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B Abstract.

Knowledge representation and reasoning (KR&R) has been successfully implemented in many fields to
enable computers to solve complex problems with Al methods. However, its application to biomedicine
has been lagging in part due to the daunting complexity of molecular and cellular pathways that govern
human physiology and pathology. In this article we describe concrete uses of SPOKE, an open knowledge
network that connects curated information from 37 specialized and human-curated databases into a single
property graph, with 3 million nodes and 15 million edges to date. Applications discussed in this article
include drug discovery, COVID-19 research and chronic disease diagnosis and management.

I. BACKGROUND.

Advanced machine learning (ML) has successfully been deployed for a wide range of applications.
However, such ML have seen far less success in “semantically rich domains” such as biomedical sciences,
where specification of knowledge is more abstract and fluid than that in other hard sciences. According to
Herbert Simon, one of the founding fathers of Al, these unique domains typically lack mechanistic rules,
and the complexity of the heterogeneous and deep human domain expertise cannot be statistically
aggregated [1]. Big Data must be converted into Big Knowledge if we are to harness the data revolution
and KR&R represents a timely and exciting avenue to achieve this goal. KR&R, a field of Al, includes
work that strives to emulate human learning by creating a cognitive network of semantically related
concepts on which context and previous experience determine the emergence of knowledge. [2] Early
efforts to develop advanced data management systems included EBI’s SRS server [3] and Kleisli,[4]
somewhat anticipating the data (and information) deluge that would follow in subsequent years, and clearly
highlighting the need for additional efforts to address this need.

Health care costs make up almost one-fifth of the entire U.S. GDP and affect every U.S. citizen. The
opportunity--indeed, the imperative--to tap into the wisdom latent in Big Data can no longer be overlooked.
The ‘one-size-fits-all’ approach is a major reason for patient treatment failures and costs. However, the
biomedical public data and factual knowledge repositories are physically, technically, and thematically
compartmentalized, posing a significant challenge when attempting to connect the dots across the domains
of specialization in biomedicine.

Under the aegis of an NSF Convergence Accelerator award (Track A), we have developed concrete
applications for our Biomedical Open Knowledge Network (OKN), named the Scalable PrecisiOn Medicine
Knowledge Engine (SPOKE) following the hypothesis that connecting relevant information will enable the
emergence of knowledge, and facilitate solutions to otherwise unattainable insights in understanding
diseases, discovering drugs, and proactively improving personal health. Finally, by studying how human
experts use SPOKE, we take a step towards a next generation of Al based on big knowledge, stepping
beyond deep learning on data.[5]

II. GRAPH CONSTRUCTION AND CONTENT

SPOKE is a property graph containing more than 3 million nodes (of 21 types) and more than 15 million
edges (of 55 types) (A detailed description of SPOKE architecture is in preparation at the time of this
writing and will be published elsewhere). The OKN has so far integrated 37 data sources, listed at
https://spoke.ucsf.edu/data-tools. Much of this data is composed of genomic associations with disease,
chemical compounds and their binding targets, and metabolic reactions from select bacterial organisms of
relevance to human health. Also included are perturbagen-gene, food-chemical and protein-celltype
relationships (Figure 1). Several of the key concepts are mapped to biomedical ontologies (including
Disease, molecular pathways, and taxonomy among others), to provide an organizational framework and
facilitate user navigation. All ontologies in SPOKE were incorporated from NCBO's BioPortal repository,
which contains more than 900 controlled vocabularies spanning various aspects of biomedicine. [6,



7]SPOKE also uses ontologies to mark up the datasets coming into the knowledge graph for consistent
linking. SPOKE also strives to align with Biolink, a biomedical semantic standard currently being
established by the NIH/NCATS Biomedical Translator Consortium. [8]

As a stated aim of our present
NSF-CA proposal, over time we
will continue to grow SPOKE by
the integration of hundreds of
data sources in the public
domain including those from
EPA, CDC, DHSS and the FDA.
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Of note, to enhance its relevance
to human health, SPOKE
focuses on  experimentally
determined information. Thus,
computational predictions and
literature curation are not
currently prioritized in SPOKE.
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Pl‘OteiIlS, by domain and Figure 1. SPOKE Metagraph. Nodes denote biological concepts and links show how data is
including their 3-dimensional related and connected in the graph.

shapes — to answer questions such as potential targets of a drug that cause side effects, or how can an
existing drug be repurposed for new indications, or whether a protein target involved in a specific disease
is suitable for drug discovery (i.e., druggable).

Drug Discovery capabilities, such as adverse drug effects, drug-drug interactions, over a billion small-
molecule compounds that are readily available by make-on-demand vendors and interactions between drugs
and proteins, - a rich source of information for drug repurposing.

Geospatial measurement data, to bring in socio-demographic, economic, and environmental factors in
health and disease.

Users can interact with the data remotely and build applications powered by the graph either interactively
via Cypher queries or programmatically via one of the REST Application Programming Interfaces (APIs).

I.1. Scientific evaluation and stress-testing of the biomedical OKN

As of this writing, the network structure and balance of SPOKE has been characterized and preserved via
a series of computationally intense graph-theoretical "knowledge mining" methods, including shortest path
algorithm function, motif discoveries, and metabolic cycle discovery.

II.1.1. Scientific Validation — The Road Ahead

In order for SPOKE to be the basis of further scientific inquiry or new products, a series of “stress-tests”
simulating real world utility need to be conducted. While anecdotal accounts of successful drug discovery
guided by smaller knowledge networks reveal the potential utility of biomedical OKNs, the very concept
of biomedical OKNs still must be subject to a systematic, scientific evaluation. [9] As SPOKE continues to



grow, evaluation will take place both at the structure level of the knowledge network as well as by
benchmarking specific queries and use cases against medical reality.

I1.1.2. Empirical relationships between Graph node concepts and paths

In addition to the generic graph-theoretical analysis (e.g. centrality, degree, etc.), we tested the utility of the
specific node content using empirical data. For a set S of N concepts represented by nodes in SPOKE (e.g.,
“blood glucose”, “gene variant X”, “protein Y”’), we asked whether their values measured in real life
exhibits a statistical relationship to a particular structure of the subgraph in SPOKE spanned by these nodes
in S. In the simplest case of sets of N=2 nodes we ask: “Are two blood metabolites observed to be highly

correlated in a cohort, on average connected by a shorter path in the graph than any random pair of nodes?”

(Figure 2)
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To address this question, we took advantage of
a recent wellness study that collects “multi-
omics” data in a cohort 108 healthy
individuals, in which thousands of omics-data
points  (genomics, blood  proteomics,
metabolomics, clinical phenotype) were
measured. [10]In this study thousands of
blood analytes (abundance of circulating _
proteins or metabolites) were measured for  KNOWLEDGE
each individual. In total, 8,888 pairs of these I SOURGES 09)
variables were found to be correlated with sl
high statistical significance (1*>0.9) [10]We
next mapped these correlated proteins or Figure 2. Mapping paths in SPOKE to empirical observations in
metabolites onto nodes in the SPOKE OKN | Patients

and found that, remarkably, they were

connected by a path that was significantly shorter than that connecting two random nodes of the same type
(Figure 3). This result offers the first empirical evidence that the graph structure of the SPOKE network
that was computationally assembled from diverse biomedical medical databases preserves meaningful
information about mechanistic pathways that traverse various domains, most of them never explicitly
mentioned in the literature.
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Based on our preliminary data, we argue that SPOKE use-cases themselves serve as stress tests; we illustrate
some such Al applications below.
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I1.2. Network visualization

A complex knowledge network like SPOKE can
be visualized through the Neighborhood
Explorer Tool[11] to support interactive
exploration by experts and citizen scientists in
support of knowledge exploration (e.g., to
support basic research), optimization (e.g., to
resolve data problems), and communication
(e.g. to better inform patients and physicians).
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Figure 3. Analysis of blood proteomics and metabolomic data in

healthy participants shows that pairs of blood analytes (protein or
metabolite levels in circulation) that are correlated are connected by on

While standard network visualizations of large

real-world networks often resemble “hairballs” that provide little actionable insight, these interactive, multi-
level SPOKE visualizations compute and display clusters of related nodes and backbones between major
nodes at each level of detail. [12]These additional visualizations (now under construction) resemble
geospatial maps at mid-fidelity resolutions (Figure 4) with continents of similar nodes and real paths



(backbones) for each level, similar to geographic maps that show real cities and real roads at every level of

detail.
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Figure 4: Initial rendering of a subgraph of SPOKE using a multi-level, map-like network visualization. Diseases are denoted in the top
layer and they cluster by symptom and genetic similarity. The inset shows how additional details appear when zooming over an area (e.g.,
zooming on Immune system disease uncovers more details about additional diseases that belong to that category).

I1.3. Knowledge graph analysis

For the contemporary biomedical researcher,
in need of accessing vast amounts of trusted
information, = SPOKE  provides the
Neighborhood Explorer (NE, Figure 5). For
example, ClinicalTrials.gov links diseases
with drugs; the GWAS Catalog contains

genetic  associations for thousands of
phenotypes and diseases; and ChEMBL
contains binding information of

pharmacological compounds to their protein
targets. However, if an investigator seeks to
identify all existing (approved and non-
approved) drugs that target proteins encoded
by genes containing SNPs associated with a
given disease (to repurpose drugs for rare
genetic disease, for instance), this will
involve cumbersome manual search in a
number of pertinent databases separately.
Furthermore, serial queries for a group of
diseases or drugs would require repeated and
complicated programmatic queries in various
databases and assembling the results. NE
solves this need. In the future, a robust, well-
supported commercial product, powered by
SPOKE, with a superior Ul and performance,
will enable investigators to perform smart
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Figure 5. A view of the SPOKE Neighborhood explorer. The top panel
shows the controls that allow a user to select nodes/edges for expansion as
well as other key parameters. The bottom panel shows an example of the
graph neighbors of the SARS-CoV-2 Spike protein (light blue), which
includes 3 human proteins (green) and the genes encoding them (blue). One
such protein (ACE2_HUMAN) has edges connecting it to 3 compounds (2 of
them approved and one -ORE-100- in experimental phase).

queries and return actionable information, either for hypothesis generation or to inform concrete

experimental approaches.




1. FROM KNOWLEDGE TO INSIGHTS: AT APPLICATIONS

We envision a vast and integrated knowledge network connecting up to hundreds of millions of biomedical
facts, with potential utility in a broad diversity of practical applications for specialists and informed general
public alike. Its value is best harnessed by apps that are designed to extract useful information (e.g., mine
the OKN) for specific applications.

SPOKE was used to predict a possible treatment to reduce mortality of COVID-19 patients placed on
mechanical ventilation. [13]We constructed a chain of causation, a path in the SPOKE network that
connects the ACE2 protein, the cell surface protein used by the SARS-CoV-2 virus to enter the host, to the
use of Dexamethasone (a corticosteroid). SPOKE exposed a pharmacological connection that no literature
or Google search would have unearthed: Through the analysis of gene expression profiles, we discovered
that mechanical tissue stress caused by ventilation caused upregulation of ACE2 (Figure 6) and that
dexamethasone suppresses the tissue hormone midkine (MK), that is critically involved in transducing
mechanical stress to further upregulation of ACE2. Therefore, there exists a vicious cycle: mechanical
ventilation used to combat respiratory distress caused by the virus would itself also facilitate the spread of
the virus in the lungs. These results suggest that administration of corticosteroids, which was debated in the
early days of the pandemic, could improve outcome of severe (i.e., ventilated) COVID-19 cases. Indeed,
clinical studies have since reported that corticosteroids reduced the mortality of ICU specifically for patients
on ventilators by 30%. [14, 15] Here SPOKE, allowing seamless search across domains of knowledge,
showed its unique power in “connecting the dots”, alleviating the core problem of “database selection” in
complex disciplines with countless specialties.
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.. L. required to formulate this scenario without human intervention.

activity[16]. Thus, elevated bradykinin

levels likely cause increases in vascular dilation, vascular permeability and hypotension, all features
observed in severe COVID-19 patients.

III.1. Repurposing pharmaceutical drugs

Pharmaceutical and Biotechnology drug development is an expensive endeavor, and some estimates put the
current cost of a new drug at $2.6 billion.[17] Only one for every 20 products that enter Phase I clinical
trials ever becomes a commercialized product; fully 50% fail in the costly, last stage of clinical trials - or
fail to meet the proposed clinical endpoints on a significant part of the patient population.




SPOKE shows promise in repurposing existing drugs or discovering new therapeutic applications for them.
Its predecessor, HetioNet, was stress-tested to find concrete examples of drug repurposing, in two
retrospective studies:

A) Bupropion, first approved for depression in 1985, was approved for smoking cessation in 1997. [18]
Predictions based on SPOKE clearly highlight this new indication. [19]

B) SPOKE evaluated the top 100 scoring compounds for epilepsy seizure control, successfully classifying
77 compounds as anti-ictogenic (seizure suppressing), 8 as unknown (no established effect on the seizure
threshold), and 15 as orictogenic (seizure generating). Notably, the predictions contained 23 of the 25
disease-modifying antiepileptics in PharmacotherapyDB v1.0. [19]

The therapeutic effect at genomic, metabolomic, proteomic, physiological or toxicological level may help
identify additional uses for an existing drug. SPOKE can also determine ideal patient profiles and
population targets for new therapeutic drugs prior to entering late-stage clinical trials.

II1.2. Predicting new chemical biology from a small molecule’s OKN neighborhood

In another planned application, we plan to encode a small molecule’s OKN-derived biological context
instead of its raw chemical structure, into an “OKN fingerprint.” Such small molecules are “drug-like
compounds.” Similar structures have been observed to exhibit similar bioactivities across a standardized
panel of wet-lab assays, and this phenomenon can be exploited to identify new drugs with desired activities.
Too little information exists to construct experimentally derived fingerprints, and hence computational
predictions of such fingerprints have been proposed.[20]

I11.3. Delivering SPOKE to the clinician: BRIDGE

For clinicians to be able to ingest the ever-expanding volumes and types of information available for their
patients, data and algorithms such as those enabled by SPOKE must be delivered in a clear, actionable
format that is workflow friendly and will enable them to respond adequately (and in real-time) to complex

scenarios to
optimize CLINICAL CONTEXT: PRIMARY CARE
patient AT-RISK FOR... DIFFERENTIAL DIAGNOSIS TREATMENT
OutCOl’neS.‘ Timeframe (years wavzw O[O Condition
BRIDGE is a D \ v
platform that Most likely Diagnoses a
la.unChes D D 1 C Outcome intended
dlrectly from - Disease management V]
: 5 Condition ! £ i Quality of life
a  patient’s = :
chart in the lultiple S 3 @ = Like mm'm‘ your patient has: 3‘“1::\:[‘“?;!;\ line AED
- Multiple Q 2.S1P Receptor
EHR, al’ld NMOSD @ . plierosts - 3:’6hmmmm
Anti-MOG (#
assembles i O Likely side effects with agent (1
I'CleVaIlt Ll @ ® . £71 Disease progression 10%
.. 7 Migraine @ x
Chnlcal, Hypertans Low IgG <0.1%
perenaon Hepatotoxicity 0.1%
laboratory, : Leukoaraiosis (3 g g
imaging, and
patient— Figure 7. Prototype of the potential applications of BRIDGE-SPOKE. (Left). Data from the patient’s EHR can be used
as access points to SPOKE to provide estimates of disorders the patient may be at risk for over a selected timeframe.
generated (Middle) Through BRIDGE, the clinician can select data points to submit to SPOKE, such as laboratory data or specific
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and support clinical discussions and decision-making. Live since March 2019, it has supported a number
of ongoing clinical validation projects.

The SPOKE-BRIDGE integration (Figure 7), due to complete in Fall 2022, will be thoroughly evaluated in
the neurosciences using a research roadmap evaluating both in-clinic adoption, as well as near- and long-
term key clinical outcomes. The integration computes personalized biomedical profiles by selecting
variables from a patient’s clinical record and propagating (embedding) them through the entirety of the
OKN (potentially billions of concepts) to provide a deep description of the patient’s health status. Such
network embeddings operate by learning low-rank vector representations of graph nodes and edges that
preserve the graph’s inherent structure. Embedding variables from hundreds of thousands of EHR's onto
SPOKE showed that new knowledge (i.e. biomedical discoveries) can emerge from such a process.[21]
[22]Similar approaches have been used to analyze knowledge networks from different domains where they
showed superior performance and accuracy compared to previous graph exploratory approaches.[23-26]
Dimensionality reduction makes such a complex biomedical profile useful and actionable for the clinician,
who is alerted only to relevant clinical processes, medications, contraindications, or differential diagnostic
considerations that arise from the embeddings with the OKN. The clinician queries whether their patient’s
biomedical profile is mathematically closer to one of their multiple diagnostic considerations on their
differential, or leverages insights from other patients to predict which medication is a more precise
metabolic fit for that individual. Other models are being constructed to identify biologically similar
individuals (using distance measures for multifactor data at deep granularity) to surface undiagnosed
conditions, as well as for critically important disease progression predictions. This approach is also being
used to study the histories of patients formally diagnosed with a complex neurological condition (e.g.,
Parkinson's disease) to explore how far in advance this outcome could have been predicted, and on the basis
of which clinical markers.

IV. SUMMARY

Knowledge is an emergent property of the interconnected web of trusted information and known facts. To
mine for “unknown knowns," we must “connect the dots” from several information sources. When
heterogeneous networks are connected at a massive scale, new knowledge can be extracted as an emergent
property of the network. Here, the paradigm of knowledge networks - amply proven in Search —and KR&R
are applied into biomedicine, a discipline that, we argue, is inherently graph-theoretic.

Machine and deep learning models such as neural networks were traditionally “black boxes,” capable of
delivering new data (predictions), but in and of themselves, no new knowledge. This perceived limitation
has hampered their adoption in a range of chemical and biological contexts, under the sensible argument
that a recommendation, prediction or prognosis a scientist or clinician cannot understand will provide no
guarantee of correctness in a true discovery context. SPOKE enables the use of explanatory (i.e., “clear
box”’) machine learning approaches with the ability to predict biomedical outcomes in a biologically
meaningful manner. It has the potential to support a host of “explainable AI” techniques (see DARPA's
XAI program).

At the same time, it is important for this body of knowledge to contain all the right data to create realistic
and equitable models that factor in the full diversity of population and result in better health outcomes and
treatments for all members of society. We believe technology can help change the current equation of
designing for the "majority," and be a great leveler.
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Figure 1. SPOKE Metagraph. Nodes denote biological concepts and links show how data is related and connected in the graph.

Figure 2. Mapping paths in SPOKE to empirical observations in patients

Figure 3. Analysis of blood proteomics and metabolomic data in healthy participants shows that pairs of blood analytes (protein or metabolite
levels in circulation) that are correlated are connected by on average a shorter path in the SPOKE graph than any pairs of randomly chosen nodes

Figure 4: Initial rendering of a subgraph of SPOKE using a multi-level, map-like network visualization. Diseases are denoted in the top layer
and they cluster by symptom and genetic similarity. The inset shows how additional details appear when zooming over an area (e.g., zooming on
Immune system disease uncovers more details about additional diseases that belong to that category).

Figure 5. A view of the SPOKE Neighborhood explorer. The top panel shows the controls that allow a user to select nodes/edges for expansion
as well as other key parameters. The bottom panel shows an example of the graph neighbors of the SARS-CoV-2 Spike protein (light blue), which
includes 3 human proteins (green) and the genes encoding them (blue). One such protein (ACE2_HUMAN) has edges connecting it to 3 compounds
(2 of them approved and one -ORE-100- in experimental phase).

Figure 6. SPOKE-enabled reconstruction of the hypothesis that dexamethasone might help recovery of patients with COVID-19. Multiple
sources of evidence were required to formulate this scenario without human intervention.

Figure 7. Prototype of the potential applications of BRIDGE-SPOKE. (Left). Data from the patient’s EHR can be used as access points to
SPOKE to provide estimates of disorders the patient may be at risk for over a selected timeframe. (Middle) Through BRIDGE, the clinician can
select data points to submit to SPOKE, such as laboratory data or specific symptoms, to inform differential diagnosis. The results are shown as a
network of disease probabilities and risk factors giving insight into why SPOKE selected these disorders. (Right). For a specific diagnosis, SPOKE
could be used to identify which treatments are most likely to generate the desired outcomes, while informing about the most likely side effects.
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