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ABSTRACT

Objective

Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved
outcomes, reduction of disease burden and lower healthcare costs. Predictions of a patient’s
health trajectory have been improved through the application of machine learning approaches to
electronic health records (EHR). However, these methods have traditionally relied on “black
box” algorithms that can process large amounts of data but are unable to incorporate domain
knowledge, thus limiting their predictive and explanatory power. Here we present a method for
incorporating domain knowledge into clinical classifications by embedding individual patient data

into a biomedical knowledge graph.

Materials and Methods

A modified version of the Page rank algorithm was implemented to embed millions of de-
identified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional,
knowledge-guided patient health signatures (i.e. SPOKEsigs) that were subsequently used as
features in a random forest environment to classify patients at risk of developing a chronic

disease.

Results

Our model predicted disease status of 5,752 subjects three years before being diagnosed with
multiple sclerosis (MS) (AUC = 0.83). SPOKEsigs outperformed predictions using EHRs alone,
and the biological drivers of the classifiers provided insight into the underpinnings of prodromal
MS.

Conclusion

Using data from EHR as input, SPOKEsigs describe patients at both the clinical and biological
levels. We provide a clinical use case for detecting MS up to five years prior to their
documented diagnosis in the clinic and illustrate the biological features that distinguish the

prodromal MS state.



INTRODUCTION

Efforts to move towards precision and preventative medicine have increased in the last decade
and are now pervasive in most aspects of biomedicine.[1] As a result, there has been a sharp
increase in medical research studies that implement machine learning (ML) approaches using
Electronic Health Records (EHRSs). [2 3] ML approaches have been moderately successful and
have substantially advanced tasks such as disease diagnosis and specimen classification. [4]
However, because they identify patterns in data without knowledge of the underlying clinical or
biological meaning, their overall performance has been limited and interpretability of the results

remains a black box.

Most chronic diseases lack a unique sign or symptom at presentation. On the contrary, patients
may consult a specialist following a clinical event, but often acknowledge that symptoms
presented months or even years prior. Early identification of individuals at risk for chronic
diseases who are still healthy or have subclinical manifestations would be beneficial for both
patients (to receive early treatment or close monitoring) and the health system as a whole (to

help optimize across multiple visits and expensive testing).

In order to systematically assess the earliest symptoms (i.e. prodromal period) and the
biological changes underlying a chronic disease, clinical record standardization is critical in
order to overcome the incompleteness in a patient’s biomedical history. The Observational
Medical Outcomes Partnership (OMOP) format [5] helps bridge the incompatibility of disparate
EHR systems and facilitates the unification of patient records and timelines. Additionally,
projects that incorporate basic science-level data (genomics, proteomics, etc.) into EHR
research, such as Electronic Medical Records and Genomics (eMERGE), have furthered our
understanding of disease pathogenesis and offered practical applications [6-8] [9]. A recently
recognized need is the consideration of known general biological mechanisms in patient-specific
health data analytics. [10] This need can be addressed by knowledge graphs (KG) which
naturally bridge the gap between basic science research and medical practice. [11] KGs
connect information from multiple classes of biological and medical concepts, thus allowing to
constraint the vast solution space faced by traditional ML methods. [12-15] SPOKE is a KG that
connects information from over 30 databases and contains more than 3 million nodes of 16
types and more than 16 million edges of 32 types. [16 17] The subset of nodes and edges used

here are listed in Tables 1 and 2.



Early detection of chronic diseases such as diabetes or hypertension has enabled their effective
management to avoid or delay clinical complications. [18 19] However, despite current efforts in
quantifying genetic and environmental risk factors, [20] accurate methods to predict diagnosis of
multiple sclerosis (MS) do not yet exist. MS is a chronic, autoimmune disease of the central
nervous system (CNS) with severe and life-long consequences. Early symptoms of MS, such as
fatigue or depression, are often non-specific, which can make it difficult for the general
practitioner to identify and refer the patient to a neurologist. However, previous studies suggest
that health care utilization by some patients increases even 10 years prior to their MS diagnosis.
[21] Since early treatment of MS is associated with improved long-term neurological outcomes,
[22] early recognition of a (sub)clinical presentation and understanding its biological basis could
have a major impact on disease trajectories of individual patients. Here we present a
computational method to identify patients before they are diagnosed with MS using only the
structured portion of their medical records and biological knowledge from a KG. This method for
incorporating biological knowledge in health data analysis has broad applicability to other

chronic conditions.



MATERIALS AND METHODS

Patient encounter snapshots

The initial cohort consisted of de-identified EHR from 2,180,882 patients who visited UCSF
between 2011-2018. Available “snapshots” from the medical history of 5,752 patients with a
confirmed diagnosis of MS were taken using only past encounters 1-7 years prior to their first
MS diagnosis code (to; Figure 1A). These snapshots represent everything a doctor knows about
a patient (through their EHRs), up to a given point in time (i.e. snapshot at year -1 contains data
up to 1 year before MS diagnosis). These snapshots represent the de-facto prodromal period of
MS.

A control group (non-MS, n=2,175,130) was selected among individuals who never received an
MS diagnosis during the observational period. For the non-MS group, to was set at 6 months
prior to their most recent visit to UCSF. This aligned MS and non-MS snapshots and ensured
that the control population had a follow-up period without MS equal to the minimum amount of

observation time available for MS patients after diagnosis.

Parallel analyses were conducted to simulate two possible scenarios: patients who visited
multiple specialists (All-Visits) and patients with only primary or emergency care visits (PCP-
Only). A patient could potentially be in both simulations if they received both primary and
specialist care at UCSF, but only data collected during primary care type visits were used for the
PCP-Only analysis. Figure 1B depicts the number of MS and Non-MS patients included in the
All-Visits (left) and PCP-Only (right) groups for each snapshot (years -1 to -7).

Embedding EHRs into SPOKE

The EHRSs used for this analysis were translated into the OMOP Common Data Model (CDM).
We first created Propagated SPOKE Entry Vectors (PSEVs), machine-readable embeddings
that quantify the significance of each node in SPOKE for a given cohort of patients. [23] To
create PSEVs, SPOKE Entry Points (SEPs) were first identified by finding all concepts that are
present in both the EHRs and SPOKE. For this work, we identified 7,535 SEPs, defined as the
EHR concepts from the primary tables “condition_occurrence”, “drug_exposure”, and
“‘measurement” that directly corresponded to nodes in SPOKE. Then, for a given concept (e.g.
carbamazepine), a connection was made between a patient SEPs in the EHRs and SPOKE. A
modified version of topic-sensitive Page Rank [24] was then used to generate PSEVs for each

SEP (Figure 2A-B). Specifically, a random walker was placed onto a node in SPOKE and



allowed it to randomly traverse edges within the network until the walker is forced to restart
(p=0.1) at one of the input patients (that was prescribed carbamazepine in this example). This
process continues until the amount of time (importance) the walker spends on each node

becomes stable. The resulting PSEV holds weights for each node in SPOKE based on how

important a node is for the corresponding patient population.

Once population-level embeddings (PSEVs) were created for all matching EHR concepts, they
were aggregated to create vectors for the individual patient snapshots. Similar to other machine-
learning algorithms, [25 26] we applied vector/matrix arithmetic to produce the Patient Specific
SPOKE Profile Vectors (SPOKEsigs, see supplementary Methods). Following this principle,
SPOKEsigs were computed for each patient, at each snapshot (Figure 2C). The resulting

vectors represent the importance each node in SPOKE for each patient at that time point.

Building a classifier for early detection of MS

Random forest classifiers were used to determine if SPOKEsigs could predict prodromal MS.
Random forest was chosen based on its combination of interpretability and performance [27].
To measure the importance of the knowledge network in the prediction, we also created a
classifier using only the binary vector corresponding to the patient’'s SEP. Since SEPs are
simply the EHR input variables used to derive the SPOKEsigs, comparing the performance
between the two classifiers allowed us to gauge the predictive performance gained by using
SPOKE.

In order to build a classifier that could be used to compute risk of MS in the general population,
the classifier was tested using the prevalence of MS at UCSF, which approached ~1:1000 for all
groups (comparable to the prevalence of MS in the US). [28 29] The classifiers (using either
SPOKEsigs or SEPs) were run from snapshots at years -5, -3, and -1 from diagnosis for both
the All-Visits and PCP-Only groups.



RESULTS

MS-related nodes increase in significance as time of diagnosis approaches

In order to measure the flow of information from thousands of subjects through the “MS” node in
SPOKE before diagnosis, we generated SPOKEsigs without using the PSEV corresponding to
the concept MS (as MS is naturally the top ranked node within the MS PSEV). [23] Of interest,
nodes related to the physiopathology of MS were found to be highly ranked likely due to the
biologically meaningful connections within SPOKE. To investigate the importance of the MS
node in our subject population, the rank distribution of MS was compared for years -7 to -1
relative to MS diagnosis in the index group. Figure 3a shows that MS increases in significance
as time to diagnosis approaches for both the All-Visits and PCP-Only groups (r’= 0.93; p<0.037
PCP-Only and r*= 0.96; p<0.018 All-Visits). Furthermore, when compared to all other diseases
in SPOKE, MS remains within the top 1% in the All-Visits group and (and within 2% for PCP-
Only visits), during years -7 to -1. Further, the importance of MS is statistically significant (T-
test) for both groups between years -5 (5.5e-6 PCP-Only; 1.6e-26 All-Visits) to -1 (6.4e-62 PCP-
Only; 3.4e-147 All-Visits). Note that this cannot be explained by prescriptions of MS-specific
disease-modifying medications (DMTs), as these individuals have not been yet diagnosed with
MS. There is a noticeable gap between the p-values for the All-Visits and the PCP-Only groups,
suggesting a substantial increase in information related to MS being recorded during specialist
visits. Though this increase in significance (overtime as well as the difference between PCP-
Only and All-Visits groups) can partially be attributed to the increased sample size, the average
p-value at any time point is not significant. Further, the slope for the MS node compared to the
slope of the average p-value over time is 215x and 127x higher (All-Visits and PCP-Only
respectively), suggesting that only a small portion of the increase in significance can be

attributed to increased sample size.

To ensure that these results were MS-specific and not simply the outcome of visiting a
neurologist (in the All-Visits group), a similar analysis was conducted using snapshots from
patients diagnosed with Amyotrophic Lateral Sclerosis (ALS). Similarly, ALS was the most
important disease (p<3.17e-9) in the ALS snapshots at year -1. In contrast, the MS node was
not differentially ranked compared to the control population (p>0.9). This indicates that although
both MS and ALS patients can see neurologists during the prodromal period, each prodromal

disease has a distinct signal in SPOKE.



Considering that a first demyelinating event must occur prior to the diagnosis of MS, [30 31] we
speculated that SPOKE nodes related to myelin might also increase in significance as time to
diagnosis approached. Figure 3b illustrates the increased significance of the concept Myelin
sheath adaxonal region (GO:0035749). Furthermore, the same trend is observed for any node
with “myelin” in its name (Figure 3c). These results suggest that the biological underpinnings of
the disease might be detectable during the prodromal period using only information from the
EHR.

Predicting Prodromal MS

After confirming that SPOKEsigs contained meaningful information related to MS, a predictive
model was built using patient-specific SPOKEsigs as inputs to a random forest classifier. The
average AUC for the SPOKEsig All-Visit (AV) classifier was 0.76 at -7 years, and progressively
increased to 0.84 for year -1. This same trend was observed for all four classifier types
(AUCSPOKEAY: 0.76-0.84, AUCSPOREPCP: 0 6-0.78, AUCSEP 2¥: 0.7-0.83, AUCSEP PCP: 0.53-0.75;
Figure 4). As expected, the classifier that used all encounters outperformed the classifier that
used PCP-Only encounters (Avg. AAUCSPOKE Years -1 to -5: 0.11 and Avg. AAUC®®? Years -1 to
-5: 0.15; Avg. AAUC = Avg. AUC All-Visits — Avg. AUC PCP-Only). In all cases of information
loss, either from smaller time windows (time from diagnosis) or missing specialist visits (PCP-
Only), the enhancement of EHRs with SPOKE drove classifier performance. The greatest
improvement was seen at three years prior to diagnosis using PCP-Only encounters
(AAUCSPOKESEP: 0 12). Altogether, these results demonstrate that embeddings of patients’
clinical data from the structured portion of the EHR onto a KG contain relevant information about
their health status. Furthermore, adding structured knowledge to EHR data through SPOKE can

compensate for missing and incomplete EHR data.

More SEPs will likely improve classifier performance

We recognize SEPs themselves are incomplete because they currently do not map every EHR
concept to SPOKE (88% of conditions, 79% of medications, and 47% of measurements for All-
Visits at year -1). To estimate how much SPOKEsigs could improve if each EHR concept was
mapped to SPOKE, the same classifiers were run using the full set of EHR concepts.
Interestingly, the average difference in AUC between full OMOP and SPOKEsigs was the same
as that between SPOKEsigs and SEPs (AAUC: 0.053). The majority of OMOP concepts that

drove the full OMOP classifiers were measurements that were not mapped to SPOKE



(Supplementary Tables 1 and 2). These results suggest that if more EHR concepts were

mapped to SPOKE, a significant improvement in the classifier could be achieved.

Biological drivers of the classifier

Our previous results suggest that the improved performance of classifiers using SPOKEsigs
over those using only SEPs (i.e. straight from the EHR) is due to biologically relevant
information from SPOKE being utilized in the computation (i.e. because the network connects
these variables). To understand how the incorporation of biological knowledge increased the
AUC, we extracted the scores of each biological node using the average feature value across all
years for both the All-Visits and PCP-Only groups. Next the top 20 nodes from each biological
node type (Gene, Protein, Biological Process, Molecular Function, Cellular Component, and
Pathway) were selected and split into MS or Non-MS significant groups according to the sign of
the t-statistic (Figure 5 a and b respectively). To further interpret how each group of top nodes
were connected to one another, additional SPOKE nodes were added if they had direct edges
to at least two top biological nodes (Figure 5a-b). Remarkably, the highest ranked nodes in the
MS groups corresponded to myelin biology (myelin sheath adaxonal region, MAG, glial cell
differentiation etc.), neurophysiological functions (axonogenesis, ceramide binding, etc.) and
adaptive immunity (CD4+T cells and B cell-specific pathways, CCR5, etc.) (Figure 5a,
Supplementary Table 3). Also significant were nodes related to the CNS, muscle behavior, the
extracellular matrix (e.g. matrix metalloproteinases, collagen, NCAM, Basigin interactions, etc.),
and genes associated with other neurological diseases such as spastic paraplegia (MPV17L2),
ataxia (RNF170) Alzheimer’s disease (APBA3), and lysosomal storage disease (NAGLU).
Together, these nodes illustrate how the classifier detected the importance of neurological and
immunological processes in MS patients several years before their diagnoses. In contrast, the
highest ranked nodes within the Non-MS group were related to Th2 cell differentiation
(eosinophil migration, prostaglandins, CCR3 chemokine receptor binding, etc.), an immune

subset associated with protection against inflammatory diseases like MS (Figure 5b). [32-35]

Medications and common laboratory tests drive information flow to neurological nodes
The difficulty in identifying MS at an early stage is due to the combination of the EHRs being
sparse and MS symptoms being vague and common in the general population. Often this
results in OMOP codes only being associated with one or a small number of MS patients
(Supplementary Figure 2) which does not contribute to the classifier. However, after mapping an

OMOP concept to a SEP it is transformed into a multidimensional SPOKEsig that represents the



importance of each node in SPOKE for that OMOP concept/SEP. Therefore, two distinct OMOP

concepts could “push” information to the same downstream nodes.

To identify which OMOP concepts were responsible for “pushing” information downstream to
each of the MS-significant biological nodes, network paths were traced back to the originating
SEPs (see methods). For most of the top MS nodes, the SEPs that were essential for the high
rank of the MS-significant nodes were mapped from medication orders and common laboratory
tests (note that MS DMTs are not SEPs, as none of these individuals had been diagnosed with
MS at the time of analysis). Though these SEPs may not have been significant in the MS
population as a whole, their propagation through SPOKE led to increased information flow to the
MS top nodes. For example, while Carbamazepine and Lithium are not significant as distinct
SEPs, they both direct information flow to the GO concept “Myelin sheath adaxonal region” (GO:
0035749, a highly ranked MS-relevant node) in a representative patient shown in Figure 5c. For
this patient, information flows from Carbamazepine to a set of Disease nodes (either through
“treated by” or “contraindicated for” edges) and then (either directly or through an additional
Disease or Gene node) to the genes CNP, MAG, or PTEN which are all components of “Myelin
sheath adaxonal region”. Interestingly, Carbamazepine or Lithium can be used to treat
symptoms and comorbidities of MS such as trigeminal and glossopharyngeal neuralgia or
depression, respectively, which are common symptoms experienced by MS patients. This
further demonstrates that distinct clinical presentations can lead to similar SPOKE
representations of MS patients.

Similarly, the paths between the laboratory test for Aspartate aminotransferase travel through
aspartic acid (Compound) and then traverse one to two edge(s) before reaching MAG and
PTEN (Genes) (Supplementary Figure 3). Despite the different paths of entry into SPOKE, data
are repetitively sent through nodes such as MAG and PTEN, which then converge at the “Myelin
sheath adaxonal region” node. Similar patterns were observed for multiple other neurological

nodes.

Th2-mediated diseases drive information to Non-MS biological nodes

The same method for abstracting the pertinent OMOP concepts information flow was then
applied to the top Non-MS biological nodes. After retracing several paths, we found that the
OMOP concepts that facilitated the flow of information to nodes related to eosinophils,

eicosanoids, and T-cells were driven by Th2-mediated diseases such as asthma and allergies

10



which are more prevalent in the Non-MS population (—log2 odds ratio of -2.46 and -1.97
accordingly). Figure 5d provides an example of how these diseases transfer information to the
(non-MS significant) biological node Eicosanoid ligand-binding receptors. In this representative
patient, data start at the node for asthma and then either directly connect to or are one neighbor
apart from genes that participate in Eicosanoid ligand-binding receptor (Pathway). In the latter
case, the information first flows through diseases similar to asthma or its associated genes.
These straightforward routes from Th2-mediated diseases to their associated genes are what

power the Th2 signal in the Non-MS significant biological nodes.

Taken together, our results show that SPOKE nodes useful for the classifier include nodes with
both strongly positive (highly ranked in MS) and negative (highly ranked in controls)
associations with MS. In both cases, the biological interpretation of those nodes is consistent

with the known pathogenesis of MS.
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DISCUSSION

The purported prodromal period of MS is often described in terms of health care utilization. [36
37] MS patients in the prodromal stage are, by definition, months or even years away from a
recorded diagnosis code for MS. During this period, however, they are not just standing idly - in
fact, their healthcare use both within and beyond the primary care setting, steadily increases
until time to diagnosis. [36] Previous research revealed that MS patients have more encounters
with psychiatrists and urologists, as well as higher proportions of musculoskeletal, genito-urinary
or hormonal-related prescriptions. [38]These findings hint that underlying biological signals must
be present months or even years before diagnosis and the information from these specialist

visits could be pivotal in uncovering those differences.

While patients often pay multiple visits to a specialist before receiving an MS diagnosis, the
process of obtaining an appointment with a specialist can itself be prolonged, usually requiring a
referral and insurance coverage. As a result, a patient’s initial interface with a health system is
often through primary or emergency care. Appreciating the different roles primary care and
specialist clinicians play in the diagnosis process, we ran two analyses in parallel using data
from either primary care providers only (PCP-Only) or all visit types (All-Visits). Though it is
possible for symptoms to be recorded in the structured portion of EHRSs, this typically only
occurs if it is necessary for billing. Additional patient data can be extracted from the patient
notes using natural language processing (NLP). However, NLP methods to date generate rather
sparse data, and need further validation in healthcare settings; thus their incorporation is out of

scope for this work.

The generation of PSEVs is comparable to word2vec, another machine-learning vector
embedding method. [25 26] Similar to how word2vec learns the embedding of a word by using
the words around it as context, PSEVs utilize patient cohorts to give context to the nodes in
SPOKE. PSEVs are then added together to produce the Patient Specific SPOKE Profile Vectors
(SPOKEsigs) that describe a patient in terms of node weights in SPOKE. The main difference
between these two embedding techniques is that PSEVs (and therefore SPOKEsigs) are based
on a “clear box” algorithm that constructs machine-readable vectors while maintaining human
interpretability. This means each element in the vector corresponds to a node in SPOKE and it
is possible to trace back how information travels from sparse EHRs to downstream nodes. The
diffusion of EHRs through SPOKE enabled the prioritization of the MS Disease node in the

12



SPOKEsigs of MS patients compared to controls. Additionally, the significance of this differential
prioritization increases as the time to diagnosis decreases. Further, we have shown that the
known biological underpinnings of MS could be abstracted using these sparse clinical data. This
is evident by the prioritization of myelin related nodes within the SPOKEsigs of MS patients —
whose disease is characterized by demyelination in the CNS - compared to controls up to seven
years prior to MS diagnosis.

We hypothesized that SPOKEsigs contained deeper information about a patient than the
equivalent EHR vectors (SEPs). Remarkably, SPOKEsigs outperformed SEPs (i.e. EHR-only
information) at all time points for both the All-Visits and PCP-Only analyses. The All-Visit AUCs
were always higher than the PCP-Only AUCs due to the greater power of the All-Visit group in
both number of patients and encounters. This difference was minimized by the addition of
SPOKE, which enabled the use of PCP-Only data to achieve results closer to using All-Visit
data using the SEPs alone. This enhancement of EHRs using SPOKE was particularly striking
for the PCP-Only analysis performed 3 years before diagnosis, which showed a 12%
improvement in AUC (over SEPs alone). These results hint at a future where, after adequate
validation including consideration of possible biases, SPOKE could be used at the point of care

to support or target supplementary evaluation for primary care providers.

The top biological drivers of the classifier were split into two groups (MS significant or Non-MS
significant) according to whether they were ranked higher in the MS or Control SPOKEsigs.
Notably, neurophysiological functions, CNS, and muscle behavior nodes were among the top
MS-significant nodes. In contrast, there were many Th2-related nodes (indicating
immunoregulatory activity) dominating the Non-MS significant nodes. Interestingly,
phospholipase C activity, which was high in the MS group, is known to play a role or interact
with in both the MS and Non-MS top immune features. Moreover, phospholipase C [39] was
recently implicated in female-specific neuropathic pain induce a myelin basic protein peptide
(MBPss-104) in mice. This study showed that after MBP exposure, T-cells attack the DRG and
spinal cord in females but remain localized in males. [40] Notably multiple top nodes from both
the MS and Non-MS groups participate together in this pathway in a way that is consistent with
both this observed sexual dimorphism as well as the increased prevalence of MS among
women. This connection between top immune nodes within MS and Non-MS groups further
supports the hypothesis that MS (and others like RA) results from an imbalance between

proinflammatory (Th1 or Th17) and immunoregulatory Th2 responses. [41] In contrast, asthma

13



and allergies are mediated by Th2 responses, which presumably protect against Th1/Th17-

driven diseases. [42 43]

PSEVs represent a new class of clear (as opposed to a black) box algorithms. This property
allowed us to trace back how key biological nodes became significant. The propagation of
information to nodes that were ranked higher in non-MS patients mostly originated from Th2
mediated diseases such as allergies and asthma, which were more prevalent in the non-MS
population. In contrast, a heterogeneous set EHRs mainly from commonly ordered laboratory
tests or treatments for comorbidities facilitated information to move to the MS significant nodes.
These results demonstrate that clinical presentation and biological changes are inherently linked

and the intersection can be uncovered using EHRs during the MS prodromal period.

To move towards the delivery of precision medicine, disease biology and clinical manifestations
must be investigated side by side. Increasing amounts of data are being obtained for individual
patients, and knowledge networks will play a key role in bridging the gap between biological
knowledge derived from basic science research, and medical knowledge. As more
measurements (genomics, proteomics, microbiome) become available, we hypothesize the
SPOKEsigs will become even more informative. Further, the transition from curative to
preventative medicine can only be possible through a better understanding of the prodromal
biology of a disease. It is our hope that such methods will be used for a variety of diseases to

advance both precision and preventative medicine.

CONCLUSIONS:

This work presents a strategy to embed EHR data onto a knowledge graph (SPOKE) to obtain
high-dimensional health status profiles (SPOKEsigs). SPOKEsigs were computed for hundreds
of thousands of individuals and a random-forest classifier was trained to identify individuals at
risk of MS. This approach was able to detect MS up to five years prior to their documented
diagnosis in the clinic. SPOKEsigs represent a new kind of “clear box” explainable predictable
models with broad applicability to other chronic medical conditions where early diagnosis can

benefit patients.
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Data Sharing Statement

Due to the sensitive nature of EHR, we are not able to share patient data, even in de-identified
form. To facilitate the reproducibility and advancement of this research, we have created an API
for generating SPOKEsigs alongside a jupyter notebook with instructions on how to use it, which

can be accessed at https://github.com/BaranziniLab/SPOKEsigs. Anyone with access to EHRs

can now create SPOKEsigs for their own patient populations and test the concepts presented in

this work. SPOKE can be accessed at https://spoke.rbvi.ucsf.edu/neighborhood.html.
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FIGURE LEGENDS

Figure 1. Patient timeline aligning and filtering. (a) Timepoint O (to) is the point of alignment
for the MS and Non-MS timelines. For MS patients, to was the first visit in which a patient
received a diagnosis code for MS. The duration of time a patient has been diagnosed with MS is
represented by a red line between the first and last visits with a MS diagnosis code. For Non-
MS patients to was set to 6 months (purple line) prior to their most recent visit (hexagon). Left of
to are the patient snapshots that encompass all of the information (EHR data) a doctor has on a
patient up to a given point of time. The snapshot at year -1 (blue line) contains all data between
the first visit (triangle) and -1 year from to. The remaining snapshots (years -3, -5, and -7)
become smaller as their endpoints move farther from to. (b) Two patient encounter groups were
followed throughout the workflow: All-Visit (left) and Primary Care Physician (PCP-Only) (right).
The All-Visit analysis uses all possible encounters at UCSF, while the PCP-Only analysis only
includes patient encounters at primary (or emergency) care visits. The number of MS or Non-

MS patients at each year go from to (top) to -7 years (bottom) is shown.

Figure 2. Embedding individual patients in SPOKE. (a) Example embedding the EHR
concept for the drug carbamazepine into SPOKE. First, SPOKE Entry Points (SEPs) are
created by finding all concepts that are present in both the EHRs and SPOKE. Then each
patient that was prescribed carbamazepine is connected to SPOKE through the SEPs in their
EHRs. A random walker is then placed onto a node in SPOKE and randomly traverses edges
within the network until the walker is restarted at one of the patients that was prescribed
carbamazepine (probability of restart = 0.1). (b) This process continues until the amount of time
the walker spends on each node becomes stable. The nodes are then ranked such that the
most important nodes are given the highest rank (dark teal) and the least important nodes are
given the lowest rank (white). Here the medically or biologically important nodes for
carbamazepine are darker teal. Meanwhile, heartburn, which is not related to carbamazepine, is
white. (¢) A SPOKEsig is produced for a patient at a given snapshot by summing the PSEVs
associated with the SEPs in their EHRs during that time period. During this example snapshot,
Patient X had three SEPs: carbamazepine, epilepsy, and constipation. Therefore, the PSEVs for

carbamazepine, epilepsy, and constipation are summed to create this snapshot for Patient X.
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Just as the elements in the PSEVs, each element in the SPOKEsig corresponds to a single
node in SPOKE.

Figure 3. MS biology nodes become more significant with time to diagnosis. (a-c) For
each node, the t-test was used to compare the distribution of ranks between the MS and Non-
MS patients. Here the -log10 P-value from the t-test is plotted against time to MS diagnosis (or
lack thereof) for the (a) MS node (DOID:2377), (b) Myelin sheath adaxonal region
(GO:0035749), and (c) group of nodes with “myelin” in the name.

Figure 4. Integrating SPOKE enhances classifier AUC. ROC curves for predicting MS
diagnosis at year(s) -1, -3, and -5 (a-c accordingly) with a random forest classifier. The
classifiers that used encounters from All-Visits are in blue (SPOKEsig input vector) and green
(SEP input vector). The classifiers that only used encounters from PCP visits are shown in
orange (SPOKEsig input vector) and red (SEP input vector). In all instances the SPOKEsig
input vectors out preformed the corresponding SEP input vector. The largest gain in AUC was

for the PCP encounter classifier 3 years prior to diagnosis.

Figure 5. Th1/Th2 balance and neurological nodes drive biological increase in AUC. a-b
Networks of significant biological nodes for random forest classifier. Red nodes were higher
ranked in the MS population (a), while blue nodes were higher ranked higher in the non-MS
population (b) (color gradient based on t-statistic). The shape (diamond or oval) of the node
denotes whether or not the node is in the top 20 of a given node type. If it is an oval, it must
connect to >= 2 nodes in the top 20. Highlighted in the network are some of the nodes that
correspond to th1/th2 balance or neurology. (c) lllustration of how a prescription for
carbamazepine can send information to the Myelin sheath adaxonal region node (GO:0007404,
G0:0043360; replaced by: GO:0010001). (d) Depiction of how asthma (a th2 mediated disease
that is more prevalent in the non-MS UCSF population) pushes information downstream to the

Eicosanoid ligand-binding receptors node (Reactome R-HSA-391903).
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TABLES

Compound

Protein

Gene

Anatomy
BiologicalProcess
Disease

SideEffect
MolecularFunction
Pathway
PharmacologicClass
CellularComponent
Symptom

286790
33857
19567
13257
13156

9128
3865
3407
2428
1748
1725

369

18



Disease
Gene
Protein
Compound
Anatomy
Gene

Gene

Gene

Gene

Gene
Anatomy
Anatomy
Disease
Gene
Compound
Disease
Protein
Compound
PharmacologicClass
Disease
Compound
Compound
Compound
Anatomy
Anatomy
Disease
Disease
Anatomy
Disease
Disease
Compound
Compound
Compound
Compound

ASSOCIATES_DaG
PARTICIPATES_GpBP
INTERACTS_PiP
BINDS_CbP
EXPRESSES_AeG
REGULATES_GrG
INTERACTS_GiG
PARTICIPATES _GpMF
PARTICIPATES_GpCC
PARTICIPATES_GpPW
DOWNREGULATES_AdG
UPREGULATES_AuG
RESEMBLES_DrD
COVARIES_GcG
CAUSES_CcSE
LOCALIZES DIA
TRANSLATEDFROM_PtG
TREATS_CtD
INCLUDES_PCiC
PRESENTS_DpS
DOWNREGULATES_CdG
CONTRAINDICATES_CcD
UPREGULATES_CuG
ISA_AIA

CONTAINS_AcA

ISA_DiD

CONTAINS_DcD
PARTOF_ApA
UPREGULATES_DuG
DOWNREGULATES DdG
RESEMBLES_CrC
INTERACTS_CiP
PALLIATES _CpD
AFFECTS_CamG

Gene

BiologicalProcess

Protein
Protein
Gene
Gene
Gene

MolecularFunction
CellularComponent

Pathway
Gene
Gene
Disease
Gene
SideEffect
Anatomy
Gene
Disease
Compound
Symptom
Gene
Disease
Gene
Anatomy
Anatomy
Disease
Disease
Anatomy
Gene
Gene
Compound
Protein
Disease
Gene

1998072
1480742
1238535
1098776
1052814
531344
294328
260152
226582
221080
204480
195696
128000
123380
86400
79010
67332
64872
62952
47606
42204
41302
37512
37304
37304
22952
22952
19502
15462
15246
12972
6390
780

718
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SUPPLEMENTARY

SPOKE

SPOKE is a continuously updated biomedical knowledge network including over 5 decades of
research and the version frozen for this analysis consists of 389,297 nodes (including genes,
diseases, symptoms, compounds, etc.) and 9,774,753 edges, derived from high throughput
research databases. Tables 1 and 2 detail the node and edge types in the version of SPOKE
used for this analysis. By navigating the network (either manually or computationally) a user can
identify connecting points between any two concepts, and even more powerful, merge with
additional information to derive new knowledge. SPOKE can be accessed through the

Neighborhood Explorer tool https://spoke.rbvi.ucsf.edu/neighborhood.html.

Aligning patient timelines and filtering patients

We first identified patients who received at least one diagnosis code for MS (MS patient group)
and those who never received a diagnosis code for MS (Non-MS patient group). The MS patient
population was subsequently filtered to only keep those with an MS diagnosis for >= 6 months
(between the first MS diagnosis code (to) and the last diagnosis code) and >=5 MS-related
encounters (unique dates that a patient visited UCSF and a MS diagnosis code was
documented in their record). Additionally, MS patients who were prescribed an MS disease-
modifying therapy prior to an MS diagnosis code were removed from the population because it

was not possible to obtain an accurate diagnosis date for those patients.

In order to align the Non-MS patient timelines with the MS patient timelines, the Non-MS
patients were required to have a matched Non-MS diagnosis observation period of 6 months.

As a result, to for Non-MS patients is set at 6 months prior to their most recent encounter.

Once to was established for both the MS and Non-MS groups, we created snapshots of patients
up to 7 years prior to to. These snapshots aim to represent all that a clinician has learned about
a given patient from the first time the patient visited UCSF until their visit at year -1, -3, -5, or -7
years from diagnosis. Seven years prior to diagnosis is the farthest we can go back because the
current UCSF EHR system started in 2011.

A final filter was placed to remove patients with too little information during the usable encounter

period. For the statistical analysis, a light filter was applied that required patients have at least

three OMOP concepts and three SEPs. This filter was made more stringent for the
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classification, requiring at least five OMOP and SEPs. For the classifier, MS patients also had to
visit UCSF and receive an MS diagnosis code at least 5 times. These stringent filters resulted in
a reduced number of patients (Supplementary Table 4) and a prevalence of on average
~1:1000 (0.15% and 0.11% for All-Visits and PCP-Only respectfully).

Dividing encounter types

Since most patients interact with non-specialists (primary care, emergency, family medicine,
etc.) more frequently than specialists, our analysis was carried out in parallel using two
encounter groups. The first encounter group (All-Visits) used EHR data from any encounter
without regard for a clinician’s specialty. The second group (Primary Care Provider Only or
PCP-Only) only used encounters from Internal Medicine, Hospital Medicine, Family Medicine,
Emergency Medicine, Urgent Care, or General Practice.

It should be noted that, though in practice it is true that patients would interact with the PCP-
Only group more than the All-Visits group, UCSF is a specialty-focused institution with a
comparatively limited primary care division. Therefore, the maijority of patients within the UCSF
EHR system only see specialists at UCSF. This is apparent by the size of the PCP-Only patient
population size (Figure 1b), which is approximately one fifth the size of the All Visit patient

population.

Translating OMOP concepts to SEPs

UCSF EHR data up to October 2018 were transformed to use the OMOP CDM. The tables used
were condition_occurrence, drug_exposure, visit_occurrence, provider, and measurement. The
visit_occurrence and provider tables facilitated the categorization of encounters into All-Visits or
PCP-Only. The remaining tables were then mapped to nodes in SPOKE to create SPOKE Entry
Points (SEPs). Since OMOP utilizes standard terminologies, mapping between OMOP and
SPOKE was greatly accelerated compared to previous efforts [23]. The UCSF
condition_occurrence concepts used the vocabulary SNOMED [44] that were mapped to
Disease (DiseaseOntology ID [45 46]), Symptom (MeSH ID), or SideEffect (Unified Medical
Language System [47] UMLS CUI) SPOKE nodes using relationships in DiseaseOntology and
UMLS. The concepts in the drug_exposure table (RxNorm vocabulary) were mapped to
Compound (DrugBank [48 49] and/or ChEMBL IDs [50]) nodes. These mappings were
accomplished using tables from RxNorm [51] and Chemical Entities of Biological Interest
[52](ChEBI). Finally, concepts from the measurement table (LOINC ID [53]) were mapped to a

variety of nodes (Compounds, Genes [54], Anatomies [55], Diseases, PharmacologicalClasses
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[66], SideEffects [67], and GeneOntologies [58]) through UMLS relationships. In order to
translate LOINC to SPOKE, the UMLS CUI could be translated a maximum of two times before
mapping to a SPOKE node. Additionally, the translations were filtered by relationship (RELA) to
avoid one-to-many mappings. The translations to Compound nodes utilized the
concept_class_id in OMOP to distinguish the drug classes (e.g. ingredient vs brand name) for
more specific translations.

Creation of SPOKEsigs

PSEVs were created for each SEP as previously described (Nelson et al, 2019; Figure 2a).
Next, Patient Specific SPOKE Profile Vectors (SPOKEsigs) were generated for each patient at
each defined snapshot. This was achieved by summing the PSEVs that were associated with
the SEPs within an individual patient’s snapshot (usable encounters). All of the nodes were then
ranked (from 1 to the number of nodes in SPOKE) where the most important node was equal to
the number of nodes in SPOKE (SPOKEsig"* ). To highlight the nodes that were the most
important for each patient the matrix of SPOKEsigs was z-score normalized (SPOKEsig**°°"®).
Finally, to enhance the biological heterogeneous nature of the SPOKEsigs, the nodes were
ranked by node type (SPOKEsig™"™ ¥ ¥?®) for each patient. Again, the most important node was

given the largest value (i.e. the number of nodes of a given type).

Odd and p-value calculations

To access differences in the EHR records between the MS and Non-MS populations at different
snapshots, a confusion matrix was produced for each OMOP concept or SEP. For laboratory
tests, patients had to have an abnormal result for the measurement concept to be counted. The
confusion matrix for a given concept or SEP was then used as input for the Fisher’'s exact test

(python package: scipy.stats.fisher_exact) to generate the odds ratio and p-value.

T-stats for significant nodes

PSEVs can be generated for any EHR concept. Nodes that are biologically or medically
important for a given EHR concept will be prioritized within the PSEV [23]. To see if this held
true after aggregation for individual patients (SPOKEsig™ "), we used the t-test to derive p-
values and t-statistics to compare the distribution of ranks of the MS Disease node in the MS
and Non-MS populations at years -1, -3, -5, and -7 years from diagnosis. This was repeated for

other nodes known to be integral to the biology of MS such as myelin related nodes.
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Random Forest Classifier

The RandomForestClassifier from the sklearn python package was used for the OMOP, SEP,
and SPOKEsig random forests. Due to the size of the SPOKEsigs, dimensionality was reduced
to increase efficiency and respect memory restrictions. The number of nodes used as input was
reduced to only include the most variant (>= 50th overall percentile) and top ranked (<=20,000
by type) nodes on average for the entire population. For All-Visits (or PCP-Only), this resulted in
60,150 (40,700), 52,963 (40,570), and 53,171 (45,198) nodes for year -1, -3, and -5
respectively. The number of nodes seen in all classifiers was 43,677 for All-Visits and 36,956 for
PCP-Only. Year -7 was dropped in this part of the analysis due to a low number of MS patients.
Additionally, bootstrapping was used to limit the number of patients (n=10,000) used to train
each base estimator. For each run, 20% of the patients were held out from the training group to
be used for testing. To approach exhaustive cross-validation, we used Monte Carlo cross
validation for 10,000 different random splits of patients.[59] To ensure that the results were
comparable, same training and testing populations were used for the SPOKEsigs, SEPs and all
OMORP classifiers.

Identifying top biological driver nodes for classifier

Within the RandomForestClassifier function is the property feature_importances, which holds
the Gini importance [60 61] of each element for the input vector. The Gini importance was
averaged across the 10,000 rounds and then each node was ranked by type where the top
ranked node is now 1. The rank of each node was then averaged across the years. This
process yielded the score of each node for both the All-Visits and PCP-Only groups. The final
score of each node was calculated by summing the score for the All-Visits and PCP-Only
groups. To focus on the most important biological nodes, the top 20 nodes were selected from:
BiologicalProcess, CellularComponent, Pathway, MolecularFunction, Gene, or Protein node

types.

Interconnected top biological network

Since most of the top biological nodes (BiologicalProcess, CellularComponent, Pathway, and
MolecularFunction) are from biological systems, the natural way to see if they are related is
through the genes they share. Likewise, the remanding nodes (Genes and Proteins) can be
related through shared biological systems, interactions, and co-expression. To illustrate these
relationships, the top nodes were connected together in a network with additional biological

nodes that had edges to at least two of the top biological nodes. The network was then
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separated into networks based on t-statistics where the MS significant network had nodes with a
positive t-statistic and Non-MS significant network had nodes with a negative t-statistic. To
facilitate visualization, the additional SPOKE biological nodes were filtered in the “Non-MS” and
“Overall” networks. These nodes were filtered based on the number of edges they had to top
nodes compared to the number of edges they had to any biological node in SPOKE:

Edgesnode 1in top biological network

Edgesnode 1in all biological network

Retracing paths from SEP to SPOKE

A score was calculated to determine which SEPs were the most responsible for initiating
information flow to the top biological nodes. The score for a top node (TN) took two metrics into
consideration: the value of the TN in each PSEV and the odds ratio of a SEP in the population.
First, the value of the TN within each PSEV was converted into the percentile, where the PSEV
with the highest TN values would be equal to 1 and the lowest equal to 1/number of nodes.
Next, the percentile of the TN was multiplied by the —log2 fold change of the associated SEP.
Finally, if the average t-statistic of the TN within the SPOKEsigs was positive, (top nodes that
are higher in MS) then the highest scored SEP(s) were selected. In contrast, if the average t-
statistic of the TN within the SPOKESsigs was negative, (top nodes that are higher in Non-MS),
then the lowest scored SEP(s) were selected. Once a top SEP was established, all possible
paths of length less that 3 were found between the SEP and TN. The nodes within the paths
between SEP and TN were then filtered according to their value in the PSEV of the
corresponding SEP.

Investigating sparse EHRs and common MS symptoms

It is known that early MS often presents with vague symptoms that are common in the general
population. To investigate this and our most significant results (a difference of 0.12 AUC
between SPOKEsigs and SEPs at year -3 using PCP-only) we examined the input OMOP
concepts. First, the OMOP data for patients at the year -3 snapshot PCP-only were filtered by
removing those that could not be mapped to a SEP. Next, the data was split into MS and Non-
MS cohorts. The OMOP concepts were then groups according to whether they were recorded
for 1, 2, or >=3 patients. The pie charts in Supplementary Figure 2 (left) show the number of
OMOP concepts in each of these groups by OMOP domain: Condition (a), Drug (b), and
Measurement (c). These results show that the early EHR codes for MS patients are very

sparse.
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Next, the log2 fold change (MS compared to Non-MS) was calculated for each OMOP concept
and the distribution was displayed for each group using a violin plot (Supplementary Figure 2
right). Here, it is clear that OMOP codes with the highest fold change are associated with a low
number of MS patients. This exemplifies the diversity in early MS presentation. Further, the
most frequently recorded OMOP concepts in the MS population tend to have a negative log2
fold change. This demonstrates how vague MS symptoms can be and that the common OMOP
concepts for MS patients are also common for the control population.

Interestingly, the only domain with a higher proportion of common OMOP concepts was
Measurement. This is consistent with our earlier conclusion that improved (more complete and

precise) mapping of measurements to SPOKE could improve the performance of the classifier.

Quantifying differences between models

The output to each model included the ROC plot, mean AUC, and standard deviation AUC
(mean and standard deviation from the cross-validations). After the models were finished, we
evaluated whether the AUCs for the SPOKEsig models were significantly different than those in
the SEP models. Given that the AUCs follow a normal distribution, the mean and standard AUC
from a model was used to generate a sample AUC distribution. For each year and cohort (All
Visit or PCP-Only) the sample SPOKEsig and SEP distributions were compared using the
Mann-Whitney U test. Sample distribution generation and p-value calculations repeated 1000 to
calculate the average p-value. As expected, the comparison between SPOKEsigs and SEPs at
year -3 using PCP-Only has the most significant p-value. It should be restated that these are

only approximate p-values based on the models’ mean and standard deviations.

Supplementary Figures and Tables

Supplementary Figure 1. Measurements increase accuracy of disease predictions. Not all
data can be mapped to SPOKE. Most unmapped EHR concepts are measurements (lab tests),
which are the most biologically substantive parts of the EHRs. To evaluate how much
SPOKEsigs could be improved once these concepts are mapped the same random forest

models were run using all data. (a-b) show ROCs for random forest classifier using all OMOP
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data for (a) All-Visits or (b) PCP-Only groups for snapshots at years -1 (red), -3 (orange), and -5

(yellow).

Supplementary Figure 2. EHR sparsity and vague common MS symptoms. (a-c) Pie charts
and violin plots describing OMOP code frequency in the PCP-Only year -3 MS population per
OMOP domain: Condition (a), Drug (b), and Measurement (c). The pie charts illustrate how
sparse the EHR data is for the MS patients. Note that Condition and Drug OMOP codes are
empty for most MS patients. The violin plots show the distribution of log2 fold change (MS
compared to Non-MS) values of the OMOP codes within each of these groups. The greatest
fold change values are primarily in the groups of OMOP codes with only 1-2 MS patients. The
most common MS symptoms (violin plot a) display negative log2 fold changes, demonstrating

that they are common in the control population as well.

Supplementary Figure 3. Lab tests drive information to MS biology nodes. A commonly
ordered lab test (aspartate aminotransferase) can increase the importance of the node Myelin
Sheath Adaxonal Region by sending information through L-Aspartic-Acid, to Diseases, then
Genes that are connected to Myelin Sheath Adaxonal Region (MAG and PTEN)

Supplementary Table 1. OMOP concepts that drive “all-F-OMOP” classifiers.

Supplementary Table 2. OMOP to SEP mapping coverage.

Supplementary Table 3. Biological nodes in SPOKE that drive the SPOKEsig classifiers and

are higher ranked in the non-MS population.

Supplementary Table 4. Number of patients used in each analysis.

Supplementary Table 5. Comparison of SPOKEsig and SEP classifiers.
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