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Abstract

This article designs a general principle to check the correctness of the deőnition of

concurrency (a.k.a. independence) of events for concurrent calculi. Concurrency

relations are central in process algebras, but also two-sided: they are often

deőned independently on composable and on coinitial transitions, and no criteria

exists to assess whether they łinteract correctlyž. This article starts by examining

how reversibility can provide such a correctness of concurrencies criteria, and

its implications. It then deőnes, for the őrst time, a syntactical deőnition of

concurrency for CCSK, a reversible declension of the calculus of communicating

systems. To do so, according to our criteria, requires to deőne concurrency rela-

tions for all types of transitions along two axis: direction (forward or backward)

and concomitance (coinitial or composable). Our deőnition is uniform thanks

to proved transition systems and satisfy our sanity checks: square properties,

sideways diamonds, but also the reversible checks (reverse diamonds and causal

consistency). We also prove that our formalism is either equivalent to or a

reőnement of pre-existing deőnitions of concurrency for reversible systems. We

conclude by discussing additional criteria and possible future works.
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Preamble

Following Lars Kristiansen [1], we tried to give priority to readability, partic-

ularly in this Preamble, to reach a broader audience: reversibility is not a topic

on its own, it is a tool that can bring enlightenment to diverse fields, and we hope

that this preamble will help the reader unfamiliar with reversibility but curious5

about concurrency to understand how this tool can be leveraged with benefits.

A concurrent program is by nature extremely hard to debug [2], but its

correctness can be evaluated by writing a speciőcation, and then checking that

the program matches it [3]. Expressing those speciőcations requires a formal

language, that abstracts away irrelevant details and focus on the program’s10

observable behaviour. Process algebras provide such a high-level description

of interactions, communications, and synchronizations between a collection of

independent processes that allows to model a vast range of situations. A central

element of those algebras is to deőne when two events (generally associated to

the transitions that triggered them) are independent, or concurrent. By duality,15

events that are not concurrent are dubbed dependent, or causally related .2

Being able to distinguish between events those that are causally related and

those that are not is one of the crucial contributions of process algebras, as

this mechanism allows to sidestep many of the difficulties one has to face when

debugging concurrent programs.20

But how can one guarantee that those deőnitions of concurrency and causal

relations are łthe right onesž? Since they are deőned by duality (two events

are concurrent iff they are not causally related), it suffices to deőne and check

only one of the two notion. For concurrency, written ⌣, a standard correctness

criteria is expressed in terms of łdiamondsž:25

2As a matter of fact, the order is often swapped: dependency is the primitive relation, and

concurrency is defined by duality.
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∀t1 : X
θ1−→ X1, t2 : X

θ2−→ X2 with t1 ⌣ t2, ∃Y s.t. X1
θ2−→ Y and X2

θ1−→ Y .

(Square Property)

∀t1 : X
θ1−→ X1, t2 : X1

θ2−→ Y with t1 ⌣ t2, ∃X2 s.t. X
θ2−→ X2

θ1−→ Y .

(Sideways Diamond)

They intuitively means that any two transitions t1, t2 that are independent

(i.e., that are in the ⌣ relation) can be combined differently without altering

the end-result. (Square Property) expresses this fact for coinitial transitions: it

states that simultaneous transitions starting from the same state can łlater onž

agree if they are concurrent. (Sideways Diamond) expresses it for composable5

transitions: subsequent transitions, that follow each other, can be swapped if

they are concurrent. Graphically, we can represent them as follows:

X1

Xθ1

Yθ2

X2

θ2

θ1

X

X1θ1

Y

θ2

X2
θ2 θ1

(Square Property) (Sideways Diamond)

More succinctly:

Looking more carefully, one may observe that requiring both diamonds to

hold actually requires two deőnitions of concurrency: one on coinitial transitions10

(⌣i), and one on composable transitions (⌣c). If they are related, and if they

are, how, is generally overlooked: in the vast literature on process algebras,

one can őnd systems where only one notion is deőned, but to my knowledge

those that deőnes the two do not have a formal criteria to assess whenever

they interact correctly. At best, the same deőnition is used for both notions of15

concurrencies [4], which seems to prevent the need for a formal criteria. One

reason for this lack of criteria, we assume, is that łinteracting correctlyž is

difficult to deőne: how should composable and coinitial transitions relate w.r.t.

concurrency?
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One of the goals of this paper is to convince the reader that reversibility

provides an excellent method to answer that question. It has been, to the best

of our knowledge, completely overlooked, despite its simplicity and universal

applicability. The starting point is the loop lemma, that states that any transition

in a reversible system t : X
θ
−→ Y can be reversed3 as t• : Y

θ
X with (t•)• = t.5

From there, a correctness criterion linking ⌣i and ⌣c can easily be formulated:

(t1 ⌣i t2 for t1 : X
θ1−→ X1, t2 : X

θ2−→ X2)

⇐⇒ (t•1 ⌣c t2 for t•1 : X1
θ1

X, t2 : X
θ2−→ X2)

(Correctness of Concurrencies)

However, this correctness uses a deőnition of ⌣i on forward coinitial transi-

tions, and a deőnition of ⌣c on backward then forward composable transitions.

Looking more closely, deőning both ⌣i and ⌣c on reversible systems requires

to split each deőnition in four, depending on the directions of the transitions:10

Coinitial Composable

Both forward ⌣f
i ⌣f

c

Both backward ⌣b
i ⌣b

c

Forward then backward ⌣fb
i ⌣fb

c

Backward then forward ⌣bf
i ⌣bf

c

Our (Correctness of Concurrencies) relating coinitial and composable con-

currencies seems to come at the high cost of having to deőne eight different

notions of concurrency (not to mention the additional diamonds we now have to

proveÐwe come back to this later). Luckily, three principles can be leveraged to15

limit the burden considerably:

3In general, the label θ is not altered by reversing the transition it labels, but the rest of

our discussion in this preamble would still be valid if it was, albeit probably less digest.
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Concurrencies should be symmetric That is,

(t1 ⌣fb
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2

X2)

⇐⇒ (t2 ⌣bf
i t1 for t2 : X

θ2
X2, t1 : X

θ1−→ X).

Concurrencies should be direction-agnostic That is,

(t1 ⌣f
c t2 for t1 : X

θ1−→ X1, t2 : X1
θ2−→ X2)

⇐⇒ (t•2 ⌣b
c t

•
1 for t•2 : X2

θ2
X1, t

•
1 : X1

θ1
X).

Correctness of Concurrencies The criteria we presented earlier can be in-

stantiated as:

(t1 ⌣f
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2−→ X2)

⇐⇒ (t•1 ⌣bf
c t2 for t•1 : X1

θ1
X, t2 : X

θ2−→ X2)

5

(t1 ⌣fb
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2

X2)

⇐⇒ (t•1 ⌣b
c t2 for t•1 : X1

θ1
X, t2 : X

θ2
X2)

(t1 ⌣bf
i t2 for t1 : X

θ1
X1, t2 : X

θ2−→ X2)

⇐⇒ (t•1 ⌣f
c t2 for t•1 : X1

θ1−→ X, t2 : X
θ2−→ X2)

(t1 ⌣b
i t2 for t1 : X

θ1
X1, t2 : X

θ2
X2)

⇐⇒ (t•1 ⌣fb
c t2 for t•1 : X1

θ1−→ X, t2 : X
θ2

X2)

Writing e.g., ⌣f
i ⇐⇒ ⌣bf

c to express that ⌣f
i and ⌣bf

c can be mutually

deőned, our three principles give:

⌣f
i ⇐⇒ ⌣bf

c (1)

⌣b
i ⇐⇒ ⌣fb

c (2)

⌣fb
i ⇐⇒ ⌣bf

i ⇐⇒ ⌣f
c ⇐⇒ ⌣b

c (3)
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Coinitial Composable

(1)
⇐=⇒

(2)
⇐=⇒

⇐⇒
(3)

⇐=⇒ ⇐⇒

Table 1: Concurrencies for Reversible Systems

Hence, we need to deőne only one relation on each line (1), (2) and (3) to

deőne concurrency for the eight possible cases if we would like to leverage those

principles instead of having to prove them. We represent those equivalences

graphically in Table 1.

Deőning three relations instead of eight and letting the principles we laid5

out earlier guarantee that they interact correctly saves us some burden, but we

still have to address our initial question: how can we make sure that those (now

numerous) deőnitions of concurrency are łthe right onesž? A natural strategy is to

decline our diamonds ((Square Property) and (Sideways Diamond)) to reversible

systems to account for all the possible situations, as presented in Table 2.410

Satisfying all those diamonds is, in our opinion, an excellent indication

that the concurrency relations were properly deőned and behave as expected.

Furthermore, using the logical principles we presented, proving only one of each

(Square Properties), (Reverse Diamonds) and (Sideways Diamonds) is enough to

obtain them all.15

We believe this article to be the őrst one to identify and clearly lay out this

4There has been some variations in the naming of those properties. From a rewriting

perspective, the properties concerned with coinitial transitions are (local) confluences, or,

more precisely, they are all diamond properties [5, Definition 2.7.8]): however, this name was

generally reserved for one narrow case, when all transitions are forward. The name “reverse

diamond” was coined very early in the study of reversible systems [6, Proposition 5.10][7,

Definition 2.3] and seemed the best fit for this property that does not exist in forward-only

systems.
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Square Properties

Reverse Diamonds

Sideways Diamonds

Table 2: Diamonds and Squares for Reversible Systems

criteria to guarantee the correctness of the deőnitions of concurrency5 For systems

endowed with only a deőnition for coinitial or composable transitions, our criteria

can also be used to provide a deőnition for the missing one. An added beauty

is that it allows to mutually deőne concurrency relations between coinitial and

composable transitions, and between forward and backward transitions, making5

both worlds interact in harmony. It is enabled by the study of reversibility, which

has repeatedly contributed to a better understanding of notions applicable to

the forward-only world too.

This article illustrates those general principles for a particular concurrent

system, CCSK. It introduces a single deőnition for ⌣f
c and ⌣b

c, a single deőnition10

for ⌣fb
c and ⌣bf

c . Proving that they satisfy the (Correctness of Concurrencies)

is immediate thanks to our direction-agnostic deőnition of dependency, but some

work is required to prove three of the required diamonds. We believe the general

applicability of the principles exposed in this preamble goes far beyond the

particular case of CCSK, or of process algebras for that matter, and hope that15

it will inspire researchers in other őelds to leverage reversibility to obtain sound,

logical, notions.

The Expert Corner

We would like to brieŕy clarify the scope of our claim that this article is the

őrst to lay out a criteria to guarantee the correctness of concurrency. First and20

5We clarify this claim in the “expert corner” below, p. Sect. .
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foremost, we are concerned with syntactical deőnitions for sequential models of

concurrency (e.g., process calculi). Non-interleaving semantics of concurrency

such as event structures or conőguration structures have their own ways of

deőning and assessing their deőnition of concurrency. For (forward-only) process

calculi, the two main ways are to5

• prove that some conŕuence are enforced (typically, (Square Property) and

(Sideways Diamond)),

• embed the model into a non-interleaving one, and then prove that both

notions of concurrency coincide.

Both techniques have their limitations, however: the őrst one does not10

guarantee that coinitial and composable concurrencies interact in any way. For

that matter, one could be the empty set, making (Square Property) or (Sideways

Diamond) vacuously true. The second technique requires a heavy machinery,

since the targeted model and the embedding themselves need to be proven

correct.15

For reversible structural operational semantics, an additional tool was pro-

vided by the axiomatic approach to reversiblity [8]. Among the many interesting

criteria that concurrency relation(s) should satisfy, there is Reversing Preserves

Independence (RPI) [8, Deőnition 4.17]:

t ⌣ t′ =⇒ t• ⌣ t′.

At őrst glance, RPI and our (Correctness of Concurrencies) may seem trivially20

equivalent, but there is an important difference: RPI supposes the existence of

only one concurrency relation, while our criteria acknowledges the possibility of

having two relations. We believe this subtle distinction allows our criteria to

capture more nuanced arguments, where coinitial and composable concurrencies

are deőned independently, possibly using different tools or notions. It also25

better reŕects usage for reversible systems, were e.g., concurrency for forward

composable transitions is deőned independently of concurrency for backward

coinitial transitions.
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The particular formalism used in this article does not allow to explore

interesting gaps between those notions, but we can observe nevertheless that our

criteria can be used to define one concurrency relation from the other, while

RPI requires a pre-existing concurrency relation to meet this criteria.

1. Introduction: Reversibility, Concurrency–Interplays5

Concurrency Theory is being reshaped by reversibility: őne distinctions

between causality and causation [6] contradicted Milner’s expansion laws [9,

Example 4.11], and the study of causal models for reversible computation led to

novel correction criteria for causal semanticsÐboth reversible and irreversible [10].

łTraditionalž equivalence relations have been captured syntactically [11], while10

original observational equivalences were developed [9]: reversibility triggered a

global reconsideration of established theories and tools, with the clear intent

of providing actionable methods for reversible systems [12], novel axiomatic

foundations [8] and original non-interleaving models [10, 13, 14].

Two Formalisms extend with reversible features the Calculus of Commu-15

nicating Systems (CCS) [15], which is the godfather of π-calculus [16], among

others formalisms. Reversible CCS (RCCS) [17] and CCS with keys (CCSK) [6]

are similarly the source of most [10, 18, 19, 20]Ðif not allÐof later formalism

developed to enhance reversible systems with some respect (rollback operator,

name-passing abilities, probabilistic features, . . . ). Even if those two systems20

share a lot of similarities [21], they diverge in some respects that are not fully

understoodÐtypically, it seems that different notions of łcontexts with historyž

led to establish the existence of congruences for CCSK [9, Proposition 4.9] or

the impossibility thereof for RCCS [22, Theorem 2]. However, they also share

some shortcomings, and we offer to tackle one of them for CCSK, by providing a25

syntactical deőnition of concurrency that is easy to manipulate and that satisőes

the usual sanity checks, in addition to our (Correctness of Concurrencies).

Reversible Concurrency is of course a central notion in the study of

RCCS and CCSK, as it enables the deőnition of causal consistencyÐa principle

9



that, intuitively, states that backward reductions can undo an action only if its

consequences have already been undoneÐand to obtain models where concurrency

and causation are decorrelated [6]. As such, it has been studied from multiple

angles, but, in our opinion, never in a fully satisfactory manner. In CCSK,

sideways and reverse diamonds properties were proven using conditions on keys5

and łjoinablež transitions [6, Propositions 5.10 and 5.19], but to our knowledge

no łdeőnitivež deőnition of concurrency was proposed. Ad-hoc deőnitions relying

on memory inclusion [23, Deőnition 3.1.1] or disjointness [17, Deőnition 7] for

RCCS, and semantical notions for both RCCS [11, 13, 24] and CCSK [7, 14, 25]

have been proposed, but, to our knowledge, none of these have ever been10

1. compared to each other,

2. compared to pre-existing forward-only deőnitions of concurrency,

3. proven to satisfy our (Correctness of Concurrencies).

Our Contribution introduces the őrst syntactical deőnition of concurrency

for CCSK (Sect. 3.1), by extending the łuniversalž concurrency developed for15

forward-only CCS [26], that leveraged proved transition systems [27]. Our deő-

nition of dependency (Sect. 3.3) is almost identical to the one used for proved

forward-only systems, and our deőnition of concurrency is simple enough to be

applicable to all types of transitions along the two axis: direction (forward or

backward) and concomitance (coinitial or composable). The square properties,20

sideways and reverse diamonds are proven in a very similar fashion, and gives all

the squares of Table 2 easily (Sect. 4.2). We furthermore establish the correctness

of this deőnition by proving other expected reversible properties, among which

causal consistency (Sect. 4.3). We then discuss how proved transition systems

can be adapted to other reversible systems (RCCS [17, 23] and its łidentiőedž25

declensions [22]) , and how our deőnition of concurrency relates to pre-existing

ones, including one coming from reversible π-calculus (Sect. 5). In essence, we

prove that our technique gives a notion of concurrency that either match or

subsumes existing deőnitions, that sometimes lack a notion of concurrency for

10



transitions of opposite directions, in addition to not being sensible to the mech-

anism implemented to identify transitions. Finally, we sketch some additional

criteria our deőnition should ideally fulőll, and how to approach them (Sect. 6).

We then brieŕy conclude (Sect. 7).

Changelog. This article extends and improves a conference publication [28] and5

its preliminary technical report [29]. In particular, it:

• Clariőes in the Preamble the general applicability and methodology behind

our method,

• Deőnes the dependency relation as symmetric, and prove the equivalence

with the previous deőnition in Appendix A,10

• Deőnes coinitial concurrency independently from composable concurrency,

and then prove (Correctness of Concurrencies), instead of leveraging this

principle to deőne one from the other,

• Clariőes the interplay and differences between our deőnition of concurrency

and the forward-only one (Sect. 3.4),15

• Streamlines and clariőes the proofs of all the results,

• Contains more details about the łuniversalityž of our approach,

• Proves the additional Coinitial Propagation of Independence property

(Corollary 1), which in turns gives the Independence of Diamonds (Corol-

lary 2),20

• Generally improves the exposition and narrative.

2. Finite and Reversible Process Calculi

We begin by recalling the pre-existing material required to detail our con-

tribution: the őnite fragment of CCS, its proved transition system, and then

CCSK.25

11



2.1. A Proved Transition System For CCS

We brieŕy recall the (forward-only) őnite fragment of the calculus of com-

municating system (simply called CCS) following a standard presentation [30],

and then its proved transition system [26]. Proved transition systems [26, 27,

31, 32, 33, 34] enrich the transition labels with preőxes that describe parts of5

their derivation, to keep track of their dependencies or lack thereof.

We recall here a variation on an earlier formalism [35] that accommodated

CCS with replication and enabled a deőnition of causality that agreed with

pre-existing causal semantics of CCS and CCS with recursion [26, Theorem 1].

This system includes information about sums [26, footnote 2], but diverge in10

its deőnitions of dependencies and concurrencies: our deőnition of dependency

needs to account for the permanence of the sum operator, and our concurrency

relation accounts for internal (i.e., τ -) transitions, omitted from that work [26,

Deőnition 3] but present in older articles [33, Deőnition 2.3].

Definition 1 ((Co-)names and labels). Let N = {a, b, c, . . . } be a set of names15

and N = {a, b, c, . . . } its set of co-names. The set of labels L is N ∪ N ∪ {τ}, and

we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection · : N → N, whose

inverse is also written ·, gives the complement of a name, and we let τ = τ for

commodity.

Definition 2 (Operators). CCS processes are deőned as usual:20

P,Q :=0 (Inactive process)

α.P (Preőx)

P\α (Restriction)

P +Q (Sum)

P | Q (Parallel composition)

The inactive process 0 is omitted when preceded by a preőx, and the binding

power of the operators [36, p. 68], from highest to lowest, is \α, α., | and +, so

that e.g., α.P +Q\α | P + a is to be read as (α.P ) + (((Q\α) | P ) + (a.0)). In a

process P | Q (resp. P +Q), we call P and Q threads (resp. branches).

12



Action and Restriction

act.
α.P

α
−→ P

P
θ
−→ P ′

ℓ(θ) /∈ {a, a} res.

P\a
θ
−→ P ′\a

Parallel Group

P
θ
−→ P ′

|L
P | Q

|Lθ
−−→ P ′ | Q

P
υ1λ−−→ P ′ Q

υ2λ−−→ Q′

syn.

P | Q
⟨|Lυ1λ,|Rυ2λ⟩
−−−−−−−−−→ P ′ | Q′

Q
θ
−→ Q′

|R
P | Q

|Rθ
−−→ P | Q′

Sum Group

P
θ
−→ P ′

+L

Q+ P
+Lθ−−−→ P ′

Q
θ
−→ Q′

+R

Q+ P
+Rθ
−−−→ Q′

Figure 1: Rules of the proved labeled transition system (LTS) for CCS

Definition 3 (Enhanced labels). Let υ, υ1 and υ2 range over strings in the set

{|L, |R,+L,+R}
∗, enhanced labels are deőned as

θ := υα ∥ υ⟨|Lυ1α, |Rυ2α⟩

We write E the set of enhanced labels, and deőne ℓ : E → L:

ℓ(υα) = α ℓ(υ⟨|Lυ1α, |Rυ2α⟩) = τ

The proved labeled transition system for CCS,
θ
−→, is reminded in Fig. 1.

2.2. CSSK: A “Keyed” Reversible Concurrent Calculus5

CCSK captures uncontrolled reversibility using two symmetric LTSÐone for

forward transitions, one for backward transitionsÐthat manipulate keys marking

executed preőxes, to guarantee that reverting synchronizations cannot be done

without both parties agreeing. We borrow the syntax to the latest paper on the

topic [9], which slightly differs [9, Remark 4.2] with the classical deőnition [6].10

However, those changes have no impact since we refrain from using CCSK’s

newly introduced structural congruence, but discuss it in Sect. 6.

Definition 4 (Keys, preőxes and CCSK processes). Let K = {m,n, . . . } be

a set of keys, we let k range over them. Preőxes are of the form α[k]Ðwe call

13



them keyed labelsÐor α. CCSK processes are CCS processes where the preőx

can also be of the form α[k], we let X, Y range over them.

The forward LTS for CCSK,
α[k]
−−→, is given in Fig. 2Ðwith key and std

deőned in Deőnition 5. The reverse LTS
α[k]

is the exact symmetric of
α[k]
−−→ [9,

Figure 2] (it can also be read from Fig. 3), and we write X
α[k]
−−−→ Y if X

α[k]
Y5

or X
α[k]
−−→ Y . For all three types of arrows, we sometimes omit the label and

keys when they are not relevant, and mark with ∗ their transitive closures. As

usual, we restrict ourselves to reachable processes, deőned below.

Definition 5 (Standard and reachable processes). The set of keys in X, key(X),

is deőned inductively:10

key(0) = ∅ key(P +Q) = key(P ) ∪ key(Q)

key(α.P ) = key(P ) key(P |Q) = key(P ) ∪ key(Q)

key(P\α) = key(P ) key(α[k].P ) = key(P ) ∪ {k}

We say that X is standard and write std(X) iff key(X) = ∅Ðthat is, if X is a

CCS process. If there exists a process OX s.t. std(OX) and OX →∗ X, then X

is reachable.

Lemma 1 (Loop lemma). For all t : X
θ
−→ X ′, there exists a unique t• : X ′ θ

X,

and conversely. Furthermore, (t•)• = t.15

Proof. This was proven for CCSK at its inception [6, Prop. 5.1] and simply

follows from the fact that each rule in Fig. 2 has an inverse.

3. A New Causal Semantics for CCSK

We begin our contribution with a simple deőnition of a proved transition

system for CCSK and its causal semantics. Enhanced keyed labels let us easily20

deőne a notion of causality for CCSK with łbuilt-inž reversibility, as the exact

same definition will be used for forward and backward transitions. We discuss

this design choice in more detail in Sect. 3.4, after proving with Lemma 3 that

the past does not matter (when it is not involved).

14



Action, Preőx and Restriction

std(X) act.

α.X
α[k]
−−→ α[k].X

X
β[k]
−−→ X ′

k ̸= k′ pre.

α[k′].X
β[k]
−−→ α[k′].X ′

X
α[k]
−−→ X ′

α /∈ {a, a} res.

X\a
α[k]
−−→ X ′\a

Parallel Group

X
α[k]
−−→ X ′

k /∈ key(Y ) |L
X | Y

α[k]
−−→ X ′ | Y

Y
α[k]
−−→ Y ′

k /∈ key(X) |R
X | Y

α[k]
−−→ X | Y ′

X
λ[k]
−−→ X ′ Y

λ[k]
−−→ Y ′

syn.

X | Y
τ [k]
−−→ X ′ | Y ′

Sum Group

X
α[k]
−−→ X ′

std(Y ) +L

X + Y
α[k]
−−→ X ′ + Y

Y
α[k]
−−→ Y ′

std(X) +R

X + Y
α[k]
−−→ X + Y ′

Figure 2: Rules of the forward labeled transition system (LTS) for CCSK

15



3.1. Proved Labeled Transition System for CCSK

Enhanced keyed labels differ with enhanced labels (Deőnition 3) only in the

fact that their labels must be keyed. We will abuse the notation and write them

the same way:

Definition 6 (Enhanced keyed labels). Let υ, υ1 and υ2 range over strings in5

{|L, |R,+L,+R}
∗, enhanced keyed labels are deőned as

θ := υα[k] ∥ υ⟨|Lυ1α[k], |Rυ2α[k]⟩

We write E the set of enhanced keyed labels, and deőne ℓ : E → L and 𝓀 : E → K:

ℓ(υα[k]) = α ℓ(υ⟨|Lυ1α[k], |Rυ2α[k]⟩) = τ

𝓀(υα[k]) = k 𝓀(υ⟨|Lυ1α[k], |Rυ2α[k]⟩) = k

We present in Fig. 3 the rules for the proved forward and backward LTS for

CCSK. The rules |R, |•R, +R and +•
R are omitted but can easily be inferred.

This LTS has its derivation in bijection with CCSK’s original LTS:10

Lemma 2 (Adequacy of the proved labeled transition system). The transition

X
α[k]
−−−→ X ′ can be derived using Fig. 2 iff X

θ
−→ X ′ with 𝓀(θ) = m and ℓ(θ) = α

can be derived using Fig. 3.

Proof. The proof is by induction on the length of the derivation: since the only

axiom rules (act. and act.•) are identical, it easily follow by inspection of the15

remaining rules of Fig 2 and 3.

Definition 7 (Transitions and traces). In a transition t : X
θ
−→ X ′, X is the

source, and X ′ is the target of t. Two transitions are coinitial (resp. cofinal) if

they have the same source (resp. target). Transitions t1 and t2 are composable if

the target of t1 is the source of t2. Two transitions are concomitant 6 if they are20

either coinitial or composable.

6For lack of a more canonical term. Adjacent was also suggested by Ivan Lanese, and

“joinable” was also used [6, p. 84], but for concomitant concurrent transitions.
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Action, Preőx and Restriction

Forward
std(X) act.

α.X
α[k]
−−→ α[k].X

X
θ
−→ X ′

𝓀(θ) ̸= k pre.

α[k].X
θ
−→ α[k].X ′

X
θ
−→ X ′

ℓ(θ) /∈ {a, a} res.

X\a
θ
−→ X ′\a

Backward
std(X) act.•

α[k].X
α[k]

α.X

X ′ θ
X

𝓀(θ) ̸= k pre.•

α[k].X ′ θ
α[k].X

X ′ θ
X

ℓ(θ) /∈ {a, a} res.•

X ′\a
θ
X\a

Parallel Group

Forward

X
θ
−→ X ′

𝓀(θ) /∈ key(Y ) |L
X | Y

|Lθ
−−→ X ′ | Y

X
υ1λ[k]
−−−−→ X ′ Y

υ2λ[k]
−−−−→ Y ′

syn.

X | Y
⟨|Lυ1λ[k],|Rυ2λ[k]⟩
−−−−−−−−−−−−→ X ′ | Y ′

Backward

X ′ θ
X

𝓀(θ) /∈ key(Y ) |•L
X ′ | Y

|Lθ
X | Y

X ′ υ1λ[k]
X Y ′ υ2λ[k]

Y
syn.•

X ′ | Y ′ ⟨|Lυ1λ[k], |Rυ2λ[k]⟩
X | Y

Sum Group

Forward

X
θ
−→ X ′

std(Y ) +L

X + Y
+Lθ−−−→ X ′ + Y

Backward

X ′ θ
X

std(Y ) +•
L

X ′ + Y
+Lθ

X + Y

Figure 3: Rules of the proved LTS for CCSK

A sequence of pairwise composable transitions t1; · · · ; tn is called a trace,

denoted T , and ϵ is the empty trace.

Note that following Lemma 2, the Loop lemma trivially holds for the system

presented in Fig. 3, and we write similarly t• : X
θ
−→ X ′ the reverse of t : X ′ θ

X,

and reciprocally.5
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3.2. The Past Does Not Matter (When It Is Not Involved)

In Sect. 4, we will need to use the fact that the pre. rule is transparent from

the perspective of enhanced keyed labels, as no łmemoryž of its usage is stored in

the label of the transition. This lets us show that as long as a transition does not

reverse a particular action, its presence or absence does not affect derivability5

or the label (Lemma 3). To make this more formal, we begin by introducing a

function that łremovesž a keyed label.

Definition 8 (Removal function). Given a label α and a key k, we deőne the

removal function rmα[k] by

rmα[k](0) = 0 rmα[k](X | Y ) = rmα[k](X) | rmα[k](Y )

rmα[k](β.X) = β.X rmα[k](X + Y ) = rmα[k](X) + rmα[k](Y )

rmα[k](X\a) = (rmα[k] X)\a

rmα[k](β[k
′].X) =

⎧

⎨

⎩

X if α = β and k = k′

β[k′]. rmα[k](X) otherwise

We deőne the removal function of a label and its complement by10

rmα
k =

⎧

⎨

⎩

rmα[k] ◦ rmα[k] if α ∈ L\{τ},

rmτ [k] otherwise
.

The function rmα[k] simply looks for an occurrence of α[k] and removes it: as

there is at most one such occurence in a reachable processs, there is no need for a

recursive call when it is found. This function preserves derivability of transitions

that do not involve the key removed:

Lemma 3. For all X, α, k, and θ with 𝓀(θ) ̸= k, if k /∈ key(rmα
k (X)),7 then15

X
θ
−→ Y ⇐⇒ rmα

k (X)
θ
−→ rmα

k (Y ).

7This cumbersome condition is here to prevent k from occurring in X attached to a different

label. In practice, we will always remove α[k] from processes where we know it occurs, so that

this condition will always be vacuously true, since the same key cannot be attached to labels

that are not complement of each others [9, Lemma 3.4].
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Proof. We reason by the number of occurrences of k in X, which is the same

as the number of occurences of k in Y , since 𝓀(θ) ̸= k. As keys occur at most

twice, attached to complementary names, in reachable processes [9, Lemma 3.4],

we know that we have only three cases to consider: 0, 1 and 2.

0 occurence Then there is nothing to prove, as rmα
k (X) = X and rmα

k (Y ) = Y .5

1 occurence Since k /∈ key(rmα
k (X)), we know that the key k is attached to α

or α. We suppose without loss of generality that it is attached to α, and start

by proving the left-to-right direction of the implication. This means that the

derivation of X
θ
−→ Y is of the form

.... π1

X ′ θ′

−→ Y ′

pre.

α[k].X ′ θ′

−→ α[k].Y ′

.... π2

X
θ
−→ Y

or

.....
π•
1

X ′ θ′

Y ′

pre.•

α[k].X ′ θ′

α[k].Y ′

.....
π•
2

X
θ

Y

10

depending on the direction of the transition.

To obtain the derivation of rmα
k (X)

θ
−→ rmα

k (Y ), it suffices to łskipž the pre.

rule: since it does not alter the enhanced keyed label θ′, composing π1 and

π2 (where α[k].X ′ and α[k].Y ′ have been replaced by X ′ and Y ′) yields a

correct derivation of rmα
k (X)

θ
−→ rmα

k (Y ) (where k does not occur, since it15

was not occuring in π1 or π2). The same reasoning can be used to obtain the

derivation of rmα
k (X)

θ
rmα

k (Y ).

For the right-to-left direction of the implication, it suffices to introduce a pre.

or pre.• rule in the derivation of rmα
k (X)

θ
−→ rmα

k (Y ). We know by hypothesis

that k /∈ key(rmα
k (X)), and since 𝓀(θ) ̸= k, k /∈ key(rmα

k (Y )) as well. Hence,20

the side condition of pre. or pre.• is always met, and the rule can be applied at

any point in the derivation to obtain the desired transition.

2 occurences Then it suffices to apply the reasoning above twice, to the pre. or

pre.• rules that introduce α[k] and α[k], to obtain the desired transition.
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Action

α[k] ✕ θ ∀α, k, θ

Sum Group

+Lθ ✕ +Rθ
′

+dθ ✕ +dθ
′ iff θ ✕ θ′

Parallel Group

|dθ ✕ |dθ
′ iff θ ✕ θ′

⟨θL, θR⟩ ✕ θ iff ∃d s.t.θd ✕ θ

For d ∈ {L,R}.

Figure 4: Dependency Relation on Enhanced Keyed Labels

3.3. Dependency and Concurrency for CCSK

Definition 9 (Dependency relation). The dependency relation ✕ on enhanced

keyed labels is the symmetric closure of the axioms of Fig. 4.

Claim 1. The dependency relation ✕ is reflexive but not transitive.

Proof. We prove each property separately:5

Reflexive This proceeds by induction on the structure of θ: if θ is α[k], then it

is immediate by deőnition. Otherwise, it proceeds easily by induction on the

main operator of θ.

Not transitive For instance,

|La[n1] ✕ ⟨|Lb[m], |Rb[m]⟩ and ⟨|Lb[m], |Rb[m]⟩ ✕ |Rc[n2]

both hold, and yet |La[n1] ✕ |Rc[n2] does not hold.10

Definition 10 (Concurrency relation). Two enhanced keyed labels θ1 and θ2

are concurrent, written θ1 ⌣ θ2 iff θ1 ✕ θ2 does not hold.

Claim 2. The concurrency relation ⌣ is irreflexive and symmetric.

Proof. Irreŕexivity follows from the fact that ✕ is reŕexive, symmetry is immedi-

ate by deőnition.15
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The concurrency relations on composable and coinitial transitions are then

deőned similarly:

Definition 11 (Composable concurrency). Let t1 : X1
θ1−→ X2 and t2 : X2

θ2−→

X3 be two composable transitions, t1 is concurrent with t2 (t1 ⌣c t2) iff θ1 ⌣ θ2.

Definition 12 (Coinitial concurrency). Let t1 : X
θ1−→ Y1 and t2 : X

θ2−→ Y2 be5

two coinitial transitions, t1 is concurrent with t2 (t1 ⌣i t2) iff θ1 ⌣ θ2.

Theorem 1. Definitions 11 and 12 provide definitions of concurrencies that are

symmetric, direction-agnostic, and that enforce (Correctness of Concurrencies).

Proof. All three properties are immediate by unfolding the deőnitions. For e.g.,

(Correctness of Concurrencies), we obtain:10

t•1 ⌣c t2 for t•1 : X1
θ1

X, t2 : X
θ2−→ X2

⇐⇒ θ1 ⌣ θ2

⇐⇒ t1 ⌣i t2 for t1 : X
θ1−→ X1, t2 : X

θ2−→ X2

Indeed, our system is somehow a trivial case, since both concurrencies are

actually a property of the enhanced key labels, and not of the traces:

Lemma 4 (Concurrencies are trace-insensible). For all t1 : X1
θ1−→ X2 and

t3 : X ′
1

θ1−→ X ′
2,

1. For all t2 : X2
θ2−→ X3 and t4 : X ′

2
θ2−→ X ′

3, t1 ⌣c t2 ⇐⇒ t3 ⌣c t4.15

2. For all t2 : X1
θ2−→ X3 and t4 : X ′

1
θ2−→ X ′

3, t1 ⌣i t2 ⇐⇒ t3 ⌣i t4.

Proof. The proof is immediate:

1. t1 ⌣c t2 ⇐⇒ θ1 ⌣ θ2 ⇐⇒ t3 ⌣c t4 by Deőnitions 11 and 12, and

2. t1 ⌣i t2 ⇐⇒ θ1 ⌣ θ2 ⇐⇒ t3 ⌣i t4 by Deőnitions 11 and 12.

Lemma 4 makes it clear that all the needed information is in the labels, and20

that the actual processes (or their actual traces) involved are irrelevant. As a

corollary, we can ease the notation:
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Notation 1. For t1 and t2 two concomitant traces with labels θ1 and θ2, we

will simply write θ1 ⌣ θ2 for t1 ⌣c t2 or t1 ⌣i t2.

We can also obtain Coinitial Propagation of Independence [8, Deőnition 4.2]

as a simple corollary:

Corollary 1 (Coinitial Propagation of Independence (CPI)). For all t1 : X1
θ1−→5

Y1, t2 : X1
θ2−→ Y2, t3 : Y1

θ2−→ X2 and t4 : Y2
θ1−→ X2 with t1 ⌣i t2 then

t3 ⌣c t
•
1.

In picture, we have X1

Y1θ1

θ1 X2

θ2

Y2
θ2 θ1

Proof. This is immediate:

t1 ⌣i t2 =⇒ θ1 ⌣ θ2 =⇒ t3 ⌣c t
•
1

10

Example 1. Consider the following trace, dependencies, and concurrent en-

hanced keyed labels:

(a.b) | (b+ c)

|La[m]
−−−−→ a[m].b | b+ c

|Lb[n]
−−−→ a[m].b[n] | b+ c

|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

|Lb[n]
a[m].b | b+ c[n′]

|R+Rc[n′]
a[m].b | b+ c

⟨|Lb[n],|R+Lb[n]⟩
−−−−−−−−−−−→ a[m].b[n] | b[n] + c

And we have, e.g.,

|La[m]⋖ |Lb[n]

as a[m]⋖ b[n],

|R+Rc[n
′]⋖ ⟨|Lb[n], |R+Lb[n]⟩

as +Rc[n
′]⋖+Lb[n], and

|Lb[n] ⌣ |R+Rc[n
′]

since labels preőxed by |L and |R

are never causes of each others.
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3.4. Discussion

This may be a good moment to pause and reŕect on this deőnition of

concurrency we will be using. Originally, in CCS [26, p. 311], the (non-symmetric)

dependency relation ⋖ on labels had to be parametrized by the trace, since a

transition with a label θ1 could not be the cause of a transition with a label θ25

unless it happened before it.

We would then have [26, Deőnition 3], given a trace T ,

θ1 ⋖T θ2 ⇐⇒

⎧

⎨

⎩

θ1 ⋖ θ2

θ1 happens before θ2 in T

Without this constraint, one could e.g., decide that b is a dependency of a in

the CCS trace a.b
a
−→ b

b
−→ 0, since b⋖ a would hold. But of course this would

not make much sense, due to the temporal order of those transitions. Hence,10

⋖T would be considered instead of ⋖, and the causal dependency ≼T would be

deőned as the symmetric and transitive closure of ⋖T [33, Deőnition 2.2][26,

Deőnition 3].

This transitive closure was important, too. Without it, you could for instance

conclude that in a CCS trace [26, footnote 2]15

b.a|a.c
|Lb
−−→ a|a.c

⟨|La,|Ra⟩
−−−−−−→ 0|c

|Rc
−−→ 0|0 (4)

it was the case that the transitions whose labels are |Lb and |Rc are independent,

since neither |Lb⋖ |Rc nor |Rc⋖ |Lb would hold.

But, in our deőnition, we do not parametrize the dependency relation by the

trace, and we do not need its transitive closure. Why? There are two reasons,

and neither are caused by reversibility, curiously enough.20

The őrst one is that we are interested in concomitant (Deőnition 7) transitions.

This is fairly standard, as the diamonds are concerned only with that types

of transitions, and as only łlocalž permutations will be considered. Wondering

whether |Lb and |Rc are independent in (4) makes no sense, as they are not

concomitant, and will never be, since neither can be permuted with the transition25

labeled ⟨|La, |Ra⟩.

23



The second reason is that dependencies is simply a tool to deőne concurrency,

and we are not focused on capturing łthe rightž notion. It is acceptable if we

consider a to be a dependency of b and b to be a dependency of a in a.b
a
−→ b

b
−→ 0:

what matters is that we detect that there is some dependency between those

two traces, e.g., that they are not concurrent. The symmetry of the ✕ relation5

in Deőnition 10 allows to discard the temporal order: suddenly, we do not care

which happened őrst.

As we wrote, those design choices are not caused by reversibility, but, as

it turns out, they play really well together. In CCSK, when the CCS trace

a.b
a
−→ b

b
−→ 0 is executed and then reversed, we obtain:10

a.b
a[m]
−−−→ a[m].b

b[n]
−−→ a[m].b[n] (5)

a[m].b[n]
b[n]

a[m].b
a[m]

a.b (6)

Again, one could argue that b[n]⋖ a[m] makes no sense for (5) but is correct

w.r.t. (6), due to the temporal order. We explained why this does not matter

when the focus in on concurrency, but it is also interesting to remark that deciding

that b[n] is a dependency of a[m] regardless of their temporal order makes our

definition of dependency independent from the direction of the transition.15

We can also observe that our dependency relation matches the forward-only

deőnition for action and parallel composition, but not for sum: while the original

system [26, Deőnition 2] requires only +dθ ⋖ θ′ if θ ⋖ θ′, this deőnition would

not capture faithfully the dependencies in our system where the sum operator is

preserved after a reduction. This is also the reason why our dependency relation20

is reŕexive, while their is not (Claim 1).

All in all, our design choices allow to use only one deőnition of dependency to

deőne concurrencies, instead of having to take the transitive closure of a tertiary

conŕict or causality relation (as brieŕy discussed in Sect. 5.1.2). Our deőnitions

are also direction-insensitive8 and łidentiőers agnosticž: by that we mean that25

8As we discuss in Sect. 5, many existing definitions proceeds by case (“If transitions are

forward, . . . , if they are backward, . . . ”), sometimes “forgetting” about transitions of opposite
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any identifying mechanism, not only the key mechanism of CCSK, could work

with it, as we discuss further in Sect. 5.

4. Diamonds, Squares and Consistency

4.1. Preliminary: Decomposing Transitions

To prove the required properties, we need an intuitive and straightforward5

lemma (Lemma 5) that decomposes a concurrent trace involving two threads

into one trace involving one thread while maintaining concurrency. That is, we

prove that a trace of the form

X | Y
|Lθ
−−→ X ′ | Y

|Lθ
′

−−→ X ′′ | Y

with |Lθ ⌣ |Lθ
′ can be decomposed into a trace

X
θ
−→ X ′ θ′

−→ X ′′

with θ ⌣ θ′. A similar lemma is also needed to decompose traces involving two10

branches (Lemma 6). In both cases, the lemma is cumbersome to spell out, but

easy to prove by simple case analysis.

Lemma 5 (Decomposing concurrent parallel transitions). Let i ∈ {1, 2} and

θi ∈ {|Lθ
′
i, |Rθ

′′
i , ⟨|Lθ

′
i, |Rθ

′′
i ⟩}, define the left projection on enhanced keyed labels

πL as:15

πL(θi) =

⎧

⎨

⎩

θ′i if θ = |Lθ
′
i or if θi = ⟨|Lθ

′
i, |Rθ

′′
i ⟩)

undefined otherwise

and extend it to processes as

πL(X) =

⎧

⎨

⎩

XL if X = XL | XR

undefined otherwise

We define similarly the right projection on keyed labels πR and extend it to

processes.

directions (Sect. 5.2.3). Our definition does not make such distinction, and is adequate for any

combination of forward and backward transitions.
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Whenever T : XL | XR
θ1−→ YL | YR

θ2−→ ZL | ZR with θ1 ⌣ θ2, then for

d ∈ {L,R}, if πd(θ1) and πd(θ2) are both defined, then there exist a trace

πd(T ) : πd(XL | XR)
πd(θ1)
−−−−→ πd(YL | YR)

πd(θ2)
−−−−→ πd(ZL | ZR)

and πd(θ1) ⌣ πd(θ2).

Proof. The trace πd(T ) exists by virtue of the rule |d, syn. or their reverses.

What remains to prove is that πd(θ1) ⌣ πd(θ2) holds.5

The proof is by case on θ1 and θ2, but always follows the same pattern. As

we know that both πd(θ1) and πd(θ2) need to be deőned, there are 7 cases:

θ1 = |Lθ
′
1 and θ2 = |Lθ

′
2 θ1 = |Rθ

′
1 and θ2 = |Rθ

′
2

θ1 = |Rθ
′
1 and θ2 = ⟨|Lθ

′
2, |Rθ

′′
2 ⟩ θ1 = ⟨|Lθ

′
1, |Rθ

′′
1 ⟩ and θ2 = |Rθ

′
2

θ1 = |Lθ
′
1 and θ2 = ⟨|Lθ

′
2, |Rθ

′′
2 ⟩ θ1 = ⟨|Lθ

′
1, |Rθ

′′
1 ⟩ and θ2 = |Lθ

′
2

θ1 = ⟨|Lθ
′
1, |Rθ

′′
1 ⟩ and θ2 = ⟨|Lθ

′
2, |Rθ

′′
2 ⟩

By symmetry, we can bring this number down to three:

(case letter) a) b) c)

θ1 |Lθ
′
1 ⟨|Lθ

′
1, |Rθ

′′
1 ⟩ ⟨|Lθ

′
1, |Rθ

′′
1 ⟩

θ2 |Lθ
′
2 |Lθ

′
2 ⟨|Lθ

′
2, |Rθ

′′
2 ⟩

In each case, assume πL(θ1) = θ′1 ⌣ θ′2 = πL(θ2) does not hold. Then it must be10

the case that θ′1 ✕ θ′2:

a) If θ′1 ✕ θ′2, then it is immediate that θ1 = |Lθ
′
1 ✕ |Lθ

′
2 = θ2, contradicting

θ1 ⌣ θ2.

b) If θ′1 ✕ θ′2, then |Lθ
′
1 ✕ |Lθ

′
2 and ⟨|Lθ

′
1, |Rθ

′′
1 ⟩ ✕ |Lθ

′
2, from which we can deduce

θ1 ✕ θ2, contradicting θ1 ⌣ θ2.15

c) If θ′1 ✕ θ′2, then |Lθ
′
1 ✕ |Lθ

′
2 and ⟨|Lθ

′
1, |Rθ

′′
1 ⟩ ✕ ⟨|Lθ

′
2, |Rθ

′
2⟩, from which we can

deduce θ1 ✕ θ2, contradicting θ1 ⌣ θ2.

Hence, in all cases, assuming that πd(θ1) ⌣ πd(θ2) does not hold leads to a

contradiction.
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Lemma 6 (Decomposing concurrent sum transitions). Let i ∈ {1, 2} and

θi ∈ {+Lθ
′
i,+Rθ

′′
i }, define the left summand of enhanced keyed labels πL as:

ρL(θi) =

⎧

⎨

⎩

θ′i if θ = +Lθ
′
i

undefined otherwise

and extend it to processes as

ρL(X) =

⎧

⎨

⎩

XL if X = XL +XR

undefined otherwise

We define similarly the right summand of keyed labels ρR and extend it to

processes.5

Whenever T : XL + XR
θ1−→ YL + YR

θ2−→ ZL + ZR with θ1 ⌣ θ2, then for

d ∈ {L,R}, if ρd(θ1) and ρd(θ2) are both defined, then there exists a trace

ρd(T ) : ρd(XL +XR)
ρd(θ1)
−−−−→ ρd(YL + YR)

ρd(θ2)
−−−−→ ρd(ZL + ZR)

and ρd(θ1) ⌣ ρd(θ2).

Proof. The trace ρd(T ) exists by virtue of the rule +d or its reverse. What

remains to prove is that ρd(θ1) ⌣ ρd(θ2) holds.10

The proof is by case on θ1 and θ2, but always follows the same pattern. As

we know that both ρd(θ1) and ρd(θ2) need to be deőned, there are 2 cases:

θ1 +Lθ
′
1 +Rθ

′
1

θ2 +Lθ
′
2 +Rθ

′
2

For d ∈ {L,R}, assume ρd(θ1) = θ′1 ⌣ θ′2 = ρd(θ2) does not hold, then it is

immediate to note that θ1 ⌣ θ2 cannot hold either, a contradiction.

4.2. Diamonds and Squares: Concurrency in Action15

Our goal in this section is to prove our Main Theorem, that states that for

all X
θ1−→ X1 and X

θ2−→ X2 with θ1 ⌣ θ2, there exist X1
θ2−→ Y and X2

θ1−→ Y .

This statements, because we enjoy the Loop lemma and enforce the (Correctness

of Concurrencies), is equivalent to stating that we enjoy all the diamonds listed

in Table 2. This is one of the main technical goal of this paper, the other20
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interesting properties, discussed in Sect. 4.3, following almost for free thanks to

the axiomatic approach to reversible computation [8].

To obtain this result, we őrst prove one of the (Sideways Diamonds) (actu-

ally, the (Sideways Diamond)) with Lemma 7, one of the (Reverse Diamonds)

(Lemma 8) and őnally one of the Square Properties (Lemma 9). Our Main5

Theorem is then a trivial consequence of those lemmas. Interestingly, all three

proofs are almost identical, except for some very subtle points that we highlight.

Lemma 7 (Sideways diamond). For all X
θ1−→ X1

θ2−→ Y with θ1 ⌣ θ2, there

exists X2 s.t. X
θ2−→ X2

θ1−→ Y .

In short, the proof proceeds by induction on the length of the deduction for10

the derivation for X
θ1−→ X1, using Lemmas 5 and 6 to enable the induction

hypothesis if θ1 is not a preőx. The proof requires a particular care when X is

not standard, more particularly if the last rule is pre., but Lemma 3 provides

just what is needed to deal with this case.

Proof. The proof proceeds by induction on the length of the deduction for the15

derivation for X
θ1−→ X1.

Length 1 In this case, the derivation is a single application of act., and θ1 is of

the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k] ✕ θ2 always holds, and this

case is vacuously true.

Length > 1 We proceed by case on the last rule.20

pre. There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1−→ α[k].X ′

1 = X1 and

𝓀(θ1) ̸= k. As α[k].X ′
1

θ2−→ Y we know that 𝓀(θ2) ̸= k [9, Lemma 3.4].

Furthermore, since k occurs attached to α in X1 and since X1 makes a for-

ward transition to reach Y , we know that k /∈ key(rmα
k (X1))∪ key(rmα

k (Y )).

Hence, we can apply Lemma 3 twice to obtain25

rmα
k (α[k].X

′) = X ′ θ1−→ rmα
k (α[k].X

′
1) = X ′

1
θ2−→ rmα

k (Y )

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain that

there exists X2 s.t. X ′ θ2−→ X2
θ1−→ rmα

k (Y ). Since 𝓀(θ2) ̸= k, we can append
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pre. to the derivation of X ′ θ2−→ X2 to obtain α[k].X ′ = X
θ2−→ α[k].X2.

Using Lemma 3 one last time, we obtain that rmα
k (α[k].X2) = X2

θ1−→

rmα
k (Y ) implies α[k].X2

θ1−→ Y , which concludes this case.

res. This is immediate by induction hypothesis.

|L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X
θ1−→ X1

θ2−→ Y is5

XL | XR
|Lθ

′

1−−−→ X1L | XR
θ2−→ YL | YR.

Then, XL
θ′

1−→ X1L and the proof proceeds by case on θ2:

θ2 is |Rθ
′
2 Then XR

θ′

2−→ YR, X1L = YL and the occurrences of the rules |L

and |R can be swapped to obtain

XL | XR
|Rθ′

2−−−→ XL | YR
|Lθ

′

1−−−→ YL | YR.

θ2 is |Lθ
′
2 Then, XL

θ′

1−→ X1L

θ′

2−→ YL and XR = YR. As |Lθ
′
1 = θ1 ⌣ θ2 =

|Lθ
′
2, it is the case that θ′1 ⌣ θ′2 in XL

θ′

1−→ X1L

θ′

2−→ YL by Lemma 5, and10

we can use induction to obtain X2 s.t. XL
θ′

2−→ X2
θ′

1−→ YL, from which it

is immediate to obtain XL | XR
|Lθ

′

2−−−→ X2 | XR
|Lθ

′

1−−−→ YL | XR = YL | YR.

θ2 is ⟨|Lθ2L , |Rθ2R⟩ Since |Lθ
′
1 = θ1 ⌣ θ2 = ⟨|Lθ2L , |Rθ2R⟩, we have that

θ′1 ⌣ θ2L in XL
θ′

1−→ X1L

θ2L−−→ YL by Lemma 5. Hence, we can use

induction to obtain XL

θ2L−−→ X2
θ′

1−→ YL. Since we also have that XR
θ2R−−→15

YR, we can compose both traces using őrst syn., then |L to obtain

XL | XR

⟨|Lθ2L ,|Rθ2R⟩
−−−−−−−−−→ X2 | YR

|Lθ
′

1−−−→ YL | YR.

|R This is symmetric to |L.

syn. There exists XL, XR, θ1L, θ1L, X1L , X1R , YL and YR s.t. X
θ1−→ X1

θ2−→ Y

is

XL | XR
⟨|Lθ1L,|Rθ1R⟩
−−−−−−−−−→ X1L | X1R

θ2−→ YL | YR.

Then, XL
θ1L−−→ X1L , XR

θ1R−−→ X1R and the proof proceeds by case on θ2:20

θ2 is |Rθ2R Then X1R

θ2R−−→ YR, X1L = YL and ⟨|Lθ1L, |Rθ1R⟩ ⌣ |Rθ2R.

Then by Lemma 5 there exists XR
θ1R−−→ X1R

θ2R−−→ YR and θ1R ⌣ θ2R.

29



We can then use the induction hypothesis to obtain XR
θ2R−−→ X2R

θ1R−−→ YR

from which it is immediate to obtain

XL | XR
|Rθ2R−−−−→ XL | X2R

⟨|Lθ2L ,|Rθ1R⟩
−−−−−−−−−→ X1L | YR = YL | YR.

θ2 is |Lθ2L This is symmetric to |Rθ2R.

θ2 is ⟨|Lθ2L , |Rθ2R⟩ This case is essentially a combination of the two previous

cases. Since ⟨|Lθ1L, |Rθ1R⟩ = θ1 ⌣ θ2 = ⟨|Lθ2L , |Rθ2R⟩, Lemma 5 gives5

the two traces

XL
θ1L−−→ X1L

θ2L−−→ YL and XR
θ1R−−→ X1R

θ2R−−→ YR

and θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis, we

obtain two traces

XL

θ2L−−→ X2L

θ1L−−→ YL and XR
θ2R−−→ X2R

θ1R−−→ YR

that we can then re-combine using syn. twice to obtain, as desired,

XL | XR

⟨|Lθ2L ,|Rθ2R⟩
−−−−−−−−−→ X2L | X2R

⟨|Lθ1L,|Rθ1R⟩
−−−−−−−−−→ YL | YR.

+L There exists XL, XR, θ′1, θ
′
2, X1L, and YL s.t. X

θ1−→ X1
θ2−→ Y is10

XL +XR
+Lθ

′

1−−−→ X1L +XR
+Lθ

′

2−−−→ YL +XR.

All transitions happen on łXL’s sidež and XR remains unchanged as other-

wise we could not sum two non-standard terms, so that θ2 must be of the

form +Lθ
′
2. Then, we can use Lemma 6 to obtain

XL
θ′

1−→ X1L

θ′

2−→ YL

and θ′1 ⌣ θ′2. Hence we can use the induction hypothesis to obtain X2 s.t.

XL
θ′

2−→ X2
θ′

1−→ YL. From this, it is easy to obtain15

XL +XR
+Lθ

′

2−−−→ X2 +XR
+Lθ

′

1−−−→ YL +XR = YL + YR

and this concludes this case.
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+R This is symmetric to +L.

Example 2. Re-using Example 1, since |Lb[n] ⌣ |R+Rc[n
′], Lemma 7 allows to

re-arrange the trace

a[m].b | b+ c
|Lb[n]
−−−→ a[m].b[n] | b+ c

|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

as

a[m].b | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b | b+ c[n′]

|Lb[n]
−−−→ a[m].b[n] | b+ c[n′].

We state, discuss and then prove the following two lemmas:5

Lemma 8 (Reverse Diamond). For all X
θ1−→ X1

θ2
Y with θ1 ⌣ θ2, there

exists X2 s.t. X
θ2

X2
θ1−→ Y .

Lemma 9 (Square Property). For all X
θ1

X1
θ2−→ Y with θ1 ⌣ θ2, there

exists X2 s.t. X
θ2−→ X2

θ1
Y .

In both cases, in the particular cases of t; t• : X
θ1−→ X1

θ1
X, or of t•; t,10

note that θ1 ⌣ θ1 never holds since θ1 ✕ θ1 always holds by reŕexivity of ✕

(Claim 1) and hence Lemmas 8 and 9 cannot apply. The proofs re-use the proof

of Lemma 7 almost as it is, since Lemmas 3, 5 and 6 hold for both directions.

Proof of Lemma 8. The only case that diverges with the proof of Lemma 7 is if

the deduction for X
θ1−→ X1 have for last rule pre. In this case,15

α[k].X ′ θ1−→ α[k].X ′
1

θ2
Y ,

but we cannot deduce that 𝓀(θ2) ̸= k immediately. However, if 𝓀(θ2) = k, then

we would have α[k].X ′
1

α[k]
α.Y ′ = Y , but this application of act.• is not valid,

as std(X ′
1) does not hold, since X ′

1 was obtained from X ′ after it made a forward

transition. Hence, we obtain that 𝓀(θ2) ̸= k, that k occurs in X, X1 and Y

attached to α, so that k /∈ key(rmα
k (X)) ∪ key(rmα

k (X1) ∪ key(rmα
k (Y )), and we20

can carry out the rest of the proof, using Lemma 3, as before.

Example 3. Re-using Example 1, since |R+Rc[n
′] ⌣ |Lb[n], the trace

a[m].b[n] | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

|Lb[n]
a[m].b | b+ c[n′],
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can be rearranged using Lemma 8 as

a[m].b[n] | b+ c
|Lb[n]

a[m].b | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b | b+ c[n′].

For Lemma 9, the main difference lies in leveraging the dependency of sum

preőxes between e.g., +Rθ1 and +Lθ2 in X+OY
+Rθ1

OX +OY
+Lθ2−−−→ OX +Y .

Proof of Lemma 9. The proof is very similar to the proof of Lemma 7, but we

detail it nevertheless for completeness, and also because the sum case diverges5

and exposes the design choices made in Deőnition 9 for the sum group.

It proceeds by induction on the length of the deduction for the derivation for

X
θ1

X1:

Length 1 In this case, the derivation is a single application of act.•, and θ1 is of

the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k] ✕ θ2 always holds, and this10

case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1

α[k].X ′
1 = X1 and

that 𝓀(θ1) ̸= k. As α[k].X ′
1

θ2−→ Y we know that 𝓀(θ2) ̸= k [9, Lemma 3.4].

Furthermore, since k occurs attached to α in X1 and since X1 makes a15

forward transition to reach Y , we know that k /∈ key(rmα
k (X1)) ∪ key(Y ).

Hence, we can apply Lemma 3 twice to obtain

rmα
k (α[k].X

′) = X ′ θ1
rmα

k (α[k].X
′
1) = X ′

1
θ2−→ rmα

k (Y )

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain that

there exists X2 s.t. X ′ θ2−→ X2
θ1

rmα
k (Y ). Since 𝓀(θ2) ̸= k, we can append

pre. to the derivation of X ′ θ2−→ X2 to obtain α[k].X ′ = X
θ2−→ α[k].X2.20

Using Lemma 3 one last time, we obtain that rmα
k (α[k].X2) = X2

θ1

rmα
k (Y ) implies α[k].X2

θ1
Y , which concludes this case.

res.• This is immediate by induction hypothesis.

|•L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X
θ1

X1
θ2−→ Y is

XL | XR
|Lθ

′

1 X1L | XR
θ2−→ YL | YR.
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Then, XL
θ′

1 X1L and the proof proceeds by case on θ2:

θ2 is |Rθ
′
2 Then XR

θ′

2−→ YR, X1L = YL and the occurrences of the rules |•L

and |R can be swapped to obtain

XL | XR
|Rθ′

2−−−→ XL | YR
|Lθ

′

1 YL | YR.

θ2 is |Lθ
′
2 Then, XL

θ′

1 X1L

θ′

2−→ YL and XR = YR. As |Lθ
′
1 = θ1 ⌣ θ2 =

|Lθ
′
2, it is the case that XL

θ′

1 X1L

θ′

2−→ YL and θ′1 ⌣ θ′2 by Lemma 5,5

and we can use induction to obtain X2 s.t. XL
θ′

2−→ X2
θ′

1 YL, from which

it is immediate to obtain XL | XR
|Lθ

′

2−−−→ X2 | XR
|Lθ
−−→ YL | XR = YL | YR.

θ2 is ⟨|Lθ2L , |Rθ2R⟩ Since |Lθ
′
1 = θ1 ⌣ θ2 = ⟨|Lθ2L , |Rθ2R⟩, we have XL

θ′

1

X1L

θ2L−−→ YL and θ′1 ⌣ θ2L by Lemma 5. Hence, we can use induction to

obtain XL

θ2L−−→ X2
θ′

1 YL. Since we also have that XR
θ2R−−→ YR, we can10

compose both traces using őrst syn., then |•L to obtain

XL | XR

⟨|Lθ2L ,|Rθ2R⟩
−−−−−−−−−→ X2 | YR

|Lθ
′

1 YL | YR.

|•R This is symmetric to |•L.

syn.• There exists XL, XR, θ1L, θ1R, X1L , X1R , YL and YR s.t. X
θ1

X1
θ2−→ Y

is

XL | XR
⟨|Lθ1L, |Rθ1R⟩

X1L | X1R
θ2−→ YL | YR.

Then, XL
θ1L X1L , XR

θ1R X1R and the proof proceeds by case on θ2:15

θ2 is |Rθ2R Then X1R

θ2R−−→ YR, X1L = YL and ⟨|Lθ1L, |Rθ1R⟩ ⌣ |Rθ2R

implies XR
θ1R X1R

θ2R−−→ YR and θ1R ⌣ θ2R by Lemma 5. We can then

use the induction hypothesis to obtain XR
θ2R−−→ X2R

θ1R YR from which

it is immediate to obtain

XL | XR
|Rθ2R−−−−→ XL | X2R

⟨|Lθ1L, |Rθ1R⟩
X1L | YR = YL | YR.

θ2 is |Lθ2L This is symmetric to |Rθ2R.20

θ2 is ⟨|Lθ2L , |Rθ2R⟩ This case is essentially a combination of the two previous

cases. Since ⟨|Lθ1L, |Rθ1R⟩ = θ1 ⌣ θ2 = ⟨|Lθ2L , |Rθ2R⟩, Lemma 5 gives
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two traces

XL
θ1L X1L

θ2L−−→ YL and XR
θ1R X1R

θ2R−−→ YR

and θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis, we

obtain two traces

XL

θ2L−−→ X2L
θ1L YL and XR

θ2R−−→ X2R
θ1R YR

that we can then re-combine using syn. and syn.• to obtain, as desired,

XL | XR

⟨|Lθ2L ,|Rθ2R⟩
−−−−−−−−−→ X2L | X2R

⟨|Lθ1L, |Rθ1R⟩
YL | YR.

+•
L There exists XL, XR, X1L, and YL s.t. X

θ1
X1

θ2−→ Y is5

XL +XR
+Lθ

′

1 X1L +XR
θ2−→ YL + YR.

Then, XL
θ′

1 X1L and we proceed by case on θ2:

θ2 is +Lθ
′
2 Then, X1L

θ′

2−→ YL and XR = YR. Since +Lθ
′
1 ⌣ +Lθ

′
2, we can

use Lemma 6 to obtain

XL
θ′

1 X1L

θ′

2−→ YL

and θ′1 ⌣ θ′2, and by induction hypothesis there exists X2 such that

XL
θ′

2−→ X2
θ′

1 YL

from which it is easy to obtain10

XL +XR
+Lθ

′

2−−−→ X2 +XR
+Lθ

′

1 YL +XR = YL + YR.

θ2 is +Rθ
′
2 Since +Lθ

′
1 ⋖+Rθ

′
2, it cannot be the case that θ1 ⌣ θ2, so this

case is vacuously true.

Theorem 2 (Main Theorem). For all t1 : X
θ1−→ X1 and t2 : X

θ2−→ X2 with

θ1 ⌣ θ2, there exist t′1 : X1
θ2−→ Y and t′2 : X2

θ1−→ Y .
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The proof is by case on the directions of the arrows, but always follow the

same pattern: use the Loop lemma to orient the arrows to be able to use either

Lemma 7, 8 or 9, use the appropriate Lemma to obtain a trace, and then őnally

use again the Loop lemma to orient it as desired.

X

X1

θ1

X2

θ2
Loop
===⇒ X

X1

θ1

X2

θ2

Diamonds or
==========⇒
Square Property

Y

X1

θ2

X2

θ1

Loop
===⇒

X

X1

θ1

X2

θ2

Y

θ2 θ1

5

Proof. The proof proceeds by case on the directions of t1 and t2.

If t1 : X
θ1

X1 and t2 : X
θ2−→ X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1−→ X

θ2−→ X2, and since we know that

θ1 ⌣ θ2, we can use the sideways diamond (Lemma 7) to obtain t′′1 ; t
′′
2 :

X1
θ2−→ Y

θ1−→ X2, and letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1

θ2−→ Y10

and t′2 : X2
θ1

Y as desired.

If t1 : X
θ1−→ X1 and t2 : X

θ2
X2 This corresponds to this case: .

By symmetry it is identical to the previous one.

If t1 : X
θ1

X1 and t2 : X
θ2

X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1−→ X

θ2
X2, and since we know that15

θ1 ⌣ θ2, we can use the reverse diamond Lemma 8 to obtain t′′1 ; t
′′
2 : X1

θ2

Y
θ1−→ X2, and letting t′1 = t′′1 and t′2 = t′′

•
2, we obtain t′1 : X1

θ2
Y and

t′2 : X2
θ1

Y as desired.

If t1 : X
θ1−→ X1 and t2 : X

θ2−→ X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1

X
θ2−→ X2, and since we know that20

θ1 ⌣ θ2, we can use the square property (Lemma 9) to obtain t′′1 ; t
′′
2 : X1

θ2−→
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Y
θ1

X2, and letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1

θ2−→ Y and

t′2 : X2
θ1−→ Y as desired.

Example 4. Following Example 1, we can obtain e.g., from the coinitial transi-

tions

a[m].b[n] | b+ c
|R+Lb[n

′]
−−−−−−→ a[m].b[n] | b[n′] + c

and5

a[m].b[n] | b+ c
|Lb[n]

a[m].b | b+ c

the transitions converging to a[m].b | b[n′] + c,

a[m].b[n] | b[n′] + c
|Lb[n]

a[m].b | b[n′] + c

and

a[m].b | b+ c
|R+Lb[n

′]
−−−−−−→ a[m].b | b[n′] + c.

4.3. Causal Consistency & Other Properties

Formally, causal consistency (Theorem 3) states that any two coinitial and

coőnal traces are causally equivalent. The empty trace being denoted by ϵ10

(Deőnition 7), causally equivalence is deőned as follows:

Definition 13 (Causally equivalent). Two traces T1, T2 are causally equivalent,

if they are in the least equivalence relation closed by composition satisfying

t; t• ∼ ϵ and t1; t
′
2 ∼ t2; t

′
1 for any t1; t

′
2 : X

θ1−→
θ2−→ Y , t2; t

′
1 : X

θ2−→
θ1−→ Y .

Theorem 3 (Causal Consistency). All coinitial and cofinal traces are causally15

equivalent.

The axiomatic approach to reversible computation [8] allows to obtain causal

consistency from other properties that are generally easier to prove. We state

and prove them so that the proof of Theorem 3 becomes a consequence of the

lemma to be proven.20

Lemma 10 (Backward transitions are concurrent). Any two different coinitial

backward transitions t1 : X
θ1

X1 and t2 : X
θ2

X2 are concurrent.
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The proof is by induction on the length of the deduction for the derivation for

X
θ1

X1 and leverages that 𝓀(θ1) ̸= 𝓀(θ2) for both transitions to be different.

Proof. The őrst important fact to note is that 𝓀(θ1) ̸= 𝓀(θ2): by a simple

inspection of the backward rules in Fig. 3, it is easy to observe that if a reachable

process X can perform two different backward transitions, then they must have5

different keys.

We then proceed by induction on the length of the deduction for the derivation

for X
θ1

X1:

Length 1 In this case, the derivation is a single application of act.•, and θ1 is of

the form α[k], with X = α[k].X ′ and std(X ′). Hence, X cannot perform two10

different transitions, and this case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1

α[k].X ′
1 = X1. Then,

it must be the case that X ′ θ1
X ′

1 and X ′ is not standard. Since X ′ is

not standard, the last rule for the derivation of X
θ2

X2 cannot be act.•,15

and since X = α[k].X ′, it must be pre.•, hence it must be the case that

X = α[k].X ′ θ2
α[k].X ′

2 = X2, and we know that X ′ θ2
X ′

2. We conclude

by using the induction hypothesis on the two backward transitions of X ′

and the observation that pre.• preserves the label and hence concurrency.

res.• This is immediate by induction hypothesis.20

|•L There exists XL, XR, θ′1 and X1L s.t. X
θ1

X1 is

XL | XR
|Lθ

′

1 X1L | XR.

Then, XL
θ′

1 X1L and the proof proceeds by case on θ2, using Lemma 5 to

decompose the traces:

θ2 is |Rθ
′
2 Then this is immediate, as |Lθ

′
1 ✕ |Rθ

′
2 never holds.

θ2 is |Lθ
′
2 Then there exists X2L such that XL

θ′

2 X2L , and we conclude25

by induction on XL’s backward transitions.
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θ2 is ⟨|Lθ2L , |Rθ2R⟩ Then we know that

XL | XR
⟨|Lθ2L , |Rθ2R⟩

X2L | X2R .

For |Lθ
′
1 and ⟨|Lθ2L , |Rθ2R⟩ to be concurrent, we must have θ′1 ⌣ θ2L . By

induction hypothesis on XL
θ′

1 X1L and XL
θ2L X2L , we know that

those two transitions are concurrent, which concludes this case.

|•R This is symmetric to |•L.5

syn.• This case is similar to the two previous ones and does not offer any

insight nor resistance.

+•
L There exists XL, XR, and X1L s.t. X

θ1
X1 is

XL +XR
+Lθ

′

1 X1L +XR.

Then, note that θ2 must also be of the form +Lθ
′
2, as XR must be standard.

Hence, this follows by induction hypothesis on the transitions XL
θ′

1 X1L10

and XL
θ′

2 X2L, using Lemma 6 to decompose the trace.

Lemma 11 (Well-foundedness). For all X there exists n ∈ N, X0, . . . , Xn s.t.

X Xn · · · X1 X0, with std(X0).

This lemma forbids inőnite reverse computation, and is obvious in CCSK as

any backward transition strictly decreases the number of occurrences of keys.15

Proof of Theorem 3. We can use the results of the axiomatic approach [8] since

our forward LTS is the symmetric of our backward LTS, and as our concurrency

relation (that the authors call the independence relation, following a common

usage [37, Deőnition 3.7]) is irreŕexive and symmetric (Claim 2). Then, by

Theorem 2 and Lemma 10, the parabolic lemma holds [8, Proposition 3.4],20

and since the parabolic lemma and well-foundedness hold (Lemma 11), causal

consistency holds as well [8, Proposition 3.5].

We use here the axiomatic approach [8] in a narrow sense, to obtain causal

consistencyÐwhich was our main goalÐ, but we can use it to obtain many
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other desirable properties for this system łfor freež. For instance, since our

system enjoys Coinitial Propagation of Independence (Corollary 1) andÐas

we just provedÐa principle the authors call łBTIž (Lemma 10), we obtain

łindependence of diamondsž automatically:

Corollary 2 (Independence of Diamonds [8, Deőnition 4.6]). For all t1 : X1
θ1−→5

Y1, t2 : X1
θ2−→ Y2, t3 : Y1

θ2−→ X2 and t4 : Y2
θ1−→ X2 with Y1 ̸= Y2 if all

transitions are forward or if all transitions are backward, X1 ̸= X2 otherwise,

then t1 ⌣i t2.

In picture, we have X1

Y1θ1

X2

θ2

Y2
θ2 θ1

Proof. This is a direct consequence of [8, Proposition 4.7], as our system enjoys10

Corollary 1 and Lemma 10.

Example 5. Re-using the full trace presented in Example 1, we can re-organize

the transitions using the diamonds so that every undone transition is undone

immediately, and we obtain up to causal equivalence the trace

a.b | b+ c
|La[m]
−−−−→ a[m].b | b+ c

⟨|Lb[n],|R+Lb[n]⟩
−−−−−−−−−−−→ a[m].b[n] | b[n] + c

5. Comparing Concurrencies Across Calculi15

We detail in this section how the concurrency we deőned is universal, in the

following sense:

• It is equivalent to the restriction to CCSK of the deőnition of concurrency

on composable transitions for a reversible π-calculus extending CCSK [19]

(Sect. 5.1),20

• Our deőnition, when adapted to RCCS (Sect. 5.3), yields a concurrency

that extends (Sect. 5.4) existing deőnitions for RCCS (Sect. 5.2),
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• Our deőnition can similarly be adapted to an łidentiőedž declension of

RCCS and proven equal to its deőnition of concurrency (Sect. 5.5).

It should be noted, with respect to this second point, that existing deőnitions

for RCCS do not deőne concurrency on transitions of opposite directions, whereas

ours does (Sect. 5.2.3): in this sense, recognizing more transitions as concurrent5

is an interesting improvement.

We also brieŕy illustrate, p. 44, that the concurrency stemming from the őrst

item does not satisfy the łdenotationalityž [10, Section 6] criteria, i.e., that it is

not preserved by CCSK’s structural congruence.

Comparing across calculi requires to introduce two other reversible systems10

and four other deőnitions of concurrency. This a lot of technical content, but

we made it as compact and as intuitive as we could, and we would like to stress

that the results stated below are fairly routine to prove.

5.1. Comparing With Concurrency Stemming From Reversible π-Calculus

A deőnition of concurrency was introduced for a reversible π-calculus extend-15

ing CCSK [19], but without sum. We offer to restrict it to CCSK (keeping the

sum until Lemma 13), to compare the resulting relation with our deőnition using

proved labels, and to assess how it fares with respect to structural equivalence

for CCSK.

5.1.1. Causalities: Definitions and Adequacy20

The following deőnitions can easily be extended to CCSK with sum, so we

preserves the łfullž system for this study of the adequacy of causality.

Definition 14 (Context). A context is a CCSK process with a slot ·:

C[·] := · ∥ C[·] +X ∥ X + C[·] ∥ C[·]|X ∥ X|C[·] ∥ α[k].C[·] ∥ C[·]\α

Note that the context α.C[·] (i.e., without the key) is missing as it does not

play any role in the following deőnition.25
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Definition 15 (Structural cause [19, Deőnition 21]). For all X, m1,m2 ∈

key(X), the preőx with key m1 is a structural cause of the preőx with key m2,

denoted m1 ⊏X m2, if ∃C[·] s.t. X = C[α[m1].Y ] with m2 ∈ key(Y ).

Definition 16 (Structural causality [19, Deőnition 22]). In

t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2,

t1 is a structural cause of t2, denoted t1 ⊏ t2, if5

• i1 ⊏X2
i2, if t1 and t2 are both forward,

• i2 ⊏X i1, if t1 and t2 are both backward.

We now prove that the structural causality we just deőned agrees with the

dependency relation (Deőnition 9), letting f be the function that maps keyed

labels to proved labels obtained from Lemma 2.10

Lemma 12 (Adequacy of the structural causality with the dependency relation).

In t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2, if t1 and t2 have the same directions, then

t1 ⊏ t2 iff f(α1[m1]) ✕ f(α2[m2]).

Proof. First, observe that t1 ⊏ t2 iff t•2 ⊏ t•1, and since similarly θ1 ✕ θ2 in

t1; t2 : X
θ1−→ X1

θ2−→ X2 iff θ2 ✕ θ1 in t•2; t
•
1 : X2

θ2−→ X1
θ2−→ X, it suffices to15

prove the statement for both t1 and t2 forward.

We prove the statement from right to left őrst, proceeding by induction on

the length of the deduction for the derivation for X
α1[m1]
−−−−→ X1.

Length 1 In this case, the derivation is a single application of act., and it

is easy to see that f(α1[m1]) is α1[m1], and since α1[m1] ✕ f(α2[m2]) and20

X2 = α1[m1].Y with m2 ∈ 𝓀(Y ), both causality relations coincide.

Length > 1 We proceed by case on the last rule.

pre., res., +L, +R This is immediate by induction hypothesis, once noted

that the derivation for X1
α2[m2]
−−−−→ X2 must also end with the same rule.

41



|L Then we know that X
α1[m1]
−−−−→ X1 is of the form

XL | XR
α1[m1]
−−−−→ CL[α1[m1].YL] | XR

and there are three cases, depending on the last rule in the deduction for

the derivation for X1
α2[m2]
−−−−→ X2:

|L Then we proceed by induction hypothesis, observing that, for i ∈ {1, 2},

f(αi[ki]) is of the form |Lθi, and that |Lθ1 ✕ |Lθ2 if θ1 ✕ θ2.5

|R Then it cannot be the case that f(α1[m1]) ✕ f(α2[m2]) by deőnition,

and it cannot be the case that t1 ⊏ t2, since X2 = CL[α1[m1].YL] |

CR[α2[m2].YR].

syn. Then X2 = Y ′
L | CR[α2[m2].YR], with m2 ∈ 𝓀(X2), and it suffices to

reason by induction on the derivations of CL[α1[m1].YL] | XR and Y ′
L.10

|R and syn. Those cases are similar to |L.

We now prove the statement from left to right, by induction on the length of

f(α1[m1]) and f(α2[m2]), and by case analysis on the rules of the dependency

relation given in Fig. 4:

Action If f(α1[m1]) = α1[m1] ✕ f(α2[m2]), then t1 ⊏ t2 is immediate.15

Sum First, note that since both t1 and t2 are forward, it cannot be the case

that f(α1[m1]) and f(α2[m2]) are preőxed with different +d symbols, since a

forward trace cannot execute the right operand of a sum then its left operand

(or reciprocally). Hence, f(α1[m1]) = +dθ1 ✕ f(α2[m2]) = +dθ2 holds iff

θ1 ✕ θ2, which is necessary and sufficient for t1 ⊏ t2 to hold by induction20

hypothesis.

Parallel Each of those four rules state that f(α1[m1]) ✕ f(α2[m2]) holds if

and only if a dependency exists in łthe same threadž of the process, which is

exactly the notion captured by the requirement on the existence of a context

of the form C[α1[i1].Y ], hence both notions coincide.25
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5.1.2. Conflict and Concurrencies

For reversible π-calculus, the causality relation requires to account for names

previously shared, using an object causality [19, Deőnition 23], that is not

meaningful nor required in CCSK. However, transitions of opposite direction

need to be accounted for with a conŕict relation that we restate below:5

Definition 17 (Conŕict relation [19, Deőnition 25]). In

t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2,

t1 and t2 are in conflict if

• t1 is a forward transition, and t2 = t•1,

• t1 is a backward transition, t2 is a forward one, and t2 consumes a preőx

freed by t1.10

Note that the conŕict relation falls short on detecting conŕict in the presence

of sum: indeed, taking e.g., t1; t2 : a[m] + b
a[m]

a+ b
b[k]
−−→ a+ b[k], t1 and t2

would not be in conŕict according to Deőnition 17, as t2 does not łconsumež a

preőx freed by t1. However, it would not be correct to declare them concurrent

(as would this work [19, Deőnition 26]), since they cannot be swapped and are,15

indeed, dependent. This is őne in the sum-free reversible π-calculus, but also

illustrates how concurrency cannot be deőned by łsimplyž restricting the π’s

calculus deőnition to CCSK, in the presence of sum.

Lemma 13 (Adequacy of conŕict and causality on transitions of opposite

directions). In a sum-free CCSK, in t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2, if t1 and t220

have opposite directions, then t1 and t2 are in conflict iff f(α1[m1]) ✕ f(α2[m2]).

Proof. If t2 = t•1, then note that t2 consumes a preőx freed by t1 if t1 was

backward, so t2 and t1 are in conŕict no matter their directions. In this case, it is

immediate that f(α1[m1]) ✕ f(α2[m2]) = f(α1[m1]), as ✕ is reŕexive (Claim 1),

so both relations coincide.25

If t2 ̸= t•1, then we need to proceed by case on the direction of t1:
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If t1 is forward Then observe that t1 and t2 are never in conŕict. We need

to prove that f(α1[m1]) ✕ f(α2[m2]) never holds, but it follows easily from

Lemma 10: since t2 ̸= t•1, we know that the coinitial backward transitions t•1

and t2 are different, and hence by Lemma 10 that they are concurrent, proving

that f(α1[m1]) ✕ f(α2[m2]) does not hold.5

If t1 is backward Then we have to prove that f(α1[m1]) ✕ f(α2[m2]) iff t2

consumes a preőx freed by t1. Proving this statement from left to right is

easy: it is immediate that if t2 consumes a preőx freed by t1, then f(α1[m1]) ✕

f(α2[m2]) will hold. For the reverse direction, inspecting the Action and

Parallel rules of Fig. 4 suffices to prove that f(α1[m1]) ✕ f(α2[m2]) implies10

that t2 have consumed a preőx freed by t1.

Hence, in the absence of sum, both notions coincide. It should be noted that

our deőnition of concurrency based on proved labels offers a couple of beneőts:

1. It requires only one relation to deőne concurrency, while the concurrency

stemming from reversible π-calculus requires two relations (structural15

causality and conŕict).

2. By our deőnition, it is obvious that t1 and t2 are concurrent iff t•2 and t•1

are, whereas this result is not obvious for the concurrency stemming from

reversible π-calculus.

3. There is no need to inspect the keys or to build appropriate contexts to20

decide if transitions are concurrent: it suffices to read their (enhanced

keyed) labels.

5.1.3. Interplay Between Concurrency and Structural Congruence

Last, but not least, we prove that this concurrency stemming from reversible

π-calculus does not fare well with CCSK’s structural congruence.25

Definition 18 (Free and bound keys [9, Deőnition 2.1]). A key k is bound in X

iff it occurs either twice, attached to complementary preőxes, or once, attached
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to a τ preőx, in X. A key k is free in X if it occurs once in X, attached to a

non-τ preőx.

Definition 19 (Structural equivalence [9, p. 133]). The structural equivalence

of CCSK is the smallest equivalence relation (that is, reŕexive, symmetric, and

transitive relation) closed under the following rule:5

X ≡ X[n/m] m bound in X, n /∈ key(X)

where [n/m] denotes the substitution of all the occurrences of key m with key n.

The labeled transition system of CCSK is then endowed with the following

rules:

Y ≡ X X
α[k]
−−→ X ′ X ′ ≡ Y ′

equiv.

Y
α[k]
−−→ Y ′

Y ′ ≡ X ′ X ′ α[k]
X X ≡ Y

equiv.•

Y ′ α[k]
Y

10

For technical reasons beyond the scope of this exposition, those rules can

only be used last when proving a derivation. However, taken as deőned, this

relation does not play well with the concurrency relation inherited from the

reversible π-calculus:

Theorem 4. The conflict relation inherited from the reversible π-calculus is not15

adequate for CSSK endowed with structural congruence.

Proof. Consider the following two equations (the őrst one is just reŕexivity of

≡) and derivation:

a[m].c|a[m] ≡ a[m].c|a[m] (7)

a[m].c[m′]|a[m] ≡ a[h].c[m′]|a[h] (8)
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(7)

act.

c
c[m′]
−−−→ c[m′]

pre.

a[m].c
c[m′]
−−−→ a[m].c[m′]

|L.

a[m].c|a[m]
c[m′]
−−−→ a[m].c[m′]|a[m] (8)

equiv.

a[m].c|a[m]
c[m′]
−−−→ a[h].c[m′]|a[h]

Then, it is clear that

t1; t2 : a.c | a
τ [m]
−−−→ a[m].c|a[m]

c[m′]
−−−→ a[h].c[m′]|a[h]

and yet since m /∈ key(a[h].c[m′]|a[h]), t1 is not seen as a structural cause of t2

according to Deőnition 15, even if it should based on intuitive understanding of

concurrency.5

We conjecture that the structural causality could be adapted to account for

the substitution of bound keys, but that it will make the deőnitions quite tedious,

since the structural cause relation is purely local.

5.2. Recalling RCCS’s Concurrencies

It is relatively easy to adapt our proved labeled to RCCS, no matter which10

declension of the calculus you consider [11, 17, 23, 24, 21]. Below, we look at

the łearlyž version of RCCS [17, 23] because, to our knowledge, it is the only

version that received a syntactical deőnition of concurrency, relying on memory

inclusion [23, Deőnition 3.11] or disjointness [17, Deőnition 7]. This version

has the heaviest notation, since transitions are labeled with the memory of the15

thread executing, in addition to the label, but it is immediate to add preőxes

to those labels. We brieŕy remind this system below, and refer to the original

presentations [17, 23] for more details. We do not consider recursive deőnitions,

brieŕy discussed in some versions of RCCS.

5.2.1. Syntax and Semantics of RCCS20

The CCS processes used to build RCCS processes follow a slightly different

presentation from Sect. 2.1, since the preőx operator can appear only below a

n-ary sum. This allows to combine three operators and two rules into one:
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• letting n = 0 allows to represent 0, letting n = 1 allows to recover the

usual preőx, and any n > 1 represents the sum,

• the rule (also called act.) subsumes the rules for the preőx and the sum.

For simplicity, we will however generally use (guarded) binary sum, written +,

write α.P for α.P + 0 [11, Sect. 2.2], and deőne the structural equivalence using5

this binary sum (Deőnition 21).

Definition 20 (RCCS Processes). The set of reversible processes R is built on

top of the set of CCS processes by adding memories to the threads:

P,Q := P | Q |
∑︁

i⩾0λi.Pi | P\a (CCS Processes)

m := ⟨⟩ | ⟨1⟩ ·m | ⟨2⟩ ·m | ⟨m′, a, P ⟩ ·m | ⟨⋆, α, P ⟩ ·m (Memory)

T := m▷ P (Reversible Threads)

R,S := T | R | S | R\a (RCCS Processes)

We let nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names

occurring in m.10

Definition 21 (Structural equivalence). We write ≡+,\,α the congruence on

CCS terms obtained by the symmetric and transitive closure of the following

equations, letting =α being the usual α-equivalence on labels:

P + 0 ≡ P P +Q ≡ Q+ P

(P1 + P2) + P3 = P1 + (P2 + P3) P ≡ Q if P =α Q

Structural equivalence on R is the smallest equivalence relation generated by

the following rules:15

R|S ≡ S|R (Composition Symmetry)

(R1|R2)|R3 ≡ R1|(R2|R3) (Composition Associativity)

P ≡+,\,α Q

m▷ P ≡ m▷Q
(CCS congruence)

m▷ (P | Q) ≡ (⟨1⟩.m▷ P ) | (⟨2⟩.m▷Q) (Distribution of Memory)

m▷ P\a ≡ (m▷ P )\a with a /∈ nm(m) (Scope of Restriction)
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The (Distribution of Memory) rule is the reason why this formalism has often

been dubbed łdynamicž [21], since the memory can łmovež during execution.

Notation 2. We let ζ = α | α− be a directed action and µ ranges over memories

and memory pairs. We write m ∈ µ if µ = m or if µ = {m,m′}, and, accordingly,

m1 ∩m2 = m if m ∈ m1 and m ∈ m2. Finally, given two memories m1, m2, we5

write m1 ⊏ m2 if ∃m such that m ·m1 = m2.

Definition 22 (Replacement operator). The operation @ is deőned as follows:

(R|S)m2@m1
= Rm2@m1

|Sm2@m1

(R\a)m2@m1
= (Rm2@m1

)\a (If a /∈ m2)

(⟨⋆, α,Q⟩ ·m1 ▷ P )m2@m1
= ⟨m2, α,Q⟩ ·m1 ▷ P

Rm2@m1
= R (In all the remaining cases)

The forward and backward LTS for RCCS, that we denote
µ:ζ
−−→=

µ:ζ
−−→ ∪

µ : ζ
,

is given in Fig. 5. In RCCS, the loop lemma [23, Lemme 2.2.1] also holds, and

we write t− the reverse of t.10

5.2.2. Definitions of Concurrencies

Concurrency on Coinitial Transitions. We őrst remind of the original deőnition

of concurrency on coinitial transitions.

Definition 23 (Concurrency on coinitial transitions in RCCS [17, Deőnition

7]). Let t1 = R
µ1:ζ1
−−−→ S1 and t2 = R

µ2:ζ2
−−−→ S2 be two coinitial transitions, t115

and t2 are said to be concurrent if µ1 ∩ µ2 = ∅, and we write t1 ⌣o
i t2.

Concurrency on Composable Transitions. We now remind of the original deőni-

tion of concurrency on composable transitions.

Definition 24 (Precedence [23, Deőnition 3.1.1]). Given t = R
µ:ζ
−−→ R′ and

t′ = R′ µ′:ζ′

−−−→ R′′ two composable transitions, we say that t precedes t′ if20

• t and t′ are forward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m ⊏ m′,

• t and t′ are backward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m′ ⊏ m.
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act.

(m▷ λ.P +Q)
m:λ
−−→ ⟨⋆, λ,Q⟩ ·m▷ P

act.−

⟨⋆, λ,Q⟩ ·m▷ P
m : λ−

m▷ (λ · P +Q)

R
m1:λ−−−→ R′ S

m2:λ−−−→ S′

syn.
R | S

m1,m2:τ
−−−−−→ R′

m2@m1
| S′

m1@m2

R
m1 : λ−

R′ S
m2 : λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

m1,m2 : τ−

R′ | S′

R
µ:ζ
−−→ R′

par.

R | S
µ:ζ
−−→ R′ | S

R
µ:ζ
−−→ R′ ζ /∈ {a, a, a−, a−}

res.

R\a
µ:ζ
−−→ R′\a

R1 ≡ R R
µ:ζ
−−→ R′ R′ ≡ R′

1
≡

R1
µ:ζ
−−→ R′

1

Figure 5: Rules of the labeled transition system (LTS) for RCCS
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Definition 25 (Concurrency on composable transitions in RCCS). Two com-

posable transitions t, t′ with the same direction are concurrent if t does not

precede t′, and we write t ⌣o
c t′.

5.2.3. On Transitions of Opposite Directions

Neither ⌣o
i nor ⌣o

c account for transitions of opposite directions. For ⌣o
c it5

is obvious: composable transitions of opposite directions are neither concurrent

nor not concurrent, since precedence is not deőned on those transitions.

For ⌣o
i , even if the original deőnition does not make any explicit requirement

about the direction of the transitions, and could be read as valid if t1 and t2 had

opposite directions, it actually requires t1 and t2 to be both forward or backward.10

Indeed, for the two transitions

t1 : ⟨⋆, a,Q′⟩ · ⟨⟩▷ (b.P +Q)
⟨⋆,a,Q′⟩·⟨⟩:b
−−−−−−−−→ ⟨⋆, b,Q⟩ · ⟨⋆, a,Q′⟩ · ⟨⟩▷ P

t2 : ⟨⋆, a,Q′⟩ · ⟨⟩▷ (b.P +Q)
⟨⟩ : a−

⟨⟩▷ a.(b.P +Q) +Q′

we have t1 ⌣o
i t2, since ⟨⋆, a,Q′⟩·⟨⟩∩⟨⟩ = ∅. However, the intuitive understanding

of concurrency (as well as the sideways diamonds) shows that those two transitions

should actually not be concurrent.

On top of appearing incomplete, those deőnitions further prevents checking15

the validity of (Correctness of Concurrencies). Given two composable transitions

t1 and t2, it makes no sense to wonder whether

t1 ⌣o
c t2 ⇐⇒ t−1 ⌣o

i t2.

Indeed, since there will be transitions of opposite directions on one side of the

implication, and since both ⌣o
c and ⌣o

i requires both transitions to have the

same direction, one cannot compare the two relations.20

5.3. Defining Proved RCCS

We deőne a proved declension of RCCS exactly like we did for CCSK in

Sect. 3.1, by enriching the labels and letting the proved LTS propagate them.

Many optimizations could be done (ignoring direction, replacing memories with
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identiőers as frequently done in subsequent versions of RCCS, etc.), but we

focus on providing a simple deőnition, to ease the proof burden in Sect. 5.4,

when we prove that enriched labels give a notion of concurrency equivalent to

the previous ones (when both are applicable).

We begin by deőning the enhanced labels and the proved LTS őrst. Note5

that since action and preőxes are mixed, and since sum are not łpreservedž as

main operator after a reduction, as opposed to CCSK, there is no need for the

+L and +R annotations anymore, hence we can simplify Deőnition 3 as follows:

Definition 26 (Enhanced labels (bis)). Let υ, υ1 and υ2 range over strings in

{|L, |R}
∗, enhanced labels are deőned as10

θ := υζ ∥ υζ ∥ υ⟨|Lυ1ζ, |Rυ2ζ⟩

And we let

ℓ(υζ) = ζ ℓ(⟨|Lυ1α, |Rυ2α⟩) = τ

ℓ(υζ) = ζ ℓ(⟨|Lυ1α
−, |Rυ2α−⟩) = τ−

In this particular case, since the congruence relation is needed because of

the (Distribution of Memory) rule, we keep it, but remove the (Composition

Symmetry) and (Composition Associativity) rules, as they do not fare well with

proved labels (Sect. 6). As a consequence, we also need to replace the par. rule15

with two rules, par.L and par.R, as presented in Fig. 6. And, from now on,

we will assume that the structural congruence used by both systems does not

contain (Composition Symmetry) nor (Composition Associativity).

Definition 27 (Dependency relation). The dependency relation on enhanced

keyed labels is the symmetric closure of the axioms of Fig. 7.20

It should be noted that this relation is the same as in the forward-only CCS,

further illustrating how resilient the proved label technique is. Transitions, traces

and concurrencies are deőned as in Deőnitions 7, 11 and 12.

Exactly like for CCSK with Lemma 2, it is easy to prove the adequacy of

the proved system w.r.t. the original one:25
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act.

(m▷ λ.P +Q)
m:λ
−−→ ⟨⋆, λ,Q⟩ ·m▷ P

R
µ:θ
−−→ R′

par.L
R | S

µ:|Lθ
−−−→ R′ | S

act.−

⟨⋆, λ,Q⟩ ·m▷ P
m : λ−

m▷ (λ · P +Q)

S
µ:θ
−−→ S′

par.R
R | S

µ:|Rθ
−−−→ R | S′

R
µ:θ
−−→ R′ ℓ(θ) /∈ {a, a, a−, a−}

res.

R\a
µ:θ
−−→ R′\a

R
m1:θLλ−−−−−→ R′ S

m2:θRλ
−−−−−→ S′

syn.

R | S
m1,m2:⟨|LθLλ,|RθRλ⟩
−−−−−−−−−−−−−−→ R′

m2@m1
| S′

m1@m2

R
m1 : λ−

R′ S
m2 : λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

m1,m2 : ⟨|LθLλ
−, |RθRλ−⟩

R′ | S′

R1 ≡ R R
µ:θ
−−→ R′ R′ ≡ R′

1
≡

R1
µ:θ
−−→ R′

1

Figure 6: Rules of the proved labeled transition system (LTS) for RCCS

Action

ζ ✕ θ

ζ ✕ θ

Palallel Group

|Rθ ✕ |Rθ
′ if θ ✕ θ′

|Lθ ✕ |Lθ
′ if θ ✕ θ′

⟨θL, θR⟩ ✕ θ if ∃d s.t.θd ✕ θ

Figure 7: Dependency Relation on Enhanced Keyed Labels
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Lemma 14 (Adequacy of the proved labeled transition system). The transition

R
µ:ζ
−−→ S can be derived using Fig. 5 iff R

µ:θ
−−→ S with ℓ(θ) = ζ can be derived

using Fig. 6.

Proof. This is obvious, and we write f the mapping from ζ to θ.

5.4. Adequacies of RCCS’s Concurrencies5

We now prove that the original two deőnitions of concurrency coincide with

the one resulting from adopting proved labels for RCCS.

5.4.1. On Coinitial Traces

Theorem 5. For all coinitial transitions with the same direction t1 = R
µ1:ζ1
−−−→ S1

and t2 = R
µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1) ✕ f(ζ2)).10

Proof. We start by proving the left-to-right direction őrst, by case on the structure

of R:

m ▷ P Then we proceed by induction on the size of P , and by case on the

structure of P :

0 This is vacuously true, since 0 cannot reduce.15

∑︁

αi.Pi Then all the transitions from m ▷ P are of the form

m ▷

∑︂

αi.Pi
m:αi−−−→ m′ ·m ▷ Pi

But since m ∩m ̸= ∅, any two such transitions are not pairwise concurrent.

Since we always have that αi ✕ θ, we have that f(ζ1) ✕ f(ζ2).

P |Q Then m ▷ P |Q cannot reduce, without using (Distribution of Memory)

to become of the form R1|R2, that we study next.20

R1|R2 Then, every transition that R1|R2 can perform has for memory either a

pair, or a memory preőxed by ⟨1⟩ or by ⟨2⟩. We proceed by case on µ1 and

µ2:

If µ1 and µ2 are prefixed by the same number Then since |dθ ✕ |dθ
′ if

θ ✕ θ′, we can proceed by induction.25
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If µ1 and µ2 are prefixed by different numbers Then the transitions are

concurrent, and since |Lθ ✕ |Rθ
′ does not hold, we are done with this case.

If µ1 or µ2 is a pair Then we simply reason on its elements, exactly like

the rules of Fig. 4 concerned with tuples ⟨θL, θR⟩ decompose them to assess

whenever they are dependent of other labels.5

(a)R Then this is immediate by induction.

For the converse direction, it suffices to observe the rules of Fig. 4 and to note

that all the rules imply that the memories of the process initiating the two

transitions must have a non-empty intersection, hence providing the desired

result.10

5.4.2. On Composable Transitions

Using the following lemma, it is enough to prove the adequacy of our notion

for one direction only:

Lemma 15. For all composable forward transitions t1, t2,

(t1 precedes t2 ⇐⇒ f(ζ1) ✕ f(ζ2)) ⇐⇒ (t−2 precedes t−1 ⇐⇒ f(ζ2) ✕ f(ζ1))

Proof. This is immediate by symmetry of Deőnitions 24 and 27.15

Lemma 16. For all composable forward transitions, t1 = R
µ1:ζ1
−−−→ S1 and

t2 = S1
µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1) ✕ f(ζ2)).

Proof. We need to prove that t1 precedes t2 iff f(ζ1) ✕ f(ζ2). We reason by case

on the last rule of the derivation for t1:

act. Then, letting µ = m, µ2 = ⟨⋆, λ,Q⟩ · m for some λ and Q, and hence20

m1 ⊏ m2 and t1 precedes t2. That f(ζ1) ✕ f(ζ2) is also immediate.

par.L Then R = R1|R2, S1 = T1|T2, S2 = T3|T4 and we proceed by case on the

last rule in the derivation of t2:

par.L Then we proceeds by induction on the trace R1
µ1:ζ1
−−−→ T1

µ2:ζ2
−−−→ T3.
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par.R Then t1 cannot precede t2, and f(ζ1) ✕ f(ζ2).

syn. Then t1 precedes t2 (resp. f(ζ1) ✕ f(ζ2)) iff t′1 precedes t′2 (resp. f(ζ1) ✕

f(ζ ′2)) in t′1; t
′
2 : R1

µ1:ζ1
−−−→ T1

µ′

2
:ζ′

2−−−→ T3, and we proceed by induction

syn. and par.L Those two cases are similar to the previous one.

res. and ≡ are immediate by induction hypothesis.5

Theorem 6. For all different composable transitions with the same direction

t1 = R
µ1:ζ1
−−−→ S1 and t2 = S1

µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1) ✕ f(ζ2)) if t1 and

t2 are forward, or if ¬(f(ζ2) ✕ f(ζ1)) if t1 and t2 are backward.

Proof. This is an immediate consequence of Lemmas 15 and 16.

5.5. Reversible and Identified CCS10

We refer to the original paper [22] for the precise deőnition of (this declension

of) RCCS, and only recall the strict minimum below. In a nutshell, this calculus

endows RCCS processes with a seed [22, Deőnition 4], which is an identifier

patterns [22, Deőnition 1] that dynamically generates the identiőers for each

transition, and that can get split [22, Deőnition 3] between threads if needed.15

Being able to know ahead of time the identiőer generated for each transition was

leveraged to offer an original deőnition of concurrency, where identiőers need

to be compatible [22, Deőnition 12]Ðwritten i1 ⊥ i2Ðor not downstream [22,

Deőnition 19], both conditions essentially stating that the transition involved

different threads. We keep the development rather informal not to burden the20

reader, but the proofs can be worked out in details based on the sketches we

provide below.

This calculus also explored different types of sums, but we restrict ourselves

to the łclassical onež, denoted + as usual.

Definition 28 (Concurrency). Two different coinitial transitions25

t1 : s ◦m▷ P
α1[i1]
−−−−→ s1 ◦m1 ▷ P1 and t2 : s ◦m▷ P

α2[i2]
−−−−→ s2 ◦m2 ▷ P2

are concurrent iff
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• t1 and t2 are forward transitions and i1 ⊥ i2;

• t1 is a forward and t2 is a backward transition and i1 (or i11 and i21 if

i1 = i11 ⊕ i21) is not downstream of ipt2 (or ip1t2 nor ip2t2);

• t1 and t2 are backward transitions.

It is easy to similarly adjust the system to use proved labels, and then to5

prove its adequacy in the sense of Lemma 14Ðwe will also write f the mapping

from labels to proved labels. Note that the dependency relation is deőned as

with RCCS here: since the sum operator is not preserved, it is not needed to

account for it in the proved label.

Theorem 7. For all s ◦ P
α1[i1]
−−−−→ s1 ◦ P1 and s ◦ P

α2[i2]
−−−−→ s2 ◦ P2, i1 ⊥ i2 are10

concurrent iff f(α1) ✕ f(α2) does not hold.

Proof. For forward transition, it is not difficult to observe that, given two

different coinitial transitions s ◦ P
α1[i1]
−−−−→ s1 ◦ P1 and s ◦ P

α2[i2]
−−−−→ s2 ◦ P2, i1 ⊥ i2

iff ¬(f(i1 : α1) ✕ f(i2 : α2)):

• both transitions cannot come from reducing the very same action, which15

means that P must have a different operator at top level,

• if they result from the execution of the left- and right-hand-side of the same

sum operator, then they get assigned the same identiőer, and since they

will both be labeled with actions, they will not be concurrent according to

both deőnitions,20

• if they result from the execution of a multi-threaded process, then it is

easy to observe that the condition on the incompatibility of the identi-

őers match the deőnition of dependencies, as transitions resulting from

synchronizations are concurrent iff their components are in both cases.

For transitions with opposite directions, the łdownstreamž condition essentially25

ensures that the identiőers originate from different seeds, e.g., from different

threads. That this condition is equivalent to the inexistence of a dependency
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between proved labels on transitions of opposite direction is a direct, though

tedious, result of the unfolding of both deőnitions.

For backward transitions, it is immediate: any two backward transitions are

concurrent according to Deőnition 28, and we have this result as well for proved

labels, by adapting the proof for proved CCSK (Lemma 10) to this proved5

identiőed RCCS.

6. Structural Congruence and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety

of criteria, the diamonds being the starting point, and causal consistency being

arguably the most important for reversible systems. This section aims at brieŕy10

presenting additional criteria.

Concurrency-Preserving Structural Congruences. łDenotationalityž [10, Section

6] is a criteria stating that structural congruence should be preserved by the causal

semantics. Unfortunately, our system only vacuously meets this criteriaÐsince

it does not possess a structural congruence. The łusualž structural congruence15

is missing from all the proved transition systems [27, 33, 34, 38], or missing the

associativity and commutativity of the parallel composition [35, p. 242]. While

adding such a congruence would beneőts the expressiveness, making it interact

nicely with the derived proof system and the reversible features [9, Section 4][39]

is a challenge we prefer to postpone.20

Comparing With Concurrency Inspired by Reversible π-Calculus. It is possible

to restrict the deőnition of concurrency for reversible π-calculi extending CCSK

back to CCSK. We did it in Sect. 5.1 for a particular line of work [19], but it is

not the only one that can be the source of comparison. Indeed, a similar work

could have been done by restricting concurrency for e.g., reversible higher-order25

π-calculus [40, Deőnition 9], reversible π-calculus [41, Deőnition 4.1] or croll-

π [42, Deőnition 1]. However, it seems more constructive to extend our deőnition

to a reversible π-calculus rather than proceeding the other way around.
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Optimality. The optimality criteria is the adequacy of the concurrency deőnitions

for the LTS and for the reduction semantics [41, Theorem 5.6]. While this criteria

requires a reduction semantics and a notion of reduction context to be formally

proven, we believe it is easy to convince oneself that the gist of this propertyÐthe

fact that non-τ -transitions are concurrent iff there exists a łclosingž context in5

which the resulting τ -transitions are still concurrentÐholds in our system: as

concurrency on τ -transitions is deőned in terms of concurrency of its elements

(e.g., ⟨θ1R, θ
1
L⟩ ⌣ ⟨θ2R, θ

2
L⟩ iff θ1d ⌣ θ2d for d ∈ {L,R}), this criteria is obtained łfor

freež.

7. Conclusion and Perspectives10

We believe our proposal to be not only elegant, but also extremely resilient

and easy to work with. It should be stressed that it does not require to observe

the directions, but also ignore keys or identiőers, that should in our opinion

only be technical annotations disallowing processes that have been synchronized

to backtrack independently. We had previously defended that identiőer should15

be considered only up to isomorphisms [11, p. 13], or explicitly generated by a

built-in mechanism [22, p. 152], and re-inforce this point of view here. From

there, much can be done. A őrst interesting line of work would be to compare

our syntactical deőnition with the semantical deőnition of concurrency in models

of RCCS [11, 13, 24, 43] and CCSK [7, 14, 25]. Other syntactical formulations20

of the same concurrency relation are also being investigated [44]. Of course, as

we already mentioned, extending this deőnition to reversible π-calculi, taking

inspiration from e.g., the latest development in forward-only π [38], would allow

to re-inforce the interest and solidity of this technique.

Another interesting track would be to consider inőnite extensions of CCSK,25

since inőnite behaviors in the presence of reversibility is not well-understood nor

studied: an attempt to extend algebras of communicating processes [45], including

recursion, seems to have been unsuccessful [46]. A possible approach would be to

deőne recursion and iteration in CCSK, to extend our deőnition of concurrency
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to those inőnite behaviors9 and to attempt to reconstruct the separation results

from the forward-only paradigm [49]. Whether őner, łreversiblež, equivalences

can preserve this distinction despite the greater ŕexibility provided by backward

transitions is an open problem. Another interesting point is the study of

inőnite behaviors that duplicate past events, including their keys or memories:5

whether this formalism could preserve causal consistency, or what beneőts there

would be in tinkering this property, is also an open question that we started to

investigate [48].

Last but not least, these last investigations would require to deőne and under-

stand relevant properties, or metrics, for reversible systems. In the forward-only10

world, termination or convergence were used to compare inőnite behaviors [49],

and additional criteria were introduced to study causal semantics [10]. Those

properties may or may not be suited for reversible systems, but it is difficult to

decide as they sometimes even lack a deőnition. This could help in solving the

more general question of deciding what it is that we want to observe and assess15

when evaluating reversible, concurrent systems [50, 51].
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Action

α[k]⋖ θ ∀α, k, θ

Sum Group

+Lθ ⋖+Rθ
′

+Rθ ⋖+Lθ
′

+dθ ⋖+dθ
′ if θ ⋖ θ′

Parallel Group

|dθ ⋖ |dθ
′ if θ ⋖ θ′

⟨θL, θR⟩⋖ θ if ∃d s.t.θd ⋖ θ

θ ⋖ ⟨θL, θR⟩ if ∃d s.t.θ ⋖ θd

⟨θL, θR⟩⋖ ⟨θ′L, θ
′
R⟩ if ∃d s.t.θd ⋖ θ′d

For d ∈ {L,R}.

Figure A.8: Dependency Relation on Enhanced Keyed Labels
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Appendix A. A Note on the Definitions of Dependency

The deőnition of the dependency relation presented in Deőnition 9 is different

from the deőnition we used previously [28, 29]. We argue that building-in its

symmetry makes it simpler to manipulate, and brieŕy show below how both

deőnitions are equivalent.15

Definition 29 (Original dependency relation). The original dependency relation

⋖ on enhanced keyed labels is induced by the axioms of Fig. A.8.
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Lemma 17. For θ1, θ2, θ1 ✕ θ2 ⇐⇒ (θ1 ⋖ θ2) or (θ2 ⋖ θ1).

Proof. The proof goes by induction on the length of θ1 and θ2. All the cases are

immediate except maybe for θ1 = ⟨θL, θR⟩, θ2 = ⟨θ′L, θ
′
R⟩. The key to this case is

to notice that, following the deőnition of enhanced keyed labels (Deőnition 6), it

must be the case that there exists θ̂L, θ̂R, θ̂
′

L and θ̂
′

R such that, for d ∈ {L,R},5

θd = |dθ̂d and θ′d = |dθ̂
′

d. From there, the proof for this case follows simply:

θ1 ✕ θ2 ⇐⇒ ⟨|Lθ̂L, |Rθ̂R⟩ ✕ ⟨|Lθ̂
′

L, |Rθ̂
′

R⟩

⇐⇒

⎧

⎨

⎩

⟨|Lθ̂L, |Rθ̂R⟩ ✕ |Lθ̂
′

L or

⟨|Lθ̂L, |Rθ̂R⟩ ✕ |Rθ̂
′

R

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Lθ̂L ✕ |Lθ̂
′

L or

|Rθ̂R ✕ |Lθ̂
′

L or

|Lθ̂L ✕ |Rθ̂
′

R or

|Rθ̂R ✕ |Rθ̂
′

R

⇐⇒

⎧

⎨

⎩

|Lθ̂L ✕ |Lθ̂
′

L or

|Rθ̂R ✕ |Rθ̂
′

R

since |Rθ ✕ |Lθ never holds

And by induction hypothesis, |dθ̂d ✕ |dθ̂
′

d ⇐⇒ (|dθ̂d ⋖ |dθ̂
′

d) or (|dθ̂
′

d ⋖ |dθ̂d) and

this concludes this case.
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