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One of the leading mechanisms powering relativistic black hole jets is the Blandford-Znajek process.
Inspired by its success we construct energy extracting models for black holes in five spacetime dimensions.
Here, we find solutions to the force-free electrodynamic equations representing plasma magnetospheres for
slowly rotating Myers-Perry black holes. Both energy and angular momentum fluxes are computed for these
solutions realizing power extraction from black holes in higher dimensions. Comparisons of the main features
of the five-dimensional Blandford-Znajek models with lower four-dimensional counterparts are discussed.
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I. INTRODUCTION

Several types of powerful high-energy events illuminate
the Universe. Most have been observationally associated
with central black holes of some active galaxies, quasars,
and also by galactic stellar black holes, neutron stars or
pulsars. For black holes, it is widely believed that these are
spinning and threaded by large scale astrophysical mag-
netic fields which helps convert binding and rotational
energy in a highly efficient outflow process. Our under-
standing of these systems benefits hugely from progress
on the observation front [1-3], the sophisticated general
relativistic magnetohydrodynamics simulation [4,5] and
new insights from theoretical efforts [6-9] that seek to
unravel these fascinating phenomena.

In the 1970s Blandford and Znajek layed out a successful
model for energy and angular momentum extraction from
rotating Kerr black holes surrounded by magnetospheres
[10]. These magnetospheres are described by the highly
nonlinear equations of force-free electrodynamics (FFE).
Over the past three decades, the Blandford-Znajek (BZ)
process has been extensively studied in general relativity
(GR). One of the basic predictions of the BZ model is that
for slowly rotating black holes the total electromagnetic
energy flux extracted from the black hole scales as the spin
a squared
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P ~ a2 (1)

Numerical [11,12] and analytical work (see e.g., [13] and
references therein) hints that a much steeper dependence of
power on « occurs as the black hole spin increases. While itis
clear that the power from the black holes does depend on the
spin parameter, other effects such as collimation introduce an
even steeper behavior on « in the power spectrum.

The astrophysical problem is therefore slightly different
than the plain BZ model, since what we actually observe
are jets and not an isotropic outflow. A collimating agent is
required for the black hole jet models. For the collimated
morphology, the agent translates into specific boundary
conditions instead of the bare black hole geometry.
Examples include paraboloidal boundaries along the wind
from the surrounding accretion disks [14], or in the form of
a background vertical magnetic field held in place by a disk
far from the black hole [15-17].

The proliferation of sensitive telescopes such Event
Horizon Telescope, are providing a wealth of information
to reveal the launching and initial collimation region of
extragalactic radio jets in for example Messier 87 [18] and
Centaurus A [3]—the closest radio-loud source to Earth. This
ever-increasing number of observations so far have shown to
be consistent with the predictions from GR. In the era to come
there will be growing interest in attempting to show, or to
exclude, the possibility that the results of observations may
be better described by some alternative theory of gravity. As
we divert from GR we need to consider alternative theories,
including higher dimensions [19-22].

Here, we address the following main questions: What
is the effect in black hole jet models of the number of
spacetime dimensions? In particular, can a black hole in
five spacetime dimensions (5D) support energy extracting
magnetospheres? Can higher dimensions introduce in the
jet power an even steeper scaling on the spin parameter?
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In this context, we construct energy extracting models
for black holes jets in 5D spacetimes. These are solutions of
the force-free electrodynamic equations in a slowly rotating
5D Myers-Perry black hole [23]. Even though they do not
realize in nature, they are worth exploring, since they have
interesting features in the vast landscape of alternative
theories of GR. One of the remarkable properties of higher-
dimensional gravity is its connection with other areas of
physics. While the physics of higher-dimensional BZ
models that we develop is a matter of interest per se, these
may play a central role in holography, the microscopic
interpretation of the Bekenstein-Hawking entropy [24], and
direct contact with experiments such as heavy-ion colli-
sions performed at the LHC [25] and EIC [26]. Moreover,
upon dimensional reduction, such black hole jet models can
also be relevant in astrophysics and also understanding how
special our 4D world is in the space of all possible values.

This paper is organized as follows: basic equations
governing stationary force-free fields around five-
dimensional Myer-Perry black holes with one spin are
introduced, and for the first time we set up the BZ model
in higher dimensions in Sec. II. We present new exact
solutions of the FFE equation in 5D flat spacetimes and
static black holes in Sec. III. In Sec. IV we describe a
perturbative approach to obtain a self-consistent highly
collimated jet solutions. Physical properties, such as energy
extraction rate are also discussed and compared with the 4D
solution. Discussions are given in Sec. V.

II. FFE FOR 5D BLACK HOLES

In this section we review conventions and equations
for an extension of the BZ model by promoting the FFE
equations to 5D spacetimes. We also collect some results on
rotating Myer-Perry 5D black holes in order to make the
paper more self-contained.

Force-free electrodynamics describes systems in which
most of the energy resides in the electromagnetic (EM)
sector of the theory where the energy-stress tensor
T,, ~ T This approximation is known as the “force-
free” condition. Here we argue that these are generalized
straightforwardly to higher dimensional spacetimes. We
hence want to find stationary and axisymmetric solutions of
the following FFE equations

F,J" =0, (2)

y1i%

supplemented by Maxwell’s equations
F,J" =0, (3)
V, Fr = JH, (4)

where u,v={t,¢,w,r,0}. We motivate our 5D FFE
model from observation that standard (four-dimensional)

Einstein gravity can straightforwardly be generalized to
higher dimensions. 5D FFE is similar in spirit to BZ [10]
but differs in the way the indices ¢, v € D and on the choice
of black hole background. Higher-dimensional gravity
exhibits a much richer dynamics due to the existence of
extended black objects with a same mass and angular
momentum but with different horizon topologies such as
black string, black rings and overspinning spherical black
holes [27]. The setup for our computation will focus only
on a 5D rotating black hole background solution, supported
by an appropriate set of boundary conditions follows next.

We shall explicitly work in the single spinning 5D-
Myers-Perry black hole [23] solution for the background
metric where certain calculations are simplified. The
Myers-Perry metric, parametrized by the mass m and
(one) rotation a, takes the form

z
ds® = —di* + g (di - asin® 0dg)* + 5 dr” + Zdo®
+ (r? + a?) sin® Od¢p? + r? cos® Ody?, (5)

where

T = r? + a*cos’0), A=r+a*—m. (6)

The event horizon is r = ry = Vm — a” and the angular
velocities Qff = a/(ry +a*) and Qff = 0. Unlike Kerr
black holes, the Myers-Perry black hole with a single spin
is not bounded. In this black hole 5D space, the extremal
value m = a* corresponds to an irregular solution where
the horizon is destroyed, leading to naked singularity
solution. In this Boyer-Lindquist type coordinates, this
metric is square diagonal, and we can identify

ds? = (g1)pdx"dx” + (g2) pdx“dx’,  (7)

where {x** =1, ¢,y} and {x*# =r,0}. In such back-
grounds it can be easily shown that all stationary and
axisylmmetric field strengths, solutions to (2)—(4), are of the
form

'Note that the most general stationary and axisymmetric gauge
field is

A :Aa('xl’XZ)dxa +Aa(xl»x2)dxa’ (8)

hence defining the fluxesby ¥, =1 - A, and ¥,, =1 - A,, the
electromagnetic field angular velocities w,,, taking —d, A, =

-1
@,0, Ay + w,0, A, and current I =,/ detg, (04, Ay, —0,Ay)

—detg;
one finds via F = dA the corresponding the general expression
for the field strength (9).
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F=d¥, A ldp - a,di] + d¥, A ldy — o,di]

detg2
I\|———dr A do, 9
+ —detgl d ( )

where the fluxes ¥y ,, the electromagnetic field angular
velocities w,,,, and current / are functionals of an arbitrary
function f(r, ). We therefore argue that the BZ process in
5D has five free parameters. These functions encode the
energy and angular momentum fluxes. For a stationary and
axisymmetric FFE field (9) the corresponding total energy
flux can be defined by

P= / T, (&),dV =—2(2x) / (y0p%¥ y + @,,05%,,)1d0,
(10)

and the angular momentum fluxes

Ly= —/T{a&(ﬁas)yd‘/: _2(2,;)2/109%(19, (11)

LWE_/TEIM(fw)udV_ _2(2”)2/1049de9' (12)

We work in the southern hemisphere 0 < 6 < z/2 and
assume a reflection-symmetric magnetosphere along the
equator. The factor of 2 accounts for the contributions from
both hemispheres, and the (27)? contribution arises form
the integration along the azimuthal (¢, y) directions. Here
Ty = FFFY — (1/6)¢*“FsF* is the electromagnetic
energy momentum tensor, dV is the total spacetime
volume form and the timeline and two axial Killing
vectors are & = (1,0,0,0,0), f’(;, =(0,0,0,1,0) and
&, =(0,0,0,0,1), respectively. While there is no sharp
distinction between the azimuthal directions ¢ and y,
working explicitly in 5D black hole space (5) can simplify
solutions and integrals over the spacetime. In this paper, for
simplicity we will further reduce the problem were the EM
variables on y direction are turned off. This will guarantee
that there is no angular momentum flux L, = 0.
Plugging the expression for the stationary electromag-
netic field (9) into (2) leads to a basic reduced system of
two fundamental nonlinear FFE equations. These, respec-
tively, two fundamental equations are
F,J"=0, Fo,J" =0. (13)
Before diving into solving these equations, we now con-
sider the location of two of the relevant black hole surfaces
(the event horizon and ergosurface) where (13) may
become irregular. This leads us to establish boundary
conditions to guarantee regularity for FFE equations that
coincide with the smoothness requirement of the Poynting

vector F? on these same surfaces. The discussion on the
other two surfaces in the problem, the so-called light
surface is postponed to Sec. IV B.

A. Event horizon and ergoregion

Given the Myers-Perry (MP) black hole we can define
the event horizon radius for the background by equating
the zeros of the equation ¢ = 0. The resulting value of

location of the event horizon yields r = ry = Vm — a°.
For slowly rotating black holes, where the spin parameter is
small ¢ < 1,

Iy 1 ) 3
Ty _ @24 o), 14
e Ola) (14)

where ry = \/m and reduced spin parameter a = a/+/m.

The boundary of the ergoregion, or ergosurface, can
simply be defined as the locus of spacetime points where
the asymptotic timelike Killing field 0, becomes null, i.e.,
where g, = 0. In the Myers-Perry black hole (5) the
ergospheres r,(6) are found at

r, = £\V/m — a?cos? 6 — b sin 6. (15)
In the small spin regime a < 1 the radius of the horizon

1
Te 1 —Za?cos? 6 + 0(d). (16)
ro 2

Our analysis here focuses mainly on the event horizon
and the ergosurface. While both surfaces play a central role
in the BZ model, exploiting the analogy with pulsar
magnetospheres, we will further consider the physical
significance of the so-called light surfaces (see below).
These are surfaces where magnetic field lines as a geo-
metric construct “rotate” at the speed of light in the same or
the opposite direction with respect to an observer corotating
with the magnetosphere.

B. Boundary conditions

We now examine the boundary conditions for the 5D
FFE model that we propose. Introducing the black hole
background a set of functions Wy, @, and I satisfying
Eq. (13) will characterize a consistent model of a force-free
magnetosphere given a choice of appropriate boundary.
Following the original work by Blandford and Znajek [10]
at the equator (6 = 7/2) the fluxes d'¥,,, are considered to
be discontinuous and determined by surface currents in the
disc. At the same time, on the surface of the black hole
the so-called Znajek smoothness conditions will apply. For
the 5D singly rotating black hole the relevant conditions
for the fluxes ¥, on the black hole event horizon yield a
relation between the field functions
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(r}, +a®)rysinfcos 0

11 (¥) = (o — Q) W, (17)

r4 +a’cos* 6

where —wl = 0,A1/0,Al] = 9yA[' /9pAl. This smooth-
ness condition can be derived either from requiring
regularity of the FFE equations on the vent horizon or,
equivalently, from regularity of F2. Since we are working
with Eq. (13) in single spinning MP black hole back-
grounds, we see no contribution at the event horizon ‘PVI}' in
the equations. Therefore, without loss of generality we pick
a)u’f = 0. Notably the smoothness condition obey a similar
structure to its 4D analog in Kerr.

At infinity r — oo setting boundary conditions is more
subtle, but as argued in [10], we resort to match the fields
to solutions of flat space. The regularity condition in the
region far from the black hole is

[2(¥*) = LwPrsin6 cos 00, Y5 . (18)
To our knowledge solutions of FFE equation in flat vacuum
five space-time dimensions are not known. Hence we now
establish some relevant equations and derive a tower of
solutions for the FFE equations. These will include not only
solutions of the FFE equations in D =5 flat spacetime
backgrounds, but also static black hole backgrounds.

III. FFE SOLUTIONS IN FLAT
AND STATIC 5D BACKGROUNDS

In this section we compute exact solutions to the FFE
equations in D =5 flat spacetime and static black holes
backgrounds. We work with black hole backgrounds con-
taining a spherical event horizon. For static black holes
metric, one can simply set the spin parameter to zero a = Qin
(5). This corresponds to the 5D metric found by Tangherlini
[28]. The black hole resembles Schwarzschild’s solution
not only due to the spherical event horizon topology but
also on realizing the unique regular static solution of five-
dimensional GR in vacuum. Static black holes will exhibit
no energy extraction; however, the new exact solutions to
vacuum Maxwell equations in a Tangherlini metric that we
now construct will be key for the FFE solutions for rotating
5D black hole that we present in a later section.

A. Flat spacetimes solutions

As in four spacetime dimensions for Schwarzschild
metric, in five spacetime dimensions there is a similar
“no hair theorem” that we can formulate [29].

Theorem: Nonrotating higher-dimensional black holes
cannot have magnetic fields themselves; the electric
field in the exterior of a nonrotating black hole must
coincide with the field at a point located in the center.

It is not in the scope of this paper to prove this theorem,
but we will simply assume its validity since by solving the
Maxwell’s equations (3) and (4) we now find for (9), with

I = wy = w, =0, that the equations reduce to

e, = o | (7o w,| +anoa,| o] = 0
=7r =V,
¢ "l r " ‘/’_ 1tang 0" ¢
(19)
(2 —m | 1
ﬁv,‘PV,Erd, T 6,‘1‘,,, +C0t909 669‘{’ =0
(20)

and the electric and magnetic equations are separated.
Besides, one can regard the field is degenerate I A F = 0
when

9,9,
PR

0%, _ o
7

This condition, which in four spacetime dimensions is
necessary to solve the FFE equations, in five dimensions
it is not.

In turn, Egs. (19) and (20) imply that the black hole
magnetospheres can occur only in the presence of external
electric currents. We can seek for solutions to these
equations assuming

=1- iClRl
1=0

le/: 1 _iann(r)T%(e)

n=0
(22)

and arbitrary constants c;, d,. Note that these operators
differ slightly from flat space—with no black hole m = 0—
by a factor (> —m)/r in the radial derivatives’ and
therefore 77() and T¥(#) will remain unchanged. Let
us consider the eigenfunctions to the problem next.

1. Eigenfunctions

The operators £ and L,, are second order; therefore
there is a set of two eigenfunctions that solve (19)—(20). Via
the separation of (r, @) variables one can find the explicit
solutions, each with separation constants k = /, n.

In more detail these are

Ri(r) = Fi(r*/m),

for the radial functions in (22) and for the spherical
solutions

fork=101n>0  (23)

’The radial
Rt (r) = r#k,

eigenfunctions in 5D spacetime become
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(a) wvertical (b) radial

FIG. 1.

Ny
» A

(¢) parabolic (d) hyperbolic

Field lines of families of exact force-free magnetospheres in five-dimensional static black hole backgrounds. Our new

solutions include the vertical, radial, parabolic, hyperbolic field geometries.

T‘,f(&):F,,(cos@), forl, n>0,
(24)

T?(0) = F(sin%9),

where

xoFy[1=5,1+452:4]
Fh@) =9 o=k +k2) - (29
Gy 01 x

Each value of the separation constants gives different
profiles for the flux functions. For instance, the first three
harmonics (I = 0, 1, 2) generate linearly independent flux
solutions

1 — ¢olog(cos?0)

, 1 — colog(r* —m) log(.coszé) . e
1 — coE[1 — r*/m](E[sin*0] — K [sin?0])

1 — cor’sin’@

These solutions are defined outside the event horizon, and
the range of these solutions is r > m and z/2 > 6 > 0.
Here we have only included the open field line solutions.
In fact, the first two cases above correspond to the [ =0
harmonic value. One can represent in cylindrical coordi-
nates’ the constant flux lines in a two-dimensional plane
(see Fig. 1). Similar profiles can be found for ¥,,.

B. Static 5D black hole solutions

An exact solution to force-free equations in the static
Tangherlini 5D black hole spacetime is

¥, =1-cilog(cosh), w,=cy(sinf)2, I,=c3, (27)

Here the cylindrical coordinates we employed to represent the
flux lines are r = \/p*> + 2% and tanf = p/z.

¥, =0, @,=0, I,=0, (28)

where ¢;, i = 1, 2, 3 are constants. In all, these functions
lead to the field strength

1 3t
dr+ dt|]|.
sin9c0s9<r2—m rEae )}

(29)

F=dONA |c tanOd¢—

The expression also includes the exact solution in 5D flat
spacetime for m — O.

Further imposing Znajek’s smoothness condition (18) on
the horizon constrains

C3 = —C1C2\/7—’I-’l‘. (30)

In all, these functions lead to the field strength

<2 < rym dridt)].

sinfcos@ \r2 —m
(31)

In this section we found all solutions to vacuum Maxwell
equations for static black holes in five spacetime dimen-
sions. In the following section we present new solutions to
the FFE equations in 5D for slowly rotating black holes
employing a perturbation technique.

F =c,d0 N |tanOd¢ —

IV. FFE CONFIGURATIONS FOR
THE ROTATING 5D BLACK HOLES

In this section we find for the first time solutions of FFE
for rotation Myers-Perry black hole. To solve these equa-
tions we resort to perturbation theory. More concretely, we
construct energy extracting solutions for slowly rotating
black holes perturbative in powers of the reduced spin
parameter a. The perturbation method that we will imple-
ment was first developed in four dimensions by Blandford-
Znajek [10]. The main purpose of this section is to build
upon the work done in [29-32]. Starting with the solutions
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for the static black hole that we found in the previous
section we will now consider perturbations in the small-
spin regime a <« 1 for the slowly single rotating Myer-
Perry black holes.

A. Vertical field
Among the exact solutions we derived in the previous
section, in the nonrotating five-dimensional black hole
background there exists a collimated, uniform, vertical
magnetic field solution:

O (1 0) = 1 sin2 0.

& (32)

Here and below, we work in the northern hemisphere 0 <
6 < x/2 with the southern fields determined by reflection.
The field line is of a highly collimated cylindrical shape and
the geometry dependence of this solutions is displayed in
Fig. 1. If the black hole is spinning, toroidal magnetic fields
will be generated, and the magnetic cylinder will become
twisted into a helically twisted structure. The FFE equa-
tions (2)—(4) are highly nonlinear, hence our strategy to find
a collimated cylindrical shape twisted field solutions is to
perturb the nonrotating black holes (32) by allowing small
spin black hole perturbation. To leading orders in rotational
parameter @ namely, the corresponding solution can be
expressed

¥, =90 (r.0) + 29 (r.0) + 0(c®).  (33)
roa)(/, = aa)(l) (r, 9) + 0(a2)’ (34)
I =al(r,0) + 0(a?), (35)

where @!)(r,6) and I(V)(r,0) are both functions of the
gauge field lI’fﬁo)(r, 0) and should be of the form

0V = M0y 1) = O (@),

¢ P (36)

Note that other different zeroth-order solutions, i.e., the
radial, parabolic and hyperbolic field solutions could also
be considered in 5D space-times. As a first study of the BZ
energy extraction models in higher dimensions our analysis
in this section will focus only on the vertical filed line
configurations.

According to the field regularity equation on the black
hole horizon (18) for the current / to be well behaved on the
horizon r = ry = rq then

I (r3sin? @) = —2r%sin® @cos? O(1 — @), (37)
This equation can also be written in a simpler form as
210 (x) = =2x(r% — x)(1 — @V (x)), where x = r sin? 6.

Likewise, since “)(‘I‘g))) the equation for the current can
be regarded as

IO = 29 (7 ¥ (1 -0 (PY))).  (38)
The solution for the current / is only one step in find the full
solution for the 5D model. To specify the collimated jet we
still need to determine the behavior of angular velocity of
the magnetic field w,. As an alternative to solving the FFE
equations, fortunately, we find that the convergence con-
dition can be applied to get the further details about this
function.

Before solving the FFE equations one can analyze the
fluxes defined in (10) and (11).

P, Lyl (39)

p
momentum fluxes vanish. On this boundary, at r sin @ = r,

the fluxes cannot penetrate. The boundary of the jet is the
last field line within the cylinder defined by this boundary.
The energy-momentum equations can be divided into two
constraint equations.

In this way we aim to construct a highly collimated
and magnetically dominated jet solution in the vicinity of
spinning 5D (singly spinning) black hole. An interior
region rsin @ < ry with a current and field angular velocity

On the surface r3 —‘Pflo) = 0 both energy and angular

I#0 and Q#0 (rsinf <rg) (40)
and exterior region where we choose
I=0 and Q=0 (rsind> ry). (41)

The global solution across the interface at rsin @ = r( will
be required to be continuous. In the following we will see
that our choice naturally imposes this smoothness con-
dition. We to order can now dive into the FFE equations,
which to O(a?) order can be reduced

Sout» if 7 8sin@ > r
£¢qlfﬁz) - { ' 0 (42)

Sy, otherwise

Here the source term in the outer region (rsin€ > ry)
yields

¢ 4r3 sin? O(r* + (r} — 3r2r3) cos? 0)
out 7'2(7'2 _ r(2)> )

(43)

and in the inner region (rsinf < ry) is
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o P(IWYIWY 42 sin* 0(r? — g sin? 0)(rg — rfo) (0 _ 4r*sin? O(r? — 213 sin? 0) (V)2
" (rP=rd)cos’ O r3(r* =13 r3(r? = r3)
8721 sin® @ cos 20w 4rZsin? 0(r* + (r} — 3r2r%) cos? 0)
2_ 2 22 _ 2 . (44)
(r*=rp) r*(r* =rp)
|

The prime denotes differentiation with respect to ‘I‘((po). ((1M)? —4(a)(1))2(‘P§I§0))2)/ =0, (48)
Discussion of the solution of Eq. (42) now follows. If we
assume that the convergence condition is true, then we and integrated to satisfy
can specify a second relation between w(") and IV, thus
determining the outgoing energy flux. ( I(1>)2 _ 4(a)(1))2 (lPEpO))z — constant. (49)

As in [10], given a Green’s function solution of the
differential equation £,G = §(r — r;)(6 — 6;), this tells us
that we can write down the solution to (42)

1
Tt(ﬁ) :/}"l/delG(r,evrnez)S(rlvel) (45)
if and only if

(46)

) =5 Y
/ dr / do in/out
ro o r

converges, where we have defined 6 = arcsin(ry/r). The
contribution from all terms in (43) and (44) are convergent,
assuming w!") ~ O(1), except the ones listed here

Py
cos” 6
—4r%sin? 8(w'V))? = 0,

— 48 sin* ) ()

(47)

which are now required to vanish for convergence. This
equation can alternatively be written as

0.5

0.4

0.3

wo/a

0.2

0.1

The integration constant vanishes if we further impose
‘Pfﬁo) = 0 at the polar axis. Combining with the equation for

the current (42) one can solve explicitly the angular field
velocity

2
rg—X

1 =

v 2ry —x’ (50)
where x = r?sin? 6. This second relation effectively fixes
the current flowing through the hole. Alternative electro-
magnetic conditions at infinity would yield an alternative
relation. We have obtained all quantities that are of physical
interest about the energy flux. We may explicitly write
down the solution for ‘Pf;) , but we do not plan to do so
because this would only provide us with information about
the distortion of magnetic the details about we may
explicitly write.

In Fig. 2, we show the variation the angular field velocity
w,(W,) and total electric current I(¥,) on the horizon.
The behavior of these functions resembles that of 4D
spacetimes.

05
04

03/

wop/a

02/

01/

0.0 05 1.0 1.5 2.0
¢

FIG. 2. Comparison of the variation in the angular velocity w,, and current / on the black hole horizon for 5D black holes (black) and

4D Kerr black hole (red).
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B. PHYSICAL PROPERTIES OF COLLIMATED
JETS IN 5D

We have obtained the explicit analytical expressions of
the angular velocity w, and current / for a collimated jet
solution in 5D black holes. This leads for the BZ model in
5D black holes to the basic prediction that the power scales
as the spin squared as we now explicitly show.

1. Energy flux

The total energy flux is defined as (10) and the angular
momentum fluxes as (11). Equivalently a direct integration
leads to

2

P = —2(2x)? / " Iwyd®, ~0.137(22)2 e, (51)
0

Ly =-2(2n)? /Or0 1d¥, ~0.455Q27)*rja.  (52)

The energy extraction efficiency can be employed for the
comparison between analytic solutions for the collimated
jetin 5D black holes that we derived and the 4D Kerr black
hole. To keep the amount of magnetic flux crossing the
horizon identical we defined the energy extraction effi-
ciency as in [10] via

f]a)¢d‘P,,,

R A (53)
[1Q]ay,

é:

In 4D the BZ models for collimated jets [30] display an
energy extraction efficiency
€~0.36 (54)
in 4D black holes.
For the collimated jet solution in Sec. IV we obtain
€~0.30 (55)
in 5D black holes.
A direct comparison shows that the collimated jet power

is reduced by a factor about 17% compared to the 4D
collimated jet BZ model.

2. Light surface

Without knowing the precise functional expression of
wy, w, the position of the light surfaces cannot be
determined a priori. In the previous section we found
the leading order contribution to the angular field velocity,
so we will take this solution to depict the positions of the
light surfaces for the collimated jet in 5D black holes. We
summarize all these finding of the different regions in the
spacetime in Fig. 3.

3-

-------- oLs
| | - ILS
- 2 2 ® —BH
— Erg
-3
FIG. 3. Regions in MP black hole: the central black shaded disk

represent the single spinning MP black hole (BH), the dotted lines
correspond to the outer (OLS), the dashed curve represents the
inner light surfaces (ILS), and the ergosphere (Erg) solid curve for
the mass m = 1 and the spin parameter a = 0.7.

There are four critical surfaces characterizing force-free

magnetospheres around Myers-Perry black holes: the event
horizon, the ergosphere and two light surfaces—see Sec. Il A
for details on the first two surfaces. The spacetime location
of the light surfaces can be determined by looking at those
surfaces where the velocity vector field y = 9, + w0, +
w,,0,, of an observer corotating with the magnetosphere
becomes null:
X = Gu+ 204914 + 20y Gy + O3 Gpp + @y Gy, =0. (56)
Note that the vertical field configuration of our model only
crosses the inner light surface. This is a nontrivial interesting
case in which there is only one light surface is the uniform
vertical configuration, where outside the cylindrical separa-
trix the field lines are assumed not to rotate. Other more
general configurations are expected to cross both light
surface (e.g., the radial monopole magnetic field). Since
each of these light surfaces is a singular surface of the FFE
equations, one can then impose corresponding regularity
conditions on these two surfaces, and, employing the
matched asymptotic expansion, build new FFE solutions
for rotating black holes.

V. DISCUSSION

We have shown that one can construct 5D black hole
magnetospheres within the FFE approach. To this end we
gave analytic solutions of the force-free equations for several
model cases. These include explicit 5D solutions in flat
spacetime, static black holes and slowly rotating black holes.

As an example, we explicitly construct a highly colli-
mated and magnetically dominated jet solution in the
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vicinity of slowly (single) spinning 5D black holes. We
propose a general method for perturbative solutions to five-
dimensional BZ mechanism with a vertical electromagnetic
field configuration. Instead of solving the nonlinear FFE
equations directly, we rely on the horizon regularity
boundary condition, and the convergence requirement to
determine relevant physical quantities. This jet solution
distinguishes itself from prior known analytic solutions in
that it is highly collimated and asymptotically approaches a
magnetic cylinder in higher spacetime dimensions. Our
solutions confirm and generalize the pioneering results of
BZ to higher-dimensional spacetimes.

We gave a general argument and then illustrated the
power extraction from rotating 5D black hole magneto-
spheres. The power of energy extraction from the 5D black
hole, compared to the predictions of four-dimensional FFE,
holds the same scaling with the spin parameter. One sees
directly that for the vertical field configurations in higher
dimensions does not introduce in the jet power an even
steeper scaling on the spin parameter. Whether steeper
behaviors in other field configurations are possible (such as
in the monopole, parabolic and hyperbolic configurations)
remains an open question.

Key to enabling energy extracting magnetospheres was
the existence of exact electromagnetic field solutions in
static black holes that we unveil. In fact, we find an infinite
tower of FFE configurations in static black hole back-
grounds. A possible strategy to build energy extracting
magnetospheres for these new field configurations in 5D
includes implementing a matched asymptotic expansion
(MAE) [7,32,33]. Preliminary attempts in this direction
have shown that one has to consider magnetic field lines
that extend from the event horizon out to infinity and now
have to cross two light surfaces (the inner and the outer
light surfaces) in five spacetime dimensions. Thus, we
propose that one should be able to devise an iterative scheme
that uses regularity on the light surfaces to determine the two
free functions—the current / and angular field velocity w,. It
is worth emphasizing that there is a problem for a vertical
field configuration within the MAE approach. All magnetic
field lines cross the inner light surface, but none cross both
light surfaces. Therefore, we cannot implement the MAE
method in which one determines solutions to the FFE
equations through the condition of smooth crossing of both
light surfaces. Thus here we resort to set regularity on the
horizon and the location of zero power surfaces.

The interaction of black holes with ambient magnetic
fields is important for a variety of highly energetic
astrophysical phenomena. Previous studies of the FFE
black hole magnetospheres mechanism outside traditional
BZ model in GR include [34-36]. Our goal in 5D space-
times is a deeper understanding of the structure of the
rotating black hole magnetosphere.

We emphasize that all the above examples are certainly
simplified. Nevertheless, the solutions obtained are capable

of creating several key features that allow one to judge the
basic properties of the central engine. In Kerr black holes
the so-called Meissner effect could potentially quench jet
power at the highest black hole spins values [37,38]. We
believe that in a force-free plasma filled environment in
higher dimensions no Meissner effect will ever occur for
any black hole with one vanishing spin. On the one hand,
the 5D the extremal black hole solution is singular and the
BZ model at the highest spin value m = a? will be plagued
with singularities. On the other hand, in D > 5 black
objects can overspin and hence never become extremal.
An interesting by product is that magnetospheres in D > 5
overspinning black holes may possibly tap infinite energy
from the system.

As an extension of our work we would like to investigate
FFE solutions in 5D black hole backgrounds with two
angular momenta, in contrast to one nontrivial spin black
hole background presented here. We expect a rich field
structure for the FFE models in these generic Myers-Perry
black holes. It is yet to be determined whether the problem
contains FFE solutions that lead to power extraction.

GR in 5D contains also nonspherical black hole sol-
utions, namely black rings with event horizon topology
S x 8% [39,40]. This is not the only example of non-
spherical horizon topology that also turned out to be a
counterexample to black hole uniqueness. Examples
include bicycling black rings [41] and other more elaborate
black hole configurations—see [42] for a review—are also
known analytically in closed form. Therefore, another
interesting scenario is the extension of the BZ models in
black ringlike backgrounds. We argue that configurations
of this sort will not support monopole fields, but instead
magnetic dipole electromagnetic fields.

Finally, let us comment on the FFE in the enlarged
regions in 5D black holes. The near horizon extremal black
hole geometries display symmetry enhancement, and so
does its dynamics [6,43,44]. We therefore expect that 5D
BZ model in the near horizon extremal black holes
geometries to emulate the lower-dimensional settings
and carry infinite towers of FFE solutions.

To summarize, we showed herein, for the first time, a
consistent FFE model for black hole jets in 5D, and we
were able to establish some of the effects of the number of
spacetime dimensions. In particular, we revealed that a
black hole in five spacetime dimensions can support energy
extracting magnetospheres in form of vertical collimated
jets. These 5D models are not expected to be realized in
nature; however, these represent new insights of rotating
black hole magnetosphere, the strong-gravity regime in GR
and signatures of extra dimension in black hole jets.
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APPENDIX: FFE SOLUTIONS FOR 5D FLAT
SPACETIMES

When m = 0 and a = 0 the solution (5) corresponds to a
5D flat solution. In this section we find solutions to FFE
equations in flat spacetime.

1. Radial solution

The following field strength satisfies the force-free
equations in flat 5D spacetime

L <9dric2dt>] (A1)

F=don tanOd¢ —
¢1tan0dg sinfcosf \ r

for arbitrary values of the constants ¢; with i = 1, 2, 3. The
solution has dF = 0 and also is degenerate F' A F = 0.

2. Nonclosed radial solution

The simplest solution to the FFE equations in 4D
corresponds to a configuration with radial magnetic flux
lines. In 5D one can also construct the radial solution by
making the same assumptions for the angular velocity @ of
the field and current /. A solution of the form (9) that has
radial fluxes ¥, independent of r is

¥, =1-c,log(cosb),

+1(0 det +1(0 det
)= (0) [ detgs 0, = (0) | detg, (A3)
Z(aglp(/)) —detgl 2(69‘PV,) —detgl

¥, =1-c,log(sind), (A2)

for an arbitrary function of 7(6) and ¢, ¢, constants where
\/ _d%f’fh = (rsin@cos )~'. This solution is however dis-

continuous at the pole & = 0 thereby ¢, =0 (and ¢; = 1)
which leads to

1(6)

F=do n _
rsin@cos @

tan Odep — (dr+dn)|. (A4)

In this way, the effective solution that we will consider has
fluxes (discontinuous at the equator & = z/2) and electro-
magnetic angular momenta only in the ¢ direction and
takes the form

¥, =1-clog(cosh), Y, =0,

(AS)

+1(0)

= . — O
“% = sin@cos 0(05'¥,)

w, (A6)

for an arbitrary function of I(6) with ¢; constants.
This solution is a generalization to 5D of Michel’s
solution which also is a radial solution. Moreover, the
relation for w, in (A6) is the extension of the four-

dimensional boundary condition for the fields P =
4p [ detgy? 4D detg® .oy
= —detg‘;D@ﬂqj ) where “detg® (sin@)~'. See

e.g., Eq. (2.18) in [32]. The+ signs in the solution represent
ingoing/outgoing flux.

Under similar assumptions to 4D, the force-free equations
can be satisfied in 5D flat spacetime. Notice however that in
5D the field strength solution does not close dF # 0 (but is
degenerate F A F = 0) for an arbitrary current function /().
We therefore consider the solution not physical and regard
it as a reminder that energy extraction process in 5D will
include new features when comparing to the 4D BZ model.
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