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Abstract: There has long been an interest in understanding how the hazards from spaceflight may 24	
trigger or exacerbate human diseases. With the goal of advancing our knowledge on physiological 25	
changes during space travel, NASA GeneLab provides an open-source repository of multi-omics 26	
data from real and simulated spaceflight studies. Alone, this data enables identification of 27	
biological changes during spaceflight, but cannot infer how that may impact an astronaut at the 28	
phenotypic level. To bridge this gap, SPOKE, a heterogeneous knowledge graph connecting 29	
biological and clinical data from over 30 databases, was used in combination with GeneLab 30	
transcriptomic data from six studies. This integration identified critical symptoms and 31	
physiological changes incurred during spaceflight.  32	
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1.Introduction 38	

NASA recognizes five main hazards of spaceflight to human health, including altered gravity 39	
(microgravity and hypergravity), ionizing radiation, isolation/confinement, hostile/closed 40	
environment, and distance from Earth. These health risks caused by the space environment 41	
resemble multiple disorders found on Earth, including muscle atrophy and bone loss, 42	
cardiovascular deconditioning, immune dysfunction, and central nervous system deficits1. 43	
Therefore, repurposing current FDA-approved treatments for issues that arise during spaceflight 44	
could significantly reduce the time needed to develop new therapeutics and limit their side effects.  45	

 Since its establishment in 2015, NASA GeneLab2 has become a prominent open-source 46	
repository of data from real and simulated spaceflight studies. This platform has enabled 47	
computational analysis of multi-omics data, visualization of results, and integration with 48	
descriptive metadata, such as environmental data (e.g. space radiation dosimetry). GeneLab has 49	
already supported dozens of published studies, created a global collaboration to develop uniform 50	
standards for spaceflight -omics 3 and resulted in new space biology discoveries4,5. However, it has 51	
not yet been possible to use NASA GeneLab to combine and compare space and terrestrial data. 52	
Such capability would be a major advancement in fundamental spaceflight biology and its 53	
applications, including identifying new targets or repurposing terrestrial therapeutics for 54	
spaceflight countermeasures.  55	

 NASA GeneLab is planning to set up a portal dedicated to computational modeling that 56	
enables comparisons between datasets in addition to already existing data input, query, analysis 57	
and visualization capabilities. Knowledge Graphs (KGs) would be a suitable approach to facilitate 58	
this goal by unifying disparate datasets into a human queryable framework. KGs have already 59	
been widely adopted in biomedical research to unravel the complex relationship between 60	
biological changes and disease phenotypes6-10.  61	

Specifically, a new massive UCSF-based KG database, the Scalable Precision Medicine 62	
Oriented Knowledge Engine (SPOKE) has transformed structured data from over 30 human 63	
biomedical databases (-omics, chemical structures, molecular and cellular responses, physiological 64	
data including e.g. patient symptoms and drug side effects, etc.) into a KG with almost 400,000 65	
nodes of 12 types and over 10 million edges of 32 types11,12. Therefore, SPOKE has the potential to 66	
be combined with NASA GeneLab modeling portal, expanding it to link terrestrial biomedical 67	
sciences to space biosciences research and space medicine. 68	

 In this study, we integrated data from six different NASA GeneLab datasets in SPOKE to 69	
enable normalization that highlighted new nodes defining systems and effects that are known to 70	
be relevant for space travel, but would have been impossible to uncover without using SPOKE. 71	
These results suggest that SPOKE can be utilized to gain a deeper biological understanding of the 72	
health hazards associated with spaceflight and provide the proof of concept for its broader 73	
utilization to integrate space and terrestrial biological data. 74	
 75	

2. Materials and Methods  76	

GeneLab data processing and analysis. 77	
Gene expression data was downloaded from the NASA GeneLab repository (https://genelab-78	

data.ndc.nasa.gov/), datasets GLDS-4, GLDS-244, GLDS-245, GLDS-246, GLDS-288 and GLDS-289. 79	
All data had been processed and analyzed using standard NASA GeneLab techniques detailed 80	
below. Matched flight/live animal return verses ground control data was used for analysis.  81	
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Raw data was processed separately for each dataset by the NASA GeneLab data processing 82	

team. For datasets containing RNA Sequencing (RNA-Seq) assays (GLDS-244, GLDS-245, GLDS-83	
246, GLDS-288, GLDS-289) raw FASTQ files were assessed for the percentage of rRNA using 84	
HTStream SeqScreener (version 1.1.0 for GLDS-244, GLDS-245, GLDS-246 and version 1.3.1 for 85	
GLDS-288, GLDS-289) and filtered using Trim Galore! (version 0.6.4). Raw and trimmed fastq file 86	
quality was evaluated with FastQC (version 0.11.9). MultiQC (version 1.8 for GLDS-244, GLDS-87	
245, GLDS-246 and version 1.9 for GLDS-288, GLDS-289) was used to generate MultiQC reports. 88	
Mus musculus STAR and RSEM references were built using STAR (version 2.7.1a for GLDS-244, 89	
GLDS-245, GLDS-246 and version 2.7.4a for GLDS-288, GLDS-289) and RSEM (version 1.3.1), 90	
respectively, genome version mm10-GRCm38 (Mus_musculus.GRCm38.dna.toplevel.fa), and the 91	
following gtf annotation file: Mus_musculus.GRCm38.96.gtf. Trimmed reads were aligned to the 92	
Mus musculus STAR reference with STAR (version 2.7.3a for GLDS-244, GLDS-245, GLDS-246 and 93	
version 2.7.4a for GLDS-288, GLDS-289) and aligned reads were quantified using RSEM (version 94	
1.3.1 from the NASA GeneLab repository). 95	

Data representing the quantitative analysis of gene expression for each dataset was 96	
downloaded from the NASA GeneLab repository and imported to R (version 3.6.3). It was then 97	
combined to create a gene counts table containing the data for all samples of every dataset. For 98	
GLDS-244, GLDS-245 and GLDS-246 only non-ERCC (External RNA Controls Consortium, i.e. a 99	
spike-in mixture used for normalization) genes were used. Data was normalized with DESeq2 100	
(version 1.26.0). Principal component analysis was performed using prcomp (stats version 3.6.3) 101	
and plotted using plotly (version 4.9.2.1). For datasets containing DNA microarray assays (GLDS-102	
4) raw .CEL files were read in and normalized using the R script 'affyNormQC.R' which utilizes 103	
the RMA algorithm through the oligo R package [rma() with default parameters]. Quality control 104	
reports were generated via the R script 'affyNormQC.R', with parameter 'do.logtransform' set to 105	
TRUE for the generating the raw report. This microarray experiment was annotated with the R 106	
script 'annotateProbes.R' which utilized Annotation-Db class probe annotations specific to each 107	
chip from the Bioconductor repository. In cases where multiple probes mapped to the same gene 108	
ID, representative probes were selected with the highest mean normalized intensity across all 109	
samples. The results of the principal component analysis were imported to R using the GeneFab 110	
API and plotted using plotly (version 4.9.2.1). 111	

To quantify overlapping pathways between GLDS-244, -245 and -246, Entrez Gene IDs of 112	
genes that showed a significant difference (p<0.05) between 29-day flight/live animal return and 113	
ground controls were used as the input to Molecular Signatures Database v7.2, GeneOntology (GO) 114	
gene sets. (GO biological process, GO cellular component, G molecular function). Top 50 115	
statistically significant pathways were compared to identify overlaps. The same approach was 116	
applied to quantify the overlapping pathways between GLDS-288 and -289. 117	
 118	

Scalable Precision Medicine Oriented Knowledge Engine 119	
Scalable Precision Medicine Oriented Knowledge Engine (SPOKE) 11,12 is a population level 120	

heterogeneous knowledge graph. SPOKE was generated by unifying over 30 publically available 121	
databases. Currently, SPOKE contains almost 400,000 nodes of 12 types (Anatomy, BiologicalProcess, 122	
CellularComponent, Compound, Disease, Gene, MolecularFunction, Pathway, PharmacologicalClass, 123	
Protein, SideEffect, and Symptom). These nodes are connected by 32 types of biologically meaningful 124	
edges (n >10 million). 125	
 126	
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Gene-Specific Propagated SPOKE Entry Vectors 127	

Propagated SPOKE Entry Vectors (PSEVs) are generated using a modified version of topic 128	
specific page rank to learn and embed the importance of each node in SPOKE for a given restart 129	
node or set of nodes13 14 15. These restart nodes, called SPOKE Entry Points (SEPs), are any concept 130	
in the input data that overlaps with a node(s) in SPOKE. In this analysis, the SEPs were the mouse 131	
genes that have homologs to the human Gene nodes in SPOKE. A Gene PSEV was produced by 132	
allowing a random walker to traverse the edges in SPOKE and then forcing them to restart at a 133	
specific Gene SEP. The forced restart ensures that the walker will spend the majority of time on 134	
nodes that are important for that Gene. The significance of each node is then stored in an element 135	
of the PSEV such that the length of the PSEV is equal to the number of nodes in SPOKE (n = 389 , 136	
297).  137	

Integrating gene expression data and PSEVs 138	
For each study, the –log2 fold-change (FC) mouse gene expression data was mapped to the 139	

human Gene nodes in SPOKE. The homologous mapping between species was achieved using 140	
HomoloGene IDs16. If multiple mouse genes mapped to a single human, then the average FC was 141	
used. Additionally, some studies contained multiple comparisons between space and ground or 142	
baseline control mice. An example of this is study GLDS-244 that compared mice at two space time 143	
points (day-29 and days 53-56). In these instances, genes were removed if the FC comparisons 144	
weren’t in the same direction (i.e. if space verses ground day-29 had a positive FC and days-53-56 145	
had a negative FC). This filter focuses the data set of genes that remain consistent during space 146	
travel. 147	

 After genes were mapped and filtered for a given study, the pre-computed PSEVs for 148	
remaining genes were extracted. This PSEV matrix was z-score normalized and then ranked such 149	
that the most important node in a given PSEV was equal to the number of nodes in SPOKE (n = 150	
389,297) and the least important was ranked one. Then FC comparisons were converted to PSEVs 151	
by taking the dot product of the filtered FC matrix and the filtered normalized PSEV matrix. 152	
Finally, the PSEV comparisons were ranked as before. 153	
 154	

Finding significant SPOKE nodes 155	
The PSEV comparisons from the six studies were pooled together and separated into three 156	

groups (Ground vs. Baseline, Space vs. Baseline, and Space vs. Ground). Wilcoxon rank-sum test 157	
was used to evaluate whether the distribution of ranks of a given node in the Ground vs. Baseline 158	
group was significantly different from that in either Space vs. Baseline or Space vs. Ground 159	
(Supplementary Table 1). Top nodes were selected using the most significant 2.5% per node type 160	
for Space vs. Ground and/or Space vs. Baseline (n=15,875; 4.1%). 161	
 162	

Retracing paths from input gene to SPOKE node 163	
A high correlation between a gene’s FC and the rank of a specific node suggests that the gene 164	

FC is at least partially responsible for the prioritization of the node within a PSEVs.  The correlation 165	
was calculated between genes (present in > 20% of FC comparisons; n = 7,567) and a set of top 166	
Anatomy, BiologicalProcess, CellularComponent, MolecularFunction, Pathway, and Symptom nodes (n = 167	
30). Next paths were found between genes that had a high correlation (correlation > 0.6) and the 168	
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set of top nodes. Gene-node pairs were then filtered to only include pairs that had the same sign 169	
(positive gene expression and positive Welch t-statistic). Then, in order to visualize paths between 170	
gene-node pairs, paths were filtered to have a maximum of three edges and less than 100 possible 171	
combinations of nodes within the path. This left over 17,000 gene-node pairs and 234,000 possible 172	
paths.   173	

 The paths shown were selected based on their simplicity and the FC of the original genes 174	
(Supplementary Figure 1). The p-values of the FCs used as input for PSEV creation were averaged 175	
for each group (Ground vs. Baseline, Space vs. Baseline, and Space vs. Ground). This gives us an 176	
estimate of how significant the gene FC was for a group as a whole. Each gene FC was scored based 177	
on whether the average space travel groups had a p-value that on average was more significant 178	
than Ground v Baseline (equation 1; Supplementary Figure 1 y-axis). Here, a positive value 179	
indicates that the average p-value of the FC for a given gene was more significant within space 180	
travel groups than the Ground v Baseline group. This score only judges the significance of one 181	
comparison (within a single group) to the other. Then the Wilcoxon rank-sum test was used to 182	
determine whether the FC distributions were significantly different between groups. Space vs. 183	
Baseline and Space vs. Ground distributions were compared to the Ground vs. Baseline separately 184	
and the then averaged (Supplementary Figure 1, x-axis).  185	
 186	

𝐹𝐶	𝑠𝑐𝑜𝑟𝑒 = 	 log!(Ground	v	Baseline	Avg	P	Value) −	 log!>(Space	v	Baseline	Avg	P	Value +187	
Space	v	Ground	Avg	P	Value)/2E  188	

(1) 189	

 190	

Figure 1. Summary of experimental conditions across GeneLab datasets used for the analysis. 191	
Datasets GLDS-4, -244, -245 and -246 used C57BL/6NTac mice. Datasets GLDS-288 and -289 used 192	
C57BL/6J mice for spaceflight and both C57BL/6J and Charles River mice for ground controls.  193	

 194	

 195	

 196	

Table 1. Descriptive metadata for each NASA GLDS dataset analyzed by SPOKE. 197	
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 198	

"GC" denotes ground control, "RR" denote rodent research, "TCU"denotes transportation case units 199	
 200	

 201	

 202	

GeneLab Tissue Sequencing Type Strain Mission/Flight Duration in fight Age at intiation Age at Euthanasia Sex Sample size (n/cohort)

GLDS-4 Thymus Microarray C57BL/6NTac STS-118 13-days (12.76 day) ~6.5-weeks 8-weeks n/a FLT(n=4); GC(n=4)

GLDS-244 Thymus RNA-sequencing C57BL/6NTac RR-6 (SpaceX-13) 29-days (n=9, LAR); 53-56-days (n=10, ISS terminal) 32-weeks 36-weeks LAR; 44-weeks ISS terminal; 36-weeks LAR/ISS terminal Baseline GC; 41-weeks LAR GC; 44-weeks ISS Terminal GC Female LAR(n=9); ISS terminal(n=10); Baseline LAR(n=10); Baseline ISS Terminal(n=9); LAR GC(n=9); ISS Terminal GC(n=10)

GLDS-245 Liver RNA-sequencing C57BL/6NTac RR-6 (SpaceX-13) 29-days (n=9, LAR); 53-56-days (n=10, ISS terminal) 32-weeks 36-weeks LAR; 44-weeks ISS terminal; 36-weeks LAR/ISS terminal Baseline GC; 41-weeks LAR GC; 44-weeks ISS Terminal GC Female LAR(n=9); ISS terminal(n=10); Baseline LAR(n=10); Baseline ISS Terminal(n=9); LAR GC(n=9); ISS Terminal GC(n=10)

GLDS-246 Spleen RNA-sequencing C57BL/6NTac RR-6 (SpaceX-13) 29-days (n=9, LAR); 53-56-days (n=10, ISS terminal) 32-weeks 36-weeks LAR; 44-weeks ISS terminal; 36-weeks LAR/ISS terminal Baseline GC; 41-weeks LAR GC; 44-weeks ISS Terminal GC Female LAR(n=9); ISS terminal(n=10); Baseline LAR(n=10); Baseline ISS Terminal(n=9); LAR GC(n=9); ISS Terminal GC(n=10)

GLDS-288 Spleen RNA-sequencing C57BL/6J (flight); Charles River Laboratories Japan (GC) TCU (SpaceX-9) 35-days 8-weeks 12-weeks Male Spaceflight(MG, n=3); Spaceflight w/ centrifugation (AG, n=3); Synchronous (GC, n=3)

GLDS-289 Thymus RNA-sequencing C57BL/6J (flight); Charles River Laboratories Japan (GC) TCU (SpaceX-9, MHU-1; SpaceX-12, MHU-2) 35-days MHU-1; 30-days MHU-2 8-weeks MHU-1; 9-weeks MHU-2 12-weeks Male Spaceflight(MG, MHU-1, n=3); Spaceflight w/ centrifugation (AG, MHU-1, n=3); Synchronous (GC, MHU-1, n=3); Spaceflight(MG, MHU-2, n=3); Spaceflight w/ centrifugation (AG, MHU-2, n=3); Synchronous (GC, MHU-2, n=3)
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 203	

Figure 2. Transcriptomic analysis of spaceflight-associated changes in gene expression. (a). 204	
Principal component analysis of all samples, colored by dataset. (b). Principal component analysis 205	
of datasets GLDS-244, -245 and -246, colored by flight condition. (c,d). Overlapping pathways 206	
between datasets GLDS-244, 245 and 246 out of top 50 Gene Ontology pathways using significantly 207	
differently expressed genes (p<0.05) between flight and ground conditions, live animal return after 208	
29 days on the ISS. Venn diagram showing overlapping pathways between datasets (c) and the list 209	
of pathways overlapping between all three datasets (d). Three out of top 50 gene ontology (GO) 210	
pathways overlapped between datasets GLDS-288 and -289, none of which overlapped with GLDS-211	
244, -245 and -246.  212	

 213	
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3. Results 214	

Transcriptional profiling of mice after space flight 215	
Here we conducted a meta-analysis of six independent transcriptomic datasets (GLDS-4, -244, 216	

-245, -246, -288, and -289) from experimental mice obtained during four different spaceflight 217	
missions (STS-118, TCU (SpaceX-9), MHU-2 (Space X-12), and RR-6 (SpaceX-13)), at five time 218	
points of collection (13-, 29-, 30-, and 35-days live animal return (LAR); and 53-56 days (ISS 219	
terminal)), on the International Space Station (ISS) (Figure 1 and Table 1).  While experiments 220	
varied in their design (i.e. duration of flight, age at launch, genotype of mice, transcriptomic 221	
platform, time of collection), the objective of these experiments was to identify changes in gene 222	
expression induced by spaceflight in three different immune-related organs (thymus (primary 223	
lymphoid organ), spleen (secondary lymphoid organ) and liver (lymphatic-associated/digestive 224	
organ, PMID:27965673)).  225	

After data normalization, principal component analysis revealed strong separation of samples 226	
by mission and tissues (Figure 2A). These findings are unsurprising, given that these variables are 227	
confounding factors of different missions/collections. However, we also observed that samples 228	
from the same time point of mission/collection from two different experiments clustered together, 229	
suggesting that some biological effects were captured. When PCA was used to plot samples from 230	
similar experimental conditions (spaceflown, ground, and baseline from the same RR-6 mission), 231	
no obvious separation between samples obtained during flight, baseline and ground was observed 232	
(Figure 2B).  233	

 Differentially expressed genes in spaceflown mice vs. ground controls after live animal 234	
return were identified in thymus, liver, and spleen of RR-6 (SpaceX-13) mission, including a set of 235	
overlapping genes across all three tissues (Figure 2C). Using these genes as an input to pathway 236	
analysis (by hypergeometric test) further showed a number of statistically significant biological 237	
functions dysregulated by space flight in thymus, liver and spleen. While some pathways were 238	
tissue-specific, nine of them were shared among the three tissues, including apoptosis, cell 239	
metabolic process, and cell membrane integrity (Figure 2D).  240	
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 241	

Figure 3. Generating PSEVs using gene expression fold-change. (a) PSEVs were pre-computed 242	
for all SPOKE genes. For each gene the random walker was forced to restart at that gene 243	
(probability of random jump = 0.1). After PSEVs were finished they were stored in the pre-244	
computed PSEV matrix. (b) For each study, the pre-computed PSEV matrix was filtered and 245	
normalized. Then the dot product was taken between the normalized matrix and the FC matrix to 246	
generated the PSEV matrix for that study. (c top) The PSEV matrices for each study were pooled 247	
together and separated into groups: Ground vs. Baseline (blue), Space vs. Baseline (yellow), and 248	
Space vs. Ground (green). (c bottom) The distributions of the node ranks were adjusted using the 249	
mean Ground vs. Baseline rank.  250	

 251	

Fold-change enhanced Propagated SPOKE Entry Vectors 252	
While established methods of transcriptional profiling can inform about dysregulated 253	

molecular pathways, they provide little insight on higher-order phenotypes, such as associated 254	
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signs and symptoms of disease. Using SPOKE, a KG that integrates information of both biological 255	
and clinical database, it is possible to score every node of the graph as a function of the 256	
“information flow” elicited by a defined set of quantitative inputs. SPOKE leverages the complexity 257	
of hierarchical organiztion of complex organisms to identify nodes with shared information flow 258	
(regardless of whether the input itself was significant or not).  259	

Gene-specific Propagated SPOKE Entry Vectors (PSEVs) were generated from the selected 260	
GeneLab studies prior to integrating gene expression results with SPOKE11 12. Each gene-specific 261	
PSEV was created using a modified version of topic specific page rank13 14 15 in which the random 262	
walker was forced to restart at the corresponding Gene node in SPOKE (See Methods, Figure 3A). 263	
This focused the random walker on nodes that are the most important for a given node (in this 264	
case, Gene  node since the input is gene expression). The amount of time a random walker spends 265	
on a node was then stored in a defined element (position within) of the PSEV vector. All PSEVs 266	
were then stored in the pre-computed PSEV matrix. For each gene expression study the pre-267	
computed PSEV matrix was filtered and normalized to match the genes within the study (Figure 268	
3B; Methods). The dot product was then used with the normalized PSEV matrix and the –log2 fold-269	
change (FC) to produce the PSEVs for that study. After PSEVs were computed for each study, they 270	
were pooled and separated into specific experimental groups to enable meaningful comparisons 271	
to test the hypothesis that spaceflight alters gene expression (Ground vs. Baseline, Space vs. 272	
Baseline, and Space vs. Ground) (Figure 3C).  273	

 Each element in a PSEV corresponds to a single node in SPOKE. Therefore, it is possible to 274	
determine the overall significance of a node for spaceflight by evaluating the differential 275	
distribution of node ranks in the PSEV. Wilcoxon rank-sum test 17  was utilized to compare a node’s 276	
rank distribution in the Ground vs. Baseline to that in either Space vs. Baseline or Space vs. Ground 277	
(Supplementary Table 1).  278	

 Strikingly, nodes that are known to be relevant for space travel such as space motion 279	
sickness (Symptom), regulation of blood vessel diameter (BiologicalProcess), taste receptor complex 280	
(CellularComponent), Vitamin D (calciferol) metabolism (Pathway), and sympathetic nervous system 281	
(Anatomy) scored among the top 5% of nodes (top 2.5% per type for Space vs. Baseline and/or Space 282	
vs. Ground). Figure 4 shows violin plots from a select set of nodes (n = 22) in SPOKE that had 283	
significantly different ranks in spaceflight (Space vs. Baseline and/or Space vs. Ground) compared 284	
to Ground vs. Baseline. From these, 11 correspond to symptoms (pink boxed violin charts, Figure 285	
4A), five to gene ontology/pathway concepts (teal boxed violin charts, Figure 4B-D), and six to 286	
anatomical regions (green boxed violin charts, Figure 4E). Violin plots for each category, sub-287	
networks demonstrate how the gene expression results drive information from these 22 nodes.  288	

 Taken together, these results show that human physiological changes observed during 289	
spaceflight can be inferred by embedding mouse gene expression data with a KG that integrates 290	
observed concepts (i.e. genes) with unobserved, higher order phenotypes associated with each 291	
other in a biologically meaningful manner.  292	
 293	
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 294	
Figure 4. Retracing paths between genes and top nodes. Gene expression FC values drive 295	
information flow to nodes in SPOKE. (a-e) Paths were traced between genes that were partially 296	
responsible for pushing information to a set of significant nodes (n = 22). These paths were shown 297	
for (a) 10 Symptom nodes, (b) taste receptor complex (CellularComponent), (c) regulation of cortisol 298	
secretion (BiologicalProcess) and Vitamin D (calciferol) metabolism (Pathway), (d) regulation of 299	
vasoconstriction (BiologicalProcess) and regulation of blood vessel diameter (BiologicalProcess), and (e) six 300	
Anatomy nodes. Violin plots for each significant node show that the ranks within Space vs. Baseline 301	
and/or Space vs. Ground separated from the Ground vs. Baseline. In each violin plot Ground vs. 302	
Baseline (blue), Space vs. Baseline (yellow), and Space vs. Ground (green).  303	
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4. Discussion 305	
One of the major objectives of biomedical research is to advance our understanding of human 306	

diseases in order to develop effective countermeasures. This aim becomes considerably more 307	
challenging when the physiological changes arise from spaceflight. Major efforts have been made 308	
by NASA GeneLab to collect and provide multiomics data from model organisms. Additionally, 309	
NASA GeneLab data brought into the SPOKE system could be complemented by including murine 310	
phenotypical patho-physiological and biochemical non-omics data (more nodes) from the Ames 311	
Life Sciences Data Archive,18 and eventually the SPOKE system could be used for human 312	
spaceflight research data related to astronauts. However, the major challenges of analyzing any 313	
datasets generated during spaceflight are their low statistical power, considerable heterogeneity 314	
and limited reproducibility19. These limitations are largely accepted by the scientific community as 315	
a reasonable trade-off for the novelty and potential for discovery these experiments entail. As a 316	
new strategy to maximize the utility of these datasets, we propose the data from model organisms 317	
can be integrated through a knowledge graph such as SPOKE. 318	

 Here, we report the results of a KG-driven, meta-analysis of six murine transcriptomic 319	
studies (five RNAseq and one microarray) from NASA GeneLab. The samples were taken from 320	
three distinct anatomical sites (thymus, liver, and spleen) and covered multiple spaceflight 321	
durations and gravity conditions. PCAs using only gene expression data illustrated that most of 322	
the differences between the samples could be attributed to either the study or the anatomical site. 323	

 Next, we hypothesized that, though this data came from a diverse set of experiments, 324	
SPOKE embeddings (i.e. “signatures”) could be used to recover space travel changes that are 325	
conserved across the studies. To accomplish this, -log2 fold-change gene expression (FC) data from 326	
each study was applied to gene-specific Propagated SPOKE Entry Vectors (PSEVs). Gene-specific 327	
PSEVs are vectors that describe how important each node in SPOKE is for a given gene. Therefore, 328	
multiplying PSEVs by FC data will highlight nodes that are both important for input gene set and 329	
prioritize them according to how differentially expressed the input genes are.  330	

PSEVs from all of the studies were then pooled together and separated into three groups based 331	
on the type of FC comparison (Ground vs. Baseline, Space vs. Baseline, and Space vs. Ground). The 332	
distribution of node rank was analyzed for each node and the top 5% were selected for each node 333	
type. These top nodes were enriched for nodes for phenotypes and physiological changes known 334	
to be impacted by spaceflight. Furthermore, paths were found between the input gene set and the 335	
top node set. These paths shed light onto the underpinnings of spaceflight related health hazards 336	
and could potentially be used to identify drug targets. In the future, archived spaceflight and other 337	
experimental samples could be used to validate the predicted signatures and assess their 338	
physiological significance without the need for further experiments. Thus, we anticipate that our 339	
results are the very first steps towards a broader collaboration utilizing the SPOKE model to 340	
compare spaceflight and terrestrial phenotypes. 341	

 There is increasing interest in developing personalized risk predictions and treatments in 342	
support of long-duration deep space missions20. Thus, expanding the computational approaches 343	
from general comparison of spaceflight and terrestrial diseases to using an input from a single 344	
subject to map their individual risk profile would allow developing optimal medical care for 345	
individual astronauts. Notably, the power of SPOKE stems from a wide variety of its inputs that 346	
combine multi-omics, clinical, and physiological data, which may provide a useful complement to 347	
the currently utilized risk management tools that are based upon probabilistic mathematical 348	
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modeling and simulations 21. In the long-term perspective, the SPOKE platform may also be of 349	
value to mission planners such as the NASA Human Systems Risk Board. 350	
 351	

 352	

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure 353	
S1: Gene selection for network paths, Table S1: Wilcoxon rank-sum test results 354	
 355	

 356	

Supplementary Figure 1. Gene selection for network paths. There is one scatter plot for each top node used 357	
in the networks. Each one shows the genes selected for path retracing (red) and those that had paths but were 358	
not shown (blue). The x-axis is the average p-value for the average FC distributions and y-axis is the FC score. 359	
 360	

Supplementary Table 1. Wilcoxon rank-sum test results for Space vs. Baseline - Ground vs. Baseline and 361	
Space vs. Ground - Ground vs. Baseline tests. Results shown for each node in SPOKE. 362	
 363	

  364	
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