underlying IPEtn;sk;pred SCheme.

Construction 1 (Proximity Searchable Encryption). Fix the security parame-
ter 2 N. Let IPEth;sk;pred = (IPE:Setup, IPE:TokGen, IPE:Encrypt; IPE:Decrypt) be
a predicate function-hiding secret key |PE scheme over Z"*1, Let x; 2 Z" and X
= (x1; ; x<) be the list of keywords. Let F be the set of all pﬁedicates such that
for any xi 2 X, fy;t(xi) = 1 if the Hamming distance between x; and the query
vector y 2 Z" is less or equal to some chosen threshold t 2 Zq, fy;t(xi) = O
otherwise. Figure 6 is a%proximity searchable encryption scheme for the
Hamming distance.

Theorem 2 (PSE main theorem). Let IPEfh;sk;pred = (IPE:Setup, IPE:TokGen,
IPE:Encrypt, IPE:Decrypt) be an IND-secure function-hiding inner product pred-
icate encryption scheme over Z';*l. Then 9PSE = (PSE:Setup, PSE:Bindex,
PSE:Trpdr, PSE:Search), a secure proximity searchable encryption scheme for
the Hamming distance, such that for any PPT adversary Apse for Exp’sS ,
there exists a PPT adversary Ajpe for Exp:PNED, such that for any security pa-
rameter 2 N,

pSE IPE
AdvEPiR e = AdyPno
A PSE AlPE

14support of addition/deletion of records seems achievable by deleting after search and
inserting new ciphertexts in the database. However this would result in additional access
pattern leakage since these record would be clearly identiable by the server.
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Proof of Theorem 2. The correctness of the scheme follows from the correctness of
the underlying IPE scheme. Assume there exists xi 2 X, i 2 [1;‘], such that
fy;t(xi) = 1. That is D(y; xi) t with D(y; x;) the Hamming distance between
vectors y and x;. Then there exists a unique tk; 2 Qy;t such that b;
IPE:Decrypt(pp; tkj; cti) and b = 1 with overwhelming probability by the
correctness of the IPE scheme. Now assume that for some x; 2 X, i 2 [1;], we
have fy;t(xi) = 0. Then for all tk; 2 Qy;t, b; IPE:Decrypt(pp; tkj; cti) and
b;j = 1 with negligible probability. Then considering the worst case where either
D(y; x<) = torforall xi 2 X, fy;t(xi) = 0, we have:
PrPSE:Search(pp; Qy;t; Ix) = Ix;y;t
IPE'I'I])ecrypt(pp;tkj;cti) ‘

? ! I
=(D(x ;y)=dj)

1 ‘(t+ 1) Pr
1 “(t+ 1) negl():

We now prove the security of the construction. Let A ;. be a PPT adversary
IPE

for the experiment Exp/y5, and Cipe be an challenger for Exp,"" . We build a

PPT adversary Apg for the experiment Exp'[§, as follows:
1. Aype receives pp from Cipe and forwards it to Apse.
2. Ajpe receives two m-query histories History(o); History(l) from Apse where
History) = (XU;F0) for 2 f0; 1g.
3. For each xi” 2 XU, i 2 [1;1, Ape encodes it as x ”iZ f-1;1g" and

creates the query S; = (xi(o)jj -1; xi(l)jj -1):

4, Aype sets S = S1; ;S-.
5. For each fj() 2 FU, ) 2 [1;m]:
(a) Ajpe extracts a vector yj() 2Z,"and t2 N.
(b) Aype encodes yj() asy(j) 2 f-1;1g" and creates p(® = (do; ;dt)
such thatd, = n 2k with 0 k t.

(c) Ape creates q(o) by reordering the elements in Dﬁ-o) such that for
?

all k 2 [0;t] and EI(O) 2 q(o);dl((l) 2 Dﬁl) we have hxi(o);yj(o)i 2
dl((o) = hxi(l);yj(l)i £ dl((l) : (Ajpe can always nd a permutation to
make this last condition by the admissibility requirement.)
(d) Aipe samples a random permutation ; :[0;t] ! [O;t].
(e) For 0 k t, Ajpe creates y()jj J-d” with 2 f0; 1g, d© 2 D(ok) and dj(l)
2 D(IL. Ther] A\pe computes
R() = y()jj d(); ;y()jj d()

i j 0 j t

(0), (1)
(Rj ,RJ. ).
R1; ; Rm.

and sets R;
(f) Aipe sets R
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Underlying IPE scheme

MRProj [ [44, Section 4] [ [44, Section 5] [ [82]
Setup ((n+ 1)=)3 (n+ 1)° (n+ 1)° (6n + 6)°
Blndex ‘(n+ + 1) ‘(n+ 1) ‘(12n + 21) 6‘(n+ 1)
Trpdr (t+ 1)(n+ + 1) (t+ 1)(n+ 1) (t+ 1)(12n+ 21) 6(t+ 1)(n+ 1)
Search ‘(t+ 1)(n+ + 1) | “(t+ 1)(n+ 1) ‘(t+ 1)(6n+ 12) | 6°(t+ 1)(n+ 1)
jskj 2((n+ 1)?=+ 2n+ + 3) 2(n+ 1)7+ 2 24n + 42 60(n + 1)°
jlj ‘(n+ + 1) ‘(n+ 1) ‘“(6n + 12) 6'(n+ 1)
jtky;tj (t+ 1)(n+ + 1) (t+ 1)(n+ 1) (t+ 1)(6n+ 12) 6(t+ 1)(n+ 1)

Table 5: PSE scheme eciency for keywords of size n depending on underlying IPEfh;sk;pred
scheme. Upper part of the table shows number of group or pairing operations per function.
Lower part of the table shows number of group elements per component. The number n isthe
length of the biometric template, is the number of bases in the multi random projection scheme,
t is the desired distance tolerance, and ‘ is the total number of records in the database.

6. Ajpe sends the token generation queries R and encryption queries S to
Cipe and receives back a set of tokens T! = tk"; ;tk" ang a set of
encrypted keywords C() = ct()l' ;ct! such that

tkjy  IPE:TokGen(sk; v,"jj d"),
() . Ly O
ct, IPE:Encrypt(sk; x;’jj -1)

fori 2 [1;,j 2 [1;m], k 2 [0;t] and 2 f0;1g. Ajpe forwards T! and
€U to Apse, respectively as the encrypted index | {) and the list of queries
Q()‘

7. Aipe receives °2 f0; 1g from Apse and returns it.

Since the number of token generation queries, m t, sent by A;pe remains
polynomial in the security parameter, the advantage of Apse is

PSE IPE
AdViXp' N0 = AdyE*PiNo
PSE AlPE

This completes the proof of Theorem 2. O

Table 5 presents the resulting eciency of distance hiding PSE schemes based on
dierent IPEfh;sk;pred COnstructions. This table corresponds to t + 1 tokens with
all operations on dimension n+ 1.

7. Implementation

This section presents an implementation and an evaluation of the PSE scheme
proposed in this paper. We implemented the MRProj construction described in
section 5 and the resulting PSE (see section 6) schemes in Python 3. These
implementations can be found in a Github repository [83]. Our IPE imple-
mentations uses the Charm [78] and FLINT [23] libraries for the pairing group
operations and nite eld arithmetic in Z4. For comparison purposes, we used the
pairing group over the asymmetric curve MNT159, the same as in Kim et
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PSE:Setup(1) ! (sk;pp):

1. Run and output (sk; pp) IPE:Setup(1).
PSE:Trpdr(sk; fy;t) ! Qy;t:

1. For 0 j tcomputed; = n 2j.2.

Set D = (do;:::; dt).

3. Sample random permutation :[0;t]! [O;t].
4. Compute D = (D) = fd; ;ds.
5. Encodeyasy 2 f 1;1g".

6. For 0 j t call tk; IPE:TokGen(sk;y jj d)] 7.
Output Qy;: = (tko; ; tkt).

PSE:BlIndex(sk; X) ! Ix:

t

1. For each keyword x; 2 X, i 2 f1; ;’‘g,
encode X, 2 f 1;1g",
compute ct; IPE:Encrypt(sk;xijj -1).
2. Output Ix = (ct1; ;cte).

PSE:Search(pp; Qy;t; Ix) ! Ix;y;t:

T Initialize Ix,y;¢t = ;-
2. For each cti 2 Ix and for each tk; 2 Qy;,
call bj IPE:Decrypt(pp; tk;; cti).
If bj = 1, add i to Jx;y;t, continue to cti+1.
3. Output Jx;y;t.

Figure 6: Construction of proximity search from IPEsh;sk;pred-

al.’s FHIPE implementation [84]. For testing with a symmetric pairing group
we used SS512.

The search, encryption and token generation algorithms were parallelized.
Benchmarking tests for each algorithm were implemented and the number of
random projections, the distance threshold and the input vector sizes for these
tests can vary. This allowed us to compare eciency for dierent parameters and
pinpoint values that yield a practical and accurate scheme. With a number of
random projections equal to 1, we obtain Setup timings and secret key size for
RProjC. Setting the distance threshold to 0 allows us to get timings for
MRProjC. We used iris readings from the ND 0405 as input vectors to the
benchmarking tests to be as realistic as possible.

7.1. Evaluation

We evaluate our implementations on a Linux server with an AMD Ryzen
9 3950X 16-Core processor and 64GB of RAM. Remember that the preferred
input vector size for correctness is 1024 (as stated in Section 4).
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Time

MRProj w/ SS512 MRProj w/ MINT159 MRProjC
n t 128 | Bindex | Trpdr | Search | Blndex | Trpdr | Search | Trpdr | Search
3 38192 5 7 .8 58 1.5 .36 234 .01 31
57 256 7 .9 1.8 130 2.2 .8 495 .01 46
76384 10 1.2 3.2 228 2.9 1.4 850 .02 62
115512 13 1.7 7.4 514 4.4 3.1 1870 .03 92
153 768 19 2.3 13 907 5.7 5.7 3282 .04 140
2301024| 25 3.4 28 2030 8.6 13.4 7210 .06 185
307 4.3 52 3580 10.8 22.4 12600 .08 241

Table 6: Operations timing (in seconds) for dierent vector sizes. n is the vector length, the
number of bases used, and t = :30 the distance tolerance. Blndex procedure for MRProj and
MRProjC schemes are the same procedures, MRProjC uses vectors whose length is 1 fewer. We
only report timing for Bindex for MRProj.

Time

n t | MRProj w/ SS512 | MRProj w/ MNT159 RProjC
128 3] 38 34 75 4 10°
192 5| 57 38 47 | 1:3  10%
256 71| 76 43 57 | 3:2 10*
384 | 10 | 115 73 94 | 1:1 10°
512 | 13 | 153 106 153 | 2:6 10°
768 | 19 | 230 169 269 | 8:6 10°
1024 | 25 | 307 225 268 | 2:0 10°

Table 7: Operations timing in seconds for Setup dierent vector sizes. n is the vector length, the
number of bases used, and t = :30 the distance tolerance. Setup for MRProj and MRProjC
schemes are the same procedures, MRProjC uses vectors whose length is 1 fewer. We only
report Setup for MRProj. Timing for MRProjC Setup is interpolated. Measured n = 10 to 240in
steps of 10 cubic t with coecients y = :003x3 :578x%2 + 36x 557 with R2 = :996.

Timing. We evaluate the timing eciency of our PSE construction with and
without the multi random projection technique. When using the multi random
projection technique we report on timings for both the asymmetric MNT159
curve and the symmetric SS512 curve. Table 7 reports the timings for Setup
and table 6 reports timings for the other algorithms of the PSE scheme. RProjC
corresponds to Kim et al.’s FHIPE construction. MRProjC corresponds to the
same scheme but with the multi random projection technique applied. In the
last column of the timing section of the table, we report the timing of the Setup
algorithm without this multi random projection construction.

During our tests, we noticed a jump in Setup timings when going from sub-
vectors of 40 to 60 group elements, we thus chose values that yield sub-vectors
lengths of approximately 40. We make four main observations.

1. Setup and BIndex have comparable performance for MRProj and MRProjC
(the only dierence is adding 1 to underlying dimension). However, Trpdr is
substantially slower for MRProj since it prepares t + 1 tokens, but per-
formance remains reasonable.

2. Distance hiding has a large impact on the Search algorithm. MRProjC
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Sizes

MRProj RProjC [16]
n t JjEncDBj jskj jskj
128 | 3 38 5:9 MB | 560 KB 1:6 MB
192 5 57 8:9 MB | 770 KB 3:6 MB
256 |7 |76 12 MB | 980 KB 6:4 MB
384 10 | 115 | 18 MB | 1:5 MB 14 MB
512 13 | 153 | 24 MB | 2:1 MB 26 MB
768 19 | 230 | 36 MB | 3:2 MB 57 MB
1024 | 25 | 307 | 47 MB | 4:3 MB 100 MB

Table 8: Sizes (in Megabytes/Kilobytes) for dierent vector sizes. n is the vector length, the
number of bases used, and t = :30 the distance tolerance. Storage for the MRProjC Setup is
interpolated. Measured n = 10 to 240 in steps of 10 quadratic t with coecientsy = 96x2 +
192x + 573 with RZ = 1.

Search takes 4 minutes, MRProj Search takes 3.5 hours for the MNT159
curve and 1 hour for the SS512 curve. All approaches scan the whole
database which is problematic for large datasets. We discuss possible
solutions in Section 8.

3. The use of a symmetric pairing dramatically improves search time by
roughly a factor of between 3 and 4 across testing parameters. However,
it does increase the time to generate the trapdoor by roughly a factor of
2.

4. Finally, this table shows that Setup without multi random projection is
completely impractical for large input vector sizes. In particular, for vec-
tors of size 1024, Setup takes approximately 23 days. In comparison, Setup
using multi random projection takes less than ve minutes for input vec-tors
of size 1024. Our multi random projection construction thus allows to use a
large enough input vector size to maintain a high correctness while
increasing the eciency of the setup algorithm. This is explained by the fact
that the Setup algorithm’s running time is dominated by the matrix
inversion. It is then more ecient to perform multiple inversions of small
matrices than a single inversion of a bigger one.

Storage. Table 8 reports on the sizes of the encrypted database and secret key.
We evaluate the impact of the multi random projection PSE construction on
storage eciency. As can be seen on Table 8, the impact is low for small input
vectors, however, it makes a big dierence for larger ones. Indeed, when the size of
the [16] grows quadratically with the vector size, the size of the key generated with
the multi random projection technique grows with (n=)2 n?=. For vectors of size
1024, we consider = 25 and the secret key generated with the multi random
projection technique is 23:2 times smaller than the single basis key, conrming
the asymptotic analysis.
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8. Conclusion

Iris biometric feature extractors produce feature vectors similar in the binary
Hamming metric. Inner product encryption was proposed to build encrypted
search for the binary Hamming metric. In this work we explored a domain
specic solution for secure searchable encryption for iris biometric databases.

We observed in the statistics of the iris biometric data that large vectors are
required for both correctness and minimizing leakage. With large vectors, we
see that the distance between readings of the same class can be separated from
the distance distribution from the readings of other classes (see Figure 4). This
means that with a xed distance threshold, we can ensure that more readings of the
same class are approved while readings from other classes are denied (with high
probability).

In prior work, Setup was not feasible for large vector lengths due to the
cost of inverting large matrices. In the most relevant prior work [16], they skip
this step in benchmarking due to the high cost. Our interpolation results show
that for n = 1024 would take roughly 23 days. This is estimated on a parallel
implementation in C. The length n = 1024 is the length of prior iris feature
extractors. We do not consider this time acceptable.

In the RProjC scheme of Kim et al. [16], additionally the distance is leaked
between queries and all points in the database. Based on prior work on trilater-
ilation, with a constant number of queries observed in n, the server can build
complete distance information between the stored data points. If the adver-
sary knows auxiliary information about the database, the encryption may not
protect the data at all.

In this work we oer solutions to these two problems. We show a multi
random projection approach that allows for breaking large vectors into small
vectors. This allows us to use smaller matrices greatly reducing the computa-
tional time required to invert the matrices. Doing two n=2 inversions takes 1=4
the time of one size n inversion. Careful optimization improves Setup time by
four orders of magnitude while only increasing search time by 3%.

We show how to use predicate inner product encryption to build a scheme
that hides the distance between the query and the stored records. By using
a predicate scheme instead of one that gives the value of the inner product,
the server only learns if the two vectors are a xed distance from one another.
This greatly reduces the information that is leaked through remotely executing
this operation. The server only learns information about data that are close
the queried point and learns nothing about data that are outside the distance
threshold. We show this scheme leaks only access pattern and distance equality
leakage.

The improvement in accuracy for higher n also yields an improvement of
leakage prole for our scheme. When two or more classes are returned from a
single query, this leaks that the returned items are within distance 2t (through
access pattern) and whether they are the same distance from the query (distance
equality leakage). Decreasing the statistical overlap between classes minimizes
the probability of both leakages which translates to a more private system for
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sensitive biometric data.

The transformation comes at a cost of making search slower and no longer
appropriate for moderately sized databases. We believe that this transformation
is required in order to maintain the integrity of sensitive biometric information.
Thus, our main open problem is whether or not this signicant slow down to
search is avoidable. For databases at larger scales, doing a linear search of the
entire database for each query is unacceptable. With our distance hiding
transformation we have to do a linear scan for each subtoken (that checks a
specic distance) and so we see a signicant (but linear) slowdown over a single
linear database scan. Of particular interest are approaches that use indices that
natively support k nearest neighbors but are not vulnerable to recent attacks
(such as [33, 34]) and interactive solutions where the client can guide the search.
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