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Abstract—Due to the exponential growth of endpoints in the
Internet of Things (IoT), new protocols have been proposed to
utilize cellular infrastructures, allowing a large amount of IoT
devices to communicate through them. These novel protocols
make up the Cellular IoT (C-IoT). In C-IoT, the energy efficiency
of endpoints is essential in order to reduce both operational cost
and required maintenance. One method of energy reduction is
Discontinuous Reception (DRX). DRX allows a device’s Radio
Frequency (RF) circuitry to turn off for brief periods of time.
While off, the device experiences a tradeoff between saving
energy and an increase in expected latency, which can be
tuned by how long the device spends asleep. In this paper,
we model DRX as a Markov Decision Process (MDP). This
MDP is solved using a dynamic programming approach and
verified through simulation. Further, the energy-latency tradeoff
is explored by varying the device’s priority on either energy or
network performance in addition to varying the traffic intensity.

Index Terms—Energy Efficient Devices, Markov Decision Pro-
cesses, Discontinuous reception (DRX), Cellular IoT, Constrained
Devices, Device Management, Efficient Communications and
Networking.

I. INTRODUCTION

O help account for the massive growth of the Internet of
Things (IoT), Cellular IoT (C-10T) networking protocols
have been proposed. These C-IoT protocols allow IoT traffic
to communicate using existing cellular infrastructures. Two
popular novel C-1oT protocols are NarrowBand IoT (NB-IoT)
and LTE Cat-M. These protocols allow User Equipments
(UEs) to communicate using a more narrow bandwidth when
compared with legacy cellular protocols such as LTE. This, in
turn, allows more users to coexist in the same cell.
Compared to its competitors, such as Long Range Wide
Area Network (LoRaWAN) and Sigfox, C-IoT protocols can
offer better performance in many areas, including energy
consumption of UEs [1]. This can be done primarily in three
ways: 1) improving the scheduling and routing of information
through the network [2] [3], ii) processing data using more
energy efficient methods (e.g. cloud computing) [4] [5], and
iii) introducing sleep modes for nodes in the network [6]
[7]. There are three direct consequences of improving energy
efficiency in such networks: the amount of waste generated as
a byproduct of the device’s operation is reduced, maintenance
of devices is decreased, and the cost of operation is reduced.

I'This material is based upon work supported by the National Science
Foundation under Grant No. 2105230

However, it is rarely the case that a reduction in energy
consumption does not come at a cost. Two prime examples
of this are Discontinuous Reception (DRX) and Power Save
Mode (PSM), which were introduced in LTE to extend the
battery life of end devices. In [9], the authors introduce
DRX and PSM, provide an analytical model for both, and
evaluate the performance of both mechanisms through their
implementation in Network Simulator 3 (NS3) using the
NB-IoT protocol. In essence, DRX and PSM allow devices
to turn off their Radio Frequency (RF) circuitry, which would
otherwise consume considerable energy while on. At the same
time, however, the device is not reachable by the network.
If a packet is sent to the device while it is off, significant
delays can be incurred since any Downlink (DL) traffic will
need to be buffered at the base station. Thus, DRX and PSM
have an inherent energy-latency tradeoff. In essence, by tuning
the various timers that facilitate DRX and PSM operation, we
also tune this tradeoff. This tradeoff is also affected by the
traffic conditions in the network. In this paper, we formulate
the problem of DRX off duration optimization considering
traffic conditions as a Markov Decision Process (MDP). An
MDP was selected because it allows the modelling of a time
varying environment in which an agent makes decisions that
will impact both immediate and future network performance.

In [10], the DRX mechanism is evaluated through a cross-
layer analytical model with traffic distributed according to a
Poisson process. Results show that the introduction of the
DRX mechanism results in a considerable improvement (up
to three times) in the energy efficiency of the device. Further,
results show that, for given DRX timers, there is a certain
traffic load at which the energy efficiency improvement of
the mechanism is optimum. This illustrates the importance of
choosing DRX timers according to traffic load to achieve the
best energy efficiency and delay results.

In [11], the authors propose an actor-critic algorithm to
improve the latency-energy tradeoff that exists in DRX. The
authors consider a modified DRX mechanism consisting of
four states: continuous reception, on duration of DRX cycle,
off duration of DRX cycle, and Radio Resource Control (RRC)
Idle. The algorithm learns over time through the modification
of the timers that facilitate state transitions (e.g., on duration
of DRX cycle). The authors evaluate the proposed algorithm
using MATLAB, and find that the proposed algorithm out-
performs standard extended DRX (eDRX) in terms of energy
efficiency by approximately 300%. However, the average delay

6169

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 14:58:37 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

of the actor-critic algorithm is much greater at approximately
280 ms, compared with conventional DRX at 50 ms.

In contrast to previous work, this work formulates the DRX
mechanism in full as a single MDP. In doing so, we are able
to directly solve the MDP through dynamic programming.
In much of the available literature, the energy-delay tradeoff
in DRX is examined through setting a delay constraint and
attempting to minimize energy consumption subject to that
constraint. However, in this work, we define a single contin-
uous variable that can be used to tune this tradeoff in either
direction, i.e., varying emphasis can be placed on either energy
or delay, which allows for a much wider range of operating
points. Finally, we validate our results through simulation.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem as an MDP and solve it
using value iteration. In Section III, we present and analyze
our results. Finally, in Section IV, we conclude the work.

II. PROBLEM FORMULATION

In what follows, we provide an overview of the DRX
technique and of MDPs. Then, we describe our DRX timer
optimization as an MDP. Specifically, we first introduce the
state space of the MDP, then define the action space and when
an action is taken. Next we define how the state evolves over
time via the transition probability function. After that, the cost
function is introduced. Finally, we describe the method used
to solve the MDP, namely, value iteration.

A. DRX Overview

A timing diagram of the DRX mechanism is illustrated in
Fig. 1. In DRX, if the device has gone a certain period of time
without having received a packet, it will enter DRX cycles.
Each of these DRX cycles consists of an off and an on period.
When the device is off, it will minimize the activity of its RF
circuitry to not waste energy monitoring channels. During this
period, the device is saving energy, but it is unable to receive
DL packets. During the on period, the device will consume
energy to wake up and check the radio control channel, to see
if there are any incoming DL packets. If there are none, the
device will go back into the off mode, and these cycles will
continue. However, if there are any packets, the device will
wake up fully, and exit these DRX cycles.

PSM is an additional sleep mode, which allows the device
to sleep for much longer periods. PSM is triggered by the
device going through m consecutive DRX cycles without any
DL packets. In PSM, the device saves energy by turning off its
RF circuitry for an extended period of time, but is unreachable
by the network. Eventually, the device will wake up from PSM
and go back to regular operation.

B. Markov Decision Processes

To model the DRX mechanism, an MDP is introduced.
An MDP is used to model an agent making decisions in a
stochastic environment in which immediate decisions impact
the current and future costs. We will consider a discrete-time
MDP with uniform time steps At. In each time step, the

RRC Connected RRC Idle
RRC Inactivity | Timer T3324
Timer

i eDRX Cycle PSM

Energy
Consumption

Paging
[ Paging |
[Paging |

F -
DL Reception Time

Fig. 1. DRX timing diagram.

agent first observes the current state s € S. The agent then
takes action a € A(s) accordingly, where A(s) denotes the
set of available actions in state s. Finally, the environment
stochastically transitions to state s’ € S. The probabilities
of transitions between states are defined by the following
Transition Probability Function (TPF) P:

P(s',a,s) = Pr[s'|s,a], s,s€S, aecA(s). (1)
The fourth component of an MDP is the cost function C(s, a).
This cost function measures how “expensive” the action a was
in state s. The fifth and final part of an MDP is the discount
factor v € [0, 1). -y defines how much the model cares about
future costs. When ~ is zero, all the weight is placed on
immediate cost while as y approaches one, more emphasis
is placed on anticipated future costs. Details about the states,
actions, and TPF in the proposed MDP are provided in the
subsections below. Overall, in an MDP, we look to minimize
the infinite horizon discounted sum of costs, specifically

mﬂin ZZO Y C (s, 7(st)), (2)

where ™ : § — A denotes the decision policy, which maps
states to actions.

C. States

Similar to the model in [11], our base model of DRX
comprises four “macro” states, i.e., RRC Connected (Sgrrc),
DRX on (SON), DRX off (SOFF)’ and PSM (Sps]w), as
illustrated in Fig. 2 where each of these four states are color
coded. In Sgrc, the device is fully awake and can transmit
or receive packets at any time. In the second state, Spy, the
device is in the awake part of its DRX cycles, and is able to
receive a packet at any time during this state. In the third state,
Sorr, the device is in its off period of the DRX cycles. The
device is consuming a reduced amount of energy, but it cannot
be reached by the network, so any DL packet that arrives in
this state will have an added delay. In the final state, Spsas,
the device sleeps for a long period of time.

We define S, to be the set of all possible “macro” states, i.e.
Sm = {Srrc,Son,Sorr,Spsm}. Each of these “macro”
states is composed of a number of sub-states. To define these
sub-states, a couple of additional variables must be considered.
The first addition is a timer state that will help facilitate the
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transitions between these main states. The set of possible timer
values ¢t € T depends on the current DRX state as follows:

[O TRRC) if Sm = SRRC
[0 TON) if Sm = SON
te [ mcu ifs,. =8 (3)
OFF m OFF
[0, TPSM)7 if s, = Spsu.

It is worth noting that all timer values can be only integers.

The second addition is a Boolean packet indicator state that
indicates the existence of a packet, i.e., this indicator will be
1 if there is a packet waiting and O otherwise. Note that this
indicator can only be 1 in states where immediate reception
of the packet is not possible (Sorpr and Spgyr); hence,

{07 1}7 if Sm € {SOFFa SPSM}
{0}, if sy € {Srre, Son}-
The resulting state space S is then defined as a subset of the

Cartesian product of the macro state, timer state, and packet
indicator state:

Spkt € (4)

S CSn xT X Sprt- ®)

It is important to note that not all elements resulting from this
Cartesian product are actually possible. For instance, assuming
Ton < Trroe., then the state s = (Son,Trrc — 1,0) is a
state within this Cartesian product, but is not reachable.

The size of the state space is given as follows:

|S| = Trrc + m(Ton +2Torr) + 2Tpsm- (6)
D. Actions

The action considered in this model is the length of time the
device spends in the off period of its DRX cycles, i.e., Torp.
We define this action space A(s) to be a discrete set of pre-
determined timer values whose entries depend on the current
state. Recall that this action is only taken immediately prior
to switching to Sorp. Thus, the action space only contains
possible selections at this specific state, i.e., s = (Son, 0,0).
For all other states, A(s) is the empty set:

(0 nga%) if s = (SON,0,0)
0, otherwise,

Als) € @)

where TS'2% is the largest possible DRX off timer.

E. Transition Probability Function

Now that the state space and the transitions between states
have been modelled, all that is needed before we arrive at
the transition probability function is a model of the incoming
traffic. To this end, we use a Bernoulli-distributed traffic model
[12], [13]. In each time step, there is a probability p of there
being an incoming packet. This distribution keeps the model
simplest, as the probability of a packet arrival in a given
time slot does not vary with time. This results in a transition
probability function that also does not vary with time.

With this traffic distribution defined, the transition prob-
ability function can be constructed. The high level view is
illustrated through the “macro” state transition diagram in Fig.

2. Note that in these state transition diagrams, states with a
dashed border describe a general macro state, while a solid
border indicates a specific state.

Trrc
RRC Expires DRX On
Connected - - _ m e
h \\ ‘ 1
‘ SRHC‘ | t\ Son |
Packel
Detected Ton
Tpsm e Topr Ex| (;r\cs
Expires Expires N(l)) pkt’
o~ oom DRX N \
cydes £
' Spsar K Sorr |

- “--"" DRX
off

Fig. 2. DRX state transitions overview.

Select Torr € A(s)

Fig. 4. DRX on state transitions.

K N
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/' From 1
1 C)cles

Son To Spsm }
\

To Srre )
v ;

Fig. 5. DRX off state transitions.

Next, we will go through the transition probabilities within
each of these high level states. The system is initialized in
Srrc. With each time step, the timer state is decremented
with probability 1 — p, and gets reset to timer state Trrc — 1
with probability p. Once the timer state reaches 0, it will
instead transition to Son with probability 1 —p and go back to
the start with probability p. These stochastic timer transitions
occur similarly in the state Sop, as illustrated in Fig. 4.
The only difference is that with probability p the state will
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Fig. 6. PSM state transitions

transition back to Sgrrc in each time step. At timer state 0,
with probability 1 — p, Torr will be selected and the state
will transition to So pr. It will instead transition to Sprc with
probability p. While in Sopp, the timer state is decremented
with each time step. In each time step, if the current value of
Spkt 18 0, there is a probability p that s, in the next time step
is 1 and a probability 1 — p that this packet indicator remains
the same. At the final time step in Sorp, if there is a packet,
then the state will transition back to Srrc. Otherwise, the
state will transition to Spgps if m DRX cycles have elapsed
and back to Sopn otherwise. The PSM state transitions are
illustrated in Fig. 6. In Spg)y, the timer state is decremented
with each time step until timer state zero is reached, at which
point the state is transitioned back to Sgrc.

FE. Immediate Cost

The immediate cost C(s) is defined by considering a
weighted sum of delay and energy costs as follows:

C(s) = D(s) + AE(s). (8)

Note that this particular cost function does not depend on the
action a, so it will simply be denoted as C(s). Here, D(s) is
the delay cost in state s, F(s) is the energy cost in state s,
and ) is a coefficient that adjusts the weight placed on energy
as opposed to delay. For example, when A = 0 the UE places
all priority on reducing latency no matter the cost in terms of
energy. The values of D(s), E(s), and C(s) for each state are
given in Table I. In Sgrc and Soy, the delay cost is always
0 and the energy cost is always €g. This is because in these
states, the UE is consuming maximum energy to stay awake
and minimize delay. In Sprr, the energy cost is always

E(s) = aeo, ©))

where ¢ is the energy consumed in Sgrc and « is the fraction
of the energy ¢y consumed in Sppp. The delay cost in this
state is O when there is no packet waiting and 1 when there is a
packet waiting. Similarly, in Spgyy, there is no cost associated
with energy loss, and a delay cost of 0 when there is no packet
waiting and 1 when there is a packet waiting.

G. Value Iteration

After constructing all the necessary MDP components and
completing the DRX model, the optimal actions need to be
found. To do this, value iteration is employed. The process of
value iteration can be found in [15].

The value iteration algorithm given in Algorithm 1 takes
as an input the MDP, i.e., S, A, P(s',a,s), C(s), and 7. As

TABLE I
IMMEDIATE COST TABLE.

Packet Waiting No Packet Waiting
State D(s) E(s) C(s) D(s) E(s) C(s)
SRRC 0 €0 A€o 0 €0 Aeo
SonN 0 €0 Aeo 0 €0 Aeg
SoFF 1 aep 1+ alepy 0 aep alegy
Spsm 1 0 1 0 0 0

Algorithm 1 Value Iteration Algorithm.
Imput: S, A, P,C,~
Output: Q,V,«
Initialization:
: 7,0, Q(S, a)a V(S)
Voia s.t. maxs\V(s) — Vold(s)\ >0
while max;|V (s) — Voa(s)| > ¢ do
for s € S do
for a € A(s) do
Q(s,a) < C(s,0) + 1SyesP(s',a, )V ()
end for
Vold(s) A V(S)
V(s) + min,Q(s,a)
end for
: end while
:return Q,V, 7w

R A A Sl e

—_ = =

an output, the algorithm provides two functions: the action-
value function Q(s,a), which tells us how good or bad it is
to take action « in state s and then follow the optimal policy
7* thereafter; and the value function V' (s), which tells us how
good or bad being in state s is assuming the optimal policy 7*
is followed. The final output is the optimal policy 7*, which
indicates the action with the lowest associated value in the
state s = (Son, 0,0).

After the two output functions are initialized to arbitrary
values, the value iteration algorithm consists of two steps that
are repeated for all possible states until an exit condition
is met. In the first step in line 7 of Algorithm 1, a form
of Bellman’s Equation is used to update the action-value
function for every possible action a. This equation consists
of the summation of two parts. The first part is simply the
immediate cost from the MDP model. The second part is a
measure of expected future costs. This part is multiplied by
a discount factor, v € [0,1), which quantifies how much the
algorithm should care about the future. In the second step
of the algorithm given in line 9 of Algorithm 1, the value
function is updated based on the current best action to take
in each state. These two steps are repeated until the value
function is relatively static for all states. This is checked after
step 2 using the old and new value functions and a threshold
0. In the case of this problem, an action is only taken in the
final timer state of DRX on, s* = (Son,0,0). So, we only
need to look at the optimal action in this state to determine
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the optimal timer: i.e.,

THpp = argmin, Q(s™, a). (10)

III. RESULTS

This section contains: i) results obtained through value
iteration for a range of traffic intensities and energy-latency
priorities (III-A), ii) our simulation setup (III-B), and iii)
simulation results for model validation (III-C).

A. Value Iteration Results

The list of values used in the generation of results unless
otherwise specified is provided in Table II. First, we varied
the values of p and A and observed the resulting optimal DRX
timer by using the value iteration algorithm. More specifically,
for each value of )\, we plotted a curve where the packet arrival
probability is on the x-axis and the optimal DRX Off timer
TS 1s on the y-axis. These results are shown in Fig. 7. It
should be noted that the curve corresponding to A = 1.2 lies
at Torpr = 300.

These results show exactly what was to be expected. For
very low traffic rates (very small p), 75 becomes very
large, tending toward the maximum allowed Torpr at p = 0.
This was expected because at very low traffic rates, the device
can be in a sleep mode more often without risking too much
network performance degradation. The opposite is also true:
as p increases, the optimal DRX off timer becomes shorter. In
this case, the system realizes that the probability of missing
a packet when sleeping increases with increasing traffic rate,
so it decides to stay awake more often. It is important to note
that when \ exceeds a certain threshold, the cost of consuming
energy becomes greater than any possible delay incurred, so
for A larger than this threshold it is always more beneficial to
sleep as long as possible.

B. Simulation Setup

In order to test our model, a simulation scenario was set
up using Python. In this scenario, we consider a discrete
time simulation in which there exists one base station and
one UE that is using the DRX mechanism and employing a
policy 7(s). In each discrete time step of the simulation, the

TABLE II
LIST OF SIMULATION PARAMETERS.
Parameter “ Value
Torr {10, 20, ... 300} ms
TRRC7TON7TPS]\/[ 100, 30, 450 ms
Number of DRX Cycles m 3
Number of States, actions 103, 30
At 10 ms
Energy consumed in Sprc, Son €0 1
a,p, A 0.1, 0.05, 0.6

base station first observes the current state consisting of the
“macro” state, the current timer values, and whether or not
there is a downlink packet. Next, the cost is calculated from
this observed state. Then, the base station will take action
a € A if the current state is the final timer state of Soy.
Finally, the state transitions based on the current state and the
existence of a DL packet arrival.

One additional consideration must be made prior to com-
paring simulation results with our model. In the model, we use
a discount factor v to calculate the infinite horizon discounted
sum of costs, while this process is not done in the simulation.
Simply averaging the observed simulated cost would therefore
introduce a mismatch. To overcome this, the first-visit Monte
Carlo method given in Algorithm 2 is used [14]. First, a
simulation of n time steps was conducted, and the state visited
at each time step s(¢) was recorded. Through this entire
simulation, the action a is fixed. After the simulation, the
discounted future costs of the first visit of each state was
calculated. This process is shown in lines 8 through 13 of
Algorithm 2. First, the first visit of state s is located, and the
time at which this occurred is marked as time ¢. Next, for all
times after ¢ until the end of the simulation ¢’ < n, the value
of state s is updated according to the following equation:

V(s) « V(s)+~" tC(s(t), (11)

where + is the discount factor and C(s(t)) is the cost of the
state visited at time t’. Note that after this value is computed,
it will need to be normalized by a factor of 1 — v so we can
directly compare values for different discount factors. After
repeating this for all states, V'(s) is returned. This process
was repeated for all a € A.

C. Model Validation

The results of this simulation are provided in Fig. 8. Here,
the value function approximation algorithm was conducted for
various discount factors «y and the average cost was recorded.
Here, it is clear that there exists an optimal timer (indicated by
the dashed line) at which the cost is at a minimum, occurring
at Torpr = 130 ms, which is in agreement with the value
iteration results in 7. An example of a suboptimal selection is
indicated by the dotted line. It is also clear that as y approaches
1, the resulting curve approaches a single curve which is the
theoretical average cost per time step we would observe in an
infinitely long simulation.
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Algorithm 2 Value Function Approximation Algorithm.
Input: S, A, ~v,C,
Output: V
Initialization:
V(s) arbitrarily, t = 0, sg = (Srrc, Trrc,0)
while ¢ < n do

ay = W(St)

s(t) = st

St < St+1
end while
for s € S do

t = arg ming(s(t) == s)

fort <t <ndo

V(s)+ =~"""C(s(t"))

end for
end for
: return (1 — )V (s)

R A A R ol e

_ = = =
W N = O

Cost vs DRX Off Timer

— y=0.998
0.58 1 —— y=0.999
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Fig. 8. Observed cost vs DRX off timer for varying +. p = 0.05, A\ = 0.6

Further, from this simulation we were able to gather the
experimental steady state distribution, shown in Fig. 9. Here,
the value of p was set to 0.02, and Torr Wwas set statically at
a duration of 100ms. It can be seen that under this very small
traffic arrival probability, the device spends most of its time in
Sorr and Spgps. This occurs because there is a low traffic
arrival probability triggering the transition back to Sgprc.

IV. CONCLUSION

In this work, the energy-latency tradeoff inherent to DRX
was closely examined. First, the problem of optimizing DRX
sleep duration was formulated as a MDP where the action
taken is the selection of a DRX off duration from a discrete
set of possible timers. The state of the device evolved accord-
ing to a discrete Markov chain realistically simulating DRX
operation. A single parameter \ was introduced to facilitate
the tradeoff between energy and latency in the cost function
of the MDP. This MDP was solved using value iteration.

The results of value iteration were analyzed by examining
the effects of A and the incoming traffic intensity p on the
optimal timer selection. These results were verified through
a simulation during which all possible DRX off timers were
selected and the average cost was observed. As predicted by

State Visitation Distribution

0.4

e
w

o
N

Frequency of Occurrence

0.1

0.0
Srrc Son Sorr SorF Spsm Spsm,
pkt=0 pkt=1 pkt=0 pkt=1
Macro State

Fig. 9. Steady state distribution over the “macro” states obtained via
simulation. p = 0.02, Topr = 100ms.

the value iteration results, there exists a timer at which the
observed cost is at a minimum.
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