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Abstract: Clinical and translational science has reached an inflection point in the breadth and 
diversity of available data and the potential impact of such data to improve human health and 
well-being. Yet, the data are often siloed, disorganized, and not broadly accessible due to 
discipline-specific differences in terminology and representation. To address these challenges, 
the Biomedical Data Translator Consortium developed and tested a pilot knowledge graph–
based ‘Translator’ system capable of integrating existing biomedical data sets and ‘translating’ 
those data into insights intended to augment human reasoning and accelerate translational 
science. Having demonstrated feasibility of the Translator system, the Translator program has 
since moved into development, and the Translator Consortium has made significant progress in 
the research, design, and implementation of an operational system. Herein, we describe the 
current system’s architecture, performance, and quality of results. We apply Translator to 
several real-world use cases developed in collaboration with subject-matter experts. Finally, we 
discuss the scientific and technical features of Translator and compare those features to other 
state-of-the-art biomedical graph-based question-answering systems.  

Introduction 
The breadth and diversity of biomedical data available today hold great promise in the 
application of such data into actionable outcomes aimed at accelerating translational science 
and ultimately improving human health and well-being. Indeed, advancements in computing and 
storage capabilities have fostered a wealth of large datasets across clinical and translational 



domains. Translational scientists now have unprecedented access to data and knowledge on 
genes, biological pathways, chemicals, metabolites, drugs, diseases, environmental exposures, 
clinical healthcare records, and more. Yet, the inherent power of the available data has not been 
fully harnessed due to long-recognized challenges related to the compartmentalization of data 
into separate domains, the lack of widely adopted standards or the adoption of standards that 
are domain-specific, and non-compliance with the principles of findability, accessibility, 
interoperability, and reusability (FAIR) 1.  
 
The Biomedical Data Translator program (‘Translator program’) was launched in Fall 2016 by 
the National Center for Advancing Translational Sciences (NCATS) in an effort to overcome the 
many challenges that have long hindered translational science. The vision of the Translator 
program is to augment human reasoning and accelerate scientific discovery “through an 
informatics platform that enables interrogation of relationships across the full spectrum of data 
types” 2. To achieve this goal, NCATS rapidly and adeptly established a diverse community of 
nearly 200 basic and clinical scientists, informaticians, ontologists, software developers, and 
practicing clinicians distributed over 11 teams and 28 institutions to form the Biomedical Data 
Translator Consortium (‘Translator Consortium’). The Translator Consortium adheres to several 
core principles that have allowed the program to make considerable progress toward a shared 
vision: namely, team science; a bottom-up management approach; and open-source 
community-contributed software development.  
 
The Translator Consortium last reported on the program in two 2019 publications 3,4. The aim of 
this review is to provide an update on the Translator program. We first review approaches for 
knowledge representation in translational science. We then describe the technical solution that 
the Translator program has converged on. We demonstrate real-world use-case applications of 
the prototype Translator system (‘Translator’). Finally, we end with a discussion of next steps 
and a comparison between Translator and similar systems. 

Knowledge Representation in Translational Science 

‘Knowledge’ vs ‘Data’ 
The distinction between ‘knowledge’ and ‘data’ is most often captured as the data-to-
information-to-knowledge-to-wisdom transformation or DIKW pyramid 5. While the origins of this 
hierarchical representation model are uncertain, and other knowledge representations exist 6, 
the DIKW framework has been widely used in fields like information science, communications 
science, and library science. Within this hierarchical framework, data is viewed as abundant and 
characterized as discrete objective facts or observations; information is considered to be 
assertions derived from data and intended to provide interpretation of the data; knowledge is 
viewed as generally accepted, universal assertions derived from the accumulation of 
information; and wisdom is considered to be the most abstract layer of understanding derived 
from assertions and insights into acquired knowledge 7. 

Approaches for Knowledge Representation 
Application of the conceptual DIKW framework has focused primarily on knowledge discovery, 
or the systematic process whereby observations or data are organized and interpreted into 
information that is then scrutinized or tested in the context of existing knowledge, with any 
subsequent assertions disseminated for peer consensus and adjudication before being 
accepted as new knowledge. Approaches for knowledge discovery date back to ancient times 
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and form the foundation of the scientific method 8. Approaches for knowledge representation 
likewise date back to ancient times 8. Early forms of modern peer-reviewed publication 
represent one approach to knowledge representation that remains in use today.  

Knowledge Graphs 
In recent years, ‘knowledge graphs’ (KGs) have become a common approach for knowledge 
representation in a variety of fields 9,10. In a KG, entities or data types are represented as nodes 
and connected to each other by way of edges with predicates that describe the relationship 
between entities. A ‘schema’ is used to constrain the KG by specifying how knowledge can be 
represented; as such, it provides a framework for validating specific instances of knowledge 
representation through rules that dictate the syntax and semantics. KGs allow users to pose 
questions that can then be translated into query graphs and applied to identify subgraphs within 
the KG that match the general structure of the query graph, thereby producing answers to user 
queries and generating new knowledge 11. KGs have had successful applications, with Google’s 
KG 10 perhaps the most widely known. 

The Translator Solution 
The Translator Consortium has adopted a federated KG-based approach for biomedical 
knowledge representation and discovery (Figure 1). 
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Figure 1. Overview of the Translator Architecture. Note that while the high-level architecture 
depicted in the figure is accurate, certain components may deviate slightly from the architecture in 
their approach to implementation. SRI = Standards and Reference Implementation; TRAPI = 
Translator Reasoner Application Programming Interface. (Graphic prepared by Kelsey Urgo.) 
 

Translator comprises four main components: Knowledge Providers (KPs); Autonomous Relay 
Agents (ARAs); an Autonomous Relay System (ARS); and a Standards and Reference 
Implementation Component (SRI). 
 
The objective of KPs is to contribute domain-specific, high-value information abstracted from 
one or more underlying ‘knowledge sources’, which may be raw data as defined by the DIKW 
framework or information that has been abstracted from the data. ARAs build upon the 
knowledge contributed by KPs by way of reasoning and inference and in response to user-
defined queries. In addition, ARAs may independently expose information abstracted from data. 
The ARS functions as a central relay station between ARAs and broadcasts user queries to the 



ARAs. The SRI Services are responsible for the development, adoption, and implementation of 
the standards needed to achieve the overall goals of the Translator Consortium. 
 
Translator leverages integrated data from over 250 knowledge sources, each exposed via open 
application programming interfaces (APIs). The knowledge sources include, among others, 
highly curated biomedical databases such as Comparative Toxicogenomics Database 12 and 
ontologies such as Monarch Disease Ontology 13.  
 
In addition, Translator openly exposes data derived from several electronic health record (EHR) 
systems, clinical registries, and clinical studies, from which future medical knowledge can be 
generated: Columbia University Irving Medical Center; UNC Health; the non-profit Providence 
Health System; the drug-induced liver injury (DILI) Network; the Personalized Environment and 
Genes Study within the National Institute of Environmental Health Sciences; the Institute for 
System Biology’s Wellness cohort; and select cancer cohorts from within The Cancer Genome 
Atlas. Of importance, the Translator clinical KPs do not expose raw clinical data, but rather 
aggregated or semi-aggregated data and statistical associations or machine learning predictions 
derived from clinical data, in full compliance with all federal and institutional regulations 14. 
 
The Translator Consortium has adopted several tools and approaches to support 
standardization, harmonization, and interoperability across the diverse Translator system. First, 
all Translator services are accessible via APIs. The APIs are standardized in their metadata, 
structure, and operations using the Translator Reasoner API standard (TRAPI) 15, which defines 
a standard HTTP protocol for transmitting queries and receiving answers, with both structured 
as graphs. Second, all Translator services are registered in the SmartAPI registry 16, thus 
adhering to FAIR principles. Third, the open-source Biolink Model 17–20 provides an upper-level 
graph-oriented data model universal schema that facilitates semantic harmonization and 
reasoning across disparate knowledge sources.  
 
With these standards in place, users can query across the numerous data sources that are 
accessible via the federated Translator system. To demonstrate, we provide a simple example. 
Suppose a user asks what chemical entities treat chronic pain? The user is thus asking about 
approved drugs and other chemicals that may treat chronic pain. To answer this question, the 
user question must first be translated into a TRAPI-compliant directed query graph, structured in 
JSON format, with Biolink Model node and edge types specified and a compact unique resource 
identifiers (CURIE) used to constrain one node (Figure 2). 
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Figure 2. An example of a natural language question translated into a TRAPI directed query graph in 
JSON format. (a) the natural language question: what chemical entity(ies) treats chronic pain?. (b) the 
natural language question represented as an object-predicate-subject ‘triple’. (c) the TRAPI query that 
was executed by Translator. 
 
In this query, ‘chronic pain’ is specified as a biolink:Disease type node ‘n0’ with the CURIE 
‘HP:0012532’, which is defined by the Human Phenotype Ontology as ‘chronic pain’.  A second 
node n1 is specified only as a biolink:ChemicalEntity type. Nodes n0 and n1 are related by an 
edge with the relation defined by a predicate specified as biolink:treats. The query graph is thus 
structured to ask what chemical entity(ies) treats chronic pain? The query graph is then sent to 
the ARS, which parses the query and distributes it to the ARAs. The ARAs then distribute it to 
those KPs that have provided a meta-graph within the SmartAPI registry indicating that they are 
able to respond to queries of this type. The ARAs may apply a variety of sophisticated 
reasoning and inference algorithms to the answers returned by the KPs, including different 
approaches for ranking and scoring answers such as weighting by supporting publications or 
abstract co-occurrence of subject and object nodes. Finally, the ARS compiles the ARA results 
for the user. 
 
A review of the answers to the query finds expected answers such as oxycodone, hydrocodone, 
codeine, lidocaine, and ibuprofen. There are also answers that are accurate but may not be 
responsive to the user’s query such as methadone, which is used to treat opioid dependence 21, 
and caffeine, which is an adjuvant in certain pain medicine formulations 22. In addition, the 
answer set includes perhaps unexpected answers such as naloxone and naltrexone, which are 
opioid antagonists. An examination of the evidence and provenance that Translator returns in 
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support of these answers identifies publications in the form of PubMed identifiers (PMIDs), with 
links to PubMed abstracts that suggest that these compounds may be effective in the treatment 
of chronic pain conditions such as fibromyalgia and inflammatory bowel conditions (Figure 3). 
While a pain specialist may not find these findings surprising, many users likely would be 
surprised to find that there are cases in which an opioid antagonist is beneficial in the treatment 
of pain, for which opioid agonists are often administered. 

 
Figure 3. An example of Translator evidence and provenance in support of naltrexone hydrochloride as 
an answer to the query in Figure 2. 
 

Application Use Cases 
The chronic pain use case illustrates basic Translator functionalities in the context of a simple 
‘one-hop’ Translator query (i.e., two nodes connected by one edge) and the types of insights 
and discoveries that the Translator Consortium intends to achieve. Here, we provide an 
overview of three additional use cases (Figure 4).  
 



 
Figure 4. Schematic of three generalizable Translator workflows applied to support specific use-case 
queries on (a) immune-mediated inflammatory disease, (b) Parkinson’s-Crohn’s Disease relationship, and 
(c) drug-induced liver injury. (Graphic prepared by Kelsey Urgo.) 

Explore: Immune-mediated Inflammatory Diseases (IMID) 
The IMID use case was motivated by an interdisciplinary team that was interested in learning 
more about immunomodulatory drugs that are used to treat IMIDs, including systemic sclerosis, 
which is a spectrum of rare diseases involving excess collagen that can lead to fibrosis of the 
skin and/or internal organs. The team was interested in many classes of drugs, including Janus 
kinase inhibitors (JAK-Is), which have been suggested in the literature as a potential treatment 
for systemic sclerosis. The team thus approached the Translator Consortium with the following 
question: what real-world evidence is there for use of JAK-Is in patients with systemic sclerosis?  
 
Structured EHR data do not track the condition for which a medication is prescribed to a given 
patient. An investigator can examine co-occurrence rates between diagnoses and medications, 
but those rates can be deceptive due to the prevalence of commonly prescribed drugs such as 
acetaminophen among the general population. Translator clinical KPs have overcome this 
limitation of EHR data by allowing users to openly explore both co-occurrence rates and relative 
frequencies of medications, as well as information on whether a medication is 
contemporaneously predictive for a given disease or phenotype, thus provisioning informative 
EHR data and assertions without regulatory hurdles. 
 
In this case, the Consortium approached the user’s question by executing a one-hop query that 
targeted Translator clinical KPs (Figure 4A). Translator identified drugs such as methotrexate, 
dexamethasone, and sulfasalazine, which are commonly used to treat a variety of IMIDs. When 
examining JAK-Is, Translator found evidence of co-occurrence in patients with IMIDs, including 
systemic sclerosis. Translator also found that JAK-Is were contemporaneously predictive of 
systemic sclerosis, thereby supporting the assertion that they are being prescribed for people 
who have systemic sclerosis. With this evidence in hand, the investigative team now plans to 
use Translator to explore mechanistic evidence that supports the effectiveness of JAK-Is in the 
treatment of systemic sclerosis. 



Explain: Crohn’s Disease and Parkinson’s Disease 
This use case was motivated by clinical observations that patients with Crohn’s disease are at 
risk of Parkinson’s disease – two apparently independent diseases. Specifically, the 
investigative team approached the Translator Consortium with the following question: why do 
patients with Crohn's disease have a higher risk of developing Parkinson's disease? 
 
The Consortium addressed this question by constructing a two-hop query that sought 
biomedical entities that might be shared by both Crohn’s disease and Parkinson’s disease 
(Figure 4B). The query was structured with two specified biolink:Disease nodes, each 
connected to an unspecified biolink:NamedThing node (i.e., a root class for all things and 
informational relationships).  
 
Due to the structure of the query, Translator returned a variety of biomedical entities, including 
genes, diseases, chemicals, and drugs. The genes included LRRK2 (leucine rich repeat kinase 
2), PARK7 (Parkinsonism associated deglycase), and NOD2 (nucleotide binding oligomerization 
domain containing 2). Moreover, Translator provided quantitative publication support for each 
gene’s involvement in both Crohn’s disease and Parkinson’s disease.  
 
The investigative team had expected LRRK2 to be among the answers returned to the query, so 
the fact that this gene indeed was returned by Translator provided the team with confidence in 
the accuracy and sensitivity of Translator answers. The investigative team now plans to take a 
deeper dive into the supporting evidence and generate new queries to determine if there are 
common biological processes that might explain how these shared genes contribute to two 
presumably unrelated diseases.  

Repurpose: DILI 
[pending approval by Paul Watkins and the DILI Network Steering Committee - FYI, the DILI 
Network Pubs Committee requires a final draft before conducting a full review of the 
manuscript] 
The DILI use case was motivated by a partnership between the Translator Consortium and the 
DILI Network. A high priority for the DILI Network, which is the longest running cohort-based 
study funded by the National Institutes of Health, is to support a DILI clinical trial. This priority is 
motivated by the fact that the only consensus treatment for DILI is to discontinue the causal 
agent, leaving patients with few therapeutic options until the drug injury resolves and leaving 
underlying diseases and conditions untreated. DILI Network investigators have been unable to 
identify a suitable therapeutic, namely, one that is generally safe, with sufficient biological 
justification to support a clinical trial. 
 
Hence, the DILI Network approached the Translator Consortium with this goal in mind. The 
specific question that was asked was what drug candidate(s) might be repurposed for the 
treatment of DILI, and is there sufficient biological plausibility to justify the use of those 
candidates in a clinical trial? 
 
The Consortium approached this question with a two-fold solution (Figure 4C): (1) implement a 
complex asynchronous three-hop query to identify candidate drugs, leveraging the knowledge 
provided by Translator clinical KPs; and then (2) implement a simple one-hop query to find 
additional support for any candidate drugs thus identified, leveraging the real-world and curated 
knowledge provided by all KPs. 
 



Translator successfully executed both queries and identified two candidate drugs, both 
antioxidants that are available over-the-counter and in prescription formulation: resveratrol and 
quercetin. Translator provided additional evidence to justify the use of these candidates in a 
clinical trial, including: the identification of intermediary genes that suggest biological plausibility; 
evidence of effectiveness in rodent models of DILI; and clinical trial precedence in other 
diseases and conditions such as chronic obstructive pulmonary disease. Having met the criteria 
for viable drug candidates in clinical trials of DILI, members of the Translator Consortium now 
plan to prepare a formal report on Translator’s findings for consideration by the DILI Network 
Steering Committee. 

Discussion 
The Translator program is soon to begin year three of development, having first demonstrated 
feasibility. While a prototype Translator system now exists, with demonstration of its success in 
returning valid answers to user questions, there are several areas of improvement required to 
truly achieve a production-level Translator system.  

First, the scoring and ranking algorithms that are invoked by the ARAs are intentionally varied to 
provide breadth in answer sets and associated evidence. We acknowledge a need to refine the 
scoring and ranking algorithms in order to prioritize those answers with strong evidence, more 
complete provenance, and high confidence, thereby enriching for answers that are likely to 
provide the greatest insights to users.  

Second, the TRAPI standard and Biolink Model are critical to standardize queries and answers 
across the federated Translator system. However, standardization often results in a lack of 
granularity and an inability to pose nuanced queries. For instance, workflow operations are only 
minimally supported in the current TRAPI standard. We are working to provision a variety of 
logical operations such as a graph overlay operation. We are also working to extend the Biolink 
Model to support nuanced statements by developing a core set of qualifiers that can be used to 
capture semantic richness.  

Finally, while several Translator teams have developed user interfaces (UIs) that support TRAPI 
queries and answers, a uniform cross-component UI is not yet available, although NCATS 
recently funded a team to develop one. We recognize the urgent need for such an interface, 
which will allow us to more efficiently engage users and grow our user base, thus promoting 
long-term sustainability.  

We note that the Translator system is one of several available biomedical KG–based question-
answering systems. Others include Causaly 23, Elsevier’s Biology Knowledge Graph 24 and 
related Pathway Studio 25, and Google’s Knowledge Graph 10. We emphasize a few differences 
between these systems. First, the Translator system is the only open-source, community-
contributed system; Causaly and Elsevier’s systems are commercial, and Google’s Knowledge 
Graph is largely proprietary. Second, Elsevier’s systems are highly specific to basic biology and 
do not span the translational spectrum. Causaly’s system supports a broader set of translational 
questions, but only a subset of those supported by Translator. Third, Translator supports a more 
sophisticated set of queries than the other systems. For instance, Google’s Knowledge Graph 
only supports simple ‘lookup’ operations, albeit with highly sophisticated natural language 
parsing of user questions. Causaly’s system is currently limited to linear two-hop queries. 
Neither Causaly’s nor Elsevier’s systems support batch or asynchronous queries, in contrast to 
the Translator system. Finally, none of the other systems support clinical knowledge such as 
EHR data.  
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In conclusion, we have developed a biomedical KG–based Translator system capable of 
integrating a wide range of data sets and translating those data into insights intended to 
augment human reasoning and accelerate translational science. We are now working on 
refinements to the prototype Translator system. 
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