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Abstract

Determining the spatial distributions of species and communities is a key task
in ecology and conservation efforts. Joint species distribution models are a
fundamental tool in community ecology that use multi-species detection—
nondetection data to estimate species distributions and biodiversity metrics. The
analysis of such data is complicated by residual correlations between species,
imperfect detection, and spatial autocorrelation. While many methods exist to
accommodate each of these complexities, there are few examples in the litera-
ture that address and explore all three complexities simultaneously. Here we
developed a spatial factor multi-species occupancy model to explicitly account
for species correlations, imperfect detection, and spatial autocorrelation. The
proposed model uses a spatial factor dimension reduction approach and
Nearest Neighbor Gaussian Processes to ensure computational efficiency for
data sets with both a large number of species (e.g., >100) and spatial locations
(e.g., 100,000). We compared the proposed model performance to five alterna-
tive models, each addressing a subset of the three complexities. We
implemented the proposed and alternative models in the spOccupancy software,
designed to facilitate application via an accessible, well documented, and
open-source R package. Using simulations, we found that ignoring the three
complexities when present leads to inferior model predictive performance, and
the impacts of failing to account for one or more complexities will depend
on the objectives of a given study. Using a case study on 98 bird species
across the continental US, the spatial factor multi-species occupancy
model had the highest predictive performance among the alternative
models. Our proposed framework, together with its implementation in
spOccupancy, serves as a user-friendly tool to understand spatial varia-
tion in species distributions and biodiversity while addressing common

complexities in multi-species detection—nondetection data.
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INTRODUCTION

Understanding the spatial distributions of species and
communities is a fundamental task in ecology research
and conservation efforts. Species distribution models
(SDMs) are popular for predicting species distributions
and understanding species—habitat relationships across
space and time (Guisan & Zimmermann, 2000), which
have informed key developments in ecological theory
as well as conservation and management decisions
(Bateman et al., 2020). While SDMs can use different
data types, they most commonly use binary detection—
nondetection data. Advances in hierarchical modeling
have addressed many issues encountered when modeling
multi-species detection—nondetection data. In particular, the
three major complexities are (1) residual species correlations
(Ovaskainen et al.,, 2010), (2) imperfect detection
(MacKenzie et al., 2002), and (3) spatial autocorrelation
(Banerjee et al., 2014; Latimer et al., 2009).

Joint species distribution models (JSDMs) are
regression-based approaches that extend SDMs to jointly
model multiple species simultaneously (Latimer et al.,
2009; Ovaskainen et al., 2010). Many JSDMs jointly
model species within a single model by explicitly accom-
modating residual species correlations, which facilitates
co-occurrence hypothesis testing (Ovaskainen et al.,
2010) and increases the precision of both individual spe-
cies distributions and community metrics. However,
most JSDMs typically do not accommodate imperfect
detection (but see Hogg et al., 2021; Tobler et al., 2019).
Failure to account for imperfect detection in detection—
nondetection data can lead to biases in estimates of both
species distributions and the effects of environmental
drivers on species occurrence (MacKenzie et al., 2002).
Occupancy models, a specific type of SDM, explicitly
account for imperfect detection separately from the true
species occurrence process using replicated detection—
nondetection data. Multi-species occupancy models are
an extension to single-species occupancy models that use
detection—nondetection data from multiple species by
treating species as random effects arising from a
community-level distribution (Dorazio & Royle, 2005;
Gelfand et al., 2005). Multi-species occupancy models
can be viewed as a specific type of JSDM that accom-
modate imperfect detection, but they traditionally
do not include residual co-occurrence associations
between species as in other JSDMs that lack imperfect
detection (but see Tobler et al., 2019).

Accounting for spatial autocorrelation in SDMs is
often necessary when modeling species distributions
across large spatial extents or a large number of observed
locations (Latimer et al., 2009). Spatially explicit SDMs
account for spatial autocorrelation by including spatially

structured random effects (Banerjee et al., 2014; Shirota
et al., 2019). Such spatially explicit approaches have been
used in JSDMs to simultaneously account for residual
species correlations and spatial autocorrelation (Thorson
et al., 2015), and in multi-species occupancy models that
model imperfect detection (Doser et al., 2022).

Despite separate development of JSDMs that account
for residual correlations and imperfect detection, only
recently have approaches emerged that incorporate both
of these complexities in JSDMs for large communities
(Hogg et al., 2021; Tobler et al., 2019). Further, these
approaches can become computationally intensive as
both the number of spatial locations and species in the
community increase, and no approaches exist that simul-
taneously incorporate species correlations, imperfect
detection, and spatial autocorrelation, despite the well
recognized impacts of ignoring these complexities. Here
we develop a JSDM that explicitly accounts for species
correlations, imperfect detection, and spatial autocorrela-
tion. Analogous to Tikhonov et al. (2020), we build an
ecological process model that uses a spatial factor model
together with Nearest Neighbor Gaussian Processes
(NNGPs; Datta et al., 2016) to ensure computational effi-
ciency for large species assemblages (e.g., >100 species)
across a large number of spatial locations (e.g., ~ 10°).
We extend the model of Tikhonov et al. (2020) by incor-
porating an observation submodel that separately
models imperfect detection from the latent ecological
process. We use simulations and a case study on 98 bird
species across the continental US to compare the per-
formance of our proposed model with five alternative
models that fail to address all three complexities. Our
proposed modeling framework, and its user-friendly
implementation in the spOccupancy R package (Doser
et al., 2022), provides a computationally -efficient
approach that explicitly accounts for imperfect detec-
tion, residual correlations between species, and
spatial autocorrelation to deliver inference on individual
species distributions, species co-occurrence patterns,
and overall biodiversity metrics.

MODELING FRAMEWORK

Process model

Let s; denote the spa‘[ialt c)oordinates of site j, for all
jYl,...,J sites. Define z;s; as the true latent presence
(1) or absence (0) oft‘s ecies i at site j fori ¥4 1,...,N spe-
cies. We assume z; s; arises from a Bernoulli distribu-
tion following

t) t t))

z;s; ~Bernoulli y; s; ", olp
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i
where y; Sj) is the probability of occurrence for species i

at site j. We model y; s;" as

tt) t t)) A t)
logit W; s; Y Biitw, s + X s B,  02P
%2
) . .
where x;s;, for each t%2,...,p,, is an environmental
covariate at site j, [, is a regression coefficient

corresponding to x;s; for species i, PBi1 is the

species-specific intercept, and w’s; is a species-specific
latent spatial process. We seek to jointly model the

species-specific spatial processes to account for residual
correlations between species. For a small number of
species (e.g., <10), such a process can be estimated via a
linear model of coregionalization framework (Gelfand
et al., 2004; Latimer et al., 2009). However, when the
number of species is even moderately large (e.g., >10),
estimating such a joint process becomes computation-
ally intractable. A viable solution to this problem is
to use a spatial factor model (Hogan & Tchernis,
2004; Ren & Banerjee, 2013; Zhang & Banerjee,
2021), a dimension reduction approach that can
account for correlations ar%long a large number of
species. We decompose w. s; into a linear combina-
tion of ¢ latent variables (i.e., factors) and their associated
species-specific coefficients (i.e., factor loadings). In par-
ticular, we have

t t
w" Sj) Ya )\TW Sj), 03p

where )\lT is the ith row of factor loadings from an N X ¢
loading matrix A\, and w s; is a ¢ x 1 vector of indepen-
dent spatial factors at site j. We achieve computational
improvements and dimension reduction by setting
g << N, where often a small number of factors (e.g.,
q Y% 5) is sufficient (Taylor-Rodriguez et al., 2019;
Zhang & Banerjee, 2021). We account for residual species
correlations using individual responses (i.e., loadings) to
the ¢ latent spatial factors. Factor loadings explain the
occurrence of multiple species at the same location
beyond what is explained by the covariates included in
the model; co-occurring species will have similar species-
specific factor loadings (i.e., they will have the same sign).
The residual interspecies covariance matrix ¥ % AAT has
rank ¢ << N and, hence, is singular. Shirota et al. (2019)

discuss its use and interpretation in detecting species
clustermg.t

Let w, s;” denote the value of the 7th spatial factor at
site j, where r % 1,...,q. Following Taylor-Rodrigue)z et al.
(2019) and Tikhonov et al. (2020), we model w s ° using

ro
an NNGP (Datta et al., 2016) to achieve computational
efficiency when modeling a large number of spatial loca-
tions. Thus,

t
W s,-) ~ N30, € , 66,bP, d4p

where € , 80,b is the NNGP-derived covariance matrix for
the rth spatial factor. The vector 6, consists of parameters

governing the spatial process according to a spatial corre-
lation function (Banerjee et al., 2014). For many correla-
tion functions (e.g., exponential, spherical, Gaussian), 6,
includes a spatial variance parameter, G2, and a spatial decay
parameter, ¢,, while the Matérn correlation function
includes an additional spatial smoothness parameter, V.
We assume that all species-specific parameters (B,
forall t % 1,..., py) arise from community-level distribu-
tions to enable information sharing across species
(Dorazio & Royle, 2005; Gelfand et al., 2005). Specifically,
we assign a normal prior with mean and variance
hyperparameters that represent the community-level aver-
age and variance among species-specific effects across the
community, respectively. For example, we model the
species-specific occurrence intercept, B;,1, following:

Bii~N up,Tg 85pb

where pp, and 12 are the community-level average and
1

variance, respectively.

Observation model
To estimate Y, s; and z; Sj) while explicitly accounting
for imperfect detection, we obtain k% 1,...,K; sampling

t
replicates at each site j. Let y;; Sj) denote the detection
(1) or nondetection (0) of species i during replicate k at

site j. We model the observed data y;; s; tconditional on

the true species-specific occurrence z;s; at site j
following
t) t) t ot)t))
YVik S jzis; ~ Beroulli T s;z;5; ", o6b

t)
where ;4 s; is the probability of detecting species i at
site j during re)plicate k given the species is present at the
site (i.e., z; s; ¥ 1). Note that when the species is not

t t
present at site j (i.e., z sj)%O), (6) implies y;; s;)%O
(i.et, e assume no false-positive detections). We model

T s; as a function of site and/or replicate-level
covariates that may influence species-specific detection
probability. Specifically,

t t)) ' t)
logit ik 55 Y40y + Vik Sj Qigs o7p
2
t). : : .
where vk s; is the value of covariate ¢ at site j during
replica%e k, Q;; is a regression coefficient corresponding

to wgs;, and Q;; is a species-specific intercept.
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Analogous to the species-specific occurrence effects (5),
we assume all species-specific detection parameters (i.e.,
a;, forallt % 1,..., py) arise from community-level normal
distributions.

Prior specification and identifiability
considerations

We assume normal priors for mean parameters and
inverse-Gamma priors for variance parameters. Following
Taylor-Rodriguez et al. (2019), we set all elements in the
upper triangle of the factor loadings matrix /A equal to 0
and its diagonal elements equal to 1 to ensure
identifiability of the spatial factors. Additionally, we fix
the spatial variance parameters czr to 1. We assign stan-
dard normal priors for elements in /A below the upper
diagonal and assign each spatial decay parameter ¢, an
independent uniform prior.

Model implementation and alternative
models

We implement the spatial factor multi-species occupancy
model in a Bayesian framework in the function
sfMsPGOcc within our open-source spOccupancy R pack-
age (Doser et al., 2022). We employ the computational
algorithms discussed in Finley et al. (2022) to ensure that
spatially explicit models are computationally feasible for
large data sets. The Bayesian framework allows us to eas-
ily calculate biodiversity metrics, with fully propagated
uncertainty, as derived quantities. For example, we can
estimate species richness of the entire community (or a
subset of species in the c{ommunity) by summing up the
latent occurrence state z; s; at each site j for all species
of interest at each iteration to yield a full posterior distri-
bution for species richness. We use a Pdlya-Gamma data
augmentation scheme (Polson et al., 2013) to yield an
efficient Gibbs sampler (see Appendix S1 for full details).

We compare the spatial factor multi-species occu-
pancy model to five alternative models, each of which
addresses a subset of the three complexities (Table 1). We
provide functionality for all five alternative models in the
spOccupancy R package, and subsequently refer to all
models by their spOccupancy function name (Table 1).
Our first alternative model is a nonspatial latent factor
JSDM (IfJSDM) that does not account for imperfect detec-
tion, analogous to many standard JSDM approaches
(Wilkinson et al., 2019). Our second alternative model is
a spatial factor JSDM (sfJSDM) that does not account for
imperfect detection, similar to the NNGP model of
Tikhonov et al. (2020). Our third alternative model is the

TABLE 1
simulation study and case study, as well as the function name for

Characteristics of the six models used in the

model implementation in the spOccupancy R package (Doser
et al., 2022).

spOccupancy Species Spatial Imperfect
function correlations  autocorrelation  detection
1fJSDM v

sfJISDM v v

msPGOcc v
spMsPGOcc v v
1fMsPGOcc v
stMsPGOcc v v v

Abbreviations: 1fJSDM, latent factor joint species distribution model;
1fMsPGOcc, latent factor multi-species occupancy model; msPGOcc,
multi-species occupancy model; sfJSDM, spatial factor joint species
distribution model; sfMsPGOcc, spatial factor multi-species occupancy
model; spMsPGOcc, spatial multi-species occupancy model.

basic nonspatial multi-species occupancy model
(msPGOcc) that does not incorporate residual species
correlations (Dorazio & Royle, 2005). Our fourth alterna-
tive model is a spatial multi-species occupancy model
(spMsPGOcc) that does not incorporate residual species
correlations and estimates a separate NNGP spatial
process for each species (Doser et al., 2022). Finally, our
fifth alternative model is a nonspatial latent factor
multi-species occupancy model (1fMsPGOcc) that accounts
for residual species correlations and imperfect detection,
analogous to the model of Tobler et al. (2019), except we use
a logit formulation of the model. See Appendices S1 and S2
for full model details.

SIMULATION STUDY

We used simulations to compare estimates from the spa-
tial factor multi-species occupancy model to estimates
from the five alternative models (Table 1). We generated
100 detection—nondetection data sets for each of six
simulation scenarios, where the data were simulated with
different combinations of the three complexities.
We simulated data under situations that roughly
corresponded to the six alternative models to assess how
each model performed under “ideal” data conditions for
that model, as well as when the data did not meet all
the assumptions of the modeling framework. More spe-
cifically, we generated data with (1) residual species cor-
relations and constant imperfect detection, (2) residual
species correlations, constant imperfect detection, and
spatial autocorrelation, (3) imperfect detection only,
(4) imperfect detection and spatial autocorrelation,

(5) residual species correlations and imperfect detection,
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and (6) residual species correlations, imperfect detec-
tion, and spatial autocorrelation.

We simulated detection—nondetection data from
N % 10 species at J % 225 sites with K % 3 replicates at
each site for each of the 100 data sets for the six simula-
tion scenarios. We used an exponential correlation
function for spatially explicit data generation scenarios
(Scenarios 2, 4, 6). For scenarios leveraging a factor
model (Scenarios 1, 2, 5, 6), we generated the data using
q % 3 latent factors. As there are often many potential
covariates that explain multi-species occurrence patterns
in empirical data sets, we simulated data with 15 spatially
varying occurrence covariates for all scenarios and five
observational-level detection covariates for scenarios where
detection probability was not constant (Scenarios 3—06).
We specified reasonable values for all parameters in the
model (see Appendix S2 for full details). For each data
set in each scenario, we ran three chains each of 15,000
samples, with a burn-in of 10,000 samples and a thin-
ning rate of 5, resulting in a total of 3000 Markov chain
Monte Carlo (MCMC) samples for each of the six alter-
native models. We fit all models using the spOccupancy
R package (Doser et al., 2022). We assessed the perfor-
mance of the models by comparing the root mean
squared error and 95% coverage rates for the
species-specific occurrence probabilities and the occur-
rence covariate effect.

CASE STUDY

We applied the spatial factor multi-species occupancy
model to detection—nondetection data from the North
American Breeding Bird Survey (Pardieck et al., 2020) in
2018 on N ¥4 98 bird species atJ ¥4 2619 routes (i.e., sites)
across the continental US. The 98 species belong to two
distinct biogeographical communities following the defi-
nitions in Bateman et al. (2020), with 66 species in the
eastern forest bird community and 32 species in
the grassland bird community. Our objectives for this
case study were to (1) develop spatially explicit maps of
species richness for the two communities across the con-
tinental US, (2) determine if the latent spatial factors (w)
and the species-specific factor loadings (A) distinguish
the two communities of birds, and (3) assess the benefits
of accounting for species correlations, imperfect detec-
tion, and spatial autocorrelation. At 50 points along each
route (called “stops”), observers performed a 3-min point
count survey of all birds seen or heard within a 0.4 km
radius. We summarized the data for each species at each
site into K ¥ 5 spatial replicates (each comprising data
from 10 of the 50 stops), where each spatial replicate took
value 1 if the species was detected at any of the 10 stops

in that replicate, and value O if the species was not
detected. Using five replicates was more computationally
efficient than treating each of the 50 stops as spatial repli-
cates, and exploratory analyses revealed minimal differ-
ences between models using the full 50 stop data
(Appendix S2).

Using the spatial factor multi-species occupancy
model, we modeled the route-level occurrence of the
98 species as a function of five bioclimatic variables and
eight land cover variables (Appendix S2). We modeled
detection as a function of the day of the survey (linear
and quadratic), the start time of the first survey (linear),
and a random observer effect. Note that all detection
covariates only varied across Breeding Bird Survey (BBS)
routes, not across spatial replicates within a route. We
standardized all variables to have a mean of 0 and a stan-
dard deviation of 1. We fit the model using 15 nearest
neighbors, an exponential correlation function, and ¢ %4 5
latent spatial factors. We subsequently predicted occur-
rence for the 98 species across the continental US to gen-
erate spatially explicit maps of species richness, with
associated uncertainty, for the two bird communities.

To determine whether the spatial factor multi-species
occupancy model provided benefits for predicting species
distributions and biodiversity metrics, we fit four
additional alternative models (msPGOcc, 1fMsPGOcc,
IfJISDM, sfIJISDM). For the models that did not explicitly
model imperfect detection (IfJSDM and sfISDM), we col-
lapsed the data with five replicates at each site into a
single binary value, which takes value 1 if the species
was detected in any of the five replicates and O if not.
Additionally, because the detection covariates we
included in the model only varied by site and not by rep-
licate, we included the detection covariates together with
the occurrence covariates in the two JSDMs without a
distinct submodel, which is a common approach used to
account for sampling variability in models that do not
explicitly account for imperfect detection (Ovaskainen
etal., 2017). We used the Widely Applicable Information
Criterion (WAIC; Watanabe, 2010) to compare the per-
formance of the three occupancy models (msPGOcc,
IfMsPGOcc, and stMsPGOcc) and the two JSDMs without
imperfect detection (IfJSDM and sfJSDM). However, as
the two JSDMs without imperfect detection used a col-
lapsed form of the data used in the occupancy models,
we could not directly compare all five models using
WAIC. Thus, we additionally fit all models using 75% of
the data points and kept the remaining 25% of the data
points for evaluation of model predictive performance.
We assessed out-of-sample predictive performance using
the observed data at the hold-out locations as well as
latent occupancy predictions at the hold-out locations
generated from models fit with only the hold-out
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locations. See Appendix S2: Section S3 for details. All
models were fit using functions in spOccupancy. In all
cases, model parameter estimates were based on three
chains, each with 150,000 iterations, a burn-in period of
100,000 iterations, and a thinning rate of 50. We assessed
convergence using visual assessment of trace plots and
the Gelman—Rubin (Brooks & Gelman, 1998) diagnostic
using the coda package (Plummer et al., 2006). See
Appendix S3 for a detailed overview and recommenda-
tions for convergence assessment using our proposed
modeling approach.

RESULTS
Simulation study

Failing to account for residual species correlations had
negative impacts on both the accuracy and the precision
of model estimates (Table 2; Appendix S2: Tables S1
and S2). Estimates from msPGOcc, which did not
account for residual species correlations, had larger bias
(Appendix S2: Tables S1 and S2), and low coverage rates
(Table 2) for both latent occurrence and covariate effects

TABLE 2

when data were simulated with residual correlations
between species. spMsPGOcc, which accounts for spatial
autocorrelation but ignores species correlations, had less
bias and better coverage rates than msPGOcc in these
scenarios, but still had higher bias in occurrence proba-
bilities and lower coverage rates than models that did
account for species correlations and imperfect detection.
Therefore, accounting for spatial autocorrelation miti-
gates some, but not all, of the negative impacts of incor-
rectly assuming independence between species.

When data were simulated with imperfect detection
that varied across sites and replicates, ignoring imperfect
detection resulted in higher bias and low coverage rates
for both occurrence probability and covariate effects
(Table 2; Appendix S2: Tables S1 and S2). However, when
detection was high and constant over sites and replicates
(Scenarios 1 and 2), bias in IfJSDM and sfJSDM was com-
parable with models that address imperfect detection and
coverage rates were closer to the expected 95%, in partic-
ular for the latent occurrence probability (Appendix S2:
Tables S1 and S2). Notably, the decreased coverage rates
were less drastic for estimating occurrence probability
when failing to account for imperfect detection compared
with estimates from a standard multi-species occupancy

Estimated coverage rates of simulated species-specific occurrence probabilities and covariate effects for six different

simulation scenarios and six models of varying complexity, as well as average run time.

Model
Parameter Scenario 1fISDM sfISDM msPGOcc spMsPGOcc 1fMsPGOcc stMsPGOcc
l-IJ,-tSi) 1 91.5 90.8 68.9 88.1 95.6 953
2 91.6 91.0 69.1 89.1 955 954
3 85.6 84.8 95.0 96.4 95.5 955
4 715 76.4 80.2 93.1 95.7 955
5 753 742 713 885 95.5 953
6 76.0 75.0 722 89.6 953 952
B: 1 88.7 8382 82.0 91.1 952 95.1
2 88.8 832 82.2 91.7 949 94.9
3 73.8 73.1 95.1 94.4 904 90.8
4 659 65.0 89.1 94.0 94.7 94.7
5 64.2 63.6 83.6 91.7 952 95.0
6 65.7 64.6 85.1 92.7 94.9 94.9
Run time 1.55 3.17 3.00 6.17 331 524

Note: Coverage rates are defined as the percentage of species-specific occurrence probabilities (witsf)) or covariate effects contained within the 95% credible
interval, averaged across the 10 species and 100 simulated data sets. Run time is the number of minutes for the model to complete 15,000 Markov chain Monte
Carlo (MCMC) iterations, averaged across all six simulation scenarios and 100 simulated data sets. Data were generated with the following characteristics for
the six simulation scenarios: (1) residual species correlations and constant, high detection; (2) residual species correlations, constant and high detection, spatial
autocorrelation; (3) imperfect detection; (4) imperfect detection and spatial autocorrelation; (5) residual species correlati ons and imperfect detection; and (6)
residual species correlations, imperfect detection, and spatial autocorrelation.

Abbreviations: IfJSDM, latent factor joint species distribution model; [fMsPGOcc, latent factor multi-species occupancy model; msPGOcc, multi-species
occupancy model; sfJSDM, spatial factor joint species distribution model; stMsPGOcc, spatial factor multi-species occupancy model; spMsPGOcc, spatial
multi-species occupancy model.
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model (msPGOcc) when ignoring residual correlations
when present. Alternatively, failing to account for imper-
fect detection when present resulted in larger bias and
lower coverage rates in occurrence covariate effect esti-
mates compared with a model that ignored residual cor-
relations and/or spatial autocorrelation when present.
Ignoring spatial autocorrelation had minimal impacts on
the average bias, particularly when accounting for resid-
ual correlations, but coverage rates were substantially
low for both latent occurrence and the covariate effect for
msPGOcc (Table 2).

Case study

The spatial factor multi-species occupancy model
predicted high species richness for the eastern forest bird
community across the eastern US and high species rich-
ness for the grassland bird community in the Northern
Great Plains region (Figure 1). Further, the model
distinguished between the two bird communities via the
species-specific factor loadings and the spatial factors
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(Appendix S2: Figures S1-S5). Compared with the stan-
dard multi-species occupancy model (msPGOcc), incor-
porating residual species correlations (IfMsPGOcc)
yielded a lower WAIC (417,954 vs. 395,094), while
additionally accounting for spatial autocorrelation
(stMsPGOcc) further reduced the WAIC (390,607;
Appendix S2: Table S3). Failing to account for spatial
autocorrelation led to unreasonable species richness esti-
mates for the two communities across large portions of
the US (Figure 2A,B). Additionally, the spatially explicit
JSDM  without imperfect detection (sfISDM)
outperformed the nonspatial JSDM without imperfect
detection (IfJSDM) according to WAIC (84,192 wvs.
87,615).

Analogous to model comparison using WAIC, the
two models that accounted for spatial autocorrelation
(sfJISDM and sfMsPGOcc) had the smallest out-of-sample
model deviance, with sfJSDM outperforming sfMsPGOcc
when assessing performance based on the raw detection—
nondetection data. However, when estimating predictive
performance using estimates of species occurrence
generated from three occupancy model fits, sftMsPGOcc

(B) Eastern Forest SD Richness
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Predicted mean species richness for the eastern forest bird community (A) and the grassland bird community (C), as well as

their associated standard deviations (B, D) using a spatial latent factor multi-species occupancy model (sfMsPGOcc).
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FIG URE 2 Difference in predicted mean richness between a spatial latent factor multi-species occupancy model (sfMsPGOcc) and two

simpler alternative models. Panels (A) and (B) show differences between the nonspatial latent factor multi-species occupancy model

(1fMsPGOcc) for the eastern forest and grassland bird communities, respectively, while panels (C) and (D) show differences with the spatial

factor joint species distribution model without imperfect detection (sfJSDM).

outperformed sfJSDM (Appendix S2: Table S3), suggesting
that accounting for imperfect detection provides
improved predictive performance of the latent ecologi-
cal process. Further, estimates of species richness
from sfJSDM were substantially lower across the US
for both the eastern forest and grassland bird commu-
nity (Figure 2C,D) compared with estimates from
sfMsPGOcc.

DISCUSSION

Multi-species detection—nondetection data are often com-
plicated by residual correlations among species detections
(Ovaskainen et al., 2010), imperfect detection of species
(MacKenzie et al., 2002), and spatial autocorrelation
(Latimer et al., 2009). While many methods exist to accom-
modate a subset of these complexities (e.g., Tikhonov
et al., 2020; Tobler et al., 2019), no approaches exist that
simultaneously incorporate all three complexities, despite

the well recognized impacts of ignoring them. Here, we
developed a spatial factor multi-species occupancy model
that simultaneously accounts for residual species correla-
tions, imperfect detection, and spatial autocorrelation in a
computationally efficient framework. We showed using
simulations that ignoring these three complexities
when present leads to inferior inference and prediction.
Further, the spatial factor multi-species occupancy
model improved predictive performance compared to
models that failed to address the three complexities in
an empirical case study of 98 bird species across the
continental US.

In our simulation study, failing to account for
residual species correlations, imperfect detection, and/or
spatial autocorrelation when present led to increased bias
and low coverage rates. We found that the standard
multi-species occupancy model (msPGOcc) had high
bias and low coverage rates for both the latent
occurrence and occurrence covariate effects for all sce-
narios except when data were simulated without
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species  correlations and spatial  autocorrelation
(Table 2, Appendix S2: Tables S1 and S2), clearly indi-
cating the importance of accommodating these data
complexities if they exist. Similarly, estimates from
JSDMs that failed to account for imperfect detection
resulted in increased bias and low coverage rates,
although these findings were less prominent under
ideal scenarios of constant, high detection probability.
Interestingly, Table 2 suggests that if it is not possible
to accommodate all three complexities (e.g., because of
limited resources and small sample sizes) determining
which complexities to ignore will depend on the study
objectives. For example, when data were simulated with
imperfect detection and species correlations, coverage
rates were better for 1fJSDM than msPGOcc for the
occurrence probability estimates, but coverage rates
from msPGOcc were better than 1fJSDM for the occur-
rence covariate effect. This suggests that under these
scenarios, IfJSDM would be better for prediction, while
msPGOcc would be better for inference. Our simulation
study did not consider all potential complexities when
comparing the performance of JSDMs, such as differing
degrees of residual species correlations versus spatial auto-
correlation or assessment of the sensitivity of model perfor-
mance to more complex forms of spatial dependence
(e.g., Mohankumar & Hefley, 2022). However, our results
do illustrate that specific data characteristics and
research questions will determine whether it is necessary
to account for residual species correlations, imperfect
detection, and/or spatial autocorrelation. Our findings,
as well as additional simulation studies geared toward
specific ecological scenarios, could have important impli-
cations for designing detection—nondetection surveys to
meet specific objectives. We include code to fit all six
alternative models (Table 1) in the spOccupancy R pack-
age, as well as functions for data simulation and model
comparison to enable ecologists and conservation practi-
tioners to accommodate these three complexities using
accessible and well documented software. See
Appendix S4 for a detailed vignette on fitting these
models in spOccupancy.

In the breeding bird case study, accounting for species
correlations, imperfect detection, and spatial autocorrela-
tion in the spatial factor multi-species occupancy model
resulted in improved predictive performance compared
with models that failed to address all three complexities.
Accounting for species correlations in 1fMsPGOcc
improved model fit over the standard multi-species occu-
pancy model (msPGOcc) according to WAIC but did not
improve predictive performance for the out-of-sample
deviance metric using the raw data (Appendix S2:
Table S3). This is likely a result of treating the latent fac-
tors as independent standard normal random variables,

which results in predictions that are not able to use the
estimated values of the latent variables at nearby sampled
locations to improve prediction at nonsampled locations.
Alternatively, the spatial factor multi-species occupancy
model (sfMsPGOcc) had the smallest WAIC and the best
predictive performance for both deviance metrics among
the three occupancy models. Further, sfISDM substan-
tially outperformed 1fJSDM according to all criteria.
These results demonstrate how assigning spatial structure
to the latent factors in a model that accounts for species
correlations can yield large improvements in model pre-
dictive performance. We thus recommend using
sfMsPGOcc when there is a desire to account for species
correlations and the primary goal of the analysis is
prediction.

The spatial factor multi-species occupancy model
leverages a spatial factor dimension reduction approach
(Hogan & Tchernis, 2004; Ren & Banerjee, 2013;
Zhang & Banerjee, 2021) and NNGPs (Datta et al., 2016)
to ensure computational efficiency when modeling data
sets with a large number of species (e.g., >100) and/or
spatial locations (e.g., 100,000). Our proposed model
requires the specification of the number of latent spatial
factors (q) as well as the number of neighbors to use in
the NNGP. When choosing the number of nearest
neighbors for the NNGP, Datta et al. (2016) showed
15 neighbors is sufficient for most data sets, with as few
as five neighbors providing adequate performance for cer-
tain data sets. Determining the optimal number of factors
for a given data set is not straightforward and will vary
depending on the characteristics of the specific community
of species (e.g., species rarity, variability among species).
See Appendix S3 for recommendations and considerations
for making this decision, as well as a discussion on assessing
the convergence of these high-dimensional models.

The use of spatial replicates in the BBS case study
instead of the more traditional temporal replicates used
in an occupancy modeling framework may lead to an
upward bias in the estimated occupancy probabilities
(Kendall & White, 2009). Additionally, the large spatial
scale of the BBS data (each route is ~39.2 km in length)
likely influences the estimates of the residual species
co-occurrence patterns. Data collected at a smaller spatial
scale using temporal replicates may provide more accu-
rate estimates of occupancy and species co-occurrence pat-
terns. Regardless of how the data are collected, we caution
against the interpretation of the residual co-occurrences as
true biological interactions, as co-occurrence does not
imply an interaction (Poggiato et al., 2021).

The latent spatial factors and the species-specific
factor loadings can provide insight into the additional
processes that govern the distributions of species in the
modeled community. In our case study, we found
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the spatial factors showed clear distinctions between the
two bird communities. See Appendix S2 for additional
discussion on interpreting the latent factors and
Appendices S3 and S4 for practical information on how
to troubleshoot MCMC convergence problems with the
factor loadings.

As both the number and size of multi-species detection—
nondetection data sets increase, we require computationally
efficient models and software to address common data
complexities. Our spatial factor multi-species occupancy
model extends previous approaches (Tikhonov et al., 2020;
Tobler et al., 2019) to efficiently model species-specific and
community-level occurrence patterns while accounting
for residual species correlations, imperfect detection, and
spatial autocorrelation. Our proposed framework, together
with its user-friendly implementation in the spOccupancy
R package (Doser et al., 2022), will enable ecologists to
study spatial variation in species occurrence and
co-occurrence patterns, develop spatially explicit maps of
individual species distributions and biodiversity metrics,
and explicitly account for common complexities in
multi-species detection—nondetection data.
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