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n Abstract. 
 
Knowledge representation and reasoning (KR&R) has been successfully implemented in many fields to 
enable computers to solve complex problems with AI methods. However, its application to biomedicine 
has been lagging in part due to the daunting complexity of molecular and cellular pathways that govern 
human physiology and pathology.  In this article we describe concrete uses of SPOKE, an open knowledge 
network that connects curated information from 37 specialized and human-curated databases into a single 
property graph, with 3 million nodes and 15 million edges to date.  Applications discussed in this article 
include drug discovery, COVID-19 research and chronic disease diagnosis and management.  
 

I. BACKGROUND. 
Advanced machine learning (ML) has successfully been deployed for a wide range of applications. 
However, such ML have seen far less success in “semantically rich domains” such as biomedical sciences, 
where specification of knowledge is more abstract and fluid than that in other hard sciences. According to 
Herbert Simon, one of the founding fathers of AI, these unique domains typically lack mechanistic rules, 
and the complexity of the heterogeneous and deep human domain expertise cannot be statistically 
aggregated [1]. Big Data must be converted into Big Knowledge if we are to harness the data revolution 
and KR&R represents a timely and exciting avenue to achieve this goal. KR&R, a field of AI, includes 
work that strives to emulate human learning by creating a cognitive network of semantically related 
concepts on which context and previous experience determine the emergence of knowledge. [2] Early 
efforts to develop advanced data management systems included EBI’s SRS server [3] and Kleisli,[4] 
somewhat anticipating the data (and information) deluge that would follow in subsequent years, and clearly 
highlighting the need for additional efforts to address this need.  

Health care costs make up almost one-fifth of the entire U.S. GDP and affect every U.S. citizen.  The 
opportunity--indeed, the imperative--to tap into the wisdom latent in Big Data can no longer be overlooked.  
The ‘one-size-fits-all’ approach is a major reason for patient treatment failures and costs. However, the 
biomedical public data and factual knowledge repositories are physically, technically, and thematically 
compartmentalized, posing a significant challenge when attempting to connect the dots across the domains 
of specialization in biomedicine.   

Under the aegis of an NSF Convergence Accelerator award (Track A), we have developed concrete 
applications for our Biomedical Open Knowledge Network (OKN), named the Scalable PrecisiOn Medicine 
Knowledge Engine (SPOKE) following the hypothesis that connecting relevant information will enable the 
emergence of knowledge, and facilitate solutions to otherwise unattainable insights in understanding 
diseases, discovering drugs, and proactively improving personal health. Finally, by studying how human 
experts use SPOKE, we take a step towards a next generation of AI based on big knowledge, stepping 
beyond deep learning on data.[5] 

 

II. GRAPH CONSTRUCTION AND CONTENT 
SPOKE is a property graph containing more than 3 million nodes (of 21 types) and more than 15 million 
edges (of 55 types) (A detailed description of SPOKE architecture is in preparation at the time of this 
writing and will be published elsewhere). The OKN has so far integrated 37 data sources, listed at 
https://spoke.ucsf.edu/data-tools. Much of this data is composed of genomic associations with disease, 
chemical compounds and their binding targets, and metabolic reactions from select bacterial organisms of 
relevance to human health. Also included are perturbagen-gene, food-chemical and protein-celltype 
relationships (Figure 1). Several of the key concepts are mapped to biomedical ontologies (including 
Disease, molecular pathways, and taxonomy among others), to provide an organizational framework and 
facilitate user navigation. All ontologies in SPOKE were incorporated from NCBO's BioPortal repository, 
which contains more than 900 controlled vocabularies spanning various aspects of biomedicine. [6, 
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7]SPOKE also uses ontologies to mark up the datasets coming into the knowledge graph for consistent 
linking. SPOKE also strives to align with Biolink, a biomedical semantic standard currently being 
established by the NIH/NCATS Biomedical Translator Consortium. [8]  

 

As a stated aim of our present 
NSF-CA proposal, over time we 
will continue to grow SPOKE by 
the integration of hundreds of 
data sources in the public 
domain including those from 
EPA, CDC, DHSS and the FDA.   

Of note, to enhance its relevance 
to human health, SPOKE 
focuses on experimentally 
determined information. Thus, 
computational predictions and 
literature curation are not 
currently prioritized in SPOKE.  

Some of the specific areas in 
which this NSF award focuses 
include: 

Proteins, by domain and 
including their 3-dimensional 
shapes – to answer questions such as potential targets of a drug that cause side effects, or how can an 
existing drug be repurposed for new indications, or whether a protein target involved in a specific disease 
is suitable for drug discovery (i.e., druggable).   

Drug Discovery capabilities, such as adverse drug effects, drug-drug interactions, over a billion small-
molecule compounds that are readily available by make-on-demand vendors and interactions between drugs 
and proteins, - a rich source of information for drug repurposing.  

Geospatial measurement data, to bring in socio-demographic, economic, and environmental factors in 
health and disease. 

Users can interact with the data remotely and build applications powered by the graph either interactively 
via Cypher queries or programmatically via one of the REST Application Programming Interfaces (APIs).  
 

II.1. Scientific evaluation and stress-testing of the biomedical OKN  
 
As of this writing, the network structure and balance of SPOKE has been characterized and preserved via 
a series of computationally intense graph-theoretical "knowledge mining" methods, including shortest path 
algorithm function, motif discoveries, and metabolic cycle discovery.  
 

II.1.1.  Scientific Validation – The Road Ahead 
 
In order for SPOKE to be the basis of further scientific inquiry or new products, a series of “stress-tests” 
simulating real world utility need to be conducted. While anecdotal accounts of successful drug discovery 
guided by smaller knowledge networks reveal the potential utility of biomedical OKNs, the very concept 
of biomedical OKNs still must be subject to a systematic, scientific evaluation. [9] As SPOKE continues to 

 
Figure 1. SPOKE Metagraph.  Nodes denote biological concepts and links show how data is 
related and connected in the graph. 
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grow, evaluation will take place both at the structure level of the knowledge network as well as by 
benchmarking specific queries and use cases against medical reality.  

 

II.1.2. Empirical relationships between Graph node concepts and paths 
In addition to the generic graph-theoretical analysis (e.g. centrality, degree, etc.), we tested the utility of the 
specific node content using empirical data. For a set S of N concepts represented by nodes in SPOKE (e.g., 
“blood glucose”, “gene variant X”, “protein Y”), we asked whether their values measured in real life 
exhibits a statistical relationship to a particular structure of the subgraph in SPOKE spanned by these nodes 
in S. In the simplest case of sets of N=2 nodes we ask: “Are two blood metabolites observed to be highly 
correlated in a cohort, on average connected by a shorter path in the graph than any random pair of nodes?” 
(Figure 2) 

To address this question, we took advantage of 
a recent wellness study that collects “multi-
omics” data in a cohort 108 healthy 
individuals, in which thousands of omics-data 
points (genomics, blood proteomics, 
metabolomics, clinical phenotype) were 
measured. [10]In this study thousands of 
blood analytes (abundance of circulating 
proteins or metabolites) were measured for 
each individual. In total, 8,888 pairs of these 
variables were found to be correlated with 
high statistical significance (r2>0.9) [10]We 
next mapped these correlated proteins or 
metabolites onto nodes in the SPOKE OKN 
and found that, remarkably, they were 
connected by a path that was significantly shorter than that connecting two random nodes of the same type 
(Figure 3). This result offers the first empirical evidence that the graph structure of the SPOKE network 
that was computationally assembled from diverse biomedical medical databases preserves meaningful 
information about mechanistic pathways that traverse various domains, most of them never explicitly 
mentioned in the literature.   

Based on our preliminary data, we argue that SPOKE use-cases themselves serve as stress tests; we illustrate 
some such AI applications below.   
 
 

II.2. Network visualization 
A complex knowledge network like SPOKE can 
be visualized through the Neighborhood 
Explorer Tool[11] to support interactive 
exploration by experts and citizen scientists in 
support of knowledge exploration (e.g., to 
support basic research), optimization (e.g., to 
resolve data problems), and communication 
(e.g. to better inform patients and physicians).   

While standard network visualizations of large 
real-world networks often resemble “hairballs” that provide little actionable insight, these interactive, multi-
level SPOKE visualizations compute and display clusters of related nodes and backbones between major 
nodes at each level of detail. [12]These additional visualizations (now under construction) resemble 
geospatial maps at mid-fidelity resolutions (Figure 4) with continents of similar nodes and real paths 

 
Figure 2.  Mapping paths in SPOKE to empirical observations in 
patients 
 

 
Figure 3. Analysis of blood proteomics and metabolomic data in 
healthy participants shows that pairs of blood analytes (protein or 
metabolite levels in circulation) that are correlated are connected by on 
average a shorter path in the SPOKE graph than any pairs of randomly 
chosen nodes 
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(backbones) for each level, similar to geographic maps that show real cities and real roads at every level of 
detail.  

II.3. Knowledge graph analysis  
For the contemporary biomedical researcher, 
in need of accessing vast amounts of trusted 
information, SPOKE provides the 
Neighborhood Explorer (NE, Figure 5). For 
example, ClinicalTrials.gov links diseases 
with drugs; the GWAS Catalog contains 
genetic associations for thousands of 
phenotypes and diseases; and ChEMBL 
contains binding information of 
pharmacological compounds to their protein 
targets. However, if an investigator seeks to 
identify all existing (approved and non-
approved) drugs that target proteins encoded 
by genes containing SNPs associated with a 
given disease (to repurpose drugs for rare 
genetic disease, for instance), this will 
involve cumbersome manual search in a 
number of pertinent databases separately. 
Furthermore, serial queries for a group of 
diseases or drugs would require repeated and 
complicated programmatic queries in various 
databases and assembling the results. NE 
solves this need.  In the future, a robust, well-
supported commercial product, powered by 
SPOKE, with a superior UI and performance, 
will enable investigators to perform smart 
queries and return actionable information, either for hypothesis generation or to inform concrete 
experimental approaches.  
 
 

 
Figure 4: Initial rendering of a subgraph of SPOKE using a multi-level, map-like network visualization.  Diseases are denoted in the top 
layer and they cluster by symptom and genetic similarity. The inset shows how additional details appear when zooming over an area (e.g., 
zooming on Immune system disease uncovers more details about additional diseases that belong to that category).   
 
 

 
Figure 5. A view of the SPOKE Neighborhood explorer. The top panel 
shows the controls that allow a user to select nodes/edges for expansion as 
well as other key parameters. The bottom panel shows an example of the 
graph neighbors of the SARS-CoV-2 Spike protein (light blue), which 
includes 3 human proteins (green) and the genes encoding them (blue). One 
such protein (ACE2_HUMAN) has edges connecting it to 3 compounds (2 of 
them approved and one -ORE-100- in experimental phase).  
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III. FROM KNOWLEDGE TO INSIGHTS: AI APPLICATIONS 
 

We envision a vast and integrated knowledge network connecting up to hundreds of millions of biomedical 
facts, with potential utility in a broad diversity of practical applications for specialists and informed general 
public alike. Its value is best harnessed by apps that are designed to extract useful information (e.g., mine 
the OKN) for specific applications.  

SPOKE was used to predict a possible treatment to reduce mortality of COVID-19 patients placed on 
mechanical ventilation. [13]We constructed a chain of causation, a path in the SPOKE network that 
connects the ACE2 protein, the cell surface protein used by the SARS-CoV-2 virus to enter the host, to the 
use of Dexamethasone (a corticosteroid). SPOKE exposed a pharmacological connection that no literature 
or Google search would have unearthed: Through the analysis of gene expression profiles, we discovered 
that mechanical tissue stress caused by ventilation caused upregulation of ACE2 (Figure 6) and that 
dexamethasone suppresses the tissue hormone midkine (MK), that is critically involved in transducing 
mechanical stress to further upregulation of ACE2.  Therefore, there exists a vicious cycle: mechanical 
ventilation used to combat respiratory distress caused by the virus would itself also facilitate the spread of 
the virus in the lungs. These results suggest that administration of corticosteroids, which was debated in the 
early days of the pandemic, could improve outcome of severe (i.e., ventilated) COVID-19 cases. Indeed, 
clinical studies have since reported that corticosteroids reduced the mortality of ICU specifically for patients 
on ventilators by 30%. [14, 15]  Here SPOKE, allowing seamless search across domains of knowledge, 
showed its unique power in “connecting the dots”, alleviating the core problem of “database selection” in 
complex disciplines with countless specialties.  

 
Another example of "connecting dots" 
is provided by integrating the role of 
bradykinin in COVID-19.  Again, the 
entry point for the virus is ACE2, which 
has a direct connection to the bradykinin 
receptor BRKB2, and hence to its 
protein BKRB1_HUMAN, which 
represents the intersection between 
endocrine and immune regulation 
systems. This triggers proteolysis of the 
KNG1_HUMAN protein, which gets 
cleaved into kininogen. Kininogen has a 
large number of connections and 
effects, one of which is bradykinins, 
which have a potent vasopressor 
activity[16]. Thus, elevated bradykinin 
levels likely cause increases in vascular dilation, vascular permeability and hypotension, all features 
observed in severe COVID-19 patients.   

 

 

III.1. Repurposing pharmaceutical drugs 
Pharmaceutical and Biotechnology drug development is an expensive endeavor, and some estimates put the 
current cost of a new drug at $2.6 billion.[17] Only one for every 20 products that enter Phase I clinical 
trials ever becomes a commercialized product; fully 50% fail in the costly, last stage of clinical trials - or 
fail to meet the proposed clinical endpoints on a significant part of the patient population.  

 
Figure 6. SPOKE-enabled reconstruction of the hypothesis that dexamethasone 
might help recovery of patients with COVID-19. Multiple sources of evidence were 
required to formulate this scenario without human intervention.  
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SPOKE shows promise in repurposing existing drugs or discovering new therapeutic applications for them. 
Its predecessor, HetioNet, was stress-tested to find concrete examples of drug repurposing, in two 
retrospective studies:  

A) Bupropion, first approved for depression in 1985, was approved for smoking cessation in 1997. [18]  
Predictions based on SPOKE clearly highlight this new indication. [19] 
 
B) SPOKE evaluated the top 100 scoring compounds for epilepsy seizure control, successfully classifying 
77 compounds as anti-ictogenic (seizure suppressing), 8 as unknown (no established effect on the seizure 
threshold), and 15 as orictogenic (seizure generating). Notably, the predictions contained 23 of the 25 
disease-modifying antiepileptics in PharmacotherapyDB v1.0. [19] 

The therapeutic effect at genomic, metabolomic, proteomic, physiological or toxicological level may help 
identify additional uses for an existing drug.  SPOKE can also determine ideal patient profiles and 
population targets for new therapeutic drugs prior to entering late-stage clinical trials. 
 

III.2. Predicting new chemical biology from a small molecule’s OKN neighborhood 
In another planned application, we plan to encode a small molecule’s OKN-derived biological context 
instead of its raw chemical structure, into an “OKN fingerprint.”  Such small molecules are “drug-like 
compounds.” Similar structures have been observed to exhibit similar bioactivities across a standardized 
panel of wet-lab assays, and this phenomenon can be exploited to identify new drugs with desired activities. 
Too little information exists to construct experimentally derived fingerprints, and hence computational 
predictions of such fingerprints have been proposed.[20]   
 
 

III.3. Delivering SPOKE to the clinician: BRIDGE 
For clinicians to be able to ingest the ever-expanding volumes and types of information available for their 
patients, data and algorithms such as those enabled by SPOKE must be delivered in a clear, actionable 
format that is workflow friendly and will enable them to respond adequately (and in real-time) to complex 
scenarios to 
optimize 
patient 
outcomes. 
BRIDGE is a 
platform that 
launches 
directly from 
a patient’s 
chart in the 
EHR, and 
assembles 
relevant 
clinical, 
laboratory, 
imaging, and 
patient-
generated 
data to 
visualize an 
individual’s 
trajectory 

 
Figure 7. Prototype of the potential applications of BRIDGE-SPOKE. (Left). Data from the patient’s EHR can be used 
as access points to SPOKE to provide estimates of disorders the patient may be at risk for over a selected timeframe. 
(Middle) Through BRIDGE, the clinician can select data points to submit to SPOKE, such as laboratory data or specific 
symptoms, to inform differential diagnosis. The results are shown as a network of disease probabilities and risk factors 
giving insight into why SPOKE selected these disorders. (Right). For a specific diagnosis, SPOKE could be used to 
identify which treatments are most likely to generate the desired outcomes, while informing about the most likely side 
effects. 
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and support clinical discussions and decision-making.  Live since March 2019, it has supported a number 
of ongoing clinical validation projects.  

 

The SPOKE-BRIDGE integration (Figure 7), due to complete in Fall 2022, will be thoroughly evaluated in 
the neurosciences using a research roadmap evaluating both in-clinic adoption, as well as near- and long-
term key clinical outcomes. The integration computes personalized biomedical profiles by selecting 
variables from a patient’s clinical record and propagating (embedding) them through the entirety of the 
OKN (potentially billions of concepts) to provide a deep description of the patient’s health status. Such 
network embeddings operate by learning low-rank vector representations of graph nodes and edges that 
preserve the graph’s inherent structure. Embedding variables from hundreds of thousands of EHR's onto 
SPOKE showed that new knowledge (i.e. biomedical discoveries) can emerge from such a process.[21] 
[22]Similar approaches have been used to analyze knowledge networks from different domains where they 
showed superior performance and accuracy compared to previous graph exploratory approaches.[23-26] 
Dimensionality reduction makes such a complex biomedical profile useful and actionable for the clinician,  
who is alerted only to relevant clinical processes, medications, contraindications, or differential diagnostic 
considerations that arise from the embeddings with the OKN. The clinician queries whether their patient’s 
biomedical profile is mathematically closer to one of their multiple diagnostic considerations on their 
differential, or leverages insights from other patients to predict which medication is a more precise 
metabolic fit for that individual. Other models are being constructed to identify biologically similar 
individuals (using distance measures for multifactor data at deep granularity) to surface undiagnosed 
conditions, as well as for critically important disease progression predictions. This approach is also being 
used to study the histories of patients formally diagnosed with a complex neurological condition (e.g., 
Parkinson's disease) to explore how far in advance this outcome could have been predicted, and on the basis 
of which clinical markers. 
 

IV. SUMMARY 
Knowledge is an emergent property of the interconnected web of trusted information and known facts. To 
mine for “unknown knowns," we must “connect the dots” from several information sources. When 
heterogeneous networks are connected at a massive scale, new knowledge can be extracted as an emergent 
property of the network. Here, the paradigm of knowledge networks - amply proven in Search – and KR&R 
are applied into biomedicine, a discipline that, we argue, is inherently graph-theoretic.  

Machine and deep learning models such as neural networks were traditionally “black boxes,” capable of 
delivering new data (predictions), but in and of themselves, no new knowledge. This perceived limitation 
has hampered their adoption in a range of chemical and biological contexts, under the sensible argument 
that a recommendation, prediction or prognosis a scientist or clinician cannot understand will provide no 
guarantee of correctness in a true discovery context. SPOKE enables the use of explanatory (i.e., “clear 
box”) machine learning approaches with the ability to predict biomedical outcomes in a biologically 
meaningful manner. It has the potential to support a host of “explainable AI” techniques (see DARPA's 
XAI program).  

At the same time, it is important for this body of knowledge to contain all the right data to create realistic 
and equitable models that factor in the full diversity of population and result in better health outcomes and 
treatments for all members of society. We believe technology can help change the current equation of 
designing for the "majority," and be a great leveler. 
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Figures Caption. 
Figure 1. SPOKE Metagraph.  Nodes denote biological concepts and links show how data is related and connected in the graph. 
 
Figure 2.  Mapping paths in SPOKE to empirical observations in patients 
 
Figure 3. Analysis of blood proteomics and metabolomic data in healthy participants shows that pairs of blood analytes (protein or metabolite 
levels in circulation) that are correlated are connected by on average a shorter path in the SPOKE graph than any pairs of randomly chosen nodes 
 
Figure 4: Initial rendering of a subgraph of SPOKE using a multi-level, map-like network visualization.  Diseases are denoted in the top layer 
and they cluster by symptom and genetic similarity. The inset shows how additional details appear when zooming over an area (e.g., zooming on 
Immune system disease uncovers more details about additional diseases that belong to that category).   

 
Figure 5. A view of the SPOKE Neighborhood explorer. The top panel shows the controls that allow a user to select nodes/edges for expansion 
as well as other key parameters. The bottom panel shows an example of the graph neighbors of the SARS-CoV-2 Spike protein (light blue), which 
includes 3 human proteins (green) and the genes encoding them (blue). One such protein (ACE2_HUMAN) has edges connecting it to 3 compounds 
(2 of them approved and one -ORE-100- in experimental phase).  

 
Figure 6. SPOKE-enabled reconstruction of the hypothesis that dexamethasone might help recovery of patients with COVID-19. Multiple 
sources of evidence were required to formulate this scenario without human intervention.  

 
Figure 7. Prototype of the potential applications of BRIDGE-SPOKE. (Left). Data from the patient’s EHR can be used as access points to 
SPOKE to provide estimates of disorders the patient may be at risk for over a selected timeframe. (Middle) Through BRIDGE, the clinician can 
select data points to submit to SPOKE, such as laboratory data or specific symptoms, to inform differential diagnosis. The results are shown as a 
network of disease probabilities and risk factors giving insight into why SPOKE selected these disorders. (Right). For a specific diagnosis, SPOKE 
could be used to identify which treatments are most likely to generate the desired outcomes, while informing about the most likely side effects. 
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