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Topological structure of complex 
predictions

Meng Liu      , Tamal K. Dey & David F. Gleich     

Current complex prediction models are the result of fitting deep neural 
networks, graph convolutional networks or transducers to a set of 
training data. A key challenge with these models is that they are highly 
parameterized, which makes describing and interpreting the prediction 
strategies difficult. We use topological data analysis to transform 
these complex prediction models into a simplified topological view 
of the prediction landscape. The result is a map of the predictions that 
enables inspection of the model results with more specificity than 
dimensionality-reduction methods such as tSNE and UMAP. The methods 
scale up to large datasets across different domains. We present a case 
study of a transformer-based model previously designed to predict 
expression levels of a piece of DNA in thousands of genomic tracks.  
When the model is used to study mutations in the BRCA1 gene, our 
topological analysis shows that it is sensitive to the location of a mutation 
and the exon structure of BRCA1 in ways that cannot be found with tools 
based on dimensionality reduction. Moreover, the topological frame 
work offers multiple ways to inspect results, including an error estimate 
that is more accurate than model uncertainty. Further studies show  
how these ideas produce useful results in graph-based learning and  
image classification.

Deep learning is a successful strategy where a highly parameterized 
model makes human-like predictions across many fields1–4. Yet chal-
lenges in both interpretation and generalization often keep deep 
learning from use in practice5,6. Deep-learned models and their spe-
cific prediction mechanisms are difficult to assess directly due to the 
large collection of model parameters. Inspection methods such as 
activation or saliency maps7,8 highlight only the results for a single 
prediction with their own limitations9. Likewise, influence estimation 
techniques10 often produce a ranked list of samples. These tend to be 
most useful to understand issues retrospectively, after they have been 
identified. In comparison, global data visualizations such as tSNE11 and 
UMAP12,13 offer the power to inspect the global space of predictions 
among large collections of data. In principle, these methods offer the 
ability to prospectively identify those problematic data regions; how-
ever, the dimension reduction inherent to these methods may distort 
properties of the data.

Topological data analysis, on the other hand, excels at distill-
ing representation-invariant information14–17 because it seeks to 
simplify the shape of data in its ambient space without reducing its 
dimension. Topological data analysis (TDA) of complex predictive 
models such as deep learning remains in its infancy18–22. Existing 
research focuses on trying to assess the topological properties of the 
network weights, to assess the topology of the features used by the 
network, to initialize network weights with topologically consistent 
operators (GENEOs), or to add topological features to predictions. 
Our approach seeks to assess the topology of the neural network 
embeddings, representations of the data, and how they interact with 
the predictions. By way of an anthropomorphic analogy, we seek to 
simplify the topological lens with which the neural network sees the 
data for predictions. Although we say deep learning, our methods 
are compatible with any mechanisms that outputs a vector of class 
probability values as discussed in the Supplementary Methods, 
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	4.	 Connect the nodes of the Reeb graph if the clusters they repre-
sent share a common datapoint.

The resulting graph is a discrete approximation of the Reeb graph and 
represents a compressed view of the shape underlying the original 
dataset.

The input data for mapper is usually a point cloud in a high- 
dimensional space where the point coordinates are used only in the 
clustering step. In our methodology, we are interested in datasets that 
are even more general. Graph inputs provide this generality. Datasets 
not in graph format such as images or DNA sequences can be easily 
transformed into graphs by first extracting intermediate outputs of 
the model as embeddings and then building a nearest-neighbour graph 
from the embedding matrix. The resulting graph then facilitates easy 
clustering: for each subset of points, we extract the subgraph induced 
by those points and then use a parameter-free connected-components 
analysis to generate clusters. Our method could also work with 
point-cloud data and clustering directly through standard relation-
ships between graph-based algorithms and point-cloud-based algo-
rithms. We focus on the graph-based approach both for simplicity and 
because we found it the most helpful for these prediction applications.

The GTDA method therefore begins with a graph representing 
relationships among data points and a set of values over each node 
called lenses (Fig. 1a,b); the terminology of lenses arises from a work 
by Lum and colleagues17. In the applications we consider, the lenses we 
use are the prediction matrix of a neural network model where Pij is the 
probability that sample i belongs to class j. Graph-based TDA uses a 
recursive splitting strategy to build the bins in the multidimensional 
space (Fig. 1c), instead of tensor product bin constructions as in mul-
tidimensional generalizations of mapper. Detailed pseudo code for 
this procedure can be found in Supplementary Algorithm 1. An 

including more classic techniques such as support vector machines 
or logistic regressions.

Our GTDA method
We construct a Reeb network to assess the prediction landscape of a 
neural-network-like prediction method. Reeb networks are discretiza-
tions of topological structures called Reeb spaces, which generalize 
Reeb graphs17,23. An example of the differences among these concepts is 
illustrated in Extended Data Fig. 1 with further discussion in Supplemen-
tary Section 1.6. Reeb networks seek to simplify the data while respecting 
topology. We design a recursive splitting and merging procedure called 
graph-based topological data analysis (GTDA) to simplify the data.

Our GTDA method builds on the mapper algorithm15. Mapper, 
itself, builds a discrete approximation of a Reeb graph or Reeb space 
(see Supplementary Section 1.6 and Extended Data Fig. 1). It begins 
with a set of data points (x1, …, xn), along with a single or multivalued 
function sampled at each data point. The set of all these values {f1, …, fn} 
samples a map f ∶ X → ℝk on a topological space X. The map f is called 
a filter or lens. The idea is that when f is single-valued, a Reeb graph 
shows a quotient topology of X with respect to f and mapper discretizes 
this Reeb graph using the sampled values of f on points x1, …, xn. Algo-
rithmically, mapper consists of the steps:

	1.	 Sort the values fi and split them into overlapping bins B1, …, Br of 
the same size.

	2.	 For each bin of values Bj, let Sj denote the set of data points with 
those values and cluster the data points in each Sj independently 
(that is, we run a clustering algorithm on each Sj as if it were the 
entire dataset).

	3.	 Create a node in the Reeb graph for each cluster found in the 
previous step.

… keep splitting …

Input graph

StopStop Stop
e  Connect and combine small groups

… and so on …

Lens 1

Lens 2

Red nodes are shared
from overlap

Split with
lens 1

Recursively split subgroups with overlap Connect subgroups with shared nodes

Red nodes are shared 

Initial split
with lens 1

Split with
lens 1

Split with
lens 2

GTDA Reeb network

Initial Reeb network
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 b 

c  d 

Fig. 1 | Overview of the GTDA method. a,b, The GTDA construction of a Reeb 
network starts with an input graph (a) and a set of lenses that assign values to 
each node of the graph (b), where the values are indicated by the node colour.  
c, A Reeb network is a simplification built from overlapping subgroups or clusters 
in the original data with similar values for the lenses—GTDA builds these using a 
recursive splitting procedure. At each recursive step, a single lens is chosen  
and the data are split into parts based on the node values in that lens. The split 

is done so that there are overlapped nodes around the split boundary. This 
continues until only small groups remain. d, These subgroups are assembled 
into a Reeb network by simplifying each subgroup to a single Reeb node and 
connecting Reeb nodes if they share any nodes from the overlapped splits.  
e, The GTDA method further combines and connects small and isolated Reeb 
nodes to produce the GTDA Reeb network from the graph and lenses.
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Fig. 2 | Exploring prediction class interfaces with GTDA. a, Consider a 
prediction scenario with three classes in a Swiss Roll structure and an underlying 
graph where graph neural network predictions show reasonable accuracy (0.88). 
The result of the neural network model is a set of three functions over the nodes 
of the graph that give the probability of prediction for each class, which we call 
lenses. b, The proposed GTDA method produces a simplified topological map 
of these lenses along with the graph structure, that is, a Reeb network. Each 
node in the Reeb network maps to a small cluster of similar values to the lens. 

Nodes are coloured by the fraction of points in each predicted class. The map is 
disconnected, and each connected piece maps to a limited piece of the original 
data, simplifying and specifically focusing inspection. c, This specificity enables 
exploration of the interface between the orange and purple class, showing 
regions where training and validation data points might suggest alternative 
predictions. d, Results from the existing Mapper algorithm for TDA lack this 
boundary because they contain too many disconnected, isolated pieces.
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Fig. 3 | To apply GTDA to study the Enformer model, we adapt the pipeline 
proposed by Avsec and colleagues1 to use Enformer to study harmful gene 
variants. a, For each DNA variant of BRCA1 from ClinVar34, we run Enformer to 
generate the difference in expression levels in each of 5,313 genomic tracks. 
b,c, These differences are assembled into a 5,313 × 23,376 matrix of data (b) 
that we split into a 50/50 training and testing set for logistic regression against 

ClinVar’s evidence of harm (c). d, Four lenses are input into GTDA: two prediction 
probabilities from logistic regression and the two dominant vectors from 
Principal Component Analysis (PCA), along with a five-nearest-neighbours graph 
of a 128-dimensional reduction via PCA. e, The GTDA result shows 105 individual 
connected components placed on the basis of the mean of all median DNA 
variant starting positions for each Reeb net node.
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animation of the method can be found in Supplementary Video 1. The 
fundamental idea is that the recursive splitting starts with the set of 
connected components in the input graph. This is a set of sets: 𝕊𝕊. The 
key recursive step is when the method takes a set 𝕊𝕊i from 𝕊𝕊, it then splits 
𝕊𝕊i into new (possibly) overlapping sets 𝕋𝕋1,… , 𝕋𝕋h on the basis of the lens 
with the maximum difference in values on 𝕊𝕊i, and ensures that each 𝕋𝕋i 
is a single connected component in the graph. Each 𝕋𝕋i is then either 
added to 𝕊𝕊 if it is large enough (that is, it has more than K vertices) and 
where there exists a lens with a maximum difference of larger than d. 
Otherwise, 𝕋𝕋i goes into the set of finalized sets 𝔽𝔽.

After the graph has been split into overlapping subgroups and we 
have the final set of sets, 𝔽𝔽, the initial Reeb network simplifies each 
subgroup into a single Reeb network node and connects these simpli-
fied nodes if they share any data points (Fig. 1d). This connection strat-
egy may leave Reeb nodes isolated, which is not helpful to understand 
predictions. We reduce this isolation by adding edges from a minimum 
spanning tree (Fig. 1e and Supplementary Algorithms 2 and 3) on the 
basis of the potential for overlap from alternative splits caused by the 
lenses. We then take two final merging steps, along with building the 
Reeb net: the first is to merge sets in 𝔽𝔽 if they are too small (Supplemen-
tary Algorithm 2); the second is to add edges to the Reeb net to promote 
more connectivity (Supplementary Algorithm 3). In total, there are 
seven user-chosen parameters that control the method and these final 
merging steps, which are described in Extended Data Table 1.

Computing a Reeb network with GTDA for a complex prediction 
function or deep-learning method offers a number of opportunities 

to inspect the predictions (Fig. 2). In this example, GTDA offers more 
detail at the interface between prediction classes than what is possible 
with existing methods such as Mapper.

To apply GTDA to prediction analysis, there must be a large set 
of data points with unknown labels beyond those used for training 
and validating the prediction model; this is common when gathering 
data is easy. There must be known relationships among all data points 
such as: (1) a given graph of relationships among all points (used in 
Fig. 2a); (2) a nearest-neighbour computation to create such a graph 
(used when analysing Enformer); or (3) a domain-relevant means of 
clustering related points. All of our examples use (1) and (2). We also 
need a real-valued guide to each prediction or predicted class, such 
as the output from the last layer of a neural network (Fig. 2a). The 
prediction from this layer provides the lenses. We found it helpful to 
first smooth the information from the lenses over the relationship 
graph to avoid sharp gradients using five or ten steps of an iterative 
smoothing procedure related to a diffusion. Furthermore, there are 
two main parameters: the maximum size of a Reeb node or cluster, 
and the amount of overlap in Reeb nodes. The other parameters are 
less influential (see Supplementary Table 1 for a full list); useful results 
arise from a wide range of parameters (see Supplementary Section 7 
for further discussion of parameter sensitivity).

Constructing a Reeb net with GTDA is a scalable operation. Ana-
lysing the Enformer model of gene expression prediction below takes 
about 30 s, whereas running the Enformer model itself takes hours to 
generate the necessary data. Analysing 1.3 million images in ImageNet24 
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Fig. 4 | Demonstrating biologically relevant features of Enformer’s 
predictions. a, The topological simplification identified by GTDA is highly 
correlated with DNA variant starting location. b–d, Alternative global 
visualizations, such as the simplification from Mapper (b)—or dimensionality 
reduction techniques UMAP (c) and tSNE (d)—show significantly less sensitivity 
to the locations of the variants (P < 0.001 in a Kolmogorov–Smirnov test;  

see Supplementary Table 6). e, Likewise, the GTDA results strongly localize  
the exons of the 1JNX structure within the BRCA1 gene. f–h, The results  
are significantly weaker for Mapper (f), UMAP (g) and tSNE (h) (P < 0.001;  
see Supplementary Table 6). These results demonstrate that the Enformer  
model is sensitive to these aspects of gene expression and that GTDA makes 
inspection possible.
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with 2,000 lenses for 1,000 classes in a comparison of ResNet25 and 
AlexNet26 takes 7.24 h (see Extended Data Table 2).

Understanding malignant gene mutation 
predictions
The Enformer model1 is a transformer-based model27 designed to esti-
mate gene expression on the basis of DNA. It works by mapping between 
the DNA sequence to an estimate of the expression level of this piece 
of DNA in each of 5,313 genomic tracks. Although Enformer has excel-
lent predictive results, it remains a highly parameterized black box. 
Our GTDA methodology allows us to assess the topological landscape 
of the Enformer embeddings when they are used to predict harmful 
mutations of the BRCA1 gene in Homo sapiens (Fig. 3).

As GTDA results in a simplification of the landscape, this enables 
us to demonstrate biologically relevant features of Enformer’s pre-
dictions. In particular, the GTDA map of Enformer shows that many 
regions of the predictions and embeddings are localized in the DNA 
sequence (Fig. 4a). Exceptions indicate potential long-distance inter-
actions that Enformer uses to enhance its predictions. By contrast, 

neither the standard Mapper algorithm for TDA (Fig. 4b) nor the tSNE 
or UMAP embeddings (Fig. 4c,d) of the same points show nearly the 
same degree of location sensitivity. In another demonstration of how 
the GTDA framework highlights the known biology of DNA, we examine 
where mutations in the exons of the 1JNX region of BRCA1 are present in 
the final maps. Again, we see strong localization among the exons and 
the GTDA map (Fig. 4e). The results are again much weaker for Mapper, 
tSNE and UMAP (Fig. 4f–h).

If we study the 1JNX repeat region within BRCA1 and its associated 
3D structure, then key pieces of the secondary structure of 1JNX are 
likewise localized in the Reeb components identified by GTDA (Fig. 5a).  
This greatly aids interpretation of the results. For one of the helix 
structures, this analysis reveals regions where insertions and deletions 
are harmful (pathogenic) and where single nucleotide variants lack 
evidence of harm (Fig. 5b).

Another tool that our framework provides is automatic error 
estimation. A similar tool is uncertainty in neural network predictions, 
which highlights places with less confident predictions. Automatic 
error estimation in GTDA applies a simple network diffusion analysis 
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Fig. 5 | We use Reeb networks to visualize harmful (probably pathogenic) and 
potentially non-harmful (no evidence of pathogenicity) predictions of gene 
variants in BRCA1. a, The topology indicates several secondary structures on 
part of the protein (1JNX). b, We further check the model predictions on variants 
targeting one secondary structure. Our error estimate shows a number of what are 
probably erroneous predictions, and we flip these expected errors (a final analysis 
showed that these errors were correctly identified). We continue to see variants 
with distinct predictions in a small region of a few amino acids. Close examination 

shows a strong association between mutation types and model predictions 
where deletion or insertion is more likely to be harmful than a single nucleotide 
variant. c, Further insights when using the full label set show that some estimated 
errors are completely wrong. These prediction mistakes involve gene mutation 
experiments with insignificant or conflicting results and indicate underlying 
uncertainty. These results show how GTDA enables detailed domain-specific 
inspection of Enformers results (a,b) and highlights problems with the training 
and testing data (c).
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to the original data graph, but restricted to edges that are identified 
as important to the topological simplification. Full details of the pro-
cedure are given in Supplementary Section 1.5. This error estimation 
greatly outperforms model uncertainty for this study (area under 
the curve (AUC) of 0.9 from GTDA compared with an AUC of 0.66 for 
uncertainty; Extended Data Fig. 2). In binary classification problems, 
we can automatically correct mistakes if the probability of error from 
our estimate is higher than model confidence in the solution.

In comparing our error estimate to the underlying annotations 
on harmful DNA variants, we discovered a Reeb component with many 
harmful predictions (Fig. 5c). This component had many mutations 
where the framework incorrectly predicts errors after comparing with 
known labels. Detailed analysis showed that these errors are strongly 
associated with insignificant results in the underlying data that should 
not have been used as training or testing data (Extended Data Fig. 3 and 
Supplementary Section 5.5).

Additional findings
When the framework is applied to a pretrained ResNet50 model25 on 
the Imagenette dataset28, it produces a visual taxonomy of images 
suggesting what ResNet50 is using to categorize the images (Sup-
plementary Section 3). This example also highlights a region where 
the ground-truth labels of the data points are incorrect and cars are 
erroneously labelled ‘cassette player’ (Fig. 6). To make these visualize 
taxonomies easier to explore, we design a diagram that places images 
directly on the layout of the Reeb network (Extended Data Fig. 4). We 
were unable to determine how to use traditional TDA results to identify 
this set of erroneous examples (Extended Data Fig. 5), although we 
reliably do so with GTDA (Supplementary Section 3.3).

When we apply the GTDA framework to a graph neural network 
that predicts the type of product on Amazon on the basis of reviews, the 
framework identifies an ambiguity in product categories that limits pre-
diction accuracy (Extended Data Fig. 6 and Supplementary Section 2).

We compare the embeddings from tSNE, UMAP and GTDA for the 
four datasets (the simple Swiss Roll from Fig. 2, the product type Ama-
zon data, ResNet50 on Imagenette and the malignant gene mutation 
data) in Extended Data Fig. 7.

Two further studies include an investigation of chest X-ray diag-
nostics and a comparison of deep-learning frameworks. In the investi-
gation of chest X-rays, we show how the Reeb networks find incorrect 
diagnostic annotations in chest X-ray datasets used for deep learning29 
(Extended Data Fig. 8). The GTDA methods give an AUC of 0.75 (Sup-
plementary Section 6). The comparison of deep learning frameworks 
is designed to test how well GTDA scales to larger problems with over a 
million points and 2,000 lenses. In this case, we use GTDA to analyse pair-
wise differences among ResNet25, AlexNet26 and VOLO-5030. Each lens 
consists of one set of predictions from each method. These results show 
that GTDA scales to large problems and does not take much more time 
than inference (Extended Data Table 2 and Supplementary Section 4).

Discussion
Our Reeb network construction extends recent analytical methods 
from topology15,17 to facilitate applications to the topology of complex 
prediction. In comparison with other proposed applications of topol-
ogy to neural networks, GTDA focuses on simplifying the topology of 
the combined prediction and embedding space to aid in inspection 
of the prediction methods. The ideas underlying GTDA are loosely 
related to how Naitzat et al.18 study topological changes as data are 
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Fig. 6 | Analyzing ResNet50 predictions on Imagenette. a, We take a pretrained 
ResNet50 model and retrain the last layer to predict ten classes in Imagenette. 
b,c, We zoom into the Reeb network group of ‘gas pump’ predictions (b) and 
display the images of different local regions (c), showing gas pump images with 
distinct visual features (the sparsity in coverage is due to the public domain 
images we show here). Examining these subgroups can provide a general idea on 
how the model will behave when predicting future images with similar features, 

as well as help us quickly identify potential labelling issues in the dataset. d, For 
instance, we find a group of images whose predicted labels are ‘cassette player’ 
even though they are actually images of ‘cars’ (or even a car at a gas pump); this 
arises due to errors in the original training data, where images of cars are labelled 
‘cassette player’. Credit: the four gas pumps at lower centre are from the Library 
of Congress, Prints and Photographs Division, photograph by John Margolies.
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passed through the layers of a neural network, whereas we focus only 
on the final embedding space. Graph-based topological data analysis 
(GTDA) differs from methods such as TopoAct19, which studies the 
shape of activation space at a given layer of a neural network to provide 
insights on the learned representations, as well as those of Gabriels-
son et al.20, who correlate topology in the weights with generalization 
performance. It also differs from methods that directly try to embed 
topology in training21,31. It is similar in spirit to methods that combine 
group-invariance and topological understanding of data with neural 
networks22, albeit with key differences regarding how the topological 
information is used. Further combinations of these ideas offer consid-
erable potential for use of topology in complex prediction methods.

Our work relates to interpretability32 and seeks to produce a com-
prehensible map of the prediction structure to aid navigation of a large 
space of prediction to those most interesting areas. In this taxonomy of 
interpretability, our methods are most useful for global, dataset-level 
post-hoc interpretability. They are relevant because they provide 
insights into the model’s behaviour in terms of the underlying domains 
(gene expression in the main text, and images and graph problems in 
the supplementary case studies). In terms of relevance to real-world 
problems, our methods highlight both problematic data points in the 
training and validation sets. These results also highlight weaknesses 
of dimension-reduction methods for similar uses. Beyond identifying 
that there is a problem, the insights from the topology suggest relation-
ships to nearby data and thereby suggest mechanisms that could be 
addressed through future improvements.

Considering the ability of these topological inspection techniques 
to translate prediction models into actionable human-level insights, we 
expect them to be applicable to new models and predictions, broadly, 
as they are created and to be a critical early diagnostic of prediction 
models. The interaction of topology and prediction may provide a 
fertile ground for future improvements in prediction methods.

Methods
See the Supplementary Information for full details on the methods.

Data availability
A description of how to access all of the datasets we use is available at 
https://github.com/MengLiuPurdue/Graph-Topological-Data-Analysis,  
along with all supporting code for the results in this paper. For each 
experiment in this paper, this repository includes precomputed 
inputs for the graph input to GTDA, and the prediction lenses; these 
can be found in the 'datasets/precomputed' folder, and are the data 
required to validate our GTDA implementation. For the ImageNet-1k 
experiment, the files are available from https://doi.org/10.5281/
zenodo.10052250. Beyond these required data, the repository con-
tains code to translate the following publicly available datasets into 
these precomputed results: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
tab_delimited/ (variant_summary.txt); http://hgdownload.soe.ucsc.
edu/downloads.html#human (hg19.fa and hg38.fa); https://github.
com/deepmind/deepmind-research/tree/master/enformer (for the 
pretrained Enformer model); http://jmcauley.ucsd.edu/data/amazon/
index_2014.html (download 'All products' under ‘Electronics’ from the 
2014 version of the Amazon reviews data; https://github.com/fastai/
imagenette; https://www.image-net.org/ (all of the ImageNet-1k train-
ing and validation images); the timm package for the pretrained VOLO 
model; https://cloud.google.com/healthcare-api/docs/resources/
public-datasets/nih-chest; and https://github.com/zoogzog/chexnet 
(the pretrained chexnet model). Please contact the authors for addi-
tional intermediate data if that might be useful.

Code availability
The implementation of GTDA framework we developed is available 
at ref. 33, along with all of the supporting code for the results in this 
paper. Demos can be found at https://mengliupurdue.github.io/

Graph-Topological-Data-Analysis/, which show sample Reeb networks 
that are based on these experiments.
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Extended Data Fig. 1 | Examples of Reeb graphs, Reeb spaces, and Reeb 
networks. The term network or net is often used to mean a graph abstraction 
of a complex system. A Reeb graph (right) is a topological structure that gives 
univariate topological information and produces a graph. A Reeb space (left) 
is a more complicated multidimensional structure. A Reeb network (middle) is 

an undirected graph like a Reeb graph, which embodies the multidimensional 
topological information of a Reeb space. This figure illustrates the difference 
between a Reeb graph and a Reeb network on a topologically interesting object. 
The lenses we use here are the x and z coordinates. The inspiration for the object 
is ref. 35. See Supplemental Section 1.6 for additional discussion.
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Extended Data Fig. 2 | GTDA Automated error estimation for Enformer. The 
GTDA automated error estimation and correction applied on the Enformer data 
shows the ability to considerably increase training and test accuracy. In the four 
panels we show the prediction (left), GTDA estimated errors (middle left), model 
uncertainty (middle right), and corrected labels (right). In the top part, we zoom 

into a single component and mark the training data using green circles. Because 
this is a binary prediction problem, if the estimated if the estimated error is larger 
than the prediction probability, we can automatically correct the error. In the 
lower part, we report AUC score for error detection and both training and testing 
accuracy for the original and corrected predictions.
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Extended Data Fig. 3 | A study of unreliable labels and their impact on 
Enformer predictions. A deeper investigation of the false positive results from 
our error estimation on the Enformer data shows a strong correlation with 
insignificant or conflicting results in the original data. This is illustrated for four 

components of the Reeb net from GTDA with many mutations predicted to be 
harmful. The middle column shows the GTDA estimated errors and the middle 
right column shows the false positives among those. The final column shows data 
points labelled with unreliable labels due to insignificant or conflicting results.
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Extended Data Fig. 4 | A visualization procedure to show images along with 
Reeb network structure. This figure demonstrates the procedure of embedding 
images on a Reeb net component. For each pair of adjacent nodes, we select 
images from one end that are closest to the other end and fill in those images in 

half of the edge and vice versa. Browsing around embedded images at different 
regions can help us quickly identify problematic labels such as ‘cassette player’ 
images that are just ‘cars’. Using full ImageNet data, the graphs are dense and full 
of pictures.
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28% images are in Reeb 
graph components smaller 
than 5 or not grouped

Extended Data Fig. 5 | Reeb networks using the existing Mapper algorithm 
compared with those from our GTDA. The Reeb net on the 10 classes of 
Imagenette created by the original Mapper TDA framework. In this case, TDA is 
directly applied to the ResNet image embedding matrix without transforming 
into KNN graph. Unlike the GTDA visualization, there are no obvious subgroups 

other than 10 major components representing 10 classes. This leaves no 
straightforward way to identify the incorrect class of ‘cassette player’ images 
that GTDA found. Moreover, no information can be extracted at all for around 
28% images as they are either in some very small Reeb net components or simply 
considered as noise by the clustering scheme.
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Extended Data Fig. 6 | GTDA for a graph convolutional network. a,b, The 
GTDA-produced Reeb network of a standard 2-layer graph convolutional 
network model trained and validated on 10% labels of an Amazon co-purchase 
dataset (a) and estimated errors shown in red (b). The map highlights ambiguity 
between ‘Networking Products’ and ‘Routers’. c, Checking these products shows 
wireless access points, repeaters or modems as likely ambiguities. d, Additional 

label ambiguities involve ‘Networking Products’ and ‘Computer Components’ 
regarding network adapters. e, Likewise ‘Data Storage’ and ‘Computer 
Components’ are ambiguous for internal hard drives. These findings suggest that 
the prediction quality is limited by arbitrary subgroups in the data, which Reeb 
networks helped locate quickly.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00749-8

tS
N

E
U

M
AP

Swiss Roll Amazon Imagenette Gene Variants
time: 2s (tSNE) v.s. 2s (UMAP) v.s. 1s (GTDA) time: 105s (tSNE) v.s. 26s (UMAP) v.s. 13s (GTDA) time: 30s (tSNE) v.s. 20s (UMAP) v.s. 8s (GTDA) time: 68s (tSNE) v.s. 30s (UMAP) v.s. 4s (GTDA)

G
TD

A

Extended Data Fig. 7 | GTDA compared with tSNE and UMAP. Comparing the 
results of the dimension reduction techniques tSNE and UMAP on 4 datasets to 
the topological Reeb net structure from GTDA shows similarities and differences 
among summary pictures generated by these methods. The graph created by 
GTDA permits many types of analysis not clearly possible with tSNE and UMAP 

output. For running time comparison, since we also need to extract model 
embeddings and predictions just like GTDA, we exclude such time and only 
report the time of the actual execution of tSNE or UMAP or GTDA (including 
Kamada-Kawai).
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Extended Data Fig. 8 | GTDA on chest X-ray images. In an analysis of deep 
learning methods for chest X-ray analysis, we demonstrate how to use the GTDA 
results to find which testing labels are likely to be problematic. a, We first zoom in 
a component found by GTDA and use green circles to mark testing images where 
we have expert labels. b, Then we use GTDA to estimate prediction errors on 
circled images. c, Comparing GTDA estimation with original labels in the testing 

data highlights a few places where GTDA incorrectly estimates errors.  
d, We investigate the hypothesis that these false estimations are due to problematic 
testing labels and do a simple thresholding of 0.5, which flags 17 problematic 
testing labels in this component. Comparing to re-evaluated expert labels can 
find 14 true positives with a precision of 0.82 and a recall of 0.78 (E).
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Extended Data Table 1 | A list of parameters used in GTDA
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Extended Data Table 2 | Statistics on experiments and running times

Predicting and embedding represents the time used to generate prediction and extract embedding for all samples from a trained model. Preprocessing time includes PCA, normalization as 
well as building a KNN graph if the original dataset is not in graph format. GTDA time is the time to compute Reeb network given the input graph and the lens.
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