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Abstract—Due to the exponential growth of endpoints in the
Internet of Things (IoT), new protocols have been proposed to
utilize cellular infrastructures, allowing a large amount of IoT
devices to communicate through them. These novel protocols
make up the Cellular IoT (C-IoT). In C-IoT, the energy efficiency
of endpoints is essential in order to reduce both operational cost
and required maintenance. One method of energy reduction is
Discontinuous Reception (DRX). DRX allows a device’s Radio
Frequency (RF) circuitry to turn off for brief periods of time.
While off, the device experiences a tradeoff between saving
energy and an increase in expected latency, which can be
tuned by how long the device spends asleep. In this paper,
we model DRX as a Markov Decision Process (MDP). This
MDP is solved using a dynamic programming approach and
verified through simulation. Further, the energy-latency tradeoff
is explored by varying the device’s priority on either energy or
network performance in addition to varying the traffic intensity.

Index Terms—Energy Efficient Devices, Markov Decision Pro-
cesses, Discontinuous reception (DRX), Cellular IoT, Constrained
Devices, Device Management, Efficient Communications and
Networking.

I. INTRODUCTION

TO help account for the massive growth of the Internet of

Things (IoT), Cellular IoT (C-IoT) networking protocols

have been proposed. These C-IoT protocols allow IoT traffic

to communicate using existing cellular infrastructures. Two

popular novel C-IoT protocols are NarrowBand IoT (NB-IoT)

and LTE Cat-M. These protocols allow User Equipments

(UEs) to communicate using a more narrow bandwidth when

compared with legacy cellular protocols such as LTE. This, in

turn, allows more users to coexist in the same cell.

Compared to its competitors, such as Long Range Wide

Area Network (LoRaWAN) and Sigfox, C-IoT protocols can

offer better performance in many areas, including energy

consumption of UEs [1]. This can be done primarily in three

ways: i) improving the scheduling and routing of information

through the network [2] [3], ii) processing data using more

energy efficient methods (e.g. cloud computing) [4] [5], and

iii) introducing sleep modes for nodes in the network [6]

[7]. There are three direct consequences of improving energy

efficiency in such networks: the amount of waste generated as

a byproduct of the device’s operation is reduced, maintenance

of devices is decreased, and the cost of operation is reduced.

1This material is based upon work supported by the National Science
Foundation under Grant No. 2105230

However, it is rarely the case that a reduction in energy

consumption does not come at a cost. Two prime examples

of this are Discontinuous Reception (DRX) and Power Save

Mode (PSM), which were introduced in LTE to extend the

battery life of end devices. In [9], the authors introduce

DRX and PSM, provide an analytical model for both, and

evaluate the performance of both mechanisms through their

implementation in Network Simulator 3 (NS3) using the

NB-IoT protocol. In essence, DRX and PSM allow devices

to turn off their Radio Frequency (RF) circuitry, which would

otherwise consume considerable energy while on. At the same

time, however, the device is not reachable by the network.

If a packet is sent to the device while it is off, significant

delays can be incurred since any Downlink (DL) traffic will

need to be buffered at the base station. Thus, DRX and PSM

have an inherent energy-latency tradeoff. In essence, by tuning

the various timers that facilitate DRX and PSM operation, we

also tune this tradeoff. This tradeoff is also affected by the

traffic conditions in the network. In this paper, we formulate

the problem of DRX off duration optimization considering

traffic conditions as a Markov Decision Process (MDP). An

MDP was selected because it allows the modelling of a time

varying environment in which an agent makes decisions that

will impact both immediate and future network performance.

In [10], the DRX mechanism is evaluated through a cross-

layer analytical model with traffic distributed according to a

Poisson process. Results show that the introduction of the

DRX mechanism results in a considerable improvement (up

to three times) in the energy efficiency of the device. Further,

results show that, for given DRX timers, there is a certain

traffic load at which the energy efficiency improvement of

the mechanism is optimum. This illustrates the importance of

choosing DRX timers according to traffic load to achieve the

best energy efficiency and delay results.

In [11], the authors propose an actor-critic algorithm to

improve the latency-energy tradeoff that exists in DRX. The

authors consider a modified DRX mechanism consisting of

four states: continuous reception, on duration of DRX cycle,

off duration of DRX cycle, and Radio Resource Control (RRC)

Idle. The algorithm learns over time through the modification

of the timers that facilitate state transitions (e.g., on duration

of DRX cycle). The authors evaluate the proposed algorithm

using MATLAB, and find that the proposed algorithm out-

performs standard extended DRX (eDRX) in terms of energy

efficiency by approximately 300%. However, the average delay
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of the actor-critic algorithm is much greater at approximately

280 ms, compared with conventional DRX at 50 ms.

In contrast to previous work, this work formulates the DRX

mechanism in full as a single MDP. In doing so, we are able

to directly solve the MDP through dynamic programming.

In much of the available literature, the energy-delay tradeoff

in DRX is examined through setting a delay constraint and

attempting to minimize energy consumption subject to that

constraint. However, in this work, we define a single contin-

uous variable that can be used to tune this tradeoff in either

direction, i.e., varying emphasis can be placed on either energy

or delay, which allows for a much wider range of operating

points. Finally, we validate our results through simulation.

The remainder of the paper is organized as follows. In

Section II, we formulate the problem as an MDP and solve it

using value iteration. In Section III, we present and analyze

our results. Finally, in Section IV, we conclude the work.

II. PROBLEM FORMULATION

In what follows, we provide an overview of the DRX

technique and of MDPs. Then, we describe our DRX timer

optimization as an MDP. Specifically, we first introduce the

state space of the MDP, then define the action space and when

an action is taken. Next we define how the state evolves over

time via the transition probability function. After that, the cost

function is introduced. Finally, we describe the method used

to solve the MDP, namely, value iteration.

A. DRX Overview

A timing diagram of the DRX mechanism is illustrated in

Fig. 1. In DRX, if the device has gone a certain period of time

without having received a packet, it will enter DRX cycles.

Each of these DRX cycles consists of an off and an on period.

When the device is off, it will minimize the activity of its RF

circuitry to not waste energy monitoring channels. During this

period, the device is saving energy, but it is unable to receive

DL packets. During the on period, the device will consume

energy to wake up and check the radio control channel, to see

if there are any incoming DL packets. If there are none, the

device will go back into the off mode, and these cycles will

continue. However, if there are any packets, the device will

wake up fully, and exit these DRX cycles.

PSM is an additional sleep mode, which allows the device

to sleep for much longer periods. PSM is triggered by the

device going through m consecutive DRX cycles without any

DL packets. In PSM, the device saves energy by turning off its

RF circuitry for an extended period of time, but is unreachable

by the network. Eventually, the device will wake up from PSM

and go back to regular operation.

B. Markov Decision Processes

To model the DRX mechanism, an MDP is introduced.

An MDP is used to model an agent making decisions in a

stochastic environment in which immediate decisions impact

the current and future costs. We will consider a discrete-time

MDP with uniform time steps ∆t. In each time step, the

…

Fig. 1. DRX timing diagram.

agent first observes the current state s ∈ S . The agent then

takes action a ∈ A(s) accordingly, where A(s) denotes the

set of available actions in state s. Finally, the environment

stochastically transitions to state s′ ∈ S . The probabilities

of transitions between states are defined by the following

Transition Probability Function (TPF) P :

P (s′, a, s) = Pr[s′|s, a], s, s′ ∈ S, a ∈ A(s). (1)

The fourth component of an MDP is the cost function C(s, a).
This cost function measures how “expensive” the action a was

in state s. The fifth and final part of an MDP is the discount

factor µ ∈ [0, 1). µ defines how much the model cares about

future costs. When µ is zero, all the weight is placed on

immediate cost while as µ approaches one, more emphasis

is placed on anticipated future costs. Details about the states,

actions, and TPF in the proposed MDP are provided in the

subsections below. Overall, in an MDP, we look to minimize

the infinite horizon discounted sum of costs, specifically

min
π

∑∞

t=0
µtC(st, Ã(st)), (2)

where Ã : S → A denotes the decision policy, which maps

states to actions.

C. States

Similar to the model in [11], our base model of DRX

comprises four “macro” states, i.e., RRC Connected (SRRC),
DRX on (SON ), DRX off (SOFF ), and PSM (SPSM ), as

illustrated in Fig. 2 where each of these four states are color

coded. In SRRC , the device is fully awake and can transmit

or receive packets at any time. In the second state, SON , the

device is in the awake part of its DRX cycles, and is able to

receive a packet at any time during this state. In the third state,

SOFF , the device is in its off period of the DRX cycles. The

device is consuming a reduced amount of energy, but it cannot

be reached by the network, so any DL packet that arrives in

this state will have an added delay. In the final state, SPSM ,

the device sleeps for a long period of time.

We define Sm to be the set of all possible “macro” states, i.e.

Sm = {SRRC , SON , SOFF , SPSM}. Each of these “macro”

states is composed of a number of sub-states. To define these

sub-states, a couple of additional variables must be considered.

The first addition is a timer state that will help facilitate the
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transitions between these main states. The set of possible timer

values t ∈ T depends on the current DRX state as follows:

t ∈



















[0, TRRC), if sm = SRRC

[0, TON ), if sm = SON

[0, Tmax
OFF ), if sm = SOFF

[0, TPSM ), if sm = SPSM .

(3)

It is worth noting that all timer values can be only integers.

The second addition is a Boolean packet indicator state that

indicates the existence of a packet, i.e., this indicator will be

1 if there is a packet waiting and 0 otherwise. Note that this

indicator can only be 1 in states where immediate reception

of the packet is not possible (SOFF and SPSM ); hence,

Spkt ∈

{

{0, 1}, if sm ∈ {SOFF , SPSM}

{0}, if sm ∈ {SRRC , SON}.
(4)

The resulting state space S is then defined as a subset of the

Cartesian product of the macro state, timer state, and packet

indicator state:

S ⊂ Sm × T × Spkt. (5)

It is important to note that not all elements resulting from this

Cartesian product are actually possible. For instance, assuming

TON < TRRC , then the state s = (SON , TRRC − 1, 0) is a

state within this Cartesian product, but is not reachable.

The size of the state space is given as follows:

|S| = TRRC +m(TON + 2TOFF ) + 2TPSM . (6)

D. Actions

The action considered in this model is the length of time the

device spends in the off period of its DRX cycles, i.e., TOFF .

We define this action space A(s) to be a discrete set of pre-

determined timer values whose entries depend on the current

state. Recall that this action is only taken immediately prior

to switching to SOFF . Thus, the action space only contains

possible selections at this specific state, i.e., s = (SON , 0, 0).
For all other states, A(s) is the empty set:

A(s) ∈

{

(0, Tmax
OFF ), if s = (SON , 0, 0)

∅, otherwise,
(7)

where Tmax
OFF is the largest possible DRX off timer.

E. Transition Probability Function

Now that the state space and the transitions between states

have been modelled, all that is needed before we arrive at

the transition probability function is a model of the incoming

traffic. To this end, we use a Bernoulli-distributed traffic model

[12], [13]. In each time step, there is a probability p of there

being an incoming packet. This distribution keeps the model

simplest, as the probability of a packet arrival in a given

time slot does not vary with time. This results in a transition

probability function that also does not vary with time.

With this traffic distribution defined, the transition prob-

ability function can be constructed. The high level view is

illustrated through the “macro” state transition diagram in Fig.

2. Note that in these state transition diagrams, states with a

dashed border describe a general macro state, while a solid

border indicates a specific state.

SRRC

SPSM

SON

SOFF

RRC
Connected

DRX On

DRX
Off

PSM

TRRC

Expires

Packet
Detected TON

Expires,
No pkt

TOFF

Expires

m DRX
cycles

TPSM

Expires

Fig. 2. DRX state transitions overview.

TRRC −1 TRRC −2 TRRC −3 . . . 0 To SON

p

p

p

p

p

1 − p 1 − p 1 − p 1 − p 1 − p

Fig. 3. RRC connected state transitions.

TON − 1 TON − 2 . . . 0
To

SOFF

To
SRRC

1 − p 1 − p 1 − p

1 − p

Select TOFF ∈ A(s)

pp p

Fig. 4. DRX on state transitions.

From
SON

TOFF −1
0 pkts

TOFF −1
1 pkt

TOFF −2
0 pkts

TOFF −2
1 pkt

. . .

0
0 pkts

0
1 pkt

To SON

To SPSM

To SRRC

1 − p

p

1 − p

p

1

1 − p

1

p

1 − p

p

1

< m
DRX

Cycles

m DRX
Cycles

1

Fig. 5. DRX off state transitions.

Next, we will go through the transition probabilities within

each of these high level states. The system is initialized in

SRRC . With each time step, the timer state is decremented

with probability 1− p, and gets reset to timer state TRRC − 1
with probability p. Once the timer state reaches 0, it will

instead transition to SON with probability 1−p and go back to

the start with probability p. These stochastic timer transitions

occur similarly in the state SON , as illustrated in Fig. 4.

The only difference is that with probability p the state will

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

6171
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 14:58:37 UTC from IEEE Xplore.  Restrictions apply. 



From
SON

TPSM−1
No pkt

TPSM−1
pkt

TPSM−2
No pkt

TPSM−2
pkt

. . .

0
No pkt

0
pkt

To SRRC

1 − p

p

1 − p

p

1

1 − p

1

p

1 − p

p

1

1

1

Fig. 6. PSM state transitions

transition back to SRRC in each time step. At timer state 0,

with probability 1 − p, TOFF will be selected and the state

will transition to SOFF . It will instead transition to SRRC with

probability p. While in SOFF , the timer state is decremented

with each time step. In each time step, if the current value of

spkt is 0, there is a probability p that spkt in the next time step

is 1 and a probability 1− p that this packet indicator remains

the same. At the final time step in SOFF , if there is a packet,

then the state will transition back to SRRC . Otherwise, the

state will transition to SPSM if m DRX cycles have elapsed

and back to SON otherwise. The PSM state transitions are

illustrated in Fig. 6. In SPSM , the timer state is decremented

with each time step until timer state zero is reached, at which

point the state is transitioned back to SRRC .

F. Immediate Cost

The immediate cost C(s) is defined by considering a

weighted sum of delay and energy costs as follows:

C(s) = D(s) + ¼E(s). (8)

Note that this particular cost function does not depend on the

action a, so it will simply be denoted as C(s). Here, D(s) is

the delay cost in state s, E(s) is the energy cost in state s,

and ¼ is a coefficient that adjusts the weight placed on energy

as opposed to delay. For example, when ¼ = 0 the UE places

all priority on reducing latency no matter the cost in terms of

energy. The values of D(s), E(s), and C(s) for each state are

given in Table I. In SRRC and SON , the delay cost is always

0 and the energy cost is always ϵ0. This is because in these

states, the UE is consuming maximum energy to stay awake

and minimize delay. In SOFF , the energy cost is always

E(s) = ³ϵ0, (9)

where ϵ0 is the energy consumed in SRRC and ³ is the fraction

of the energy ϵ0 consumed in SOFF . The delay cost in this

state is 0 when there is no packet waiting and 1 when there is a

packet waiting. Similarly, in SPSM , there is no cost associated

with energy loss, and a delay cost of 0 when there is no packet

waiting and 1 when there is a packet waiting.

G. Value Iteration

After constructing all the necessary MDP components and

completing the DRX model, the optimal actions need to be

found. To do this, value iteration is employed. The process of

value iteration can be found in [15].

The value iteration algorithm given in Algorithm 1 takes

as an input the MDP, i.e., S , A, P (s′, a, s), C(s), and µ. As

TABLE I
IMMEDIATE COST TABLE.

Packet Waiting No Packet Waiting

State D(s) E(s) C(s) D(s) E(s) C(s)

SRRC 0 ϵ0 ¼ϵ0 0 ϵ0 ¼ϵ0

SON 0 ϵ0 ¼ϵ0 0 ϵ0 ¼ϵ0

SOFF 1 ³ϵ0 1 + ³¼ϵ0 0 ³ϵ0 ³¼ϵ0

SPSM 1 0 1 0 0 0

Algorithm 1 Value Iteration Algorithm.

Input: S,A, P,C, µ

Output: Q, V, Ã

Initialization:

1: µ, ¶,Q(s, a), V (s)
2: Vold s.t. maxs|V (s)− Vold(s)| > ¶

3: while maxs|V (s)− Vold(s)| > ¶ do

4: for s ∈ S do

5: for a ∈ A(s) do

6: Q(s, a)← C(s, a) + µΣs′∈SP (s′, a, s)V (s′)
7: end for

8: Vold(s)← V (s)
9: V (s)← minaQ(s, a)

10: end for

11: end while

12: return Q, V, Ã

an output, the algorithm provides two functions: the action-

value function Q(s, a), which tells us how good or bad it is

to take action a in state s and then follow the optimal policy

Ã∗ thereafter; and the value function V (s), which tells us how

good or bad being in state s is assuming the optimal policy Ã∗

is followed. The final output is the optimal policy Ã∗, which

indicates the action with the lowest associated value in the

state s = (SON , 0, 0).

After the two output functions are initialized to arbitrary

values, the value iteration algorithm consists of two steps that

are repeated for all possible states until an exit condition

is met. In the first step in line 7 of Algorithm 1, a form

of Bellman’s Equation is used to update the action-value

function for every possible action a. This equation consists

of the summation of two parts. The first part is simply the

immediate cost from the MDP model. The second part is a

measure of expected future costs. This part is multiplied by

a discount factor, µ ∈ [0, 1), which quantifies how much the

algorithm should care about the future. In the second step

of the algorithm given in line 9 of Algorithm 1, the value

function is updated based on the current best action to take

in each state. These two steps are repeated until the value

function is relatively static for all states. This is checked after

step 2 using the old and new value functions and a threshold

¶. In the case of this problem, an action is only taken in the

final timer state of DRX on, s∗ = (SON , 0, 0). So, we only

need to look at the optimal action in this state to determine
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Fig. 7. Optimal DRX off timer vs packet arrival probability

the optimal timer: i.e.,

T ∗
OFF = argminaQ(s∗, a). (10)

III. RESULTS

This section contains: i) results obtained through value

iteration for a range of traffic intensities and energy-latency

priorities (III-A), ii) our simulation setup (III-B), and iii)

simulation results for model validation (III-C).

A. Value Iteration Results

The list of values used in the generation of results unless

otherwise specified is provided in Table II. First, we varied

the values of p and ¼ and observed the resulting optimal DRX

timer by using the value iteration algorithm. More specifically,

for each value of ¼, we plotted a curve where the packet arrival

probability is on the x-axis and the optimal DRX Off timer

T ∗
OFF is on the y-axis. These results are shown in Fig. 7. It

should be noted that the curve corresponding to ¼ = 1.2 lies

at TOFF = 300.

These results show exactly what was to be expected. For

very low traffic rates (very small p), T ∗
OFF becomes very

large, tending toward the maximum allowed TOFF at p = 0.

This was expected because at very low traffic rates, the device

can be in a sleep mode more often without risking too much

network performance degradation. The opposite is also true:

as p increases, the optimal DRX off timer becomes shorter. In

this case, the system realizes that the probability of missing

a packet when sleeping increases with increasing traffic rate,

so it decides to stay awake more often. It is important to note

that when ¼ exceeds a certain threshold, the cost of consuming

energy becomes greater than any possible delay incurred, so

for ¼ larger than this threshold it is always more beneficial to

sleep as long as possible.

B. Simulation Setup

In order to test our model, a simulation scenario was set

up using Python. In this scenario, we consider a discrete

time simulation in which there exists one base station and

one UE that is using the DRX mechanism and employing a

policy Ã(s). In each discrete time step of the simulation, the

TABLE II
LIST OF SIMULATION PARAMETERS.

Parameter Value

TOFF {10, 20, ... 300} ms

TRRC , TON , TPSM 100, 30, 450 ms

Number of DRX Cycles m 3

Number of States, actions 103, 30

∆t 10 ms

Energy consumed in SRRC , SON ϵ0 1

³, p, ¼ 0.1, 0.05, 0.6

base station first observes the current state consisting of the

“macro” state, the current timer values, and whether or not

there is a downlink packet. Next, the cost is calculated from

this observed state. Then, the base station will take action

a ∈ A if the current state is the final timer state of SON .

Finally, the state transitions based on the current state and the

existence of a DL packet arrival.

One additional consideration must be made prior to com-

paring simulation results with our model. In the model, we use

a discount factor µ to calculate the infinite horizon discounted

sum of costs, while this process is not done in the simulation.

Simply averaging the observed simulated cost would therefore

introduce a mismatch. To overcome this, the first-visit Monte

Carlo method given in Algorithm 2 is used [14]. First, a

simulation of n time steps was conducted, and the state visited

at each time step s(t) was recorded. Through this entire

simulation, the action a is fixed. After the simulation, the

discounted future costs of the first visit of each state was

calculated. This process is shown in lines 8 through 13 of

Algorithm 2. First, the first visit of state s is located, and the

time at which this occurred is marked as time t. Next, for all

times after t until the end of the simulation t′ ≤ n, the value

of state s is updated according to the following equation:

V (s)← V (s) + µt′−tC(s(t′)), (11)

where µ is the discount factor and C(s(t′)) is the cost of the

state visited at time t′. Note that after this value is computed,

it will need to be normalized by a factor of 1− µ so we can

directly compare values for different discount factors. After

repeating this for all states, V (s) is returned. This process

was repeated for all a ∈ A.

C. Model Validation

The results of this simulation are provided in Fig. 8. Here,

the value function approximation algorithm was conducted for

various discount factors µ and the average cost was recorded.

Here, it is clear that there exists an optimal timer (indicated by

the dashed line) at which the cost is at a minimum, occurring

at TOFF = 130 ms, which is in agreement with the value

iteration results in 7. An example of a suboptimal selection is

indicated by the dotted line. It is also clear that as µ approaches

1, the resulting curve approaches a single curve which is the

theoretical average cost per time step we would observe in an

infinitely long simulation.
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Algorithm 2 Value Function Approximation Algorithm.

Input: S,A, µ, C, Ã

Output: V

Initialization:

1: V (s) arbitrarily, t = 0, s0 = (SRRC , TRRC , 0)
2: while t < n do

3: at = Ã(st)
4: s(t) = st
5: st ← st+1

6: end while

7: for s ∈ S do

8: t = argmint(s(t) == s)
9: for t ≤ t′ ≤ n do

10: V (s)+ = µt′−tC(s(t′))
11: end for

12: end for

13: return (1− µ)V (s)

0 50 100 150 200 250 300
DRX Off Timer
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0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Co
st

Cost vs DRX Off Timer
 = 0.998
 = 0.999

 = 0.9992

Fig. 8. Observed cost vs DRX off timer for varying µ. p = 0.05, ¼ = 0.6

Further, from this simulation we were able to gather the

experimental steady state distribution, shown in Fig. 9. Here,

the value of p was set to 0.02, and TOFF was set statically at

a duration of 100ms. It can be seen that under this very small

traffic arrival probability, the device spends most of its time in

SOFF and SPSM . This occurs because there is a low traffic

arrival probability triggering the transition back to SRRC .

IV. CONCLUSION

In this work, the energy-latency tradeoff inherent to DRX

was closely examined. First, the problem of optimizing DRX

sleep duration was formulated as a MDP where the action

taken is the selection of a DRX off duration from a discrete

set of possible timers. The state of the device evolved accord-

ing to a discrete Markov chain realistically simulating DRX

operation. A single parameter ¼ was introduced to facilitate

the tradeoff between energy and latency in the cost function

of the MDP. This MDP was solved using value iteration.

The results of value iteration were analyzed by examining

the effects of ¼ and the incoming traffic intensity p on the

optimal timer selection. These results were verified through

a simulation during which all possible DRX off timers were

selected and the average cost was observed. As predicted by
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Fig. 9. Steady state distribution over the “macro” states obtained via
simulation. p = 0.02, TOFF = 100ms.

the value iteration results, there exists a timer at which the

observed cost is at a minimum.
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