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ABSTRACT 
Objective 
Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved 

outcomes, reduction of disease burden and lower healthcare costs. Predictions of a patient’s 

health trajectory have been improved through the application of machine learning approaches to 

electronic health records (EHR). However, these methods have traditionally relied on “black 

box” algorithms that can process large amounts of data but are unable to incorporate domain 

knowledge, thus limiting their predictive and explanatory power.  Here we present a method for 

incorporating domain knowledge into clinical classifications by embedding individual patient data 

into a biomedical knowledge graph. 

 
Materials and Methods 
A modified version of the Page rank algorithm was implemented to embed millions of de-

identified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional, 

knowledge-guided patient health signatures (i.e. SPOKEsigs) that were subsequently used as 

features in a random forest environment to classify patients at risk of developing a chronic 

disease.  

 

Results 
Our model predicted disease status of 5,752 subjects three years before being diagnosed with 

multiple sclerosis (MS) (AUC = 0.83). SPOKEsigs outperformed predictions using EHRs alone, 

and the biological drivers of the classifiers provided insight into the underpinnings of prodromal 

MS.  

 
Conclusion 
Using data from EHR as input, SPOKEsigs describe patients at both the clinical and biological 

levels. We provide a clinical use case for detecting MS up to five years prior to their 

documented diagnosis in the clinic and illustrate the biological features that distinguish the 

prodromal MS state. 
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INTRODUCTION 
Efforts to move towards precision and preventative medicine have increased in the last decade 

and are now pervasive in most aspects of biomedicine.[1] As a result, there has been a sharp 

increase in medical research studies that implement machine learning (ML) approaches using 

Electronic Health Records (EHRs). [2 3] ML approaches have been moderately successful and 

have substantially advanced tasks such as disease diagnosis and specimen classification. [4] 

However, because they identify patterns in data without knowledge of the underlying clinical or 

biological meaning, their overall performance has been limited and interpretability of the results 

remains a black box.  

 

Most chronic diseases lack a unique sign or symptom at presentation. On the contrary, patients 

may consult a specialist following a clinical event, but often acknowledge that symptoms 

presented months or even years prior. Early identification of individuals at risk for chronic 

diseases who are still healthy or have subclinical manifestations would be beneficial for both 

patients (to receive early treatment or close monitoring) and the health system as a whole (to 

help optimize across multiple visits and expensive testing).  

 

In order to systematically assess the earliest symptoms (i.e. prodromal period) and the 

biological changes underlying a chronic disease, clinical record standardization is critical in 

order to overcome the incompleteness in a patient’s biomedical history. The Observational 

Medical Outcomes Partnership (OMOP) format [5] helps bridge the incompatibility of disparate 

EHR systems and facilitates the unification of patient records and timelines. Additionally, 

projects that incorporate basic science-level data (genomics, proteomics, etc.) into EHR 

research, such as Electronic Medical Records and Genomics (eMERGE), have furthered our 

understanding of disease pathogenesis and offered practical applications [6-8] [9]. A recently 

recognized need is the consideration of known general biological mechanisms in patient-specific 

health data analytics. [10] This need can be addressed by knowledge graphs (KG) which 

naturally bridge the gap between basic science research and medical practice. [11] KGs 

connect information from multiple classes of biological and medical concepts, thus allowing to 

constraint the vast solution space faced by traditional ML methods. [12-15] SPOKE is a KG that 

connects information from over 30 databases and contains more than 3 million nodes of 16 

types and more than 16 million edges of 32 types. [16 17] The subset of nodes and edges used 

here are listed in Tables 1 and 2. 
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Early detection of chronic diseases such as diabetes or hypertension has enabled their effective 

management to avoid or delay clinical complications. [18 19] However, despite current efforts in 

quantifying genetic and environmental risk factors, [20] accurate methods to predict diagnosis of 

multiple sclerosis (MS) do not yet exist. MS is a chronic, autoimmune disease of the central 

nervous system (CNS) with severe and life-long consequences. Early symptoms of MS, such as 

fatigue or depression, are often non-specific, which can make it difficult for the general 

practitioner to identify and refer the patient to a neurologist. However, previous studies suggest 

that health care utilization by some patients increases even 10 years prior to their MS diagnosis. 

[21] Since early treatment of MS is associated with improved long-term neurological outcomes, 

[22] early recognition of a (sub)clinical presentation and understanding its biological basis could 

have a major impact on disease trajectories of individual patients. Here we present a 

computational method to identify patients before they are diagnosed with MS using only the 

structured portion of their medical records and biological knowledge from a KG. This method for 

incorporating biological knowledge in health data analysis has broad applicability to other 

chronic conditions. 
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MATERIALS AND METHODS 
Patient encounter snapshots 
The initial cohort consisted of de-identified EHR from 2,180,882 patients who visited UCSF 

between 2011-2018. Available “snapshots” from the medical history of 5,752 patients with a 

confirmed diagnosis of MS were taken using only past encounters 1-7 years prior to their first 

MS diagnosis code (t0; Figure 1A). These snapshots represent everything a doctor knows about 

a patient (through their EHRs), up to a given point in time (i.e. snapshot at year -1 contains data 

up to 1 year before MS diagnosis). These snapshots represent the de-facto prodromal period of 

MS.  

 

A control group (non-MS, n=2,175,130) was selected among individuals who never received an 

MS diagnosis during the observational period. For the non-MS group, t0 was set at 6 months 

prior to their most recent visit to UCSF. This aligned MS and non-MS snapshots and ensured 

that the control population had a follow-up period without MS equal to the minimum amount of 

observation time available for MS patients after diagnosis.  

 

Parallel analyses were conducted to simulate two possible scenarios: patients who visited 

multiple specialists (All-Visits) and patients with only primary or emergency care visits (PCP-

Only). A patient could potentially be in both simulations if they received both primary and 

specialist care at UCSF, but only data collected during primary care type visits were used for the 

PCP-Only analysis. Figure 1B depicts the number of MS and Non-MS patients included in the 

All-Visits (left) and PCP-Only (right) groups for each snapshot (years -1 to -7). 

 

Embedding EHRs into SPOKE 
The EHRs used for this analysis were translated into the OMOP Common Data Model (CDM). 

We first created Propagated SPOKE Entry Vectors (PSEVs), machine-readable embeddings 

that quantify the significance of each node in SPOKE for a given cohort of patients. [23] To 

create PSEVs, SPOKE Entry Points (SEPs) were first identified by finding all concepts that are 

present in both the EHRs and SPOKE. For this work, we identified 7,535 SEPs, defined as the 

EHR concepts from the primary tables “condition_occurrence”, “drug_exposure”, and 

“measurement” that directly corresponded to nodes in SPOKE. Then, for a given concept (e.g. 

carbamazepine), a connection was made between a patient SEPs in the EHRs and SPOKE. A 

modified version of topic-sensitive Page Rank [24] was then used to generate PSEVs for each 

SEP (Figure 2A-B). Specifically, a random walker was placed onto a node in SPOKE and 
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allowed it to randomly traverse edges within the network until the walker is forced to restart 

(p=0.1) at one of the input patients (that was prescribed carbamazepine in this example). This 

process continues until the amount of time (importance) the walker spends on each node 

becomes stable. The resulting PSEV holds weights for each node in SPOKE based on how 

important a node is for the corresponding patient population. 

 

Once population-level embeddings (PSEVs) were created for all matching EHR concepts, they 

were aggregated to create vectors for the individual patient snapshots. Similar to other machine-

learning algorithms, [25 26] we applied vector/matrix arithmetic to produce the Patient Specific 

SPOKE Profile Vectors (SPOKEsigs, see supplementary Methods). Following this principle, 

SPOKEsigs were computed for each patient, at each snapshot (Figure 2C). The resulting 

vectors represent the importance each node in SPOKE for each patient at that time point.  

 

Building a classifier for early detection of MS 
Random forest classifiers were used to determine if SPOKEsigs could predict prodromal MS. 

Random forest was chosen based on its combination of interpretability and performance [27]. 

To measure the importance of the knowledge network in the prediction, we also created a 

classifier using only the binary vector corresponding to the patient’s SEP. Since SEPs are 

simply the EHR input variables used to derive the SPOKEsigs, comparing the performance 

between the two classifiers allowed us to gauge the predictive performance gained by using 

SPOKE.  

 

In order to build a classifier that could be used to compute risk of MS in the general population, 

the classifier was tested using the prevalence of MS at UCSF, which approached ~1:1000 for all 

groups (comparable to the prevalence of MS in the US). [28 29] The classifiers (using either 

SPOKEsigs or SEPs) were run from snapshots at years -5, -3, and -1 from diagnosis for both 

the All-Visits and PCP-Only groups. 
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RESULTS 
MS-related nodes increase in significance as time of diagnosis approaches 
In order to measure the flow of information from thousands of subjects through the “MS” node in 

SPOKE before diagnosis, we generated SPOKEsigs without using the PSEV corresponding to 

the concept MS (as MS is naturally the top ranked node within the MS PSEV). [23] Of interest, 

nodes related to the physiopathology of MS were found to be highly ranked likely due to the 

biologically meaningful connections within SPOKE. To investigate the importance of the MS 

node in our subject population, the rank distribution of MS was compared for years -7 to -1 

relative to MS diagnosis in the index group. Figure 3a shows that MS increases in significance 

as time to diagnosis approaches for both the All-Visits and PCP-Only groups (r2= 0.93; p<0.037 

PCP-Only and r2= 0.96; p<0.018 All-Visits).  Furthermore, when compared to all other diseases 

in SPOKE, MS remains within the top 1% in the All-Visits group and (and within 2% for PCP-

Only visits), during years -7 to -1. Further, the importance of MS is statistically significant (T-

test) for both groups between years -5 (5.5e-6 PCP-Only; 1.6e-26 All-Visits) to -1 (6.4e-62 PCP-

Only; 3.4e-147 All-Visits). Note that this cannot be explained by prescriptions of MS-specific 

disease-modifying medications (DMTs), as these individuals have not been yet diagnosed with 

MS. There is a noticeable gap between the p-values for the All-Visits and the PCP-Only groups, 

suggesting a substantial increase in information related to MS being recorded during specialist 

visits. Though this increase in significance (overtime as well as the difference between PCP-

Only and All-Visits groups) can partially be attributed to the increased sample size, the average 

p-value at any time point is not significant. Further, the slope for the MS node compared to the 

slope of the average p-value over time is 215x and 127x higher (All-Visits and PCP-Only 

respectively), suggesting that only a small portion of the increase in significance can be 

attributed to increased sample size. 

 

To ensure that these results were MS-specific and not simply the outcome of visiting a 

neurologist (in the All-Visits group), a similar analysis was conducted using snapshots from 

patients diagnosed with Amyotrophic Lateral Sclerosis (ALS). Similarly, ALS was the most 

important disease (p<3.17e-9) in the ALS snapshots at year -1. In contrast, the MS node was 

not differentially ranked compared to the control population (p>0.9). This indicates that although 

both MS and ALS patients can see neurologists during the prodromal period, each prodromal 

disease has a distinct signal in SPOKE. 
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Considering that a first demyelinating event must occur prior to the diagnosis of MS, [30 31] we 

speculated that SPOKE nodes related to myelin might also increase in significance as time to 

diagnosis approached. Figure 3b illustrates the increased significance of the concept Myelin 

sheath adaxonal region (GO:0035749). Furthermore, the same trend is observed for any node 

with “myelin” in its name (Figure 3c). These results suggest that the biological underpinnings of 

the disease might be detectable during the prodromal period using only information from the 

EHR. 

 

Predicting Prodromal MS 
After confirming that SPOKEsigs contained meaningful information related to MS, a predictive 

model was built using patient-specific SPOKEsigs as inputs to a random forest classifier. The 

average AUC for the SPOKEsig All-Visit (AV) classifier was 0.76 at -7 years, and progressively 

increased to 0.84 for year -1. This same trend was observed for all four classifier types 

(AUCSPOKE AV: 0.76-0.84, AUCSPOKE PCP: 0.6-0.78, AUCSEP av: 0.7-0.83, AUCSEP PCP: 0.53-0.75; 

Figure 4). As expected, the classifier that used all encounters outperformed the classifier that 

used PCP-Only encounters (Avg. ΔAUCSPOKE Years -1 to -5: 0.11 and Avg. ΔAUCSEP Years -1 to 

-5: 0.15; Avg. ΔAUC = Avg. AUC All-Visits – Avg. AUC PCP-Only). In all cases of information 

loss, either from smaller time windows (time from diagnosis) or missing specialist visits (PCP-

Only), the enhancement of EHRs with SPOKE drove classifier performance. The greatest 

improvement was seen at three years prior to diagnosis using PCP-Only encounters 

(ΔAUCSPOKE-SEP: 0.12). Altogether, these results demonstrate that embeddings of patients’ 

clinical data from the structured portion of the EHR onto a KG contain relevant information about 

their health status. Furthermore, adding structured knowledge to EHR data through SPOKE can 

compensate for missing and incomplete EHR data.  

 

More SEPs will likely improve classifier performance 
We recognize SEPs themselves are incomplete because they currently do not map every EHR 

concept to SPOKE (88% of conditions, 79% of medications, and 47% of measurements for All-

Visits at year -1). To estimate how much SPOKEsigs could improve if each EHR concept was 

mapped to SPOKE, the same classifiers were run using the full set of EHR concepts. 

Interestingly, the average difference in AUC between full OMOP and SPOKEsigs was the same 

as that between SPOKEsigs and SEPs (ΔAUC: 0.053).  The majority of OMOP concepts that 

drove the full OMOP classifiers were measurements that were not mapped to SPOKE 
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(Supplementary Tables 1 and 2). These results suggest that if more EHR concepts were 

mapped to SPOKE, a significant improvement in the classifier could be achieved.  

 

Biological drivers of the classifier 
Our previous results suggest that the improved performance of classifiers using SPOKEsigs 

over those using only SEPs (i.e. straight from the EHR) is due to biologically relevant 

information from SPOKE being utilized in the computation (i.e. because the network connects 

these variables). To understand how the incorporation of biological knowledge increased the 

AUC, we extracted the scores of each biological node using the average feature value across all 

years for both the All-Visits and PCP-Only groups. Next the top 20 nodes from each biological 

node type (Gene, Protein, Biological Process, Molecular Function, Cellular Component, and 

Pathway) were selected and split into MS or Non-MS significant groups according to the sign of 

the t-statistic (Figure 5 a and b respectively). To further interpret how each group of top nodes 

were connected to one another, additional SPOKE nodes were added if they had direct edges 

to at least two top biological nodes (Figure 5a-b). Remarkably, the highest ranked nodes in the 

MS groups corresponded to myelin biology (myelin sheath adaxonal region, MAG, glial cell 

differentiation etc.), neurophysiological functions (axonogenesis, ceramide binding, etc.) and 

adaptive immunity (CD4+T cells and B cell-specific pathways, CCR5, etc.) (Figure 5a, 

Supplementary Table 3).  Also significant were nodes related to the CNS, muscle behavior, the 

extracellular matrix (e.g. matrix metalloproteinases, collagen, NCAM, Basigin interactions, etc.), 

and genes associated with other neurological diseases such as spastic paraplegia (MPV17L2), 

ataxia (RNF170) Alzheimer’s disease (APBA3), and lysosomal storage disease (NAGLU). 

Together, these nodes illustrate how the classifier detected the importance of neurological and 

immunological processes in MS patients several years before their diagnoses. In contrast, the 

highest ranked nodes within the Non-MS group were related to Th2 cell differentiation 

(eosinophil migration, prostaglandins, CCR3 chemokine receptor binding, etc.), an immune 

subset associated with protection against inflammatory diseases like MS (Figure 5b). [32-35]  

 

Medications and common laboratory tests drive information flow to neurological nodes 
The difficulty in identifying MS at an early stage is due to the combination of the EHRs being 

sparse and MS symptoms being vague and common in the general population. Often this 

results in OMOP codes only being associated with one or a small number of MS patients 

(Supplementary Figure 2) which does not contribute to the classifier. However, after mapping an 

OMOP concept to a SEP it is transformed into a multidimensional SPOKEsig that represents the 
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importance of each node in SPOKE for that OMOP concept/SEP. Therefore, two distinct OMOP 

concepts could “push” information to the same downstream nodes.  

 

To identify which OMOP concepts were responsible for “pushing” information downstream to 

each of the MS-significant biological nodes, network paths were traced back to the originating 

SEPs (see methods). For most of the top MS nodes, the SEPs that were essential for the high 

rank of the MS-significant nodes were mapped from medication orders and common laboratory 

tests (note that MS DMTs are not SEPs, as none of these individuals had been diagnosed with 

MS at the time of analysis). Though these SEPs may not have been significant in the MS 

population as a whole, their propagation through SPOKE led to increased information flow to the 

MS top nodes. For example, while Carbamazepine and Lithium are not significant as distinct 

SEPs, they both direct information flow to the GO concept “Myelin sheath adaxonal region” (GO: 

0035749, a highly ranked MS-relevant node) in a representative patient shown in Figure 5c. For 

this patient, information flows from Carbamazepine to a set of Disease nodes (either through 

“treated by” or “contraindicated for” edges) and then (either directly or through an additional 

Disease or Gene node) to the genes CNP, MAG, or PTEN which are all components of “Myelin 

sheath adaxonal region”. Interestingly, Carbamazepine or Lithium can be used to treat 

symptoms and comorbidities of MS such as trigeminal and glossopharyngeal neuralgia or 

depression, respectively, which are common symptoms experienced by MS patients. This 

further demonstrates that distinct clinical presentations can lead to similar SPOKE 

representations of MS patients. 

Similarly, the paths between the laboratory test for Aspartate aminotransferase travel through 

aspartic acid (Compound) and then traverse one to two edge(s) before reaching MAG and 

PTEN (Genes) (Supplementary Figure 3). Despite the different paths of entry into SPOKE, data 

are repetitively sent through nodes such as MAG and PTEN, which then converge at the “Myelin 

sheath adaxonal region” node. Similar patterns were observed for multiple other neurological 

nodes. 

 

 

Th2-mediated diseases drive information to Non-MS biological nodes 
The same method for abstracting the pertinent OMOP concepts information flow was then 

applied to the top Non-MS biological nodes. After retracing several paths, we found that the 

OMOP concepts that facilitated the flow of information to nodes related to eosinophils, 

eicosanoids, and T-cells were driven by Th2-mediated diseases such as asthma and allergies 
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which are more prevalent in the Non-MS population (–log2 odds ratio of -2.46 and -1.97 

accordingly). Figure 5d provides an example of how these diseases transfer information to the 

(non-MS significant) biological node Eicosanoid ligand-binding receptors. In this representative 

patient, data start at the node for asthma and then either directly connect to or are one neighbor 

apart from genes that participate in Eicosanoid ligand-binding receptor (Pathway). In the latter 

case, the information first flows through diseases similar to asthma or its associated genes. 

These straightforward routes from Th2-mediated diseases to their associated genes are what 

power the Th2 signal in the Non-MS significant biological nodes. 

 

Taken together, our results show that SPOKE nodes useful for the classifier include nodes with 

both strongly positive (highly ranked in MS) and negative (highly ranked in controls) 

associations with MS. In both cases, the biological interpretation of those nodes is consistent 

with the known pathogenesis of MS. 
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DISCUSSION  
 

The purported prodromal period of MS is often described in terms of health care utilization. [36 

37] MS patients in the prodromal stage are, by definition, months or even years away from a 

recorded diagnosis code for MS. During this period, however, they are not just standing idly - in 

fact, their healthcare use both within and beyond the primary care setting, steadily increases 

until time to diagnosis. [36] Previous research revealed that MS patients have more encounters 

with psychiatrists and urologists, as well as higher proportions of musculoskeletal, genito-urinary 

or hormonal-related prescriptions. [38]These findings hint that underlying biological signals must 

be present months or even years before diagnosis and the information from these specialist 

visits could be pivotal in uncovering those differences.  

 

While patients often pay multiple visits to a specialist before receiving an MS diagnosis, the 

process of obtaining an appointment with a specialist can itself be prolonged, usually requiring a 

referral and insurance coverage. As a result, a patient’s initial interface with a health system is 

often through primary or emergency care. Appreciating the different roles primary care and 

specialist clinicians play in the diagnosis process, we ran two analyses in parallel using data 

from either primary care providers only (PCP-Only) or all visit types (All-Visits). Though it is 

possible for symptoms to be recorded in the structured portion of EHRs, this typically only 

occurs if it is necessary for billing. Additional patient data can be extracted from the patient 

notes using natural language processing (NLP). However, NLP methods to date generate rather 

sparse data, and need further validation in healthcare settings; thus their incorporation is out of 

scope for this work. 

 

The generation of PSEVs is comparable to word2vec, another machine-learning vector 

embedding method. [25 26] Similar to how word2vec learns the embedding of a word by using 

the words around it as context, PSEVs utilize patient cohorts to give context to the nodes in 

SPOKE. PSEVs are then added together to produce the Patient Specific SPOKE Profile Vectors 

(SPOKEsigs) that describe a patient in terms of node weights in SPOKE. The main difference 

between these two embedding techniques is that PSEVs (and therefore SPOKEsigs) are based 

on a “clear box” algorithm that constructs machine-readable vectors while maintaining human 

interpretability. This means each element in the vector corresponds to a node in SPOKE and it 

is possible to trace back how information travels from sparse EHRs to downstream nodes. The 

diffusion of EHRs through SPOKE enabled the prioritization of the MS Disease node in the 
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SPOKEsigs of MS patients compared to controls. Additionally, the significance of this differential 

prioritization increases as the time to diagnosis decreases. Further, we have shown that the 

known biological underpinnings of MS could be abstracted using these sparse clinical data. This 

is evident by the prioritization of myelin related nodes within the SPOKEsigs of MS patients – 

whose disease is characterized by demyelination in the CNS - compared to controls up to seven 

years prior to MS diagnosis.   

 

We hypothesized that SPOKEsigs contained deeper information about a patient than the 

equivalent EHR vectors (SEPs). Remarkably, SPOKEsigs outperformed SEPs (i.e. EHR-only 

information) at all time points for both the All-Visits and PCP-Only analyses. The All-Visit AUCs 

were always higher than the PCP-Only AUCs due to the greater power of the All-Visit group in 

both number of patients and encounters. This difference was minimized by the addition of 

SPOKE, which enabled the use of PCP-Only data to achieve results closer to using All-Visit 

data using the SEPs alone. This enhancement of EHRs using SPOKE was particularly striking 

for the PCP-Only analysis performed 3 years before diagnosis, which showed a 12% 

improvement in AUC (over SEPs alone). These results hint at a future where, after adequate 

validation including consideration of possible biases, SPOKE could be used at the point of care 

to support or target supplementary evaluation for primary care providers.  

 

The top biological drivers of the classifier were split into two groups (MS significant or Non-MS 

significant) according to whether they were ranked higher in the MS or Control SPOKEsigs. 

Notably, neurophysiological functions, CNS, and muscle behavior nodes were among the top 

MS-significant nodes. In contrast, there were many Th2-related nodes (indicating 

immunoregulatory activity) dominating the Non-MS significant nodes. Interestingly, 

phospholipase C activity, which was high in the MS group, is known to play a role or interact 

with in both the MS and Non-MS top immune features. Moreover, phospholipase C  [39] was 

recently implicated in female-specific neuropathic pain induce a myelin basic protein peptide 

(MBP84-104) in mice. This study showed that after MBP exposure, T-cells attack the DRG and 

spinal cord in females but remain localized in males. [40] Notably multiple top nodes from both 

the MS and Non-MS groups participate together in this pathway in a way that is consistent with 

both this observed sexual dimorphism as well as the increased prevalence of MS among 

women. This connection between top immune nodes within MS and Non-MS groups further 

supports the hypothesis that MS (and others like RA) results from an imbalance between 

proinflammatory (Th1 or Th17) and immunoregulatory Th2 responses. [41] In contrast, asthma 
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and allergies are mediated by Th2 responses, which presumably protect against Th1/Th17-

driven diseases. [42 43]  

 

PSEVs represent a new class of clear (as opposed to a black) box algorithms. This property 

allowed us to trace back how key biological nodes became significant. The propagation of 

information to nodes that were ranked higher in non-MS patients mostly originated from Th2 

mediated diseases such as allergies and asthma, which were more prevalent in the non-MS 

population. In contrast, a heterogeneous set EHRs mainly from commonly ordered laboratory 

tests or treatments for comorbidities facilitated information to move to the MS significant nodes. 

These results demonstrate that clinical presentation and biological changes are inherently linked 

and the intersection can be uncovered using EHRs during the MS prodromal period. 

 

To move towards the delivery of precision medicine, disease biology and clinical manifestations 

must be investigated side by side. Increasing amounts of data are being obtained for individual 

patients, and knowledge networks will play a key role in bridging the gap between biological 

knowledge derived from basic science research, and medical knowledge. As more 

measurements (genomics, proteomics, microbiome) become available, we hypothesize the 

SPOKEsigs will become even more informative. Further, the transition from curative to 

preventative medicine can only be possible through a better understanding of the prodromal 

biology of a disease. It is our hope that such methods will be used for a variety of diseases to 

advance both precision and preventative medicine. 

 
CONCLUSIONS: 
This work presents a strategy to embed EHR data onto a knowledge graph (SPOKE) to obtain 

high-dimensional health status profiles (SPOKEsigs). SPOKEsigs were computed for hundreds 

of thousands of individuals and a random-forest classifier was trained to identify individuals at 

risk of MS. This approach was able to detect MS up to five years prior to their documented 

diagnosis in the clinic. SPOKEsigs represent a new kind of “clear box” explainable predictable 

models with broad applicability to other chronic medical conditions where early diagnosis can 

benefit patients.  
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Data Sharing Statement 
Due to the sensitive nature of EHR, we are not able to share patient data, even in de-identified 

form. To facilitate the reproducibility and advancement of this research, we have created an API 

for generating SPOKEsigs alongside a jupyter notebook with instructions on how to use it, which 

can be accessed at https://github.com/BaranziniLab/SPOKEsigs. Anyone with access to EHRs 

can now create SPOKEsigs for their own patient populations and test the concepts presented in 

this work. SPOKE can be accessed at https://spoke.rbvi.ucsf.edu/neighborhood.html. 

 

 

  

https://github.com/BaranziniLab/SPOKEsigs
https://spoke.rbvi.ucsf.edu/neighborhood.html
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FIGURE LEGENDS 
 
 

Figure 1. Patient timeline aligning and filtering. (a) Timepoint 0 (t0) is the point of alignment 
for the MS and Non-MS timelines. For MS patients, t0 was the first visit in which a patient 

received a diagnosis code for MS. The duration of time a patient has been diagnosed with MS is 

represented by a red line between the first and last visits with a MS diagnosis code. For Non-

MS patients t0 was set to 6 months (purple line) prior to their most recent visit (hexagon). Left of 

t0 are the patient snapshots that encompass all of the information (EHR data) a doctor has on a 

patient up to a given point of time. The snapshot at year -1 (blue line) contains all data between 

the first visit (triangle) and -1 year from t0. The remaining snapshots (years -3, -5, and -7) 

become smaller as their endpoints move farther from t0. (b) Two patient encounter groups were 
followed throughout the workflow: All-Visit (left) and Primary Care Physician (PCP-Only) (right). 

The All-Visit analysis uses all possible encounters at UCSF, while the PCP-Only analysis only 

includes patient encounters at primary (or emergency) care visits. The number of MS or Non-

MS patients at each year go from t0 (top) to -7 years (bottom) is shown. 

 
 
Figure 2. Embedding individual patients in SPOKE. (a) Example embedding the EHR 
concept for the drug carbamazepine into SPOKE. First, SPOKE Entry Points (SEPs) are 

created by finding all concepts that are present in both the EHRs and SPOKE. Then each 

patient that was prescribed carbamazepine is connected to SPOKE through the SEPs in their 

EHRs. A random walker is then placed onto a node in SPOKE and randomly traverses edges 

within the network until the walker is restarted at one of the patients that was prescribed 

carbamazepine (probability of restart = 0.1). (b) This process continues until the amount of time 
the walker spends on each node becomes stable. The nodes are then ranked such that the 

most important nodes are given the highest rank (dark teal) and the least important nodes are 

given the lowest rank (white). Here the medically or biologically important nodes for 

carbamazepine are darker teal. Meanwhile, heartburn, which is not related to carbamazepine, is 

white. (c) A SPOKEsig is produced for a patient at a given snapshot by summing the PSEVs 
associated with the SEPs in their EHRs during that time period. During this example snapshot, 

Patient X had three SEPs: carbamazepine, epilepsy, and constipation. Therefore, the PSEVs for 

carbamazepine, epilepsy, and constipation are summed to create this snapshot for Patient X. 
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Just as the elements in the PSEVs, each element in the SPOKEsig corresponds to a single 

node in SPOKE.  

 

Figure 3. MS biology nodes become more significant with time to diagnosis. (a-c) For 
each node, the t-test was used to compare the distribution of ranks between the MS and Non-

MS patients. Here the -log10 P-value from the t-test is plotted against time to MS diagnosis (or 

lack thereof) for the (a) MS node (DOID:2377), (b) Myelin sheath adaxonal region 
(GO:0035749), and (c) group of nodes with “myelin” in the name. 
 

Figure 4. Integrating SPOKE enhances classifier AUC. ROC curves for predicting MS 
diagnosis at year(s) -1, -3, and -5 (a-c accordingly) with a random forest classifier. The 
classifiers that used encounters from All-Visits are in blue (SPOKEsig input vector) and green 

(SEP input vector). The classifiers that only used encounters from PCP visits are shown in 

orange (SPOKEsig input vector) and red (SEP input vector). In all instances the SPOKEsig 

input vectors out preformed the corresponding SEP input vector. The largest gain in AUC was 

for the PCP encounter classifier 3 years prior to diagnosis. 

 

Figure 5. Th1/Th2 balance and neurological nodes drive biological increase in AUC. a-b 
Networks of significant biological nodes for random forest classifier. Red nodes were higher 

ranked in the MS population (a), while blue nodes were higher ranked higher in the non-MS 
population (b) (color gradient based on t-statistic). The shape (diamond or oval) of the node 
denotes whether or not the node is in the top 20 of a given node type. If it is an oval, it must 

connect to >= 2 nodes in the top 20. Highlighted in the network are some of the nodes that 

correspond to th1/th2 balance or neurology. (c) Illustration of how a prescription for 
carbamazepine can send information to the Myelin sheath adaxonal region node (GO:0007404, 

GO:0043360; replaced by: GO:0010001). (d) Depiction of how asthma (a th2 mediated disease 
that is more prevalent in the non-MS UCSF population) pushes information downstream to the 

Eicosanoid ligand-binding receptors node (Reactome R-HSA-391903). 
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TABLES  
 

Table 1. SPOKE node statistics 
Node Type Count 
Compound 286790 
Protein 33857 
Gene 19567 
Anatomy 13257 
BiologicalProcess 13156 
Disease 9128 
SideEffect 3865 
MolecularFunction 3407 
Pathway 2428 
PharmacologicClass 1748 
CellularComponent 1725 
Symptom 369 
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Table 2. SPOKE edge statistics 
  

Node Type 1 Edge Node Type 2 Count 
Disease ASSOCIATES_DaG Gene 1998072 
Gene PARTICIPATES_GpBP BiologicalProcess 1480742 
Protein INTERACTS_PiP Protein 1238535 
Compound BINDS_CbP Protein 1098776 
Anatomy EXPRESSES_AeG Gene 1052814 
Gene REGULATES_GrG Gene 531344 
Gene INTERACTS_GiG Gene 294328 
Gene PARTICIPATES_GpMF MolecularFunction 260152 
Gene PARTICIPATES_GpCC CellularComponent 226582 
Gene PARTICIPATES_GpPW Pathway 221080 
Anatomy DOWNREGULATES_AdG Gene 204480 
Anatomy UPREGULATES_AuG Gene 195696 
Disease RESEMBLES_DrD Disease 128000 
Gene COVARIES_GcG Gene 123380 
Compound CAUSES_CcSE SideEffect 86400 
Disease LOCALIZES_DlA Anatomy 79010 
Protein TRANSLATEDFROM_PtG Gene 67332 
Compound TREATS_CtD Disease 64872 
PharmacologicClass INCLUDES_PCiC Compound 62952 
Disease PRESENTS_DpS Symptom 47606 
Compound DOWNREGULATES_CdG Gene 42204 
Compound CONTRAINDICATES_CcD Disease 41302 
Compound UPREGULATES_CuG Gene 37512 
Anatomy ISA_AiA Anatomy 37304 
Anatomy CONTAINS_AcA Anatomy 37304 
Disease ISA_DiD Disease 22952 
Disease CONTAINS_DcD Disease 22952 
Anatomy PARTOF_ApA Anatomy 19502 
Disease UPREGULATES_DuG Gene 15462 
Disease DOWNREGULATES_DdG Gene 15246 
Compound RESEMBLES_CrC Compound 12972 
Compound INTERACTS_CiP Protein 6390 
Compound PALLIATES_CpD Disease 780 
Compound AFFECTS_CamG Gene 718 
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SUPPLEMENTARY 
SPOKE 
SPOKE is a continuously updated biomedical knowledge network including over 5 decades of 

research and the version frozen for this analysis consists of 389,297 nodes (including genes, 

diseases, symptoms, compounds, etc.) and 9,774,753 edges, derived from high throughput 

research databases. Tables 1 and 2 detail the node and edge types in the version of SPOKE 

used for this analysis. By navigating the network (either manually or computationally) a user can 

identify connecting points between any two concepts, and even more powerful, merge with 

additional information to derive new knowledge. SPOKE can be accessed through the 

Neighborhood Explorer tool https://spoke.rbvi.ucsf.edu/neighborhood.html. 

 

Aligning patient timelines and filtering patients 
We first identified patients who received at least one diagnosis code for MS (MS patient group) 

and those who never received a diagnosis code for MS (Non-MS patient group). The MS patient 

population was subsequently filtered to only keep those with an MS diagnosis for >= 6 months 

(between the first MS diagnosis code (t0) and the last diagnosis code) and >=5 MS-related 

encounters (unique dates that a patient visited UCSF and a MS diagnosis code was 

documented in their record). Additionally, MS patients who were prescribed an MS disease-

modifying therapy prior to an MS diagnosis code were removed from the population because it 

was not possible to obtain an accurate diagnosis date for those patients.  

 

In order to align the Non-MS patient timelines with the MS patient timelines, the Non-MS 

patients were required to have a matched Non-MS diagnosis observation period of 6 months. 

As a result, t0 for Non-MS patients is set at 6 months prior to their most recent encounter.  

 

Once t0 was established for both the MS and Non-MS groups, we created snapshots of patients 

up to 7 years prior to t0. These snapshots aim to represent all that a clinician has learned about 

a given patient from the first time the patient visited UCSF until their visit at year -1, -3, -5, or -7 

years from diagnosis. Seven years prior to diagnosis is the farthest we can go back because the 

current UCSF EHR system started in 2011.   

 

A final filter was placed to remove patients with too little information during the usable encounter 

period. For the statistical analysis, a light filter was applied that required patients have at least 

three OMOP concepts and three SEPs. This filter was made more stringent for the 

https://spoke.rbvi.ucsf.edu/neighborhood.html
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classification, requiring at least five OMOP and SEPs. For the classifier, MS patients also had to 

visit UCSF and receive an MS diagnosis code at least 5 times. These stringent filters resulted in 

a reduced number of patients (Supplementary Table 4) and a prevalence of on average 

~1:1000 (0.15% and 0.11% for All-Visits and PCP-Only respectfully). 

 

Dividing encounter types 
Since most patients interact with non-specialists (primary care, emergency, family medicine, 

etc.) more frequently than specialists, our analysis was carried out in parallel using two 

encounter groups. The first encounter group (All-Visits) used EHR data from any encounter 

without regard for a clinician’s specialty. The second group (Primary Care Provider Only or 

PCP-Only) only used encounters from Internal Medicine, Hospital Medicine, Family Medicine, 

Emergency Medicine, Urgent Care, or General Practice.  

It should be noted that, though in practice it is true that patients would interact with the PCP-

Only group more than the All-Visits group, UCSF is a specialty-focused institution with a 

comparatively limited primary care division. Therefore, the majority of patients within the UCSF 

EHR system only see specialists at UCSF. This is apparent by the size of the PCP-Only patient 

population size (Figure 1b), which is approximately one fifth the size of the All Visit patient 

population.  

 
Translating OMOP concepts to SEPs 
UCSF EHR data up to October 2018 were transformed to use the OMOP CDM. The tables used 

were condition_occurrence, drug_exposure, visit_occurrence, provider, and measurement. The 

visit_occurrence and provider tables facilitated the categorization of encounters into All-Visits or 

PCP-Only. The remaining tables were then mapped to nodes in SPOKE to create SPOKE Entry 

Points (SEPs). Since OMOP utilizes standard terminologies, mapping between OMOP and 

SPOKE was greatly accelerated compared to previous efforts [23]. The UCSF 

condition_occurrence concepts used the vocabulary SNOMED [44] that were mapped to 

Disease (DiseaseOntology ID [45 46]), Symptom (MeSH ID), or SideEffect (Unified Medical 

Language System [47] UMLS CUI) SPOKE nodes using relationships in DiseaseOntology and 

UMLS. The concepts in the drug_exposure table (RxNorm vocabulary) were mapped to 

Compound (DrugBank [48 49] and/or ChEMBL IDs [50]) nodes. These mappings were 

accomplished using tables from RxNorm [51] and Chemical Entities of Biological Interest 

[52](ChEBI). Finally, concepts from the measurement table (LOINC ID [53]) were mapped to a 

variety of nodes (Compounds, Genes [54], Anatomies [55], Diseases, PharmacologicalClasses 
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[56], SideEffects [57], and GeneOntologies [58]) through UMLS relationships. In order to 

translate LOINC to SPOKE, the UMLS CUI could be translated a maximum of two times before 

mapping to a SPOKE node. Additionally, the translations were filtered by relationship (RELA) to 

avoid one-to-many mappings. The translations to Compound nodes utilized the 

concept_class_id in OMOP to distinguish the drug classes (e.g. ingredient vs brand name) for 

more specific translations. 

 

Creation of SPOKEsigs 
PSEVs were created for each SEP as previously described (Nelson et al, 2019; Figure 2a). 

Next, Patient Specific SPOKE Profile Vectors (SPOKEsigs) were generated for each patient at 

each defined snapshot. This was achieved by summing the PSEVs that were associated with 

the SEPs within an individual patient’s snapshot (usable encounters). All of the nodes were then 

ranked (from 1 to the number of nodes in SPOKE) where the most important node was equal to 

the number of nodes in SPOKE (SPOKEsiginital rank). To highlight the nodes that were the most 

important for each patient the matrix of SPOKEsigs was z-score normalized (SPOKEsigz-score). 

Finally, to enhance the biological heterogeneous nature of the SPOKEsigs, the nodes were 

ranked by node type (SPOKEsigrank by type) for each patient. Again, the most important node was 

given the largest value (i.e. the number of nodes of a given type).  

 

Odd and p-value calculations 
To access differences in the EHR records between the MS and Non-MS populations at different 

snapshots, a confusion matrix was produced for each OMOP concept or SEP. For laboratory 

tests, patients had to have an abnormal result for the measurement concept to be counted. The 

confusion matrix for a given concept or SEP was then used as input for the Fisher’s exact test 

(python package: scipy.stats.fisher_exact) to generate the odds ratio and p-value. 

 

T-stats for significant nodes 
PSEVs can be generated for any EHR concept. Nodes that are biologically or medically 

important for a given EHR concept will be prioritized within the PSEV [23]. To see if this held 

true after aggregation for individual patients (SPOKEsiginitial rank), we used the t-test to derive p-

values and t-statistics to compare the distribution of ranks of the MS Disease node in the MS 

and Non-MS populations at years -1, -3, -5, and -7 years from diagnosis. This was repeated for 

other nodes known to be integral to the biology of MS such as myelin related nodes. 
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Random Forest Classifier 
The RandomForestClassifier from the sklearn python package was used for the OMOP, SEP, 

and SPOKEsig random forests. Due to the size of the SPOKEsigs, dimensionality was reduced 

to increase efficiency and respect memory restrictions. The number of nodes used as input was 
reduced to only include the most variant (>= 50th overall percentile) and top ranked (<=20,000 

by type) nodes on average for the entire population. For All-Visits (or PCP-Only), this resulted in 

60,150 (40,700), 52,963 (40,570), and 53,171 (45,198) nodes for year -1, -3, and -5 

respectively. The number of nodes seen in all classifiers was 43,677 for All-Visits and 36,956 for 

PCP-Only. Year -7 was dropped in this part of the analysis due to a low number of MS patients. 

Additionally, bootstrapping was used to limit the number of patients (n=10,000) used to train 

each base estimator. For each run, 20% of the patients were held out from the training group to 

be used for testing. To approach exhaustive cross-validation, we used Monte Carlo cross 

validation for 10,000 different random splits of patients.[59] To ensure that the results were 

comparable, same training and testing populations were used for the SPOKEsigs, SEPs and all 

OMOP classifiers.  

 

Identifying top biological driver nodes for classifier 
Within the RandomForestClassifier function is the property feature_importances, which holds 

the Gini importance [60 61] of each element for the input vector. The Gini importance was 

averaged across the 10,000 rounds and then each node was ranked by type where the top 

ranked node is now 1. The rank of each node was then averaged across the years. This 

process yielded the score of each node for both the All-Visits and PCP-Only groups. The final 

score of each node was calculated by summing the score for the All-Visits and PCP-Only 

groups. To focus on the most important biological nodes, the top 20 nodes were selected from: 

BiologicalProcess, CellularComponent, Pathway, MolecularFunction, Gene, or Protein node 

types.  

 

Interconnected top biological network 
Since most of the top biological nodes (BiologicalProcess, CellularComponent, Pathway, and 

MolecularFunction) are from biological systems, the natural way to see if they are related is 

through the genes they share. Likewise, the remanding nodes (Genes and Proteins) can be 

related through shared biological systems, interactions, and co-expression. To illustrate these 

relationships, the top nodes were connected together in a network with additional biological 

nodes that had edges to at least two of the top biological nodes. The network was then 
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separated into networks based on t-statistics where the MS significant network had nodes with a 

positive t-statistic and Non-MS significant network had nodes with a negative t-statistic. To 

facilitate visualization, the additional SPOKE biological nodes were filtered in the “Non-MS” and 

“Overall” networks. These nodes were filtered based on the number of edges they had to top 

nodes compared to the number of edges they had to any biological node in SPOKE: 
𝐸𝑑𝑔𝑒𝑠!"#$	&	'!	(")	*'"+",'-.+	!$(/"01
𝐸𝑑𝑔𝑒𝑠!"#$	&	'!	.++	*'"+",'-.+	!$(/"01

 

 

Retracing paths from SEP to SPOKE 
A score was calculated to determine which SEPs were the most responsible for initiating 

information flow to the top biological nodes. The score for a top node (TN) took two metrics into 

consideration: the value of the TN in each PSEV and the odds ratio of a SEP in the population. 

First, the value of the TN within each PSEV was converted into the percentile, where the PSEV 

with the highest TN values would be equal to 1 and the lowest equal to 1/number of nodes. 

Next, the percentile of the TN was multiplied by the –log2 fold change of the associated SEP. 

Finally, if the average t-statistic of the TN within the SPOKEsigs was positive, (top nodes that 

are higher in MS) then the highest scored SEP(s) were selected. In contrast, if the average t-

statistic of the TN within the SPOKEsigs was negative, (top nodes that are higher in Non-MS), 

then the lowest scored SEP(s) were selected. Once a top SEP was established, all possible 

paths of length less that 3 were found between the SEP and TN. The nodes within the paths 

between SEP and TN were then filtered according to their value in the PSEV of the 

corresponding SEP. 

 

Investigating sparse EHRs and common MS symptoms 
It is known that early MS often presents with vague symptoms that are common in the general 

population. To investigate this and our most significant results (a difference of 0.12 AUC 

between SPOKEsigs and SEPs at year -3 using PCP-only) we examined the input OMOP 

concepts. First, the OMOP data for patients at the year -3 snapshot PCP-only were filtered by 

removing those that could not be mapped to a SEP. Next, the data was split into MS and Non-

MS cohorts. The OMOP concepts were then groups according to whether they were recorded 

for 1, 2, or >=3 patients. The pie charts in Supplementary Figure 2 (left) show the number of 

OMOP concepts in each of these groups by OMOP domain: Condition (a), Drug (b), and 

Measurement (c). These results show that the early EHR codes for MS patients are very 

sparse.  
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Next, the log2 fold change (MS compared to Non-MS) was calculated for each OMOP concept 

and the distribution was displayed for each group using a violin plot (Supplementary Figure 2 

right). Here, it is clear that OMOP codes with the highest fold change are associated with a low 

number of MS patients. This exemplifies the diversity in early MS presentation. Further, the 

most frequently recorded OMOP concepts in the MS population tend to have a negative log2 

fold change. This demonstrates how vague MS symptoms can be and that the common OMOP 

concepts for MS patients are also common for the control population. 

Interestingly, the only domain with a higher proportion of common OMOP concepts was 

Measurement. This is consistent with our earlier conclusion that improved (more complete and 

precise) mapping of measurements to SPOKE could improve the performance of the classifier. 

 

Quantifying differences between models 
The output to each model included the ROC plot, mean AUC, and standard deviation AUC 

(mean and standard deviation from the cross-validations). After the models were finished, we 

evaluated whether the AUCs for the SPOKEsig models were significantly different than those in 

the SEP models. Given that the AUCs follow a normal distribution, the mean and standard AUC 

from a model was used to generate a sample AUC distribution. For each year and cohort (All 

Visit or PCP-Only) the sample SPOKEsig and SEP distributions were compared using the 

Mann-Whitney U test. Sample distribution generation and p-value calculations repeated 1000 to 

calculate the average p-value. As expected, the comparison between SPOKEsigs and SEPs at 

year -3 using PCP-Only has the most significant p-value. It should be restated that these are 

only approximate p-values based on the models’ mean and standard deviations. 

Supplementary Figures and Tables 

 

Supplementary Figure 1. Measurements increase accuracy of disease predictions. Not all 
data can be mapped to SPOKE. Most unmapped EHR concepts are measurements (lab tests), 

which are the most biologically substantive parts of the EHRs. To evaluate how much 

SPOKEsigs could be improved once these concepts are mapped the same random forest 

models were run using all data. (a-b) show ROCs for random forest classifier using all OMOP 
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data for (a) All-Visits or (b) PCP-Only groups for snapshots at years -1 (red), -3 (orange), and -5 
(yellow). 

 

Supplementary Figure 2. EHR sparsity and vague common MS symptoms. (a-c) Pie charts 
and violin plots describing OMOP code frequency in the PCP-Only year -3 MS population per 

OMOP domain: Condition (a), Drug (b), and Measurement (c). The pie charts illustrate how 

sparse the EHR data is for the MS patients. Note that Condition and Drug OMOP codes are 

empty for most MS patients. The violin plots show the distribution of log2 fold change (MS 

compared to Non-MS) values of the OMOP codes within each of these groups. The greatest 

fold change values are primarily in the groups of OMOP codes with only 1-2 MS patients. The 

most common MS symptoms (violin plot a) display negative log2 fold changes, demonstrating 

that they are common in the control population as well. 

 

Supplementary Figure 3. Lab tests drive information to MS biology nodes. A commonly 
ordered lab test (aspartate aminotransferase) can increase the importance of the node Myelin 

Sheath Adaxonal Region by sending information through L-Aspartic-Acid, to Diseases, then 

Genes that are connected to Myelin Sheath Adaxonal Region (MAG and PTEN)  

 

 

Supplementary Table 1. OMOP concepts that drive “all-OMOP” classifiers. 

 

Supplementary Table 2. OMOP to SEP mapping coverage. 

 

Supplementary Table 3. Biological nodes in SPOKE that drive the SPOKEsig classifiers and 
are higher ranked in the non-MS population.  

 

Supplementary Table 4. Number of patients used in each analysis.  

 

Supplementary Table 5. Comparison of SPOKEsig and SEP classifiers.  
 


