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Abstract

This article designs a general principle to check the correctness of the definition of
concurrency (a.k.a. independence) of events for concurrent calculi. Concurrency
relations are central in process algebras, but also two-sided: they are often
defined independently on composable and on coinitial transitions, and no criteria
exists to assess whether they “interact correctly”. This article starts by examining
how reversibility can provide such a correctness of concurrencies criteria, and
its implications. It then defines, for the first time, a syntactical definition of
concurrency for CCSK, a reversible declension of the calculus of communicating
systems. To do so, according to our criteria, requires to define concurrency rela-
tions for all types of transitions along two axis: direction (forward or backward)
and concomitance (coinitial or composable). Our definition is uniform thanks
to proved transition systems and satisfy our sanity checks: square properties,
sideways diamonds, but also the reversible checks (reverse diamonds and causal
consistency). We also prove that our formalism is either equivalent to or a
refinement of pre-existing definitions of concurrency for reversible systems. We
conclude by discussing additional criteria and possible future works.
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Preamble

Following Lars Kristiansen [1, we tried to give priority to readability, partic-
wlarly in this Preamble, to reach a broader audience: reversibility is not a topic
on its own, it is a tool that can bring enlightenment to diverse fields, and we hope
that this preamble will help the reader unfamiliar with reversibility but curious
about concurrency to understand how this tool can be leveraged with benefits.

A concurrent program is by nature extremely hard to debug [2], but its
correctness can be evaluated by writing a specification, and then checking that
the program matches it [3]. Expressing those specifications requires a formal
language, that abstracts away irrelevant details and focus on the program’s
observable behaviour. Process algebras provide such a high-level description
of interactions, communications, and synchronizations between a collection of
independent processes that allows to model a vast range of situations. A central
element of those algebras is to define when two events (generally associated to
the transitions that triggered them) are independent, or concurrent. By duality,
events that are not concurrent are dubbed dependent, or causally relatedEl
Being able to distinguish between events those that are causally related and
those that are not is one of the crucial contributions of process algebras, as
this mechanism allows to sidestep many of the difficulties one has to face when
debugging concurrent programs.

But how can one guarantee that those definitions of concurrency and causal
relations are “the right ones”™ Since they are defined by duality (two events
are concurrent iff they are not causally related), it suffices to define and check
only one of the two notion. For concurrency, written —, a standard correctness

criteria is expressed in terms of “diamonds”:

2As a matter of fact, the order is often swapped: dependency is the primitive relation, and

concurrency is defined by duality.



Vir X 25 Xote 0 X 22 Xy with 1 — 62,3V st X1 225 Y and Xo 25 Y.
(Square Property)

Vi X 5 Xote s Xo B Y with 1 — f2, X0 st X 22 X I8y
(Sideways Diamond)

They intuitively means that any two transitions ¢, to that are independent

(i.e., that are in the — relation) can be combined differently without altering

the end-result. [(Square Property )| expresses this fact for coinitial transitions: it

states that simultaneous transitions starting from the same state can “later on”

agree if they are concurrent. [(Sideways Diamond)| expresses it for composable

transitions: subsequent transitions, that follow each other, can be swapped if

they are concurrent. Graphically, we can represent them as follows:

Ly AR
X, pe X Y
t9\2\>l Y k/él 92\>l X2 //01
|(Square Property)| |(Sideways Diamond )|

More succinctly:
- %
A x A

Looking more carefully, one may observe that requiring both diamonds to
hold actually requires two definitions of concurrency: one on coinitial transitions
(i), and one on composable transitions (~—.). If they are related, and if they
are, how, is generally overlooked: in the vast literature on process algebras,
one can find systems where only one notion is defined, but to my knowledge
those that defines the two do not have a formal criteria to assess whenever
they interact correctly. At best, the same definition is used for both notions of
concurrencies [4], which seems to prevent the need for a formal criteria. One
reason for this lack of criteria, we assume, is that “interacting correctly” is

difficult to define: how should composable and coinitial transitions relate w.r.t.

concurrency?
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One of the goals of this paper is to convince the reader that reversibility
provides an excellent method to answer that question. It has been, to the best
of our knowledge, completely overlooked, despite its simplicity and universal
applicability. The starting point is the loop lemma, that states that any transition
in a reversible system ¢ : X %Y can be reverse as t* 1V % X with (t*)® =t.

From there, a correctness criterion linking -—; and —, can easily be formulated:

(1 —its fort: X 25 X1t X 25 X))
< (1] — to for ¢} :XIJ%X,t2:X9_2>X2)

(Correctness of Concurrencies)

However, this correctness uses a definition of «—; on forward coinitial transi-
tions, and a definition of —. on backward then forward composable transitions.
Looking more closely, defining both ~—; and —. on reversible systems requires

to split each definition in four, depending on the directions of the transitions:

Coinitial Composable

Both forward I N L TN
Both backward N
Forward then backward \/Zf b Ty b Ay
Backward then forward vi.’f N bf SN

Our [(Correctness of Concurrencies)| relating coinitial and composable con-

currencies seems to come at the high cost of having to define eight different
notions of concurrency (not to mention the additional diamonds we now have to
prove—we come back to this later). Luckily, three principles can be leveraged to

limit the burden considerably:

3In general, the label 6 is not altered by reversing the transition it labels, but the rest of

our discussion in this preamble would still be valid if it was, albeit probably less digest.



Concurrencies should be symmetric That is,
(tl \—/{b tg for tl X 6—1> Xl,tQ : X ‘/?’%4 XQ)
< (tg vff t1 for to : XV?/%}XQ,tl ¢ 6—1> X)
Concurrencies should be direction-agnostic That is,

(tl v{ tg for tl X 0—1> Xl,tg : X1 0—2> XQ)

= (15 =0t for t5: Xy J@%Xl,t; . X, J%X).

|Correctness of Concurrencies| The criteria we presented earlier can be in-

stantiated as:

(tl v,{ tQ for tl : X 6—1>X1,t2 ¢ 6—2>X2)

= (10 gy for 13 Xy AN Xt X 2 Xy)

(tl v{b t2 for tl X 6—1>X1,t2 : XV(?/%’)XQ)

= (10 <ty for 10 X1 A X byt X B Xy)

(tl \—/?f tg for tl : X‘/‘\g/{'}Xl,tQ X 6—2>X2)

<:>(tI VZtQ fOI‘tISXl 0—1>X7t21X6—2>X2)

(tl vf t2 for tl:X"?’{’}Xl,tQ:X"?’%’}XQ)

= (1t for 1 X D Xty s X B X))

Writing e.g., vlf <= b7 to express that v{ and —?/ can be mutually

defined, our three principles give:

b
= (1)
b b
~ Vg (2)
b b
A e I (3)
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Table 1: Concurrencies for Reversible Systems

Hence, we need to define only one relation on each line and to
define concurrency for the eight possible cases if we would like to leverage those
principles instead of having to prove them. We represent those equivalences
graphically in [Table 11

Defining three relations instead of eight and letting the principles we laid
out earlier guarantee that they interact correctly saves us some burden, but we
still have to address our initial question: how can we make sure that those (now

numerous) definitions of concurrency are “the right ones”” A natural strategy is to

decline our diamonds (|(Square Property)|and |(Sideways Diamond)) to reversible

systems to account for all the possible situations, as presented in mﬁ
Satisfying all those diamonds is, in our opinion, an excellent indication
that the concurrency relations were properly defined and behave as expected.

Furthermore, using the logical principles we presented, proving only one of each

|(Square Properties)} [(Reverse Diamonds)| and |(Sideways Diamonds)|is enough to

obtain them all.

We believe this article to be the first one to identify and clearly lay out this

4There has been some variations in the naming of those properties. From a rewriting
perspective, the properties concerned with coinitial transitions are (local) confluences, or,
more precisely, they are all diamond properties [5 Definition 2.7.8]): however, this name was
generally reserved for one narrow case, when all transitions are forward. The name “reverse
diamond” was coined very early in the study of reversible systems [6, Proposition 5.10][7,
Definition 2.3] and seemed the best fit for this property that does not exist in forward-only

systems.
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\»/ \,4 fﬂ \; Square Properties

-

Ak N4

ic;f H—‘M e "y Reverse Diamonds

“ A
EUY T
e e N N T ™| Sideways Diamonds
Ll";t k// \\\A a‘“: \\\A //7 Ll";« :"r?(

Table 2: Diamonds and Squares for Reversible Systems

criteria to guarantee the correctness of the definitions of concurrencyEI For systems
endowed with only a definition for coinitial or composable transitions, our criteria
can also be used to provide a definition for the missing one. An added beauty
is that it allows to mutually define concurrency relations between coinitial and
composable transitions, and between forward and backward transitions, making
both worlds interact in harmony. It is enabled by the study of reversibility, which
has repeatedly contributed to a better understanding of notions applicable to
the forward-only world too.

This article illustrates those general principles for a particular concurrent

system, CCSK. It introduces a single definition for —7 and —%, a single definition

for —/® and —%/. Proving that they satisfy the |(Correctness of Concurrencies )|

is immediate thanks to our direction-agnostic definition of dependency, but some
work is required to prove three of the required diamonds. We believe the general
applicability of the principles exposed in this preamble goes far beyond the
particular case of CCSK, or of process algebras for that matter, and hope that
it will inspire researchers in other fields to leverage reversibility to obtain sound,

logical, notions.

The Expert Corner

We would like to briefly clarify the scope of our claim that this article is the

first to lay out a criteria to guarantee the correctness of concurrency. First and

5We clarify this claim in the “expert corner” below, p.
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foremost, we are concerned with syntactical definitions for sequential models of
concurrency (e.g., process calculi). Non-interleaving semantics of concurrency
such as event structures or configuration structures have their own ways of
defining and assessing their definition of concurrency. For (forward-only) process

calculi, the two main ways are to

e prove that some confluence are enforced (typically, [(Square Property )| and

|(Sideways Diamond))),

e embed the model into a non-interleaving one, and then prove that both

notions of concurrency coincide.

Both techniques have their limitations, however: the first one does not

guarantee that coinitial and composable concurrencies interact in any way. For

fhat matter, one could be the empty set, making [(Square Property)| or |(Sideways|
vacuously true. The second technique requires a heavy machinery,

since the targeted model and the embedding themselves need to be proven
correct.

For reversible structural operational semantics, an additional tool was pro-
vided by the axiomatic approach to reversiblity [8]. Among the many interesting
criteria that concurrency relation(s) should satisfy, there is Reversing Preserves

Independence (RPI) [8, Definition 4.17]:

t—t = t*—t.

At first glance, RPI and our|(Correctness of Concurrencies)| may seem trivially

equivalent, but there is an important difference: RPI supposes the existence of
only one concurrency relation, while our criteria acknowledges the possibility of
having two relations. We believe this subtle distinction allows our criteria to
capture more nuanced arguments, where coinitial and composable concurrencies
are defined independently, possibly using different tools or notions. It also
better reflects usage for reversible systems, were e.g., concurrency for forward
composable transitions is defined independently of concurrency for backward

coinitial transitions.
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The particular formalism used in this article does not allow to explore
interesting gaps between those notions, but we can observe nevertheless that our
criteria can be used to define one concurrency relation from the other, while

RPI requires a pre-existing concurrency relation to meet this criteria.

1. Introduction: Reversibility, Concurrency—Interplays

Concurrency Theory is being reshaped by reversibility: fine distinctions
between causality and causation [6] contradicted Milner’s expansion laws [9]
Example 4.11], and the study of causal models for reversible computation led to
novel correction criteria for causal semantics—both reversible and irreversible [10].
“Traditional” equivalence relations have been captured syntactically [II], while
original observational equivalences were developed [d]: reversibility triggered a
global reconsideration of established theories and tools, with the clear intent
of providing actionable methods for reversible systems [I2], novel axiomatic
foundations [8] and original non-interleaving models [10} I3}, [14].

Two Formalisms extend with reversible features the Calculus of Commu-
nicating Systems (CCS) [I5], which is the godfather of m-calculus [I6], among
others formalisms. Reversible CCS (RCCS) [I7] and CCS with keys (CCSK) [6]
are similarly the source of most [I0] [I8] [T9], 20]—if not all—of later formalism
developed to enhance reversible systems with some respect (rollback operator,
name-passing abilities, probabilistic features, ...). Even if those two systems
share a lot of similarities [21]], they diverge in some respects that are not fully
understood—typically, it seems that different notions of “contexts with history”
led to establish the existence of congruences for CCSK [J Proposition 4.9] or
the impossibility thereof for RCCS |22, Theorem 2]. However, they also share
some shortcomings, and we offer to tackle one of them for CCSK, by providing a

syntactical definition of concurrency that is easy to manipulate and that satisfies

the usual sanity checks, in addition to our [(Correctness of Concurrencies)}

Reversible Concurrency is of course a central notion in the study of

RCCS and CCSK, as it enables the definition of causal consistency—a principle
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that, intuitively, states that backward reductions can undo an action only if its
consequences have already been undone—and to obtain models where concurrency
and causation are decorrelated [6]. As such, it has been studied from multiple
angles, but, in our opinion, never in a fully satisfactory manner. In CCSK,
sideways and reverse diamonds properties were proven using conditions on keys
and “joinable” transitions [0, Propositions 5.10 and 5.19], but to our knowledge
no “definitive” definition of concurrency was proposed. Ad-hoc definitions relying
on memory inclusion |23, Definition 3.1.1] or disjointness [I7), Definition 7] for
RCCS, and semantical notions for both RCCS [111 13} [24] and CCSK [7] [14], [25]

have been proposed, but, to our knowledge, none of these have ever been
1. compared to each other,

2. compared to pre-existing forward-only definitions of concurrency,

3. proven to satisfy our |(Correctness of Concurrencies)|

Our Contribution introduces the first syntactical definition of concurrency
for CCSK , by extending the “universal” concurrency developed for
forward-only CCS [20], that leveraged proved transition systems [27]. Our defi-
nition of dependency ([Secti3.3) is almost identical to the one used for proved
forward-only systems, and our definition of concurrency is simple enough to be
applicable to all types of transitions along the two axis: direction (forward or
backward) and concomitance (coinitial or composable). The square properties,
sideways and reverse diamonds are proven in a very similar fashion, and gives all

the squares of[Table 2| easily (Sect. 4.2]). We furthermore establish the correctness

of this definition by proving other expected reversible properties, among which
causal consistency . We then discuss how proved transition systems
can be adapted to other reversible systems (RCCS [I77, 23] and its “identified”
declensions [22]) , and how our definition of concurrency relates to pre-existing
ones, including one coming from reversible m-calculus (Sect. 5)). In essence, we
prove that our technique gives a notion of concurrency that either match or

subsumes existing definitions, that sometimes lack a notion of concurrency for

10
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transitions of opposite directions, in addition to not being sensible to the mech-
anism implemented to identify transitions. Finally, we sketch some additional
criteria our definition should ideally fulfill, and how to approach them (Sect.6l).
We then briefly conclude (Sect 7).

Changelog. This article extends and improves a conference publication [28] and

its preliminary technical report [29]. In particular, it:

e Clarifies in the the general applicability and methodology behind

our method,

Defines the dependency relation as symmetric, and prove the equivalence

with the previous definition in

Defines coinitial concurrency independently from composable concurrency,

and then prove |(Correctness of Concurrencies)} instead of leveraging this

principle to define one from the other,

Clarifies the interplay and differences between our definition of concurrency

and the forward-only one (Sect.3.4),

Streamlines and clarifies the proofs of all the results,
Contains more details about the “universality” of our approach,

Proves the additional Coinitial Propagation of Independence property

(Corollary 1f), which in turns gives the Independence of Diamonds (Corol]
,

Generally improves the exposition and narrative.

. Finite and Reversible Process Calculi

We begin by recalling the pre-existing material required to detail our con-
tribution: the finite fragment of CCS, its proved transition system, and then

CCSK.

11
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2.1. A Proved Transition System For CCS

We briefly recall the (forward-only) finite fragment of the calculus of com-
municating system (simply called CCS) following a standard presentation [30],
and then its proved transition system [26]. Proved transition systems [26], 27,
311, 32, [33] B4] enrich the transition labels with prefixes that describe parts of
their derivation, to keep track of their dependencies or lack thereof.

We recall here a variation on an earlier formalism [35] that accommodated
CCS with replication and enabled a definition of causality that agreed with
pre-existing causal semantics of CCS and CCS with recursion |26, Theorem 1].
This system includes information about sums [26, footnote 2|, but diverge in
its definitions of dependencies and concurrencies: our definition of dependency
needs to account for the permanence of the sum operator, and our concurrency
relation accounts for internal (i.e., 7-) transitions, omitted from that work |26

Definition 3| but present in older articles [33, Definition 2.3].

Definition 1 ((Co-)names and labels). Let N = {a,b,c,...} be a set of names
and N = {@,b,¢, ...} its set of co-names. The set of labels L is NUN U {7}, and
we use a, 3 (resp. \) to range over L (resp. L\{7}). A bijection - : N — N, whose
inverse is also written =, gives the complement of a name, and we let 7 = 7 for

commodity.

Definition 2 (Operators). CCS processes are defined as usual:

P.Q =0 (Inactive process) P+Q (Sum)
a.P (Prefix) PlQ (Parallel composition)
P\« (Restriction)

The inactive process 0 is omitted when preceded by a prefix, and the binding
power of the operators [36, p. 68|, from highest to lowest, is \«, ., | and +, so
that e.g., a.P + Q\a | P+ a is to be read as (a.P) + ((Q\a) | P) + (a.0)). In a
process P | @ (resp. P+ @), we call P and Q threads (resp. branches).

12



Action and Restriction

0. 1
— 06) ¢ {a,a}—L 2 s
o= P\a 4 P\a
Parallel Group
r4p PUAP QN Q%@
" I — syn. " IR
L v U
PIQELPIQ  plo Lo, g Pl g
Sum Group
0 (4 /
P =P —
— +L —Q @ +r
Q—FPLP’ Q+P+R9Q,

Figure 1: Rules of the proved labeled transition system (LTS) for CCS

Definition 3 (Enhanced labels). Let v, v1 and vy range over strings in the set

{I, |r, +1L, +R}*, enhanced labels are defined as
0 = va || v{|Lvia, |RV2@)
We write E the set of enhanced labels, and define ¢ : E — L:
L(va) =« Lu{|Lvia, |gve@)) = T
The proved labeled transition system for CCS, i>, is reminded in [Fig. 1]

s 2.2. CSSK: A “Keyed” Reversible Concurrent Calculus
CCSK captures uncontrolled reversibility using two symmetric LTS—one for
forward transitions, one for backward transitions—that manipulate keys marking
executed prefixes, to guarantee that reverting synchronizations cannot be done
without both parties agreeing. We borrow the syntax to the latest paper on the
10 topic [9], which slightly differs [9) Remark 4.2] with the classical definition [6].
However, those changes have no impact since we refrain from using CCSK’s

newly introduced structural congruence, but discuss it in

Definition 4 (Keys, prefixes and CCSK processes). Let K = {m,n,...} be

a set of keys, we let k range over them. Prefixes are of the form a[k]—we call

13
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them keyed labels—or . CCSK processes are CCS processes where the prefix
can also be of the form «a[k], we let X, Y range over them.

The forward LTS for CCSK, ﬂ, is given in [Fig. 2—with key and std

defined in [Defmifion 3 The reverse LTS %% is the exact symmetric of ol [91

Figure 2] (it can also be read from [Fig. 3), and we write X Moy i x By

k
or X M) Y. For all three types of arrows, we sometimes omit the label and
keys when they are not relevant, and mark with * their transitive closures. As

usual, we restrict ourselves to reachable processes, defined below.

Definition 5 (Standard and reachable processes). The set of keys in X, key(X),

is defined inductively:

key(0) =0 key(P + Q) = key(P) Ukey(Q)
key(a.P) = key(P) key(P|Q) = key(P) Ukey(Q)
key(P\«) = key(P) key(«[k].P) = key(P) U {k}

We say that X is standard and write std(X) iff key(X) = (—that is, if X is a
CCS process. If there exists a process Ox s.t. std(Ox) and Ox —* X, then X

is reachable.

Lemma 1 (Loop lemma). For allt: X LN X', there exists a unique t® : X' A X,

and conversely. Furthermore, (t*)® = t.

Proof. This was proven for CCSK at its inception [6, Prop. 5.1] and simply
follows from the fact that each rule in[Fig. 2| has an inverse. O

3. A New Causal Semantics for CCSK

We begin our contribution with a simple definition of a proved transition
system for CCSK and its causal semantics. Enhanced keyed labels let us easily
define a notion of causality for CCSK with “built-in” reversibility, as the exact
same definition will be used for forward and backward transitions. We discuss
this design choice in more detail in after proving with [Cemma 3 that

the past does not matter (when it is not involved).

14



Action, Prefix and Restriction

std(X) T act. Iy x 2y x pre.
a.X — alk].X alk].X BlK] alk].X’
alk]
aé {a,&}ure&

Parallel Group

alk]
X — X
k ¢ key(Y) I

x|y M xy

AlK]

X —

X\a N X'\a

alk] ,
k¢ key(X)— L —1

x|y M x oy

k]

Y ==Y’

syn.

x|y 2 xr vy

Sum Group

alk] /
std(V)— X —X

alk]

X+Y —=SX'+Y

alk] ,
std(X) ———
X+Y 35 X +Y!

Figure 2: Rules of the forward labeled transition system (LTS) for CCSK

15
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8.1. Proved Labeled Transition System for CCSK
Enhanced keyed labels differ with enhanced labels (Definition 3)) only in the

fact that their labels must be keyed. We will abuse the notation and write them

the same way:

Definition 6 (Enhanced keyed labels). Let v, v1 and vy range over strings in

{IL, |r, +L, +R}", enhanced keyed labels are defined as
0 :=valk] || v(|Lvialk], [rvaak])
We write E the set of enhanced keyed labels, and define / : E — L and 2 : E — K:

((valk]) = o t(u([Loralk], [rv2alk])) =7

£(valk]) = k £(o(Loralk], [nvealk])) = k

We present in the rules for the proved forward and backward LTS for
CCSK. The rules |g, |k, +r and +§ are omitted but can easily be inferred.
This LTS has its derivation in bijection with CCSK’s original LTS:

Lemma 2 (Adequacy of the proved labeled transition system). The transition
afk]

X —» X' can be derwed using[Fig. 4 iff X % X' with £(0) =m and £(0) = «
can be deried using [Fig. 3

Proof. The proof is by induction on the length of the derivation: since the only
axiom rules (act. and act?) are identical, it easily follow by inspection of the

remaining rules of Fig [2] and [3] O

Definition 7 (Transitions and traces). In a transition t : X LN X', X is the
source, and X' is the target of t. Two transitions are coinitial (resp. cofinal) if
they have the same source (resp. target). Transitions ¢, and to are composable if
the target of ¢; is the source of ¢5. Two transitions are concomitantﬁ if they are

either coinitial or composable.

SFor lack of a more canonical term. Adjacent was also suggested by Ivan Lanese, and

“joinable” was also used [6] p. 84|, but for concomitant concurrent transitions.

16



Action, Prefix and Restriction

Forward Backward
std(X) act. std(X) B act?
a.x 2, alk]. X alk]. X S a.X
x4 x x' A x
R(0) #k pre. £(0) #k p pre?
alk]. X L afk].X’ alk]. X' % afk].X
x4 x X' 5 X
0(0) ¢ {a,ﬁ}(’ires. £0) ¢ {a,a} ———————res®
X\a = X'\a X’\av?aX\a
Parallel Group
Forward Backward
0 0
X=X X'~ X .
£(6) ¢ key(V)—2E | £(0) ¢ key(Y) Xy
x|y xy X'y x|y
x VA ey Ay xR o oy eRly
— syn. - syn®
X |y S AL A D,y x|y Azl x|y
Sum Group
Forward Backward
0. < , 0
std(Y) X=X 1 std(Y) X X +1
X+v 2 x4y X +Y S X4y
Figure 3: Rules of the proved LTS for CCSK
A sequence of pairwise composable transitions ¢1;--- ;t, is called a trace,

denoted T', and € is the empty trace.

Note that following ILemma. 2} the [Loop lemma) trivially holds for the system
presented in[Fig. 3] and we write similarly t* : X % X' the reverse of t : X' % X ,

s and reciprocally.

17



3.2. The Past Does Not Matter (When It Is Not Involved)

In we will need to use the fact that the pre. rule is transparent from
the perspective of enhanced keyed labels, as no “memory” of its usage is stored in
the label of the transition. This lets us show that as long as a transition does not
reverse a particular action, its presence or absence does not affect derivability
or the label (Cemma 3)). To make this more formal, we begin by introducing a

function that “removes” a keyed label.

Definition 8 (Removal function). Given a label a and a key k, we define the

removal function rmqg) by

g (0) = 0 ) (X [ Y) = rmap (X) | rmap(Y)
g, (8.X) = 8.X ) (X +Y) = rmap (X) + rmgp (Y)
rmg ) (X\a) = (tmg ) X)\a

X ifa=pFand k=F

rmq ) (B[K'].X) =
BIE]. tmqap) (X)  otherwise

We define the remowval function of a label and its complement by

N Mg () 0 Tyl if a € L\{7},
I‘mk = .
(k) otherwise
The function rmg ) simply looks for an occurrence of a[k] and removes it: as
there is at most one such occurence in a reachable processs, there is no need for a

recursive call when it is found. This function preserves derivability of transitions

that do not involve the key removed:

Lemma 3. For all X, «, k, and 0 with £(0) # k, if k ¢ key(rmg(X))El then

X %Y e m2(X) % moY).

"This cumbersome condition is here to prevent k from occurring in X attached to a different
label. In practice, we will always remove a[k| from processes where we know it occurs, so that
this condition will always be vacuously true, since the same key cannot be attached to labels

that are not complement of each others [0, Lemma 3.4].
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Proof. We reason by the number of occurrences of k£ in X, which is the same
as the number of occurences of k in Y, since £(0) # k. As keys occur at most
twice, attached to complementary names, in reachable processes [0, Lemma 3.4],

we know that we have only three cases to consider: 0, 1 and 2.
0 occurence Then there is nothing to prove, as rmg (X) = X and rm(Y) =Y.

1 occurence Since k ¢ key(rm? (X)), we know that the key k is attached to «
or @. We suppose without loss of generality that it is attached to «, and start
by proving the left-to-right direction of the implication. This means that the

derivation of X ﬁ» Y is of the form

e 7
x' 2y x' Ly
: pre. - pre?
alkl. X' L alk].Y”’ O afk].x s alk).Y
72 : 73
; :
X =Y X ﬂg Y

depending on the direction of the transition.

To obtain the derivation of rm$ (X) LN rm® (YY), it suffices to “skip” the pre.
rule: since it does not alter the enhanced keyed label 6§/, composing 7; and
o (where afk]. X’ and a[k].Y" have been replaced by X’ and Y’) yields a
correct derivation of rm¢ (X)) 4 rm®(Y) (where k does not occur, since it
was not occuring in 71 or 7). The same reasoning can be used to obtain the
derivation of rmf (X)) BN rmf (Y).

For the right-to-left direction of the implication, it suffices to introduce a pre.
or pre? rule in the derivation of rm¢ (X) LN rm®(Y). We know by hypothesis
that k ¢ key(rm¢ (X)), and since £(0) # k, k ¢ key(rm (Y")) as well. Hence,
the side condition of pre. or pre? is always met, and the rule can be applied at

any point in the derivation to obtain the desired transition.

2 occurences Then it suffices to apply the reasoning above twice, to the pre. or

pre? rules that introduce alk] and @[k], to obtain the desired transition. O
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Action Parallel Group
alk] <0 Voa,k,0 a0 < |40" iff 0 =<0

O, 0r) < 0 iff Ad s.t.04 < 6
Sum Group (61, Or) ¢

/
+10 < +rf For d € {L,R}.
40 < +40" iff < ¢

Figure 4: Dependency Relation on Enhanced Keyed Labels

8.8. Dependency and Concurrency for CCSK

Definition 9 (Dependency relation). The dependency relation =< on enhanced
keyed labels is the symmetric closure of the axioms of [Fig. 4]
Claim 1. The dependency relation < is reflexive but not transitive.

Proof. We prove each property separately:

Reflexive This proceeds by induction on the structure of 6: if 6 is a[k], then it
is immediate by definition. Otherwise, it proceeds easily by induction on the

main operator of 6.
Not transitive For instance,
lLa[na] = {[Lb[m], [rblm]) and (ILdml, [rb[m]) = |re[ns]
both hold, and yet |;,a[n1] < |rc[ne] does not hold. O

Definition 10 (Concurrency relation). Two enhanced keyed labels 6, and 6,

are concurrent, written 6 — 65 iff 8, < 65 does not hold.
Claim 2. The concurrency relation — 1is irreflexive and symmetric.

Proof. Irreflexivity follows from the fact that = is reflexive, symmetry is immedi-

ate by definition. O
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The concurrency relations on composable and coinitial transitions are then

defined similarly:

Definition 11 (Composable concurrency). Let ¢; : X3 ﬁ» Xo and t9 : Xo ﬁ»

X3 be two composable transitions, t1 is concurrent with to (t1 — to) iff 61 — 65.

Definition 12 (Coinitial concurrency). Let t; : X by Y, and t5: X N Y, be

two coinitial transitions, t1 is concurrent with ta (t1 ~—; t3) iff 61 — 6.

Theorem 1. Definitions[I1] and[I9 provide definitions of concurrencies that are

symmetric, direction-agnostic, and that enforce|(Correctness of Concurrencies).

Proof. All three properties are immediate by unfolding the definitions. For e.g.,

[(Correctness of Concurrencies)l we obtain:

1oty for t2: Xy A Xt X 22 X,
@91\—/02
<:>t1vit2fort1:X9—1>X1,t2:X6—2>X2 O

Indeed, our system is somehow a trivial case, since both concurrencies are

actually a property of the enhanced key labels, and not of the traces:

Lemma 4 (Concurrencies are trace-insensible). For all t1 : X3 LN Xo and

0
t3:X{ H1>Xé,

1. For all t9 : X5 LN X3 and ty : X} LN X4, t1 —cta < t3—¢ 4.

2. For all t5 : X b2 X3 and ty : X b2 X4, t1 —ity <= t3—; t4.
Proof. The proof is immediate:

L.t —cty < 01 — 0y <= t3 —. ty by Definitions [[1] and [I2] and

2. 11—ty <= 01 ~— 02 < t3—; 14 by Deﬁnitions and O

[Cemma 4] makes it clear that all the needed information is in the labels, and
that the actual processes (or their actual traces) involved are irrelevant. As a

corollary, we can ease the notation:
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Notation 1. For t; and t» two concomitant traces with labels 8, and 05, we

will simply write 6 — 05 for t1 — to or t1 —; to.

We can also obtain Coinitial Propagation of Independence [8, Definition 4.2]

as a simple corollary:

Corollary 1 (Coinitial Propagation of Independence (CPI)). For all t; : X3 LN
Vi, b : X1 2 Yo, t5 0 Vi 2 Xy and ty 0 Yo 2 Xo with t1 —; to then
ty —o £

Y1 %
Xo
e

1

In picture, we have X,

)

[wa —

® :&\g
S

o

Proof. This is immediate:
t1 —; tg — 91\/92 — tgvctI
O

Example 1. Consider the following trace, dependencies, and concurrent en-

hanced keyed labels:

And we have, e.g.,

(@b) | (b+0) valm] <ot
[La[m] alm].b | b+c as a[m] < b[n,
Jublnd, alm].b[n] | b+ ¢ [r+reln’] < ([Lb[n]; [r+1b[n])
Irtreln], a[m].b[n] | b+ ¢[n’] as +re[n/] < +1b[n], and
S, afm] B | b+ ] [LBln] — [R-+relr]
M a[m] 5| b+ e since labels prefixed by |1, and |g
M afm]Bn] | b[n] + are never causes of each others.
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3.4. Discussion

This may be a good moment to pause and reflect on this definition of
concurrency we will be using. Originally, in CCS [26], p. 311], the (non-symmetric)
dependency relation < on labels had to be parametrized by the trace, since a
transition with a label 61 could not be the cause of a transition with a label 65
unless it happened before it.

We would then have [26, Definition 3|, given a trace T,

01 < 6y
01 <7 by =
0, happens before 05 in T'

Without this constraint, one could e.g., decide that b is a dependency of a in
the CCS trace a.b % b 2 0, since b < a would hold. But of course this would
not make much sense, due to the temporal order of those transitions. Hence,
< would be considered instead of <, and the causal dependency <7 would be
defined as the symmetric and transitive closure of <7 [33, Definition 2.2|[26,
Definition 3].

This transitive closure was important, too. Without it, you could for instance

conclude that in a CCS trace |26, footnote 2]

(lLa,|r@) RC

b.ala.c A ala.c ——= 0O|c Ine, 0|0 (4)

it was the case that the transitions whose labels are |1,b and |gc are independent,
since neither |Lb < |ge nor |gre < |Lb would hold.

But, in our definition, we do not parametrize the dependency relation by the
trace, and we do not need its transitive closure. Why? There are two reasons,
and neither are caused by reversibility, curiously enough.

The first one is that we are interested in concomitant (Definition 7)) transitions.
This is fairly standard, as the diamonds are concerned only with that types
of transitions, and as only “local” permutations will be considered. Wondering
whether |1,b and |gc are independent in makes no sense, as they are not
concomitant, and will never be, since neither can be permuted with the transition

labeled (|La, |r@).
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The second reason is that dependencies is simply a tool to define concurrency,
and we are not focused on capturing “the right” notion. It is acceptable if we
consider a to be a dependency of b and b to be a dependency of a in a.b % b 50
what matters is that we detect that there is some dependency between those
two traces, e.g., that they are not concurrent. The symmetry of the x relation
in allows to discard the temporal order: suddenly, we do not care
which happened first.

As we wrote, those design choices are not caused by reversibility, but, as
it turns out, they play really well together. In CCSK, when the CCS trace

a.b % b2 0 is executed and then reversed, we obtain:

[n]

a.b ™ afm).b 2 afm).ofn] (5)
alm].b[n] X4 afm].b L a.b (6)

Again, one could argue that b[n] < a[m] makes no sense for [(5)| but is correct
w.r.t. due to the temporal order. We explained why this does not matter
when the focus in on concurrency, but it is also interesting to remark that deciding
that b[n] is a dependency of a[m] regardless of their temporal order makes our
definition of dependency independent from the direction of the transition.

We can also observe that our dependency relation matches the forward-only
definition for action and parallel composition, but not for sum: while the original
system [26], Definition 2| requires only +460 < 0’ if 6 < ¢, this definition would
not capture faithfully the dependencies in our system where the sum operator is
preserved after a reduction. This is also the reason why our dependency relation
is reflexive, while their is not (Claim 1J).

All in all, our design choices allow to use only one definition of dependency to
define concurrencies, instead of having to take the transitive closure of a tertiary
conflict or causality relation (as briefly discussed in . Our definitions

are also direction—insensitiveﬂ and “identifiers agnostic”: by that we mean that

8As we discuss in [Sect. 5} many existing definitions proceeds by case (“If transitions are

forward, ..., if they are backward, ...”), sometimes “forgetting” about transitions of opposite
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any identifying mechanism, not only the key mechanism of CCSK, could work

with it, as we discuss further in

4. Diamonds, Squares and Consistency

4.1. Preliminary: Decomposing Transitions

To prove the required properties, we need an intuitive and straightforward
lemma (Cemmal) that decomposes a concurrent trace involving two threads
into one trace involving one thread while maintaining concurrency. That is, we

prove that a trace of the form
x| v xt )y 1 xry
with |6 — |8 can be decomposed into a trace
x4 x 2y x7

with 6 — #’. A similar lemma is also needed to decompose traces involving two
branches (Lemma 6f). In both cases, the lemma is cumbersome to spell out, but

easy to prove by simple case analysis.

Lemma 5 (Decomposing concurrent parallel transitions). Let i € {1,2} and
0; € {|L9;, RO/, (L0, |rO))}, define the left projection on enhanced keyed labels
T, as:

0, if 0 = |00} or if 0, = (|LO}, |rOY))

T (0i) =
undefined otherwise

and extend it to processes as
XL if X =X, | Xr
mL(X) =

undefined otherwise

We define similarly the right projection on keyed labels mr and extend it to

processes.

directions (Sect. 5.2.3). Our definition does not make such distinction, and is adequate for any

combination of forward and backward transitions.
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Whenever T : X1, | Xr by YL | Yr N Z1, | Zr with 01 — 03, then for
d € {L,R}, if m4(01) and m4(02) are both defined, then there exist a trace

wa (0 wa (60
ﬂ'd(T) : 7Td(XL | XR) ﬁ» Wd(YL | YR) M» 7Td(ZL | ZR)

and wq(61) — mq(02).

Proof. The trace mq(T) exists by virtue of the rule |4, syn. or their reverses.
What remains to prove is that m4(61) — 74(62) holds.
The proof is by case on #; and 62, but always follows the same pattern. As

we know that both 74(01) and 74(62) need to be defined, there are 7 cases:

91 = hﬂ’l and 92 = |L9/2 01 = \RHQ and 92 = ‘RG/Q
91 = ‘Re/l and 92 = (|L9§, ‘R9g> 91 = <|L9/1> ‘R911/> and 92 = \R%
91 = \Lﬁ’l and 92 = <|L9é7 ‘R9/2/> 91 = <|L9/17 ‘R911/> and 92 = ‘LQ/Q

61 = (|Lb1, [r0Y) and 6y = (|LO5, [rEY)

By symmetry, we can bring this number down to three:

(case letter) || a) b) c)
Or || |67 | (L0, [r07) | (ILO1, [ROY)
02 || L0 L0 (L2, [r02)

In each case, assume 71,(01) = 6] — 05 = 71,(02) does not hold. Then it must be

the case that 6] = 65:

a) If 67 =< 65, then it is immediate that 6; = |.0] = |L0, = 02, contradicting

01 — 0,.

b) If 0] = 6}, then |07 < |05 and (|07, |[RE7) > |LO5, from which we can deduce

01 < 05, contradicting 61 — 05.

c) If 0] =< 65, then |.0] =< |05 and (|10, |rO)) < (L0, |r05), from which we can

deduce 01 < 05, contradicting 6; — 05.

Hence, in all cases, assuming that m4(61) — 74(62) does not hold leads to a

contradiction. O
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Lemma 6 (Decomposing concurrent sum transitions). Let i € {1,2} and
0; € {+1.0;, +r0!}, define the left summand of enhanced keyed labels 7y, as:
0; if @ = +1.0;

pL(b;) =
undefined otherwise

and extend it to processes as
X if X = Xy + Xr

pL(X) =
undefined otherwise

We define similarly the right summand of keyed labels pr and extend it to
processes.

Whenever T : X1, + Xr by Y, + Yr LN Z1, + Zg with 01 — 05, then for
d € {L,R}, if pa(01) and py(02) are both defined, then there exists a trace

01 0
pa(T) : pa(XL + XR) LZLON pa(YL + YRr) LZLON pa(Zy, + Zg)

and pa(01) — pa(62).

Proof. The trace pq(T') exists by virtue of the rule +,4 or its reverse. What
remains to prove is that pg(01) — pa(f2) holds.
The proof is by case on 8, and 65, but always follows the same pattern. As

we know that both pg(61) and ps(62) need to be defined, there are 2 cases:

0, || +1.04 | x4

0o H +L9/2 ‘ +R0/2 ‘
For d € {L, R}, assume pq(61) = 0] — 6, = pa(f2) does not hold, then it is

immediate to note that #; — 65 cannot hold either, a contradiction. O

4.2. Diamonds and Squares: Concurrency in Action

Our goal in this section is to prove our that states that for

all X 2% X, and X %25 X, with 6; — 6y, there exist X; 25V and Xo 2 Y.

Lhis statements, because we enjoy the and enforce the

lof Concurrencies)| is equivalent to stating that we enjoy all the diamonds listed

in This is one of the main technical goal of this paper, the other
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interesting properties, discussed in following almost for free thanks to

the axiomatic approach to reversible computation [g].

To obtain this result, we first prove one of the |(Sideways Diamonds)| (actu-

ally, the |(Sideways Diamond)) with one of the [(Reverse Diamonds)|

(Lemma 8) and finally one of the [Square Properties| (Lemma 9). Our [Main|
is then a trivial consequence of those lemmas. Interestingly, all three

proofs are almost identical, except for some very subtle points that we highlight.

Lemma 7 (Sideways diamond). For all X LZN X5 225 ¥ with 0, — 02, there

exists Xy s.t. X LN X5 Sy,

In short, the proof proceeds by induction on the length of the deduction for
the derivation for X 2% X 1, using Lemmas [5| and |§| to enable the induction
hypothesis if 6; is not a prefix. The proof requires a particular care when X is
not standard, more particularly if the last rule is pre., but [Lemma 3l provides

just what is needed to deal with this case.

Proof. The proof proceeds by induction on the length of the deduction for the

derivation for X 2% X 1.

Length 1 In this case, the derivation is a single application of act., and 6, is of
the form alk]. But afk] — 62 cannot hold, as a[k] < 02 always holds, and this

case is vacuously true.
Length > 1 We proceed by case on the last rule.

pre. There exists «, k, X’ and X7 s.t. X = a[k].X’ LN alk].X] = X; and
£(01) # k. As afk]. X} 22, ¥ we know that %£(02) # k |9, Lemma 3.4].
Furthermore, since k occurs attached to « in X7 and since X; makes a for-
ward transition to reach Y, we know that k ¢ key(rm$ (X)) Ukey(rm$ (Y")).
Hence, we can apply [Cemma 3 twice to obtain

rm® (afk]. X') = X' 25 rm®(alk]. X]) = X! 2 rm@(Y)

As 0, — 05 by hypothesis, we can use the induction hypothesis to obtain that

there exists X» s.t. X’ 22 X 25 rm&(Y). Since £(63) # k, we can append
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pre. to the derivation of X’ 22 X, to obtain alk]. X' = X LN alk]. Xs.

Using one last time, we obtain that rm{(afk].X2) = Xy —

rm$ (Y) implies afk]. X LZN Y, which concludes this case.
res. This is immediate by induction hypothesis.

s |p There exists X1, X, 0], X1,, and Y1, Yr s.t. X 25 X; 22 v is
.6} ]
X | Xg —5 X1, | Xgr = Y1 | Yx.

0/
Then, X1, — X3, and the proof proceeds by case on 6s:

0/
0y is |05 Then Xgr —» Ygr, X1, = Y1, and the occurrences of the rules |,

and |g can be swapped to obtain

0. 0!
X | Xr 2% x| ve B v ) vk,
0, 0.
92 is |L9/2 Then, XL —1) XIL —2) YL and XR = YR. As |L‘9/1 = 91 ~ 92 =
0! 0.
10 |65, it is the case that 0] — 6% in X1, — X7, — Y7, by [Lemma 5} and

’ ’

we can use induction to obtain X5 s.t. X7, = Xy — Y1, from which it

o, 9!
is immediate to obtain X7, | Xgr LLLEN Xo | Xr I, Yy | Xgr =YL | Ygr.

92 iS <|L92L7|R92R> Since |L9l1 = 91 ~ 02 = <|L02L7|R92R>7 we have that
0! 0

07 — 6 in X;, — Xi, NI v by Lemma bl Hence, we can use

O2r

0 0’
15 induction to obtain X, 2N X5 — Y1,. Since we also have that X —=

Yr, we can compose both traces using first syn., then |1, to obtain

ILO;

)
Xo | YR — Y1 | Yg.

(lLO2;s|rO21

X1, | Xr

|r This is symmetric to |r,.

syn. There exists X1,, Xgr, 011, 011, X1,,, X1g, Y1 and Yg s.t. X b, X by

is

0 0
Xy, | Xp O, v x| v,
20 Then, X7, 91—L> X1, Xr 91—R> X1, and the proof proceeds by case on 6s:

. 6
02 1S |R92R Then XlR ﬂ) YR, XlL = YL and <|L91L3|R01R> ~ ‘R@QR.

Then by [Cemma 5l there exists Xy Him, Xig LI Yr and 01 — Oop.
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. . . . (% 0
We can then use the induction hypothesis to obtain Xg — Xog RALING 4N

from which it is immediate to obtain

(ILO2(, IR O1R)

|RO
X1 | Xr 25 X1 | Xop X, | Yr =Y | Yr.

s is |10, This is symmetric to |grbag.

s is (|Lb2.,|rO2r) This case is essentially a combination of the two previous
5 cases. Since (|01, [rRO1r) = 01 — 02 = (|LO2,, [RO2r), Lemma 5l gives

the two traces

0 02 7 0.
X, =5 X, —= YL and  Xp —% X1, 4% Yr

and 61, — 03, and 015 — 02y, respectively. By induction hypothesis, we
obtain two traces

02 0 0 0
XL —L) X2L i) YL and XR ﬂ) X2R ﬂ) YR

that we can then re-combine using syn. twice to obtain, as desired,

[LO2; IR O2R)

X1, | X - Xo, | Xo, Olnbin), gy

o -1, There exists X1, Xg, 0], 6}, X17, and Yy, s.t. X 25 X; 25V is
0! .
X1, + Xgr L)XH‘—FXR E>YL—|-)(R.

All transitions happen on “Xp’s side” and Xg remains unchanged as other-
wise we could not sum two non-standard terms, so that 65 must be of the

form +1,05. Then, we can use [Lemma 6] to obtain

0] 0,
Xy, =5 Xy, =Y

and 67 — 0. Hence we can use the induction hypothesis to obtain X s.t.

o, 9!
15 X1, = X5 — Y. From this, it is easy to obtain
0, 0!
Xp 4 Xp %2 x4 X 20 Y 4 X = Y+ Ve

and this concludes this case.
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+r This is symmetric to +r.. O

Example 2. Re-using [Example 1] since |1,b[n] — |r+rc[n], allows to

re-arrange the trace

alm] B | b+ c 2 afm)Bin] | b+ ¢ B i) Bl | b + ']

as

alm] B | b+ e B i B b+ efn’] s afm) 3] | b+ en].

We state, discuss and then prove the following two lemmas:

Lemma 8 (Reverse Diamond). For all X b, X4 L2y with 01 — 05, there

. 0
exists Xo s.t. X ~% Xo Sy,

Lemma 9 (Square Property). For all X 2y X, b2y with 01 — 05, there

) 9
exists Xy s.t. X LN Xy~ Y.

In both cases, in the particular cases of ¢;¢® : X b, X, NN X, or of t*;t,
note that 67 — 6 never holds since 6; < 6; always holds by reflexivity of x
(Claim 1) and hence Lemmas [8] and [9] cannot apply. The proofs re-use the proof
of [Cemma 7l almost as it is, since Lemmas and [6] hold for both directions.

Proof of [Lemma 8 The only case that diverges with the proof of [Cemma 1l is if

the deduction for X 2% X 1 have for last rule pre. In this case,

alk]. X' 2 afk].x! B Y,

but we cannot deduce that £(6y) # k immediately. However, if £(62) = k, then
we would have afk]. X S h v = Y, but this application of act® is not valid,
as std(X7) does not hold, since X was obtained from X’ after it made a forward
transition. Hence, we obtain that £(62) # k, that k occurs in X, X; and Y
attached to a, so that k ¢ key(rm§ (X)) Ukey(rm® (X1) Ukey(rmg(Y)), and we
can carry out the rest of the proof, using as before. O

Example 3. Re-using [Example 1] since |g+rc[n’] — |pb[n], the trace

alm]Bn] | b+ ¢ LR o Bin) | b+ o] L& aml] B | b+ o],
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can be rearranged using [Lemma. § as

a[m].b[n] | b+c«|\9m a[m].b|b+c

|rR+re[n']
_

a[m].b | b+ c[n].

For the main difference lies in leveraging the dependency of sum

prefixes between e.g., +r6; and 41,02 in X + Oy M Ox + Oy +L—92> Ox+Y.

Proof of[Lemma 9 The proof is very similar to the proof of [Lemma 7, but we
detail it nevertheless for completeness, and also because the sum case diverges
and exposes the design choices made in for the sum group.

It proceeds by induction on the length of the deduction for the derivation for

x 2 xy:

Length 1 In this case, the derivation is a single application of act?, and #; is of
the form alk]. But afk] — 62 cannot hold, as a[k] < 02 always holds, and this

case is vacuously true.
Length > 1 We proceed by case on the last rule.

pre? There exists a, k, X’ and X7 s.t. X = afk].X’ Ly alk].X] = X7 and
that £(61) # k. As a[k]. X] 22 Y we know that £(62) # & [9, Lemma 3.4].
Furthermore, since k occurs attached to a in X; and since X; makes a
forward transition to reach Y, we know that k& ¢ key(rmf (X)) Ukey(Y).
Hence, we can apply twice to obtain

rm{ (afk].X") = X' Ay rm? (a[k].X7) = X, 25 rm@ (V)

As 0, — 05 by hypothesis, we can use the induction hypothesis to obtain that
there exists X s.t. X' 22 Xy 4 rmf (Y'). Since £(62) # k, we can append
pre. to the derivation of X’ 22 X, to obtain alk]. X' = X LN alk]. Xs.
Using one last time, we obtain that rm{(a[k].X2) = X» Ay
rm¢ (Y') implies a[k]. X Ay Y, which concludes this case.

res? This is immediate by induction hypothesis.

|* There exists Xp, X, 0}, X1,, and YL, Y s.t. X <% X1 22 Y is

9, 0
Xy | Xg A% Xy, | Xp 2 Vi | Ya

32



Then, Xy, BN X1, and the proof proceeds by case on 6s:

0/
0y is |gr05 Then Xgr —» Ygr, X1, = Y1, and the occurrences of the rules |f

and |g can be swapped to obtain
0 !
XL|XRE‘2_>XL|YR“|‘}"9\}“>YL|YR-

0y is |10, Then, Xy % X1, 2 Vi and Xg = Ya. As [10) = 0; — 05 =

. 1.6}, it is the case that Xy -2 X1, <2 Vi, and 6, — 6} by [emmas
and we can use induction to obtain X5 s.t. X7, ﬁ) X5 «?/i» Y1, from which

it is immediate to obtain Xy, | X 225 X5 | Xg "% Vi | Xg = Vi, | Y.

0y is (|10, , [ROar) Since |18, = 61 — O = (|12, , [RO2r), we have X,

X, 02—L> Y1, and 0] — 03, by [Lemma bl Hence, we can use induction to

. 02 0 . 0
10 obtain X1, — X5 ~& Y7,. Since we also have that Xr —% YR, we can

compose both traces using first syn., then |} to obtain

[LO2; IR O2R

( ) 0"
Xy | Xr X | Y & Y1 | Ya.

| This is symmetric to |}..
syn? There exists X1,, Xr, 011, O1r, X1, Xig, Y7 and Yg s.t. X vnglw X4 6—2> Y
is
Xy, | Xp ABBARS Xy | X, 25 Y | Ve,
15 Then, X7, NI X1, Xr BN X1, and the proof proceeds by case on 6s:

. 9
0s is [rfor Then X, =% Yg, X3, = Y1, and (|nbir, [r61r) — |RO2r
implies Xg BOSN X1, Y2m, Yr and 015 — 05 by [Lemma 5l We can then
use the induction hypothesis to obtain Xg O2m, Xop, BIEN YR from which

it is immediate to obtain

Xy, | Xg 022 x| X, sl x| YR = v | Ve

2 s is |10, This is symmetric to |grbaR.

s is (|LO2,, |rO2r) This case is essentially a combination of the two previous

cases. Since (|01, |[rRO1R) = 01 — 02 = (|LO2, , |RO2R), Lemmal gives
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two traces
01, 02, O1r O2r
XL\NV\'}XlL — YL and XRJ\/\A'-)XlR —)YR

and 011, — 03, and 01 — O2R, respectively. By induction hypothesis, we

obtain two traces
02y, 011, O2r 01
X, — X2L R Y and Xrp — X2R A YR

that we can then re-combine using syn. and syn?® to obtain, as desired,

[LO2; IR O2R) (|LO11, |RO1R)

(
XL, ‘ XRr X2L | X2R WAAAARNAAAAY YT, | YRr.
s +! There exists Xi, Xr, X1p, and YL, s.t. X <% X1 22V is
+1.0] 02
XL, + Xg A Xy, + Xg — YL + i

Then, X, A X411, and we proceed by case on 6s:

9/
0o is +1.05 Then, X1, = Y7, and Xr = YR. Since +1,0] — +1.05, we can

use [Cemma 6l to obtain
5 05
XL Ay XlL — YL
and 6] — 05, and by induction hypothesis there exists X5 such that
0, 0
XL — X2 S YL
10 from which it is easy to obtain
41,01

Xp+ Xp % X, 4 X R0 Ve 4+ Xp = V) + Y

0 is +gr6) Since 41,0, < +rb%, it cannot be the case that ; — 0s, so this

case is vacuously true. O

Theorem 2 (Main Theorem). For all t; : X LN X andty: X LN Xo with

01 — 02, there exist t] : X3 P v and th: Xo by
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The proof is by case on the directions of the arrows, but always follow the
same pattern: use the to orient the arrows to be able to use either
Lemma [7] [§] or 0] use the appropriate Lemma to obtain a trace, and then finally

use again the [Loop lemmal to orient it as desired.

X X, X, X
WV I L0 91/ \92
5 X, Xy Loop X Diamonds or }\; Loop, X X
Square Property | 9 AN , /0
X2 X2 Y

Proof. The proof proceeds by case on the directions of ¢; and t,.

9
Ift; - X ~nd X7 and t5 : X 9—2> X9 This corresponds to this case: WJJ \»‘ .
\\)‘ kJN\
The gives t3;ty 1 X3 Oy x b2y X5, and since we know that
61 — 0y, we can use the sideways diamond (Lemma 7)) to obtain t{;t} :
[ ]

o X1 2V % X, and letting ¢) = 7 and t, = 3, we obtain ¢, : X; 2% Y

and t} : Xy A5 Y as desired.

If¢;: X 9—1> X; and ¢ : X ﬁ,’@ X5 This corresponds to this case: ’/ Hﬂ“‘i .

By symmetry it is identical to the previous one.

) )
If 1 : X ~» X; and o : X ~» Xy This corresponds to this case: WJI LLL‘* .

(8 <

oK’
. 0 .
15 The gives t3;t9 + X3 o x & X5, and since we know that
. . [4
61 — 65, we can use the reverse diamond to obtain #/; ¢y : X; ~%
: : 0
y & X, and letting ¢} = t] and t§, = t3, we obtain t} : X; <% Y and

th: X A5 Y as desired.

Ift,: X LT X; and t3: X LN X, This corresponds to this case: v \‘ .

Ak

. 0 .
2 The gives t};ty 1 X3 v X LN X5, and since we know that
6 — 0, we can use the square property (Lemmad) to obtain ¢/t : X1 <2

35



20

0 : :
Y ~A% X, and letting ¢; = t/ and ), = t”5, we obtain t} : X; %,y and

th: X %5 Y as desired. O

Example 4. Following we can obtain e.g., from the coinitial transi-

tions

alm]Bn] | b+ ¢ B ) Bl | bn] + ¢

and
alm] B[] | b+ ¢ L2 a[m] B b+ e
the transitions converging to a[m].b | b[n] + ¢,
alm].Bn] | b[n'] + ¢ L am] B | B[] + ¢
and

Ir+1b[n']
SLAELLLEN

am].b|b+c alm].b | b[n'] + c.

4.8. Causal Consistency € Other Properties

Formally, causal consistency (Theorem 3) states that any two coinitial and
cofinal traces are causally equivalent. The empty trace being denoted by €

(Definition 7)), causally equivalence is defined as follows:

Definition 13 (Causally equivalent). Two traces Ty, T are causally equivalent,
if they are in the least equivalence relation closed by composition satisfying

t;t® ~ e and tq;th ~ to;t] for any t1;th : X LN Y, to;t) : X LN 7S

Theorem 3 (Causal Consistency). All coinitial and cofinal traces are causally

equivalent.

The axiomatic approach to reversible computation [8] allows to obtain causal
consistency from other properties that are generally easier to prove. We state
and prove them so that the proof of becomes a consequence of the

lemma to be proven.

Lemma 10 (Backward transitions are concurrent). Any two different coinitial

.. 6 [’
backward transitions t1 : X ~~» X, and to : X ~% Xo are concurrent.

36



20

25

The proof is by induction on the length of the deduction for the derivation for
x % X, and leverages that £(61) # £(62) for both transitions to be different.

Proof. The first important fact to note is that £(61) # £(62): by a simple
inspection of the backward rules in [Fig. 3} it is easy to observe that if a reachable
process X can perform two different backward transitions, then they must have
different keys.

We then proceed by induction on the length of the deduction for the derivation

for X«‘?}AXlz

Length 1 In this case, the derivation is a single application of act?, and #; is of
the form «a[k], with X = a[k].X’ and std(X’). Hence, X cannot perform two

different transitions, and this case is vacuously true.
Length > 1 We proceed by case on the last rule.

pre® There exists , k, X’ and X7 s.t. X = a[k]. X’ Ay alk].X{ = X;. Then,
it must be the case that X’ 4 X1 and X’ is not standard. Since X' is
not standard, the last rule for the derivation of X BN X9 cannot be act?,
and since X = afk].X’, it must be pre?, hence it must be the case that
X = ak].X' NN alk]. X} = Xo, and we know that X' Ay X/. We conclude
by using the induction hypothesis on the two backward transitions of X’

and the observation that pre? preserves the label and hence concurrency.
res? This is immediate by induction hypothesis.

|t There exists X1, Xg, 0] and X3, s.t. X Ay X is
X1, | Xg % X0, | Xn.

Then, X, NN X1, and the proof proceeds by case on 62, using [Lemma 5 to

decompose the traces:
0o is |r65 Then this is immediate, as |L0] = |gr05 never holds.

s is |10, Then there exists Xo, such that Xp, BN Xs, , and we conclude

by induction on Xp,’s backward transitions.
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s is (|LO2., |rRO2r) Then we know that
(r2; ; |RO2R)
X1 | Xp AR X | Xoy, -

For |07 and (|02, , |rRf2Rr) to be concurrent, we must have 6] — 65, . By
induction hypothesis on X, J?A; X;, and X, w%w Xy, , we know that

those two transitions are concurrent, which concludes this case.
5 |n This is symmetric to |}..

syn? This case is similar to the two previous ones and does not offer any

insight nor resistance.

-+1, There exists Xy, Xgr, and X;p, s.t. X BN X is
+167
X1, +XR \NVVV‘>X1L +XR.

Then, note that 3 must also be of the form +1,05, as Xg must be standard.

. . . : . i
10 Hence, this follows by induction hypothesis on the transitions X1, »& X,
o .
and X1, ~A X, using [Cemma. 6] to decompose the trace. O

Lemma 11 (Well-foundedness). For all X there exists n € N, Xq,..., X, s.t.
X v Xy oo Xy oo X, with std(Xo).

This lemma forbids infinite reverse computation, and is obvious in CCSK as

15 any backward transition strictly decreases the number of occurrences of keys.

Proof of We can use the results of the axiomatic approach [§] since
our forward LTS is the symmetric of our backward LTS, and as our concurrency
relation (that the authors call the independence relation, following a common
usage [37, Definition 3.7]) is irreflexive and symmetric (Claim 2)). Then, by
2 [Theorem 2] and [Lemma 10] the parabolic lemma holds [8 Proposition 3.4],
and since the parabolic lemma and well-foundedness hold (Lemma 11]), causal

consistency holds as well |8, Proposition 3.5]. O

We use here the axiomatic approach [8] in a narrow sense, to obtain causal

consistency—which was our main goal—, but we can use it to obtain many
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other desirable properties for this system “for free”. For instance, since our
system enjoys Coinitial Propagation of Independence (Corollary 1)) and—as
we just proved—a principle the authors call “BTI” (Lemma 10), we obtain

“independence of diamonds” automatically:

Corollary 2 (Independence of Diamonds [8, Definition 4.6]). For all 1 : X3 LN
Yy, to : X4 E>>Y2, ts : Y, &»Xg and ty : Yo ﬂ»Xg with Y1 # Yo if all
transitions are forward or if all transitions are backward, X1 # X5 otherwise,

then tl ~; tg.

<

01 %
In picture, we have X X
0

e

02 1

o

Proof. This is a direct consequence of [8 Proposition 4.7], as our system enjoys

[Corollary 1f and [Lemma 101 O

Example 5. Re-using the full trace presented in [Example 1| we can re-organize
the transitions using the diamonds so that every undone transition is undone

immediately, and we obtain up to causal equivalence the trace

ab b+ e 2 alm) b | b+ ¢ SLPHRAL D, Bln) | bl + ¢

5. Comparing Concurrencies Across Calculi

We detail in this section how the concurrency we defined is universal, in the

following sense:

e [t is equivalent to the restriction to CCSK of the definition of concurrency

on composable transitions for a reversible m-calculus extending CCSK [19]

Sect. 5.1,

e Our definition, when adapted to RCCS (Sect.5.3)), yields a concurrency

that extends (Sect. 5.4) existing definitions for RCCS (Sect. 5.2),
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e Our definition can similarly be adapted to an “identified” declension of

RCCS and proven equal to its definition of concurrency (Sect. 5.5)).

It should be noted, with respect to this second point, that existing definitions
for RCCS do not define concurrency on transitions of opposite directions, whereas
ours does : in this sense, recognizing more transitions as concurrent
is an interesting improvement.

We also briefly illustrate, p. 4] that the concurrency stemming from the first
item does not satisfy the “denotationality” [I0, Section 6] criteria, i.e., that it is
not preserved by CCSK’s structural congruence.

Comparing across calculi requires to introduce two other reversible systems
and four other definitions of concurrency. This a lot of technical content, but
we made it as compact and as intuitive as we could, and we would like to stress

that the results stated below are fairly routine to prove.

5.1. Comparing With Concurrency Stemming From Reversible m-Calculus

A definition of concurrency was introduced for a reversible m-calculus extend-
ing CCSK [19], but without sum. We offer to restrict it to CCSK (keeping the
sum until , to compare the resulting relation with our definition using
proved labels, and to assess how it fares with respect to structural equivalence

for CCSK.

5.1.1. Causalities: Definitions and Adequacy
The following definitions can easily be extended to CCSK with sum, so we

preserves the “full” system for this study of the adequacy of causality.

Definition 14 (Context). A context is a CCSK process with a slot -:
Cll=-[IClI+ X | X+ O[] CLIX || XIC[ || ak]-CL] | C[N\a

Note that the context a.C[-] (i.e., without the key) is missing as it does not

play any role in the following definition.
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Definition 15 (Structural cause [19, Definition 21]). For all X, my,ms €
key(X), the prefix with key m; is a structural cause of the prefix with key ma,
denoted my Cx ma, if 3C[] s.t. X = Cla[m1].Y] with mg € key(Y).

Definition 16 (Structural causality [T9, Definition 22]). In

ai[mi] az[mo]

tl;tQ .¢ X1

X27

t1 is a structural cause of to, denoted t1 C to, if
e i1 Cx, %2, if £; and ¢y are both forward,
e iy Cx i1, if t; and ¢ are both backward.

We now prove that the structural causality we just defined agrees with the

dependency relation ([Definition 9)), letting f be the function that maps keyed
labels to proved labels obtained from

Lemma 12 (Adequacy of the structural causality with the dependency relation).
In tl;tg X o] X1
t1 T to iff flaa[ma]) < f(az[ma]).

a2[m2]

Xo, if t1 and ty have the same directions, then

Proof. First, observe that t; C to iff t§ C ¢}, and since similarly 6; < 6, in
tiits t X 25 X 2 X0 iff 0y = 0; in 135512 ¢ Xo 2 X7 25 X, it suffices to
prove the statement for both ¢; and ¢, forward.

We prove the statement from right to left first, proceeding by induction on

al[ml]

the length of the deduction for the derivation for X ——— X;.

Length 1 In this case, the derivation is a single application of act., and it
is easy to see that f(ai[m1]) is a1[mi], and since aj[m] =< f(aa[me]) and

X2 = a1[m1].Y with my € £(Y), both causality relations coincide.
Length > 1 We proceed by case on the last rule.

pre., res., +r, +r This is immediate by induction hypothesis, once noted

that the derivation for X; M X5 must also end with the same rule.
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al[ml]

| Then we know that X ———» X is of the form

(o5} [ml]

Xy, | Xp —» CL[Oél [ml]YL] | XRr

and there are three cases, depending on the last rule in the deduction for

[65) [mg]

the derivation for X; — Xo:

|, Then we proceed by induction hypothesis, observing that, for i € {1, 2},
f(a;[ki]) is of the form |,6;, and that |1,01 = |02 if 61 > 0.

|k Then it cannot be the case that f(aj[mi]) x f(az[ms]) by definition,
and it cannot be the case that t; C tg, since Xo = Cp[ag[mq].YL] |
Crlaa[ms].YR].

syn. Then Xy =Y/ | Crlaz[me].Yr], with ma € £(X2), and it suffices to

reason by induction on the derivations of Cp[a1[m1].YL] | Xr and Y{.

|r and syn. Those cases are similar to |p.,.

We now prove the statement from left to right, by induction on the length of

f(ar[mi]) and f(aa][ms]), and by case analysis on the rules of the dependency

relation given in

Action If f(ai[m1]) = ai[mi] x f(aa[ms]), then t; T o is immediate.

Sum First, note that since both ¢; and ¢ are forward, it cannot be the case
that f(aq[m1]) and f(as[ms]) are prefixed with different +4 symbols, since a
forward trace cannot execute the right operand of a sum then its left operand
(or reciprocally). Hence, f(aq[mi]) = 4401 x f(az[ma]) = +462 holds iff
0, > B2, which is necessary and sufficient for ¢; C ¢ to hold by induction

hypothesis.

Parallel Each of those four rules state that f(aj[mi]) =< f(az[ms]) holds if
and only if a dependency exists in “the same thread” of the process, which is
exactly the notion captured by the requirement on the existence of a context

of the form C[a;[i1].Y], hence both notions coincide. O
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5.1.2. Conflict and Concurrencies

For reversible m-calculus, the causality relation requires to account for names
previously shared, using an object causality [19, Definition 23|, that is not
meaningful nor required in CCSK. However, transitions of opposite direction

need to be accounted for with a conflict relation that we restate below:

Definition 17 (Conflict relation [I9] Definition 25]). In

Otz[mg]

tl;tQIX ol Xl X27

t1 and to are in conflict if
e t; is a forward transition, and t9 = t1,

e {1 is a backward transition, to is a forward one, and ¢ consumes a prefix

freed by t;.

Note that the conflict relation falls short on detecting conflict in the presence
of sum: indeed, taking e.g., t1;t2 : a[m] + b Al g +b LI + blk], t1 and o
would not be in conflict according to as ty does not “consume” a
prefix freed by t;. However, it would not be correct to declare them concurrent
(as would this work [I9, Definition 26]), since they cannot be swapped and are,
indeed, dependent. This is fine in the sum-free reversible 7-calculus, but also
illustrates how concurrency cannot be defined by “simply” restricting the 7’s

calculus definition to CCSK, in the presence of sum.

Lemma 13 (Adequacy of conflict and causality on transitions of opposite

Xl XQ, ift1 andtg

ai[m] az[mo]

directions). In a sum-free CCSK, inty;te : X

have opposite directions, then t1 and ty are in conflict iff f(a1[mi]) = f(aa[ma]).

Proof. If to = t], then note that to consumes a prefix freed by t; if ¢; was
backward, so to and t; are in conflict no matter their directions. In this case, it is
immediate that f(ai[m1]) < f(az[ms]) = f(a1[mi]), as x is reflexive (Claim 1)),
so both relations coincide.

If t5 # 3, then we need to proceed by case on the direction of #;:
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If t; is forward Then observe that ¢; and t5 are never in conflict. We need
to prove that f(ai[mi]) x f(az[msz]) never holds, but it follows easily from
since ty # t}, we know that the coinitial backward transitions #$
and to are different, and hence by that they are concurrent, proving
that f(a1[m1]) =< f(az[mz]) does not hold.

If ¢; is backward Then we have to prove that f(ai[mi]) x f(az[ma]) iff ¢o
consumes a prefix freed by ¢;. Proving this statement from left to right is
easy: it is immediate that if ¢5 consumes a prefix freed by t1, then f(aq[m;]) x<
f(aa[ms]) will hold. For the reverse direction, inspecting the Action and
Parallel rules of [Fig. 4] suffices to prove that f(ai[m1]) < f(az[ms]) implies
that to have consumed a prefix freed by #;. O

Hence, in the absence of sum, both notions coincide. It should be noted that

our definition of concurrency based on proved labels offers a couple of benefits:

1. It requires only one relation to define concurrency, while the concurrency
stemming from reversible m-calculus requires two relations (structural

causality and conflict).

2. By our definition, it is obvious that ¢; and ¢ are concurrent iff ¢5 and ¢9
are, whereas this result is not obvious for the concurrency stemming from

reversible m-calculus.

3. There is no need to inspect the keys or to build appropriate contexts to
decide if transitions are concurrent: it suffices to read their (enhanced

keyed) labels.

5.1.3. Interplay Between Concurrency and Structural Congruence
Last, but not least, we prove that this concurrency stemming from reversible

m-calculus does not fare well with CCSK’s structural congruence.

Definition 18 (Free and bound keys [, Definition 2.1]). A key k is bound in X

iff it occurs either twice, attached to complementary prefixes, or once, attached
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to a 7 prefix, in X. A key k is free in X if it occurs once in X, attached to a

non-7 prefix.

Definition 19 (Structural equivalence [, p. 133]). The structural equivalence
of CCSK is the smallest equivalence relation (that is, reflexive, symmetric, and

transitive relation) closed under the following rule:
X = X[n/m)| m bound in X, n ¢ key(X)
where [n/m] denotes the substitution of all the occurrences of key m with key n.

The labeled transition system of CCSK is then endowed with the following

rules:
v=x xx x=v

y 2y

equiv.

v=x x Ay x=v
v 2

equiv?

For technical reasons beyond the scope of this exposition, those rules can
only be used last when proving a derivation. However, taken as defined, this
relation does not play well with the concurrency relation inherited from the

reversible m-calculus:

Theorem 4. The conflict relation inherited from the reversible w-calculus is not

adequate for CSSK endowed with structural congruence.

Proof. Consider the following two equations (the first one is just reflexivity of

=) and derivation:
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- act.
e c[m/]

/ pre.
alm].c i, alm].c[m/]

L.
c[m’]

alm].clalm] —= a[m].c[m/]|a[m)]

a[m].c|a[m] AmT, alh].c[m/]|a[h]

equiv.

Then, it is clear that

] cfm’]

trit s ace | @ 2% afm).clalm] Y a[n).clm!][alh]

and yet since m ¢ key(alh].c[m']|a[h]), t1 is not seen as a structural cause of to
according to [Definition 10l even if it should based on intuitive understanding of

concurrency. O

We conjecture that the structural causality could be adapted to account for
the substitution of bound keys, but that it will make the definitions quite tedious,

since the structural cause relation is purely local.

5.2. Recalling RCCS’s Concurrencies

It is relatively easy to adapt our proved labeled to RCCS, no matter which
declension of the calculus you consider [IT], 17, 23] 24] 21]. Below, we look at
the “early” version of RCCS [I7, 23] because, to our knowledge, it is the only
version that received a syntactical definition of concurrency, relying on memory
inclusion |23, Definition 3.11] or disjointness [I7, Definition 7]. This version
has the heaviest notation, since transitions are labeled with the memory of the
thread executing, in addition to the label, but it is immediate to add prefixes
to those labels. We briefly remind this system below, and refer to the original
presentations [I7, 23] for more details. We do not consider recursive definitions,

briefly discussed in some versions of RCCS.

5.2.1. Syntax and Semantics of RCCS
The CCS processes used to build RCCS processes follow a slightly different
presentation from since the prefix operator can appear only below a

n-ary sum. This allows to combine three operators and two rules into one:
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e letting n = 0 allows to represent 0, letting n = 1 allows to recover the

usual prefix, and any n > 1 represents the sum,
e the rule (also called act.) subsumes the rules for the prefix and the sum.

For simplicity, we will however generally use (guarded) binary sum, written +,

s write a. P for a. P 4+ 0 [I1 Sect. 2.2|, and define the structural equivalence using
this binary sum (Definition 21).

Definition 20 (RCCS Processes). The set of reversible processes R is built on
top of the set of CCS processes by adding memories to the threads:

PQ=P|Q | X;soN-Fi | P\a (CCS Processes)

m=() | (1)-m | (2)-m | (m',a,P)-m | (x,o,P)-m  (Memory)

T=mp>P (Reversible Threads)

R,S=T | R|S | R\a (RCCS Processes)

We let nm(m) = {a | a € Nor @ € N occurs in m} be the set of (co-)names

10 occurring in m.

Definition 21 (Structural equivalence). We write =, \ , the congruence on
CCS terms obtained by the symmetric and transitive closure of the following
equations, letting =, being the usual a-equivalence on labels:
P+0=P P+Q=Q+P
(P1—|—P2)—|—P3=P1+(P2+P3) PEQ lfP:aQ

Structural equivalence on R is the smallest equivalence relation generated by

15 the following rules:

R|S=S|R (Composition Symmetry)
(R1|R2)|R3 = R1|(R2|R3) (Composition Associativity)

P=
mDP—;\,:%gQ (CCS congruence)
m>(P|Q)=({(1).m>P) | ((2).m> Q) (Distribution of Memory)
m > P\a = (m > P)\a with a ¢ nm(m) (Scope of Restriction)
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The|(Distribution of Memory )|rule is the reason why this formalism has often

been dubbed “dynamic” [2I], since the memory can “move” during execution.

Notation 2. Welet ( = « | a~ be a directed action and p ranges over memories
and memory pairs. We write m € p if g = m or if p = {m,m’}, and, accordingly,
mi1 Nme =m if m € m; and m € mo. Finally, given two memories my, mo, we

write mq C mo if 3m such that m - m; = mo.

Definition 22 (Replacement operator). The operation @ is defined as follows:

(R|S)maam: = Rmzam, |Smaem,
(B\@)m>am, = (Rmyam,)\a (If @ & my)
((*,0,Q) - m1 > P)poyam, = (Mo, a,Q) -my > P
Rip,om, = R (In all the remaining cases)
The forward and backward LTS for RCCS, that we denote LSy ﬂ/v:vc\%,
is given in[Fig. 5} In RCCS, the loop lemma |23} Lemme 2.2.1] also holds, and

we write ¢t~ the reverse of ¢.

5.2.2. Definitions of Concurrencies

Concurrency on Coinitial Transitions. We first remind of the original definition

of concurrency on coinitial transitions.

Definition 23 (Concurrency on coinitial transitions in RCCS [I7], Definition
7]). Let t1 = R % S;and ty = R LEESN S> be two coinitial transitions, t;

and o are said to be concurrent if uy N pg = 0, and we write ¢, —9 to.

Concurrency on Composable Transitions. We now remind of the original defini-

tion of concurrency on composable transitions.

Definition 24 (Precedence [23, Definition 3.1.1]). Given t = R % R and

¥ =R "% R two composable transitions, we say that ¢ precedes t' if
e t and ¢’ are forward, and Im € pu,Im’ € p/, and m = m/,

e ¢t and ¢’ are backward, and Im € u,Im’ € ¢/, and m’ C m.

48



act.
(m>AP+Q) 2% (5, A, Q) -m> P

act.”

<*,/\,Q)-m>va>m>(/\-P+Q)

R mi:A R, S mai S,

syn.
mi1,Mm2:T / ’
R | S mo@Qm;y ‘ Sml@mg
m1 AT , ma i A ’
R~ Ay R S ARy S syn

mi,mo T

Rmz@ml | Sml@mg VAN R/ ‘ S/

R R R™ R (¢{aaa,a )}
: par. res.
R|S“S RS R\a % R'\a

Ri=R RYS R R=R]

Ry %% R

Figure 5: Rules of the labeled transition system (LTS) for RCCS
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Definition 25 (Concurrency on composable transitions in RCCS). Two com-
posable transitions ¢, ¢’ with the same direction are concurrent if t does not

precede t’, and we write ¢ —2 ¢'.

5.2.3. On Transitions of Opposite Directions

Neither —¢ nor —¢ account for transitions of opposite directions. For —?¢ it
is obvious: composable transitions of opposite directions are neither concurrent
nor not concurrent, since precedence is not defined on those transitions.

For ¢, even if the original definition does not make any explicit requirement
about the direction of the transitions, and could be read as valid if ¢; and t5 had

opposite directions, it actually requires ¢ and t5 to be both forward or backward.

Indeed, for the two transitions

e, Q) () > (0.P+Q) Z2Y (b Q) ka, @) () P

to: (x,0,Q") - ) > (P +Q) Yilos () > a.(b.P + Q) + Q'

we have t1 —9 ¢, since (x,a, Q")-()N() = 0. However, the intuitive understanding
of concurrency (as well as the sideways diamonds) shows that those two transitions
should actually not be concurrent.

On top of appearing incomplete, those definitions further prevents checking

the validity of |(Correctness of Concurrencies)l Given two composable transitions

t1 and %9, it makes no sense to wonder whether
tq \/2 to <— tl_ \/? to.

Indeed, since there will be transitions of opposite directions on one side of the

implication, and since both —¢ and —§ requires both transitions to have the

same direction, one cannot compare the two relations.

5.8. Defining Proved RCCS

We define a proved declension of RCCS exactly like we did for CCSK in
by enriching the labels and letting the proved LTS propagate them.

Many optimizations could be done (ignoring direction, replacing memories with
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identifiers as frequently done in subsequent versions of RCCS, etc.), but we
focus on providing a simple definition, to ease the proof burden in
when we prove that enriched labels give a notion of concurrency equivalent to
the previous ones (when both are applicable).

We begin by defining the enhanced labels and the proved LTS first. Note
that since action and prefixes are mixed, and since sum are not “preserved” as
main operator after a reduction, as opposed to CCSK, there is no need for the

+1, and +g annotations anymore, hence we can simplify [Definition 3l as follows:

Definition 26 (Enhanced labels (bis)). Let v, v1 and vs range over strings in

{IL, |r}*, enhanced labels are defined as

0 :=v¢ || v¢ || v{|LviC, [RU20)
And we let
£(v¢) =¢ (({lLvray, [rv2@)) =7
t(v¢) =¢ (((JLvra™, [rvaa™)) =77

In this particular case, since the congruence relation is needed because of

fhe |(Distribution of Memory)| rule, we keep it, but remove the |[(Composition|

[Symmetry )| and |(Composition Associativity)| rules, as they do not fare well with

proved labels (Sect. ). As a consequence, we also need to replace the par. rule

with two rules, par.;, and par.r, as presented in And, from now on,

we will assume that the structural congruence used by both systems does not

contain [(Composition Symmetry)| nor [(Composition Associativity)|

Definition 27 (Dependency relation). The dependency relation on enhanced

keyed labels is the symmetric closure of the axioms of

It should be noted that this relation is the same as in the forward-only CCS,
further illustrating how resilient the proved label technique is. Transitions, traces
and concurrencies are defined as in Definitions [7] [[I] and [I2]

Exactly like for CCSK with [Cemma 2} it is easy to prove the adequacy of

the proved system w.r.t. the original one:
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act. R R

m: par.y,
(mDAP+Q)—)<*7>‘7Q>m>P R|S L R/|S

act.” g o o

m: AT par.r
(*\Q) -mp> P~ m> (M- P+Q) R|Su.\R0 RIS

R R 0(0) ¢ {a,a,a",a"}

res.
w0 /
R\a —» R'\a
HAWN {OR N
ROUIL R s RS g syn
mi,ma:(|LOL, | RORN) , ’
R | S mo@m; | m1Qmo

RIS R 5 g

my, ma : {|LOLAT, [RORN™
NV VVVVVV VWV VIV VYV VVV VY

>R/‘Sl

syn.

ng@ml | Sm1@m2

Ri=R R*S R R=R,
R % R

Figure 6: Rules of the proved labeled transition system (LTS) for RCCS

Action Palallel Group
Cx@ |R9X|R9/ 1f9><9’
(=0 L0 =< [L0" if 0 =<6

<9L70R> =< 0 if 3d S.t.gd =< 0

Figure 7: Dependency Relation on Enhanced Keyed Labels
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Lemma 14 (Adequacy of the proved labeled transition system). The transition
R % S can be derived using [Fig_3 iff R 18y S with £(0) = ¢ can be derived
using [Fig )

Proof. This is obvious, and we write f the mapping from ( to 6. O

5.4. Adequacies of RCCS’s Concurrencies
We now prove that the original two definitions of concurrency coincide with

the one resulting from adopting proved labels for RCCS.

5.4.1. On Coinitial Traces
Theorem 5. For all coinitial transitions with the same directiont; = R M—Cl> S
and ty = R 225 85ty 0 by iff ~(£(G1) = f(G2))-

Proof. We start by proving the left-to-right direction first, by case on the structure
of R:

m > P Then we proceed by induction on the size of P, and by case on the

structure of P:

0 This is vacuously true, since 0 cannot reduce.

> @;.P; Then all the transitions from m > P are of the form
mDZai.PZ- Y -m > P

But since m N'm # @, any two such transitions are not pairwise concurrent.

Since we always have that a; x 6, we have that f({1) < f((2).

P|@Q Then m > P|Q cannot reduce, without using |(Distribution of Memory )|

to become of the form R;|Rs, that we study next.

R;|R2 Then, every transition that R;|Ry can perform has for memory either a
pair, or a memory prefixed by (1) or by (2). We proceed by case on p; and
M2t
If 1y and po are prefixed by the same number Then since |40 x |40 if

0 < #', we can proceed by induction.
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If ;11 and po are prefixed by different numbers Then the transitions are

concurrent, and since |,0 = |r8’ does not hold, we are done with this case.

If p11 or uo is a pair Then we simply reason on its elements, exactly like
the rules of concerned with tuples (fy,,0r) decompose them to assess

whenever they are dependent of other labels.
(a)R Then this is immediate by induction.

For the converse direction, it suffices to observe the rules of [Fig. 4 and to note
that all the rules imply that the memories of the process initiating the two
transitions must have a non-empty intersection, hence providing the desired

result. ]

5.4.2. On Composable Transitions
Using the following lemma, it is enough to prove the adequacy of our notion

for one direction only:

Lemma 15. For all composable forward transitions tq, ta,

(t1 precedes ta <= f((1) < f((2)) < (t5 precedest] <= [f(C2) < f((1))
Proof. This is immediate by symmetry of Definitions [24] and O

Lemma 16. For all composable forward transitions, t1 = R LSS S1 and

ty = Sy 2225 Sty 0ty iff <(F(C) x F(G)).

Proof. We need to prove that ¢, precedes to iff f({1) < f(¢2). We reason by case

on the last rule of the derivation for ¢1:

act. Then, letting p = m, ps = (5, A\, Q) - m for some \ and @, and hence

my C mgy and t; precedes to. That f(¢1) < f(¢2) is also immediate.

par.;, Then R = Ry|Ra, S1 = T1|Ts, So = T3|Ty and we proceed by case on the
last rule in the derivation of t5:
p1:C1 p2:C2

par.;, Then we proceeds by induction on the trace Ry —— T3 —= T5.
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par.g Then ¢, cannot precede to, and f((1) > f((2).

syn. Then t; precedes to (resp. f(¢1) < f((2)) iff ] precedes ¢} (resp. f((1) x

f($5)) in ti5t5 : Ry N Haita, T3, and we proceed by induction
syn. and par.;, Those two cases are similar to the previous one.
res. and = are immediate by induction hypothesis. O

Theorem 6. For all different composable transitions with the same direction
tl =R ﬂ) Sl and t2 = Sl 'u2—C2) SQ, tl vf tg Zﬁ ﬁ(f(gl) = f(CQ)) iftl and
ta are forward, or if =(f(C2) > f(¢1)) if t1 and t2 are backward.

Proof. This is an immediate consequence of Lemmas [I5] and [I6] O

5.5. Reversible and Identified CCS

We refer to the original paper [22] for the precise definition of (this declension
of) RCCS, and only recall the strict minimum below. In a nutshell, this calculus
endows RCCS processes with a seed [22], Definition 4], which is an identifier
patterns [22, Definition 1| that dynamically generates the identifiers for each
transition, and that can get split [22] Definition 3] between threads if needed.
Being able to know ahead of time the identifier generated for each transition was
leveraged to offer an original definition of concurrency, where identifiers need
to be compatible [22, Definition 12]—written i; L is—or not downstream |22
Definition 19], both conditions essentially stating that the transition involved
different threads. We keep the development rather informal not to burden the
reader, but the proofs can be worked out in details based on the sketches we
provide below.

This calculus also explored different types of sums, but we restrict ourselves
to the “classical one”, denoted + as usual.

Definition 28 (Concurrency). Two different coinitial transitions
a[i1] as|iz]

ti:somp> P —»siomi>P andig:som>P ——%syomg > Py

are concurrent iff
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e t; and ty are forward transitions and 7 L is;

e t; is a forward and ¢, is a backward transition and i; (or i} and % if

i1 = i} ®i?) is not downstream of ip,, (or ip;, nor ip;,);
e {1 and ty are backward transitions.

It is easy to similarly adjust the system to use proved labels, and then to
prove its adequacy in the sense of [Lemma. 14}—we will also write f the mapping
from labels to proved labels. Note that the dependency relation is defined as
with RCCS here: since the sum operator is not preserved, it is not needed to

account for it in the proved label.

Theorem 7. For all so P il—[li]» sjo P andso P 12—[13]» soo Py, iy 1 iy are

concurrent iff f(aq) =< f(ag) does not hold.

Proof. For forward transition, it is not difficult to observe that, given two
different coinitial transitions so P M s;joP, andso P M) So 0 Py, i1 L ig

iff =(f(i1: 1) < fliz : ag)):

e both transitions cannot come from reducing the very same action, which

means that P must have a different operator at top level,

e if they result from the execution of the left- and right-hand-side of the same
sum operator, then they get assigned the same identifier, and since they
will both be labeled with actions, they will not be concurrent according to

both definitions,

e if they result from the execution of a multi-threaded process, then it is
easy to observe that the condition on the incompatibility of the identi-
fiers match the definition of dependencies, as transitions resulting from

synchronizations are concurrent iff their components are in both cases.

For transitions with opposite directions, the “downstream” condition essentially
ensures that the identifiers originate from different seeds, e.g., from different

threads. That this condition is equivalent to the inexistence of a dependency
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between proved labels on transitions of opposite direction is a direct, though
tedious, result of the unfolding of both definitions.

For backward transitions, it is immediate: any two backward transitions are
concurrent according to and we have this result as well for proved
labels, by adapting the proof for proved CCSK (Lemma 10) to this proved
identified RCCS. O

6. Structural Congruence and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety
of criteria, the diamonds being the starting point, and causal consistency being
arguably the most important for reversible systems. This section aims at briefly

presenting additional criteria.

Concurrency-Preserving Structural Congruences. “Denotationality” |10, Section
6] is a criteria stating that structural congruence should be preserved by the causal
semantics. Unfortunately, our system only vacuously meets this criteria—since
it does not possess a structural congruence. The “usual” structural congruence
is missing from all the proved transition systems [27) B3] 34, [38], or missing the
associativity and commutativity of the parallel composition |35 p. 242]. While
adding such a congruence would benefits the expressiveness, making it interact
nicely with the derived proof system and the reversible features [9, Section 4][39]

is a challenge we prefer to postpone.

Comparing With Concurrency Inspired by Reversible m-Calculus. It is possible
to restrict the definition of concurrency for reversible w-calculi extending CCSK
back to CCSK. We did it in [Sect. 5.1 for a particular line of work [I9], but it is
not the only one that can be the source of comparison. Indeed, a similar work
could have been done by restricting concurrency for e.g., reversible higher-order
m-calculus [40, Definition 9], reversible m-calculus [4I], Definition 4.1] or croll-
7 [42] Definition 1]. However, it seems more constructive to extend our definition

to a reversible m-calculus rather than proceeding the other way around.
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Optimality. The optimality criteria is the adequacy of the concurrency definitions
for the LTS and for the reduction semantics [41l, Theorem 5.6]. While this criteria
requires a reduction semantics and a notion of reduction context to be formally
proven, we believe it is easy to convince oneself that the gist of this property—the
fact that non-7-transitions are concurrent iff there exists a “closing” context in
which the resulting 7-transitions are still concurrent—holds in our system: as
concurrency on 7-transitions is defined in terms of concurrency of its elements
(e.g., (OR,0L) — (0%, 0%) iff 0} — 62 for d € {L,R}), this criteria is obtained “for

free”.

7. Conclusion and Perspectives

We believe our proposal to be not only elegant, but also extremely resilient
and easy to work with. It should be stressed that it does not require to observe
the directions, but also ignore keys or identifiers, that should in our opinion
only be technical annotations disallowing processes that have been synchronized
to backtrack independently. We had previously defended that identifier should
be considered only up to isomorphisms [I1, p. 13], or explicitly generated by a
built-in mechanism [22, p. 152], and re-inforce this point of view here. From
there, much can be done. A first interesting line of work would be to compare
our syntactical definition with the semantical definition of concurrency in models
of RCCS [111 [13| 24] 43] and CCSK [7, [14, 25]. Other syntactical formulations
of the same concurrency relation are also being investigated [44]. Of course, as
we already mentioned, extending this definition to reversible m-calculi, taking
inspiration from e.g., the latest development in forward-only 7 [38], would allow
to re-inforce the interest and solidity of this technique.

Another interesting track would be to consider infinite extensions of CCSK,
since infinite behaviors in the presence of reversibility is not well-understood nor
studied: an attempt to extend algebras of communicating processes [45], including
recursion, seems to have been unsuccessful [46]. A possible approach would be to

define recursion and iteration in CCSK, to extend our definition of concurrency
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to those infinite behaviorsﬂ and to attempt to reconstruct the separation results
from the forward-only paradigm [49]. Whether finer, “reversible”, equivalences
can preserve this distinction despite the greater flexibility provided by backward
transitions is an open problem. Another interesting point is the study of
infinite behaviors that duplicate past events, including their keys or memories:
whether this formalism could preserve causal consistency, or what benefits there
would be in tinkering this property, is also an open question that we started to
investigate [48].

Last but not least, these last investigations would require to define and under-
stand relevant properties, or metrics, for reversible systems. In the forward-only
world, termination or convergence were used to compare infinite behaviors [49],
and additional criteria were introduced to study causal semantics [10]. Those
properties may or may not be suited for reversible systems, but it is difficult to
decide as they sometimes even lack a definition. This could help in solving the
more general question of deciding what it is that we want to observe and assess

when evaluating reversible, concurrent systems [50, [51].
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Appendix A. A Note on the Definitions of Dependency

The definition of the dependency relation presented in is different
from the definition we used previously [28, [29]. We argue that building-in its
symmetry makes it simpler to manipulate, and briefly show below how both

15 definitions are equivalent.

Definition 29 (Original dependency relation). The original dependency relation

< on enhanced keyed labels is induced by the axioms of
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Lemma 17. For 0y, 65, 01 x 0 <= (01 < 63) or (62 < 0;).

Proof. The proof goes by induction on the length of #; and 6. All the cases are
immediate except maybe for 61 = (0, 0r), 62 = (0, 0). The key to this case is
to notice that, following the definition of enhanced keyed labels , it
must be the case that there exists 0y, Or, éL and 9;» such that, for d € {L, R},

0 = |d9d and 0, = |d@;. From there, the proof for this case follows simply:

01 < 0y <= (|nOL, |rfR) > <|L9L, |Ré;q>

~ ~ ~l
(Lo, |[rROR) = |LO;, or

< R . N
(ILbL, [rOR) = |ROR
~ ~l
|L9L < |L9L or
~ ~l
|R9R > |L9L or
<
- ~/
|L9L < |R0R or
~ ~l
IROR > [ROR
~ N
|L9L < |L9L or .
— since |g# > |10 never holds

A Al
[ROR < [ROR

And by induction hypothesis, |déd x |dé; — (|déd < |dé:j) or (‘dé; < |déd) and

this concludes this case. O
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