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Current complex prediction models are the result of fitting deep neural
networks, graph convolutional networks or transducers to a set of
training data. A key challenge with these models is that they are highly

parameterized, which makes describing and interpreting the prediction
strategies difficult. We use topological data analysis to transform

these complex prediction models into a simplified topological view

of the prediction landscape. The result is amap of the predictions that
enablesinspection of the model results with more specificity than
dimensionality-reduction methods such as tSNE and UMAP. The methods
scale up to large datasets across different domains. We present a case
study of a transformer-based model previously designed to predict
expression levels of a piece of DNA in thousands of genomic tracks.

When the modelis used to study mutations in the BRCAI gene, our
topological analysis shows that it is sensitive to the location of a mutation
and the exon structure of BRCAI in ways that cannot be found with tools
based on dimensionality reduction. Moreover, the topological frame
work offers multiple ways to inspect results, including an error estimate
thatis more accurate than model uncertainty. Further studies show

how these ideas produce useful results in graph-based learning and
image classification.

Deep learning is a successful strategy where a highly parameterized
model makes human-like predictions across many fields'*. Yet chal-
lenges in both interpretation and generalization often keep deep
learning from use in practice. Deep-learned models and their spe-
cific prediction mechanisms are difficult to assess directly due to the
large collection of model parameters. Inspection methods such as
activation or saliency maps”® highlight only the results for a single
prediction with their own limitations’. Likewise, influence estimation
techniques' often produce a ranked list of samples. These tend to be
most useful tounderstandissues retrospectively, after they have been
identified. Incomparison, global data visualizations such as tSNE" and
UMAP™® offer the power to inspect the global space of predictions
amonglarge collections of data. In principle, these methods offer the
ability to prospectively identify those problematic data regions; how-
ever, the dimensionreductioninherent to these methods may distort
properties of the data.

Topological data analysis, on the other hand, excels at distill-
ing representation-invariant information'" because it seeks to
simplify the shape of datain its ambient space without reducing its
dimension. Topological data analysis (TDA) of complex predictive
models such as deep learning remains in its infancy’® ., Existing
researchfocuses ontryingto assess the topological properties of the
network weights, to assess the topology of the features used by the
network, toinitialize network weights with topologically consistent
operators (GENEOs), or to add topological features to predictions.
Our approach seeks to assess the topology of the neural network
embeddings, representations of the data, and how they interact with
the predictions. By way of an anthropomorphic analogy, we seek to
simplify the topological lens with which the neural network sees the
data for predictions. Although we say deep learning, our methods
are compatible with any mechanisms that outputs a vector of class
probability values as discussed in the Supplementary Methods,
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network starts with aninput graph (a) and a set of lenses that assign values to
eachnode of the graph (b), where the values are indicated by the node colour.

¢, AReeb network s a simplification built from overlapping subgroups or clusters
inthe original data with similar values for the lenses—GTDA builds these using a
recursive splitting procedure. At each recursive step, asingle lensis chosen
andthedataare splitinto parts based on the node values in that lens. The split
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isdone so that there are overlapped nodes around the split boundary. This
continues until only small groups remain. d, These subgroups are assembled
into a Reeb network by simplifying each subgroup to a single Reeb node and
connecting Reeb nodesif they share any nodes from the overlapped splits.

e, The GTDA method further combines and connects small and isolated Reeb
nodes to produce the GTDA Reeb network from the graph and lenses.

including more classic techniques such as support vector machines
or logistic regressions.

Our GTDA method
We construct a Reeb network to assess the prediction landscape of a
neural-network-like prediction method. Reeb networks are discretiza-
tions of topological structures called Reeb spaces, which generalize
Reeb graphs”?. An example of the differences among these conceptsis
illustrated in Extended Data Fig.1with further discussionin Supplemen-
tary Section 1.6. Reeb networks seek to simplify the data while respecting
topology. We design arecursive splitting and merging procedure called
graph-based topological data analysis (GTDA) to simplify the data.
Our GTDA method builds on the mapper algorithm®. Mapper,
itself, builds a discrete approximation of a Reeb graph or Reeb space
(see Supplementary Section 1.6 and Extended Data Fig. 1). It begins
with a set of data points (x;, ..., x,,), along with a single or multivalued
function sampled ateach datapoint. The set of allthese values {f,, ..., f,}
samplesamap f : X — Rfonatopological space X. The mapfis called
afilter or lens. The idea is that when fis single-valued, a Reeb graph
shows aquotienttopology of Xwithrespect to fand mapper discretizes
this Reeb graph using the sampled values of fon points x, ..., X,.. Algo-
rithmically, mapper consists of the steps:

1. Sortthevaluesf;and split them into overlapping bins B,, ...
the same size.

2. For eachbin of values B;, let S; denote the set of data points with
those values and cluster the data points in each S;independently
(that is, we run a clustering algorithm on each §; as if it were the
entire dataset).

3. Create a node in the Reeb graph for each cluster found in the
previous step.

,B,of

4. Connect the nodes of the Reeb graph if the clusters they repre-
sent share acommon datapoint.
Theresultinggraphis a discrete approximation of the Reeb graph and
represents a compressed view of the shape underlying the original
dataset.

The input data for mapper is usually a point cloud in a high-
dimensional space where the point coordinates are used only in the
clustering step. In our methodology, we are interested in datasets that
are even more general. Graph inputs provide this generality. Datasets
not in graph format such as images or DNA sequences can be easily
transformed into graphs by first extracting intermediate outputs of
the model asembeddings and then building a nearest-neighbour graph
from the embedding matrix. The resulting graph then facilitates easy
clustering: for each subset of points, we extract the subgraphinduced
by those points and then use a parameter-free connected-components
analysis to generate clusters. Our method could also work with
point-cloud data and clustering directly through standard relation-
ships between graph-based algorithms and point-cloud-based algo-
rithms. We focus on the graph-based approach both for simplicity and
because we found it the most helpful for these prediction applications.

The GTDA method therefore begins with a graph representing
relationships among data points and a set of values over each node
called lenses (Fig. 1a,b); the terminology of lenses arises from a work
by Lumand colleagues”. In the applications we consider, the lenses we
use are the prediction matrix of aneural network model where P;is the
probability that sample i belongs to class. Graph-based TDA uses a
recursive splitting strategy to build the bins in the multidimensional
space (Fig. 1c), instead of tensor product bin constructions as in mul-
tidimensional generalizations of mapper. Detailed pseudo code for
this procedure can be found in Supplementary Algorithm 1. An
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Fig.2|Exploring prediction class interfaces with GTDA. a, Considera
prediction scenario with three classes in a Swiss Roll structure and an underlying

graphwhere graph neural network predictions show reasonable accuracy (0.88).

Theresult of the neural network model is a set of three functions over the nodes
of'the graph that give the probability of prediction for each class, which we call
lenses. b, The proposed GTDA method produces a simplified topological map
of these lenses along with the graph structure, that is, a Reeb network. Each
nodein the Reeb network maps to a small cluster of similar values to the lens.
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The proposed Reeb network from GTDA.
The node colour shows class distribution.

Nodes are coloured by the fraction of points in each predicted class. The map is
disconnected, and each connected piece maps to a limited piece of the original
data, simplifying and specifically focusing inspection. ¢, This specificity enables
exploration of the interface between the orange and purple class, showing
regions where training and validation data points might suggest alternative
predictions. d, Results from the existing Mapper algorithm for TDA lack this
boundary because they contain too many disconnected, isolated pieces.
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Fig. 3| To apply GTDA to study the Enformer model, we adapt the pipeline
proposed by Avsec and colleagues’ to use Enformer to study harmful gene
variants. a, For each DNA variant of BRCA1 from ClinVar**, we run Enformer to
generate the difference in expression levels in each of 5,313 genomic tracks.
b,c, These differences are assembled into a 5,313 x 23,376 matrix of data (b)
that we splitinto a50/50 training and testing set for logistic regression against

Clinvar’s evidence of harm (c). d, Four lenses are input into GTDA: two prediction
probabilities from logistic regression and the two dominant vectors from
Principal Component Analysis (PCA), along with a five-nearest-neighbours graph
of a128-dimensional reduction via PCA. e, The GTDA result shows 105 individual
connected components placed on the basis of the mean of all median DNA
variant starting positions for each Reeb net node.
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Fig. 4| Demonstrating biologically relevant features of Enformer’s
predictions. a, The topological simplification identified by GTDA is highly
correlated with DNA variant starting location. b-d, Alternative global
visualizations, such as the simplification from Mapper (b)—or dimensionality
reduction techniques UMAP (c) and tSNE (d)—show significantly less sensitivity
to thelocations of the variants (P < 0.001in a Kolmogorov-Smirnov test;

Mapper c
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see Supplementary Table 6). e, Likewise, the GTDA results strongly localize
the exons of the I/NX structure within the BRCAI gene. f-h, The results

are significantly weaker for Mapper (f), UMAP (g) and tSNE (h) (P < 0.001;
see Supplementary Table 6). These results demonstrate that the Enformer
modelis sensitive to these aspects of gene expression and that GTDA makes
inspection possible.

animation of the method canbe found in Supplementary Video 1. The
fundamental idea is that the recursive splitting starts with the set of
connected componentsinthe input graph. Thisis aset of sets: S. The
keyrecursive stepiswhenthe method takesaset S;from S, itthen splits
S;into new (possibly) overlappingsets Ty, ..., T,on the basis of the lens
with the maximum differenceinvalueson S;, and ensures thateach T;
is a single connected component in the graph. Each T; is then either
addedto Sifitislarge enough (thatis, it has more than K vertices) and
where there exists a lens with a maximum difference of larger than d.
Otherwise, T; goes into the set of finalized sets [F.

After thegraphhasbeensplitinto overlapping subgroupsand we
have the final set of sets, F, the initial Reeb network simplifies each
subgroupinto asingle Reeb network node and connects these simpli-
fied nodesifthey share any data points (Fig. 1d). This connection strat-
egy may leave Reeb nodes isolated, whichis not helpful to understand
predictions. Wereduce this isolation by adding edges from a minimum
spanning tree (Fig. 1e and Supplementary Algorithms 2 and 3) on the
basis of the potential for overlap from alternative splits caused by the
lenses. We then take two final merging steps, along with building the
Reebnet:thefirstisto merge setsinFifthey are too small (Supplemen-
tary Algorithm 2); the secondisto add edges to the Reeb net to promote
more connectivity (Supplementary Algorithm 3). In total, there are
seven user-chosen parameters that control the method and these final
merging steps, which are described in Extended Data Table 1.

Computing a Reeb network with GTDA for acomplex prediction
function or deep-learning method offers a number of opportunities

to inspect the predictions (Fig. 2). In this example, GTDA offers more
detail at the interface between prediction classes than what is possible
with existing methods such as Mapper.

To apply GTDA to prediction analysis, there must be a large set
of data points with unknown labels beyond those used for training
and validating the prediction model; thisis common when gathering
datais easy. There must be known relationships amongall data points
such as: (1) a given graph of relationships among all points (used in
Fig. 2a); (2) anearest-neighbour computation to create such a graph
(used when analysing Enformer); or (3) a domain-relevant means of
clustering related points. All of our examples use (1) and (2). We also
need areal-valued guide to each prediction or predicted class, such
as the output from the last layer of a neural network (Fig. 2a). The
prediction from this layer provides the lenses. We found it helpful to
first smooth the information from the lenses over the relationship
graph to avoid sharp gradients using five or ten steps of an iterative
smoothing procedure related to a diffusion. Furthermore, there are
two main parameters: the maximum size of a Reeb node or cluster,
and the amount of overlap in Reeb nodes. The other parameters are
lessinfluential (see Supplementary Table1for afull list); useful results
arise from a wide range of parameters (see Supplementary Section 7
for further discussion of parameter sensitivity).

Constructing a Reeb net with GTDA is a scalable operation. Ana-
lysing the Enformer model of gene expression prediction below takes
about 30 s, whereas running the Enformer modelitself takes hours to
generate the necessary data. Analysing 1.3 million images in ImageNet**
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Fig. 5| We use Reeb networks to visualize harmful (probably pathogenic) and
potentially non-harmful (no evidence of pathogenicity) predictions of gene
variants in BRCA1. a, The topology indicates several secondary structures on
partof the protein (IJNX). b, We further check the model predictions on variants
targeting one secondary structure. Our error estimate shows anumber of what are
probably erroneous predictions, and we flip these expected errors (a final analysis
showed that these errors were correctly identified). We continue to see variants
withdistinct predictionsin a small region of afew amino acids. Close examination

False estimations
when comparing
with true errors

with insignificant or conflicting
results (significant or unknown
mutations are not plotted)

shows astrong association between mutation types and model predictions
where deletion or insertion is more likely to be harmful than a single nucleotide
variant. ¢, Further insights when using the full label set show that some estimated
errors are completely wrong. These prediction mistakes involve gene mutation
experiments with insignificant or conflicting results and indicate underlying
uncertainty. These results show how GTDA enables detailed domain-specific
inspection of Enformers results (a,b) and highlights problems with the training
and testing data (c).

with 2,000 lenses for 1,000 classes in a comparison of ResNet* and
AlexNet” takes 7.24 h (see Extended Data Table 2).

Understanding malignant gene mutation
predictions

The Enformer model'is a transformer-based model” designed to esti-
mate gene expression on the basis of DNA. It works by mapping between
the DNA sequence to an estimate of the expression level of this piece
of DNAin each of 5,313 genomic tracks. Although Enformer has excel-
lent predictive results, it remains a highly parameterized black box.
Our GTDA methodology allows us to assess the topological landscape
of the Enformer embeddings when they are used to predict harmful
mutations of the BRCA1 gene in Homo sapiens (Fig. 3).

As GTDA results in a simplification of the landscape, this enables
us to demonstrate biologically relevant features of Enformer’s pre-
dictions. In particular, the GTDA map of Enformer shows that many
regions of the predictions and embeddings are localized in the DNA
sequence (Fig. 4a). Exceptions indicate potential long-distance inter-
actions that Enformer uses to enhance its predictions. By contrast,

neither the standard Mapper algorithm for TDA (Fig. 4b) nor the tSNE
or UMAP embeddings (Fig. 4c,d) of the same points show nearly the
same degree of location sensitivity. Inanother demonstration of how
the GTDA framework highlights the known biology of DNA, we examine
where mutationsinthe exons of the JNX region of BRCAI are presentin
the final maps. Again, we see strong localization among the exons and
the GTDA map (Fig. 4e). Theresults are again much weaker for Mapper,
tSNE and UMAP (Fig. 4f-h).

Ifwe study the IJNX repeat region within BRCA1 and its associated
3D structure, then key pieces of the secondary structure of JNX are
likewise localized in the Reeb componentsidentified by GTDA (Fig. 5a).
This greatly aids interpretation of the results. For one of the helix
structures, this analysis reveals regions where insertions and deletions
are harmful (pathogenic) and where single nucleotide variants lack
evidence of harm (Fig. 5b).

Another tool that our framework provides is automatic error
estimation. A similar toolis uncertainty in neural network predictions,
which highlights places with less confident predictions. Automatic
error estimation in GTDA applies a simple network diffusion analysis

Nature Machine Intelligence


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-023-00749-8

_Prediction

bl ball

chute,

[
Garbage truck s 0%%
o

Embed images

&
@

Fig. 6 | Analyzing ResNet50 predictions on Imagenette. a, We take a pretrained
ResNet50 model and retrain the last layer to predict ten classes in Imagenette.
b,c, Wezoom into the Reeb network group of ‘gas pump’ predictions (b) and
display the images of different local regions (c), showing gas pump images with
distinct visual features (the sparsity in coverage is due to the public domain
images we show here). Examining these subgroups can provide a general ideaon
how the model will behave when predicting future images with similar features,
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as well as help us quickly identify potential labelling issues in the dataset. d, For
instance, we find a group of images whose predicted labels are ‘cassette player’
even though they are actually images of ‘cars’ (or even a car at agas pump); this
arises due to errors in the original training data, where images of cars are labelled
‘cassette player’. Credit: the four gas pumps at lower centre are from the Library
of Congress, Prints and Photographs Division, photograph by John Margolies.

to the original data graph, but restricted to edges that are identified
asimportant to the topological simplification. Full details of the pro-
cedure are given in Supplementary Section 1.5. This error estimation
greatly outperforms model uncertainty for this study (area under
the curve (AUC) of 0.9 from GTDA compared with an AUC of 0.66 for
uncertainty; Extended Data Fig. 2). In binary classification problems,
we can automatically correct mistakesif the probability of error from
our estimate is higher than model confidence in the solution.

In comparing our error estimate to the underlying annotations
on harmful DNA variants, we discovered aReeb component with many
harmful predictions (Fig. 5c). This component had many mutations
where the frameworkincorrectly predicts errors after comparing with
known labels. Detailed analysis showed that these errors are strongly
associated withinsignificant resultsin the underlying data that should
not havebeen used astraining or testing data (Extended Data Fig.3and
Supplementary Section 5.5).

Additional findings

When the framework is applied to a pretrained ResNet50 model® on
the Imagenette dataset®, it produces a visual taxonomy of images
suggesting what ResNet50 is using to categorize the images (Sup-
plementary Section 3). This example also highlights a region where
the ground-truth labels of the data points are incorrect and cars are
erroneously labelled ‘cassette player’ (Fig. 6). To make these visualize
taxonomies easier to explore, we design adiagram that places images
directly on the layout of the Reeb network (Extended Data Fig. 4). We
were unable to determine how to use traditional TDA results to identify
this set of erroneous examples (Extended Data Fig. 5), although we
reliably do so with GTDA (Supplementary Section 3.3).

When we apply the GTDA framework to a graph neural network
that predicts the type of product on Amazon on the basis of reviews, the
frameworkidentifies an ambiguity in product categories thatlimits pre-
dictionaccuracy (Extended DataFig. 6 and Supplementary Section 2).

We compare the embeddings from tSNE, UMAP and GTDA for the
four datasets (the simple Swiss Roll from Fig. 2, the product type Ama-
zon data, ResNet50 on Imagenette and the malignant gene mutation
data) in Extended Data Fig. 7.

Two further studies include an investigation of chest X-ray diag-
nostics and acomparison of deep-learning frameworks. In the investi-
gation of chest X-rays, we show how the Reeb networks find incorrect
diagnosticannotations in chest X-ray datasets used for deep learning®
(Extended Data Fig. 8). The GTDA methods give an AUC of 0.75 (Sup-
plementary Section 6). The comparison of deep learning frameworks
is designed to test how well GTDA scales to larger problems with overa
million pointsand 2,000 lenses. In this case, we use GTDA to analyse pair-
wise differences among ResNet”, AlexNet*® and VOLO-50. Each lens
consists of one set of predictions fromeach method. These results show
that GTDA scales to large problems and does not take much more time
thaninference (Extended Data Table 2 and Supplementary Section 4).

Discussion

Our Reeb network construction extends recent analytical methods
fromtopology™" to facilitate applications to the topology of complex
prediction. In comparisonwith other proposed applications of topol-
ogy to neural networks, GTDA focuses on simplifying the topology of
the combined prediction and embedding space to aid in inspection
of the prediction methods. The ideas underlying GTDA are loosely
related to how Naitzat et al.”® study topological changes as data are
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passed through the layers of a neural network, whereas we focus only
onthe final embedding space. Graph-based topological data analysis
(GTDA) differs from methods such as TopoAct”, which studies the
shapeof activation space atagivenlayer of aneural network to provide
insights on the learned representations, as well as those of Gabriels-
sonetal.”, who correlate topology in the weights with generalization
performance. It also differs from methods that directly try to embed
topology in training®*. It is similar in spirit to methods that combine
group-invariance and topological understanding of data with neural
networks?, albeit with key differences regarding how the topological
informationis used. Further combinations of these ideas offer consid-
erable potential for use of topology in complex prediction methods.

Ourworkrelates to interpretability®” and seeks to produce acom-
prehensible map of the prediction structure to aid navigation of alarge
space of prediction to those mostinteresting areas. In this taxonomy of
interpretability, our methods are most useful for global, dataset-level
post-hoc interpretability. They are relevant because they provide
insightsinto the model’s behaviourinterms of the underlying domains
(gene expression in the main text, and images and graph problems in
the supplementary case studies). In terms of relevance to real-world
problems, our methods highlight both problematic data pointsinthe
training and validation sets. These results also highlight weaknesses
of dimension-reduction methods for similar uses. Beyond identifying
thatthereisaproblem, theinsights from the topology suggest relation-
ships to nearby data and thereby suggest mechanisms that could be
addressed through future improvements.

Consideringthe ability of these topological inspectiontechniques
totranslate prediction models into actionable human-level insights, we
expect themtobe applicable to new models and predictions, broadly,
as they are created and to be a critical early diagnostic of prediction
models. The interaction of topology and prediction may provide a
fertile ground for future improvements in prediction methods.

Methods

See the Supplementary Information for full details on the methods.

Data availability

Adescription of how to access all of the datasets we use is available at
https://github.com/MengLiuPurdue/Graph-Topological-Data-Analysis,
along with all supporting code for the results in this paper. For each
experiment in this paper, this repository includes precomputed
inputs for the graph input to GTDA, and the prediction lenses; these
can be found in the 'datasets/precomputed’ folder, and are the data
required to validate our GTDA implementation. For the ImageNet-1k
experiment, the files are available from https://doi.org/10.5281/
zenodo.10052250. Beyond these required data, the repository con-
tains code to translate the following publicly available datasets into
these precomputed results: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
tab_delimited/ (variant_summary.txt); http://hgdownload.soe.ucsc.
edu/downloads.html#human (hgl9.fa and hg38.fa); https://github.
com/deepmind/deepmind-research/tree/master/enformer (for the
pretrained Enformer model); http://jmcauley.ucsd.edu/data/amazon/
index_2014.html (download 'All products' under ‘Electronics’ from the
2014 version of the Amazon reviews data; https://github.com/fastai/
imagenette; https://www.image-net.org/ (all of the ImageNet-1k train-
ing and validationimages); the timm package for the pretrained VOLO
model; https://cloud.google.com/healthcare-api/docs/resources/
public-datasets/nih-chest; and https://github.com/zoogzog/chexnet
(the pretrained chexnet model). Please contact the authors for addi-
tional intermediate data if that might be useful.

Code availability

The implementation of GTDA framework we developed is available
atref. 33, along with all of the supporting code for the results in this
paper. Demos can be found at https://mengliupurdue.github.io/

Graph-Topological-Data-Analysis/, which show sample Reeb networks
that are based on these experiments.
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wine glass

xand z
coordinates as
lens

Reeb space

nodes colored based on its
location in Reeb space

anundirected graph like a Reeb graph, which embodies the multidimensional
topological information of a Reeb space. This figure illustrates the difference
betweenaReeb graph and a Reeb network on a topologically interesting object.
Thelenses we use here are the x and z coordinates. The inspiration for the object
isref. 35. See Supplemental Section 1.6 for additional discussion.

Extended Data Fig. 1| Examples of Reeb graphs, Reeb spaces, and Reeb
networks. The term network or net is often used to mean agraph abstraction
ofacomplex system. A Reeb graph (right) is a topological structure that gives
univariate topological information and produces a graph. A Reeb space (left)
isamore complicated multidimensional structure. A Reeb network (middle) is

sampled wine glass
with KNN edges

xandz = > X orz
coordinates as coordinates as
lens lens

Reeb graph

X coordinates
as lens

M

z coordinates
as lens

Nature Machine Intelligence


http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-023-00749-8

flip predicted labels when
estimated error is larger than
probability of current prediction

model prediction estimated model
and training data errors uncertainty

:..?

::%-.. ' |

3
4-%
Ry
ﬁ‘

751

b
;;

-4,

i

AL

-3
!

:h‘
“

s '3
Y l'
i

\ex

» ¢..
"5

..;:N

~
100% PR R
e S e g
L N Aoty Ao
c 80% M i Pl b A, ey L
9 el S S Lo C ol e 300
2 gl I ok gl W
B i .o o o L
X8 B R
= . ‘...& - ‘:,. . ""t - .!.
> Seyp we 1 Sep we 1.
£ P A R AR
5 a00 i e o
5 =36 ofe X1 o ol
o ﬂ:ﬁ*"!’“ .. -*.’"7"‘
= @ oggnde o &, @ b L .,
B 20% IR A PR
Sl Ay S Ay
&' 3 * *‘ i‘ 3 * ‘k
0% *'-_, h_}_. *'-,. 'H_}.-
«® e o{. «® e o—{.
PR B ha e 2 ) e g s 2 2]
# g}: it i z; i
P N I M
-'r!“' wi: . i -.nh' uf- K
W N W N
Bl S R R
W T P W T P
trainnOd:Lc?E?:(I;Ctlic;no 87 GTDA estimated error model uncertainty _ corrected labels
ng YIS %, AUC score is 0.90 AUC score is 0.66 training accuracy is 0.98
testing accuracy is 0.78 testing accuracy is 0.86
Extended Data Fig. 2| GTDA Automated error estimation for Enformer. The into a single component and mark the training data using green circles. Because
GTDA automated error estimation and correction applied on the Enformer data thisisabinary prediction problem, if the estimated if the estimated error is larger
shows the ability to considerably increase training and test accuracy. In the four than the prediction probability, we can automatically correct the error. Inthe
panels we show the prediction (left), GTDA estimated errors (middle left), model lower part, we report AUC score for error detection and both training and testing

uncertainty (middle right), and corrected labels (right). In the top part, we zoom accuracy for the original and corrected predictions.
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Extended Data Fig. 4 | A visualization procedure to show images along with

Reeb network structure. This figure demonstrates the procedure of embedding  regions can help us quickly identify problematic labels such as ‘cassette player’

images on a Reeb net component. For each pair of adjacent nodes, we select images that are just ‘cars’. Using full ImageNet data, the graphs are dense and full
images from one end that are closest to the other end and fillin those images in of pictures.

half of the edge and vice versa. Browsing around embedded images at different
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Extended Data Fig. 5| Reeb networks using the existing Mapper algorithm
compared with those from our GTDA. The Reeb net on the 10 classes of
Imagenette created by the original Mapper TDA framework. In this case, TDA is
directly applied to the ResNet image embedding matrix without transforming
into KNN graph. Unlike the GTDA visualization, there are no obvious subgroups

28% images are in Reeb
graph components smaller
than 5 or not grouped

other than10 major components representing 10 classes. This leaves no
straightforward way to identify the incorrect class of ‘cassette player’ images
that GTDA found. Moreover, no information can be extracted at all for around
28% images as they are either in some very small Reeb net components or simply
considered as noise by the clustering scheme.
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o
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ambiguous subgroups in
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Extended Data Fig. 6 | GTDA for agraph convolutional network. a,b, The
GTDA-produced Reeb network of a standard 2-layer graph convolutional
network model trained and validated on 10% labels of an Amazon co-purchase
dataset (a) and estimated errors showninred (b). The map highlights ambiguity
between ‘Networking Products’ and ‘Routers’. ¢, Checking these products shows
wireless access points, repeaters or modems as likely ambiguities. d, Additional

Few mixing in some
other parts of “Data
Storage” prediction

e LY

GTDA estimated errors
AUC score is 0.84

Mixing between “Data Storage”
and “Computer Components”

s Found ambiguous subgroups in
e  “Data Storage” v.s. “Computer
Components”:

— internal hard drives

— internal solid state drives
label ambiguities involve ‘Networking Products’ and ‘Computer Components’
regarding network adapters. e, Likewise ‘Data Storage’ and ‘Computer
Components’ are ambiguous for internal hard drives. These findings suggest that
the prediction quality is limited by arbitrary subgroups in the data, which Reeb
networks helped locate quickly.
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Extended Data Fig. 7 | GTDA compared with tSNE and UMAP. Comparing the
results of the dimension reduction techniques tSNE and UMAP on 4 datasets to
the topological Reeb net structure from GTDA shows similarities and differences
among summary pictures generated by these methods. The graph created by
GTDA permits many types of analysis not clearly possible with tSNE and UMAP
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output. For running time comparison, since we also need to extract model
embeddings and predictions just like GTDA, we exclude such time and only
report the time of the actual execution of tSNE or UMAP or GTDA (including
Kamada-Kawai).
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GTDA estimated errors
on testing images with
expert labels

model prediction
on a component
testing images in
green circle have
expert labels

normal

false estimation when
comparing to original
testing labels

] .

compare to incorrect ~ consider difference bigger

testing labels marked b than 0.5 as problema%g:
by experts Ky testing labels

14 true positives
precision is 0.82
recall is 0.78

Extended Data Fig. 8| GTDA on chest X-ray images. In an analysis of deep
learning methods for chest X-ray analysis, we demonstrate how to use the GTDA
results to find which testing labels are likely to be problematic. a, We first zoomin
acomponent found by GTDA and use green circles to mark testing images where
we have expertlabels. b, Then we use GTDA to estimate prediction errors on
circled images. ¢, Comparing GTDA estimation with original labels in the testing

17 images are
flagged as
problematic

data highlights a few places where GTDA incorrectly estimates errors.

d, Weinvestigate the hypothesis that these false estimations are due to problematic
testing labels and do a simple thresholding of 0.5, which flags 17 problematic
testing labels in this component. Comparing to re-evaluated expert labels can
find 14 true positives with a precision of 0.82 and arecall of 0.78 (E).
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Extended Data Table 1] A list of parameters used in GTDA

parameter description suggested choices

K component size threshold to stop splitting 5% of smallest class size

d lens difference threshold to stop splitting 0 or 0.001

r overlapping ratio 0.01
s1  Reeb node size threshold 5
s Reeb component size threshold )

a lens smoothing parameter 0.5 (used in all experiments)

S lens smoothing steps 5 or 10

f distance function in the merging step ¢ difference of row i, j of P(%)
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Extended Data Table 2 | Statistics on experiments and running times

predicting &

dataset nodes edges classes lens embedding (s) preprocessing (s) GTDA time (s)
Swiss Roll 1,000 3,501 3 3 0.003 0.3 1
Amazon Computers 39,747 399,410 10 10 0.17 7 10
Subset of ImageNet 13,394 51,520 10 10 27 5 7
(Rhiaf‘szfxlé‘t) 1,331,167 5,954,900 1,000 2,000 2,379 717 26,036
(Vlcf;af‘iNf{t;kt) 1,331,167 5,805,714 1,000 2,000 13,426 617 18,894
BRCA1 Gene Variants 23,376 83,096 2 4 18,583 21 3
Chest X-rays 112,120 431,893 2 16 821 35 26

Predicting and embedding represents the time used to generate prediction and extract embedding for all samples from a trained model. Preprocessing time includes PCA, normalization as
well as building a KNN graph if the original dataset is not in graph format. GTDA time is the time to compute Reeb network given the input graph and the lens.
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