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AbstrAct

With the advent of increasingly large smart-city and loT deployments, meeting communication requirements in terms of throughput and
delay becomes more and more challenging. Network performance analyses must be carefully addressed, usually through simulation soft-
ware. Because of the large-scale nature of the |oT, traditional simulation methods do not scale well. Thus, in this article, we present two
original contributions that provide scalability to network performance simulations. First, we introduce the concept of multi-layered analysis
for large-scale networks and, second, we provide a method to quickly associate propagation measures to user equipment. The proposed
concept is based on the de-coupling of the access and the user layer and the introduction of a so-called grid layer created by pre-computing
propagation measures in the considered area. These propagation data are then ready to be used in the network performance simulation. To
show the eficacy of the proposed approach, several realistic use cases are analyzed along with a comparison of the time needed to simu-
late with and without our grid-based methodology. Numerical results show that a significant reduction of computational time is achieved by
employing our approach, especially in large-scale networks. Experiments were also performed to study the trade-off between grid granulari-
ty, RSS precision errors and computational time, showing that the method can be flexibly adapted to the planners’ requests.

Introduction

Due to the rising number of people moving to large cities, the
provisioning of services and resources, such as health, trans-
portation, parking, and power, is becoming increasingly com-
plex. To cope with this intricacy, cities are becoming smart and
deploying a vast number of connected devices, such as smart
meters, sensors, and actuators. The interconnection of those
devices is commonly referred to as the Internet of Things (loT).
Cellular networks, such as LTE and 5G, are a favored solution
due to their existing infrastructure, large bandwidth availability,
and quasi-ubiquitous coverage. However, the massive introduc-
tion of smart devices can degrade the network performance
and, consequently, not only jeopardize the quality of service
experienced by human users but also the functions of the very
smart systems they are supposed to support.

As a consequence, networks must be carefully calibrated
for this new massive traffic. Therefore, network performance
studies are needed to
e Characterize the type of trafic generated by smart devices
e Analyze their impact on the cellular networks supporting

large-scale smart systems
e Study the impact on the applications using the network.

The most common approaches to analyze network perfor-
mance are based on mathematical models, simulation software,
or trafic traces provided by cellular operators [1].

The performance evaluation of 0T networks is a fairly recent

topic as we can see in the following articles. Reference [2] imple-
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ments the main functionalities of enhanced machine-type com-
munications (eMTC) and narrow-band loT (NB-loT) in the NS-3
simulator [3]. Using energy consumption, latency, and scalability
as criteria, the performance of both systems is compared. Ref-
erence [4] introduces a framework to simplify and systematize
the evaluation of the performance of an loT communication
technology based on NS-3 simulation. This framework includes
the definition of a scenario and its Key Performance Indicators
(KPIs) and their evaluation. Although these studies simulate more
than a thousand devices, they are still not scalable enough for
large-scale applications throughout a city. A study of large-scale
loT networks using stochastic geometry tools has recently been
published in [5]. The authors model the spatial distribution of
homogeneous |oT devices and calculate the delay bound of
transmissions for certain exceptional cases. Despite this, there
is still a large gap between the performance in the real world
and approximated theoretical expressions. In addition, stochas-
tic geometry studies often ignore the mathematical model of
dynamic processes such as mobility and handover.

To understand why it is so dificult to obtain realistic network
level KPIs from very large-scale simulations we need to explore
how propagation is treated. Indeed, the first step in performance
studies consists in characterizing the propagation between each
User Equipment (UE) and its serving antenna. To do so accurately,
geographical data on the position of both 10T devices and net-
work elements are needed. There exists a large body of literature
that has proposed a comprehensive variety of propagation mod-
els to predict and characterize the quality of the signals transmit-
ted from the UEs to the base stations and vice versa. A popular
approach followed in state-of-the-art propagation models relies on
ray-tracing-based techniques [6]. However, due to their complexity,
these techniques cannot be easily scaled to the extremely large
size of smart-city networks. Hence, numerous empirical models
employ deterministic expressions. For instance, popular propaga-
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tion models are COST-231 [7] and 3GPP TR 38.901 [8], which are
designed for different environments and scenarios. However, the
complexity of these models makes it impractical to compute them
online because they would slow down the network simulation and
undermine its scalability. Even though most of these computa-
tions can be computed offline and then used in the simulation, this
would not be suficient to reduce complexity. These propagation
models rely on the position of UEs and base stations to operate,
and changes in the network topology (such as in the presence of
a base station failure) or the user placement (such as in a mobility
scenario) would entail the need to re-compute the propagation
between (some or all) UEs and their serving base stations.

This effect appears evident in some of the most popular public
simulators of the data plane of the Radio Access Network (RAN)
and Evolved Packet Core (EPC), such as Simu5G [9], LTE-Sim
[10], and NS-3 [3]. Even though details on how these simulators
integrate the propagation computations have not been the object
of publications, their public nature allowed us to dive into the
code and realize that to update the user’s received signal or the
interference imposed on the user, the calculations related to the
channel model are performed each time there is a change and
for every single user and antenna. Comparative analysis of running
time (using NS-3) for some propagation models has been present-
ed in [11]. A key result that was found in this work is that the sim-
ulation computational complexity grows quickly with the number
of users and base stations. Furthermore, in [12], the computational
time for the different propagation models has been illustrated. It
has been shown that the computation of path loss models takes
about 5 ps to 10 ps per packet in NS-3 simulator. One possible
solution could be to reduce the rate of path loss updates for every
UE by assuming static (or slowly varying) scenarios. However, this
would entail the storage of path loss information for every user in
the system, which is impractical in scenarios with high user density
such as in smart cities. As a result, it is too dificult for these tools
to simulate the thousands of devices and hundreds of base sta-
tions that are needed for large-scale |oT urban systems.

To overcome these issues, the object of this article is to pres-
ent a new methodology to study and characterize loT traffic
transported by a city-wide cellular infrastructure that involves a
significant complexity reduction for the wireless channel model-
ling. The proposed methodology decouples the system in layers
and makes use of a middle layer (between the network and the
users), based on the offline grid-based computation of the wire-
less channel propagation. This structure permits an extensive
use of parallel computing techniques thus reducing the compu-
tational time required to perform this task. Moreover, we also
show how the results of this computation can be quickly associ-
ated to the large number of nodes in the user layer, exploiting
known geographical properties to reduce the computational
time. The modular structure of this methodology easily permits
an integration with complex mathematical analysis models and
with off-the-shelf network simulators.

Although its main advantage is the possibility to perform a
considerable part of the computations offline, our methodol-
ogy is well-suited for dynamic scenarios with local changes in
the topology: examples of such scenarios, such as the failure
of base stations or the mobility of users, have an impact on a
limited geographical area within the area of interest. Therefore,
the problem is circumscribed to a subset of the rectangles in
the grid (hereafter referred to as grid points) thus requiring an
online computation only on the affected geographic areas. A
quick and computationally eficient method to associate UEs to
grid points is also presented. The possibility to quickly retrieve
propagation data and use them in simulation runtime is a key
feature of the proposed methodology.

It is important to highlight that the proposed methodology
purely focuses on large-scale propagation effects, such as path
loss. While small-scale propagation effects, such as frequen-
cy-selectivity (multi-path) and time-selectivity (Doppler), are
extremely important and can severely degrade the propagation

Figure 1 Layered architecture

of a wireless signal, they mainly occur over very short distances
(e.g., a fraction of a wavelength) and are not dependent on
the geographical location of users. In fact, these small-scale
phenomena are usually modelled by means of random distri-
butions. In this study, we consider advanced cellular networks
deployed over extended geographical areas, such as a smart
city, with hundreds of thousands of base stations and users:
therefore, accounting for small-scale effects in such scenarios
would be impractical from a computational standpoint.

The remainder of this article is organized as follows. The
overall layer-based architecture of our system is presented:
details on the network access, user, and grid-based layers as
well as the propagation characterization method and the net-
work analytics component are included in dedicated subsec-
tions. A discussion on realistic use cases and numerical results
on the computational eficiency of our approach are provided.
Concluding remarks are drawn.

SysteM ModellinG

|ayered Architecture

The basic architecture of the considered system is illustrated in
Fig. 1, where it is possible to notice the 3 layers our analysis is
based on. At the top of the figure we have the User layer. In this
work, we predominantly focus on loT devices but the analysis
can be extended to other type of devices. This layer, as shown in
the figure, contains all the systems that would make up a smart
city, such as houses, smart buildings, street and traffic lights as
well as other elements that may produce telecommunication traf-
fic that is captured by the telco infrastructure (car, buses, trains,
cameras, alarms, etc.). On the bottom we have the Network
Access layer. This layer contains the base stations and antennas
that are used to provide cellular connectivity to the users.

In classical simulation modelling, those two layers would be
considered together as the first step in a simulation would be to
evaluate the propagation between each user and a serving base
station. However, when studying the quality of signal propaga-
tion at a given user, one not only needs to consider the serving
base station, but also the neighbor base stations, as they gener-
ate disruptive interference. As a consequence, the complexity
of the propagation analysis grows with the number of users and
the number of antennas/base stations.

In our model, we introduce a grid-based layer, which is used
as a middle layer between the user and network access layers.
By way of this modelling detail, we can precompute the propa-
gation quality at each point of the grid and then simply associ-
ate users to the closest grid point. A flowchart of the proposed
methodology is illustrated in Fig. 2. The characteristics of each
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Figure 2. A flowchart of the proposed methodology.

i
step of the proposed grid-based methodology are presented in
the remainder of this section.

NetWork Access |Ayer
The first layer in the analysis is composed of all the network
elements that are used to provide radio access to UEs. In partic-
ular, we have a set B of base stations and the sets A of all the
antennas installed at base station i € B. In what follows, we will
solely focus on the antennas.

Network Nodes Placement: The first step in this layer con-
sists in the placement and characterization of the base stations
and antennas. To perform this operation, we used real data
from [13]. From this regularly updated database, it is possible to
retrieve the GPS location of all the base stations and antennas
installed in Canada as well as key features, such as the trans-
mitted power, the height, the carrier frequency, the orientation
and the tilt. These data are used to accurately characterize the
network access layer.

Network Generation: Based on the database, it is possible to
filter all the network elements that are operational within the area
of interest. These nodes are allocated along with their fegtures,
whigh willbe used to characterize the propagation in the grid.

Grid-baAsed layer

Grid Parameter Definition: As also illustrated in Fig. 1, a grid
is composed of a number of grid points. To create a grid we first
need to identify the latitude and longitude bounds of the geo-
graphical area under study given by the tuples (&« ,a ) and
(B, P ) respectively. Next, we have the grid granularity 9,
that represents how small should be the area of each rectangle
in the grid. Of course, this area depends on how finely we want
the propagation precision to be and it is closely dependent on
the type of antennas that are present in the study. The higher
the frequency, the higher the precision needed. For example,
a value of & = 4 entails that the generated grid is composed
by grid points placed at an angular distance of 10~4 degrees.
To compute the linear distance between two points on earth,
we need other information, such as latitude and longitude,
given the irregularities in earth surface, which is not a sphere.
However, using a spherical approximation, we can easily show
that the distance L (expressed in meters) between 2 points at
an angular distance of 107 degrees is given by the formula L
=1.119 - 1058 (assuming an Earth radius of 6.371 - 106 m).

Grid Generation: Once the size of the grid and the rectan-
gles are established, propagation models should be put in place
for every user in the grid. However, all the users inside a par-
ticular grid point are assumed to receive the same power, thatis
equivalent to the power received in a particular point of the
rectangle (the center or a corner). Because the grid rectangle
will have the lowest calculation granularity, we equate it to a
point and call it a grid point. In the subsections below, we will
provide more details on propagation modelling as well as the
UE and the grid association.

narios, such as 5G FR2 networks, where the signal quality can
considerably differ even at a short distance.
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Therefore, 0 = 5 yields gridpoints at a distance of Toughty L1
m whereas with 8 = 6 we can estimate 11.1 cm between the
centers of adjacent grid points. A larger grid granularity, despite
its increased complexity, is necessary in high-frequency sce-



propAGAtion ChArActerlZAtlon

Choice of A Propagation Model: The coverage area of a cell
depends on various factors such as the transmit power of the
base station, antenna directivity, antenna tilt, and path loss (includ-
ing characteristics of environment). As a result, the received signal
strength (RSS) from an antenna a € A to a grid point g € G, here-
after denoted with RSS , is defined as a function of the above
mentioned elements. For sake of simplicity, we can generally state
that RSS =f(d ,0 ), whered is the Euclidean distance
between antenna a and grid point g, 6  represents the angle
between the antenna direction 6 and the segment between a
and g. Finally g € Q is the chosen propagation model.

There are several well-known propagation models in the
literature that are specific for some type of environment and
level of frequency, such as COST-231 [7]. A recent popular
propagation model introduced for cellular networks is 3GPP TR
38.901 [8]. Different scenarios are considered for modeling var-
ious environments: RMa, UMa, UMi, Indoor, Backhaul, D2D/
V2V, etc. For each scenario, a set of equations that account for
features recreating the environment are considered, both in the
Line-of-Sight and Non-Line-of-Sight cases.

It is worth mentioning that our framework does not need to
function exclusively with propagation models. In fact, real mea-
surements could very well be incorporated in the grid assess-
ment: for instance, if a statistically significant sample of i real
measurements of the RSS in a given grid point g € G (denoted
by RSS (i) is available, the theoretical RSS value RSS  can be
replaced by the average of the sample E(RSS (i)).

Propagation Computation: The first objective of the pro-
posed propagation computation method, described in Algorithm
1, is to compute RSS , which represents the received signal

strength from antenna a at grid point g. In this algorithm, the
propagation model (Cost, Hata, 3GPP, ...), environment (urban,
rural, ...), the area of interest Z, receiver height, cutoff threshold y
and granularity 8 are considered as inputs. Given an antenna a
and a grid point, to limit the complexity of the algorithm, we
introduce the parameter y as the minimum signal strength for an
antenna to cover a grid point. The distance where RSS  equals vy
represents the maximum range of antenna g, i.e., A .

As described in Algorithm 1, the first step in the process is
to generate grid points g considering an area of interest Z and
a granularity 6. Afterwards, for each antenna a, we can calculate
the maximum range Aa depending on the chosen propagation
model g and the cutoff threshold y (in the direction of maximum
radiation strength). Then, for each point of the grid, we calculate
the distance d to the antennas in range. If the distance is less
than the maximum range of the antenna, we compute the angle
between the point and the BS. Next, we get the antenna gain
at the angle 6 using the antenna patterns, usually provided by
the antenna manufacturers. After that, we compute the path loss
between each point and the antennas based on the chosen propa-
gation model. Subsequently, we compute RSS Va € A, Vg € G.

Grid-Based Propagation Map: Once the values for RSS
are computed for all grid points and all antennas, we need to
create the lists & of serving antennas at each grid point g. A
toy example to illustrate the way to generate the list of serving
antennas & for all the grid points g € G is provided in Fig. 3.
This list, especially in crowded urban scenario, can be utter-
ly large because of the short distance between antennas. To
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reduce complexity, we have limited the size of the lists g to k
elements. These lists are sorted by decreasing values of RSS4q-
This computation completes the characterization of the grid-
based propagation map of the area of interest Z.

User |Ayer
After allocating the network, generating the grid, and character-
izing the propagation, the following step is to model the user
layer in Fig. 2. The two main operations are the UEs placement
and the UEs-grid association, described below.

UEs Placement: The location of UEs may be random, fixed or
pre-established, depending on the type of system and application.
For instance, if we assume smart-city sensors and actuators as
UEs, they will probably be located at the premises of some city
buildings, urban signs or urban furniture (trafic lights, pedestrian
crossings, city lights, cameras, etc.). UEs can also be mobile, with
a random mobility (i.e. trafic watches for joggers) or mobile with
pre-established mobility, such as buses or bicycles in a bicycle path.

UEs-Grid Association: The last step consists in associating
a UE to a grid point in the area of interest. The pre-computa-
tion of the lists & (as described earlier) permits retrieving the
antennas that can serve each UE as well as the quality of the
link (dependent on the RSS). This association needs to be per-
formed anytime a UE generates trafic as it is used to determine
the throughput, the delay and other network KPlIs. Thanks to
the way the granularity parameter 6 is defined, the association
of a UE u (with GPS coordinates lat and lon ) can be complet-ed
by simply rounding lat 3nd lon to & decimal places. This
operation permits to quickly identify the grid point g (to which
UE ,is mapped) and retrieve the list of serving antennas & . The
success of the proposed methodology lies in the fact that'it can
be applied to both static and dynamic scenarios. When UEs are
moving, the UEs-grid association needs to be updated more or
less frequently depending on the UEs speed and trajectories, on
the number and distance of antennas, and on the granularity.

NetWorK AnAlytlcs

Network Simulator: Once the user layer is completely
defined and the grid-based mapping is put in place, we haveall
the necessary elements to perform with ease any large-scale
simulation. Different loT applications can be assigned to differ-
ent UEs and we can play with the intensity as well as with the
statistical behaviour of those applications to extract information
about a current system, or about “what-if” scenarios (failures,
extreme congestion, security attacks, etc.). Further details on
the simulator used in this research are provided earlier.

Performance Analysis: The simulation produces very detailed
KPls related to the networking performance of the application
for all the scenarios that can be considered. These KPIs can then
be used for data analysis and Machine Learning (ML) methods
both for situational detection as well as for event forecasting. It
is worth mentioning that the networking data do not only pro-
vide information about the network but, with smart modelling,
can also indicate what is happening with the system (smart-grid,
tele-medicine, etc.) that is relying on the infrastructure.

Use CAses And NuMerlcAl results

To show the effectiveness and usefulness of the proposed
methodology, in what follows, we compare the execution time
of the same network simulation software with or without the
grid-based middle layer. We have also devised 3 real-world sce-
narios to present possible use cases for the proposed method.

PerforMAnce lot SIMulAtor
In this study, we used the Performance IoT Simulator (PloT),
which is designed to analyze the performance of large-scale
loT networks in smart cities [14, 15]. In particular, PloT permits
simulating the data plane of the LTE RAN and EPC using real
geographical data on the positions of both loT users and net-
work elements. PloT —available at http://www.piotsimulation.

Inputs:
eAntennasa € A
*Chosen propagation model g
e Cutoff threshold y
eGranularity &
e Area of interest Z: (imin %maxs Bmins Bmax)
eOther params (e.g., Environment, receiver height, and
transmitted power)
Outputs:
*Grid pointsg € G
*Vg € G, Va € A, RSS, 4 from antennaato g
*Vg € G, ordered list &; of antennas covering g
1: Initialization:
*Given 9, generate grid points g in area Z o
Vg e G, gg ={}
2: for all Antennas a € A do

3 Given g, find the maximum range A, of antenna a
4 for all Grid points g € G do

5 Calculate distance dg g

6: if dg g < Aq then

7 Compute the angle 0,4

8 Find antenna gain at 0,4

9 Compute RSS, 4 = fq (da,g, 04,0)
10: Add the pair (g, RSS, ) to &4
11: end if

12:  end for

13: end for

14: Sort &, by decreasing values of RSS, ,
ALGORITHM 1. Proposed grid-based Method.
Grid

Al A2
points g g - ’
2| |m2) [n2)| || |a] |as)
Antenna
w5 | [re] ] (] ][] ] e
L] L ] ] HiN

Figure 3. Toy example with 3 antennas (A1, A2, and A3) to
illustrate how lists of serving antennas &, are selected.

A3

com — also features grid-based calculations, random access,
packet generation, packet transmission, while providing users
with the possibility to simulate failures and user mobility. An
array of KPIs are available to better study the network perfor-
mance when using PloT.

SIMulAtlon results

We performed the simulation for an LTE cellular network in a
selected area of the city of Montreal. In the following scenari-
os, we considered an application with more than 330000 resi-
dential addresses in Montreal as UEs and an average density of
1000 users/kmZ2. Data on the location and on the characteristics
of the antennas and base stations are retrieved from [13]. For
our simulation, we selected the LTE base stations of a specific
provider in Montreal. We considered 5 different scenarios with
1,4,16,64,256 km? simulation areas, 10,24,47,95,221 base sta-
tions and 2000,8000,43000,119000,174000 users, respectively.

Only uplink trafic is considered in this scenario with packet
interarrival times exponentially distributed with mean A (ms).
The packet length is also exponentially distributed with mean
1000 bytes. The overall number of available resource blocks is

IEEE Internet of Things Magazine ¢ March 2023

137



600 T T !
—A— Includes gric-bascd calculations [AGPP-TUMa) A
——Includes grid-based calculations [COST-LIATA)
500 || Using offline grid-based information (3CGPP-UMa) | ]
E —&— Using ollline grid-based information (COST-IIATA}
g 400 +
51
5 300 |
4
2
g
2 200
3
4
€3]
100
e
1 4 16 64 256
Simulation area (km?)
(a)
500 i T !

—&— Includes urid-based caleulations (3GDPT-TMa)
—x—Includes grid-based calculations (COST-HATA)
400 | ——Using offline grid-based bformation [3GPT-TMa)
—&— Using offline gricd-based information [COST-HATA}

~
>

300

200

Execution time (minute)

100

1 4 16 64 256
Simulation area {km?)

(b)

Figure 4. Comparison of the execution time with/without
gridbased layer with different mean packet inter-arrival time A:
a)A=50ms;b)L=1s

50 (corresponding to a 10 MHz bandwidth). The simulator is
performed on an Intel(R) Core(TM) i7 CPU at 3.40 GHz, with
32 Gb of RAM, a Linux Red Hat 4.8.5 operating system. We
ran the smart city simulator for a duration of 10 seconds (equal to
10000 subframes of LTE).

First, we compute the coverage map of the simulation area
using our grid-based program. We assume the grid granularity
0 = 4 and minimum signal strength y = =100 dBm. Two prop-
agation models are considered: COST-HATA model and 3GPP
model in the UMa Scenario. Then, when the coverage informa-
tion is computed, we utilize it offline in the smart city simulator.

Figure 4 shows simulation results for high trafic (top figure)
and low traffic (bottom) with mean packet interarrival times
of A = 50 ms and A = 1 s, respectively. The figure depicts the
execution time (expressed in minutes) versus the simulated area
(km?2) in two cases:

1. When the middle layer is not used and the propagation char-
acterization is performed online

2. When the simulator uses the pre-computed grid-based data
to avoid excessive online computation. The two cases were
run each with the 3GPP-UMa and the COST-HATA propaga-
tion models.

Increasing the area of interest Z causes an increase in the com-

putation time with both techniques, however, in the case of

online propagation computation, we can observe a steeper

increase in the time required to complete the simulation. Note

that, for the pre-computed grid scenarios, the execution time

of the simulation using the 3GPP-UMa and the COST-HATA
models are almost identical. The modification of propagation
models only changes the users serving base station and the
scheduling of packets. Therefore there is just a small change on
the simulation time that cannot be seen in the figure.

It can be inferred that the introduction of the middle layer
has reduced the dependency of the computational time on the
number of network elements. This is a very important result
because it allows scaling up the size of the considered net-
works, which is a key feature when it comes to the analysis of
large-scale networks, such as in a smart city.

AccurAcy AnAlysls of the Grid-bAsed MethodoloGy

To verify the accuracy and performance of our proposed grid-
based approach, we have analyzed two parameters:

1. The Root Mean Square Error (RMSE) of the RSS observed in the

grid-based simulation with respect to a simulation without grid

2. The execution time to perform a grid-based simulation.

We have plotted these parameters in Fig. 5, where a straight
black curve represents the RSS-RMSE and a green dashed line
represents the execution time. The grid size was variable with the
granularity parameter 6 ranging from 2 to 6. We have conducted
simulations using the Cost-HATA propagation model in a 4 km?
area with 8000 users. Figure 5 illustrates the trade-off between
execution time and accuracy. On the one hand, when d is
increased, the RSS-RMSE decreases as the size of the grid points
becomes smaller. In particular, the RSS-RMSE tends to 0 when &
= 6. However, the execution time is significantly increased as the
RSS computation needs to be performed for a larger number of
grid points in the considered simulation area. On the other hand,
one can sacrifice accuracy to reduce the execution time. There-
fore, the user carrying out the grid-based simulation study can
select the best granularity parameter depending on the network
size and the accuracy and computation requirements.

Use CAses
In what follows, we study three different scenarios character-
ized by
1. Static UEs
2. Mobile UEs

3. Failures and congestion in the network.

Static Devices: This is the case in which all devices are fixed.
Each type of device may belong to a particular application (i.e
alarms, cameras, traffic lights, etc.) and, therefore, will create a
specific type of trafic. To characterize the trafic distribution (in
particular, packet arrivals and packet length), several mathe-
matical distributions can be used, such as Poisson, exponential,
log-normal, and Gaussian.

In this case, the propagation is characterized only once and
its results (i.e., RSS and & , see an earlier section for additional
details) are used tﬁ'?oughoﬁt the whole simulation process. It is
important to remark that the grid-based layer with embedded
information on the signal strength and the list of antennas cov-
ering each grid point can be used with several user scenarios in
the same area of interest. In fact, thanks to the proposed layered
approach, changes in the user layer have no impact on the propa-
gation characterization nor on the other layers of the architecture.

Mobile Devices: In the scenario with mobility, the 10T devices
can move at different speeds, such as cars, buses, pedestrians
smart watches, and bikes. This is one of the use cases that greatly
benefits from the adoption of a grid-based approach for the RSS
computation. In fact, as the mobile nodes move from one grid
point to another, it is quite easy to determine which base station
will serve them at any point in time simply by examining the list of
antennas associated to a grid point, as depicted in Fig. 6a.

Failures and Congestion: In the above use cases we
assumed that all elements were functional and correctly oper-
ating. However, both base stations and devices can fail, thus
degrading the performance of the |oT application and, in some
cases, triggering handovers. When a UE fails, nothing changes
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with respect to the previously described grid-based methodolo-
gy with the exception that there is a reduced load at the anten-na _RSS RMSE | }
and base station serving the failing UE.

On the other hand, when a base station fails, the performance
of all the devices that are associated with the failed base station
are degraded, triggering a handover to a different antenna or
base station. Dealing with this type of events is largely simplified
by the presence of the grid-based middle layer and by the list of
k best antennas for each grid point. In particular, the grid points
impacted by a failure can simply update their antenna list by
removing the failing network elements. Therefore, during the sim-
ulation, the occurrence of failures does not have a severe impact
on the user layer (as changes are managed by the grid-layer)
nor on the overall simulation performance. Note that a similar
situation can happen in case of congestion at a network ele- 0 ‘ ‘ 0
ment. An antenna or base station, following an increase in their 2 3 4
load (for instance, due to a special event such as a power failure 5
in the region, accidents or special circumstances) cannot be
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able to accommodate incoming trafic and can be treated in the Figure 5. RSS RMSE and execution time as a function of
simulator as failing nodes. Therefore, the proposed grid-based granularity.
approach is also useful to simulate such scenarios characterized

by network congestion as displayed in Fig. 6b.

3 [
Concluslon A1

With the advent of increasingly large IoT systems, the need for
scalability in the computational assessment of network perfor-

mance simulation is an important concern. This article presented a e
new simulation modelling concept that consists in the de-coupling ﬁ T
of the access and user layer and the creation of a middle layer

that allows the creation of a propagation middle-grid. This, along- D?ﬂ ﬁ
side with the methodology to quickly assess the UE propagation D?J (a) Before movement
information are fundamental contributions that allow a drastic

reduction in computational time and permit the effective simula-
tion performance evaluation of networks with hundreds of base

stations and several hundred thousands UEs. This type of scalability is D?]
currently not available with traditional simulation methods.

The article numerical results show that the offline computa- _
tion of the propagation, which is possible because of the grid- E
based middle layer, brings a large reduction in computational
time. This is a direct consequence of the fact that, under static
network conditions, there is no need to perform the computa- (b) After movement
tionally hungry propagation characterization online.

Given that a key element of the method is the grid gran- (a)
ularity, experiments were performed to assess the trade-offs
between granularity, propagation errors and computational
time, showing that the planner can adjust the method to her
desired propagation precision. On the one hand, the pre-com- D?D
putation of the path loss in the grid points does not seem to be ”?ﬂ
justified in scenarios with low density of users as it would
require the use of large grid points (low values of 3), as shown in p
Figure 5. On the other hand, it would bring about consid- ‘%
erable advantages in terms of computation and scalability for D?]
large-scale scenarios with hundreds of thousands of users and (a) Before failure
network elements.

Moreover, the novel methodology is highly flexible and can
be used with different datasets, different propagation models, as
well as with any network simulator tool. It also proved useful when D?]
considering scenarios characterized by node mobility or by the
presence of failures and congestion in the network. Future studies D?D
may focus on the integration of small-scale fading effects, on the
extension of the approach to other type of wireless networks, such
as mesh networks, and on the study of hybrid grids with variable
density to accommodate the simulation of different areas with a
heterogeneous distribution of users and network elements.
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(b) After failure

(b)
AddlitlonAl InforMAtion
Please refer to http://www.piotsimulation.com for more infor- Figure 6. Some of the proposed use cases to test the grid-based
mation about our loT simulator. Also, more information about methodology: a) use case 2: mobile UEs; b) use case 3:

residential addresses in Montreal can be found at https://don- failures and congestions.
nees.montreal.ca.
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