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Abstract 

Determining the spatial distributions of species and communities is a key task 

in ecology and conservation efforts. Joint species distribution models are a 

fundamental tool in community ecology that use multi-species detection– 

nondetection data to estimate species distributions and biodiversity metrics. The 

analysis of such data is complicated by residual correlations between species, 

imperfect detection, and spatial autocorrelation. While many methods exist to 

accommodate each of these complexities, there are few examples in the litera- 

ture that address and explore all three complexities simultaneously. Here we 

developed a spatial factor multi-species occupancy model to explicitly account 

for species correlations, imperfect detection, and spatial autocorrelation. The 

proposed model uses a spatial factor dimension reduction approach and 

Nearest Neighbor Gaussian Processes to ensure computational efficiency for 

data sets with both a large number of species (e.g., >100) and spatial locations 

(e.g., 100,000). We compared the proposed model performance to five alterna- 

tive models, each addressing a subset of the three complexities. We 

implemented the proposed and alternative models in the spOccupancy software, 

designed to facilitate application via an accessible, well documented, and 

open-source R package. Using simulations, we found that ignoring the three 

complexities when present leads to inferior model predictive performance, and 

the impacts of failing to account for one or more complexities will depend 

on the objectives of a given study. Using a case study on 98 bird species 

across the continental US, the spatial factor multi-species occupancy 

model had the highest predictive performance among the alternative 

models. Our proposed framework, together with its implementation in 

spOccupancy, serves as a user-friendly tool to understand spatial varia- 

tion in species distributions and biodiversity while addressing common 

complexities in multi-species detection–nondetection data. 
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INTRODUCTION  

 
Understanding the spatial distributions of species and 

communities is a fundamental task in ecology research 

and conservation efforts. Species distribution models 

(SDMs) are popular for predicting species distributions 

and understanding species–habitat relationships across 

space and time (Guisan & Zimmermann, 2000), which 

have informed key developments in ecological theory 

as well as conservation and management decisions 

(Bateman et al., 2020). While SDMs can use different 

data types, they most commonly use binary detection– 

nondetection data. Advances in hierarchical modeling 

have addressed many issues encountered when modeling 

multi-species detection–nondetection data. In particular, the 

three major complexities are (1) residual species correlations 

(Ovaskainen et al., 2010), (2) imperfect detection 

(MacKenzie et al., 2002), and (3) spatial autocorrelation 

(Banerjee et al., 2014; Latimer et al., 2009). 

Joint species distribution models (JSDMs) are 

regression-based approaches that extend SDMs to jointly 

model multiple species simultaneously (Latimer et al., 

2009; Ovaskainen et al., 2010). Many JSDMs jointly 

model species within a single model by explicitly accom- 

modating residual species correlations, which facilitates 

co-occurrence hypothesis testing (Ovaskainen et al., 

2010) and increases the precision of both individual spe- 

cies distributions and community metrics. However, 

most JSDMs typically do not accommodate imperfect 

detection (but see Hogg et al., 2021; Tobler et al., 2019). 

Failure to account for imperfect detection in detection– 

nondetection data can lead to biases in estimates of both 

species distributions and the effects of environmental 

drivers on species occurrence (MacKenzie et al., 2002). 

Occupancy models, a specific type of SDM, explicitly 

account for imperfect detection separately from the true 

species occurrence process using replicated detection– 

nondetection data. Multi-species occupancy models are 

an extension to single-species occupancy models that use 

detection–nondetection data from multiple species by 

treating species as random effects arising from a 

community-level distribution (Dorazio & Royle, 2005; 

Gelfand et al., 2005). Multi-species occupancy models 

can be viewed as a specific type of JSDM that accom- 

modate imperfect detection, but they traditionally 

do not include residual co-occurrence associations 

between species as in other JSDMs that lack imperfect 

detection (but see Tobler et al., 2019). 

Accounting for spatial autocorrelation in SDMs is 

often necessary when modeling species distributions 

across large spatial extents or a large number of observed 

locations (Latimer et al., 2009). Spatially explicit SDMs 

 

structured random effects (Banerjee et al., 2014; Shirota 

et al., 2019). Such spatially explicit approaches have been 

used in JSDMs to simultaneously account for residual 

species correlations and spatial autocorrelation (Thorson 

et al., 2015), and in multi-species occupancy models that 

model imperfect detection (Doser et al., 2022). 

Despite separate development of JSDMs that account 

for residual correlations and imperfect detection, only 

recently have approaches emerged that incorporate both 

of these complexities in JSDMs for large communities 

(Hogg et al., 2021; Tobler et al., 2019). Further, these 

approaches can become computationally intensive as 

both the number of spatial locations and species in the 

community increase, and no approaches exist that simul- 

taneously incorporate species correlations, imperfect 

detection, and spatial autocorrelation, despite the well 

recognized impacts of ignoring these complexities. Here 

we develop a JSDM that explicitly accounts for species 

correlations, imperfect detection, and spatial autocorrela- 

tion. Analogous to Tikhonov et al. (2020), we build an 

ecological process model that uses a spatial factor model 

together with Nearest Neighbor Gaussian Processes 

(NNGPs; Datta et al., 2016) to ensure computational effi- 

ciency for large species assemblages (e.g., >100 species) 

across a large number of spatial locations (e.g., ~ 105). 

We extend the model of Tikhonov et al. (2020) by incor- 

porating an observation submodel that separately 

models imperfect detection from the latent ecological 

process. We use simulations and a case study on 98 bird 

species across the continental US to compare the per- 

formance of our proposed model with five alternative 

models that fail to address all three complexities. Our 

proposed modeling framework, and its user-friendly 

implementation in the spOccupancy R package (Doser 

et al., 2022), provides a computationally efficient 

approach that explicitly accounts for imperfect detec- 

tion, residual correlations between species, and 

spatial autocorrelation to deliver inference on individual 

species distributions, species co-occurrence patterns, 

and overall biodiversity metrics. 

 

 

MODELING FRAMEWORK  

Process model 

 
Let sj denote the spatial coordinates of site j, for all 

j ¼ 1,…, J sites. Define zi

t
sj

) 
as the true latent presence 

(1) or absence (0) of species i at site j for i ¼ 1,…, N spe- 

cies. We assume zi

t
sj

) 
arises from a Bernoulli distribu- 

tion following 

z 
t
s 

) 
~ Bernoulli

t
ψ 

t
s 

))
, ð1Þ 
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r j 

ψ 

pπ 

1 β1 

 

where ψi

t
sj

) 
is the probability of occurrence for species i 

at site j. We model ψi

t
sj

) 
as 

wr

t
sj

) 
~ Nð0, Ce r  ðθrÞÞ, ð4Þ 

where Ce r  ðθrÞ is the NNGP-derived covariance matrix for 
t  t )) t p 

t )) t ) the rth spatial factor. The vector θr consists of parameters 

logit ψi sj ¼ βi,1 + w* sj + xt sj βi,t, ð2Þ 
t¼2 

where xt

t
sj

)
, for each t ¼ 2,…, pψ, is an environmental 

covariate at site j, βi,t is a regression coefficient 

corresponding to xt

t
sj

) 
for species i, βi,1 is the 

species-specific intercept, and w*
t
sj

) 
is a species-specific 

latent spatial process. We seek to jointly model the 

species-specific spatial processes to account for residual 

correlations between species. For a small number of 

species (e.g., <10), such a process can be estimated via a 

linear model of coregionalization framework (Gelfand 

et al., 2004; Latimer et al., 2009). However, when the 

number of species is even moderately large (e.g., >10), 

estimating such a joint process becomes computation- 

ally intractable. A viable solution to this problem is 

to use a spatial factor model (Hogan & Tchernis, 

2004; Ren & Banerjee, 2013; Zhang & Banerjee, 

2021),  a  dimension  reduction  approach  that  can 

governing the spatial process according to a spatial corre- 

lation function (Banerjee et al., 2014). For many correla- 

tion functions (e.g., exponential, spherical, Gaussian), θr 

includes a spatial variance parameter, σ2, and a spatial decay 

parameter, ϕr, while the Matérn correlation function 

includes an additional spatial smoothness parameter, νr. 

We assume that all species-specific parameters (βi,t 

for all t ¼ 1,…, pψ) arise from community-level distribu- 

tions  to  enable  information  sharing  across  species 

(Dorazio & Royle, 2005; Gelfand et al., 2005). Specifically, 

we assign a normal prior with mean and variance 

hyperparameters that represent the community-level aver- 

age and variance among species-specific effects across the 

community, respectively. For example, we model the 

species-specific occurrence intercept, βi,1, following: 

 

βi,1 ~ N
 

μβ , τ2
  

, ð5Þ 

account for correlations among a large number of 2 where μβ
1 

and τ are the community-level average and 

species. We decompose w*
t
sj

) 
into a linear combina- 

tion of q latent variables (i.e., factors) and their associated 

species-specific coefficients (i.e., factor loadings). In par- 

ticular, we have 

w*
t
sj

) 
¼ λΤw

t
sj

)
, ð3Þ 

variance, respectively. 

 

 

Observation model 

To estimate ψi

t
sj

) 
and zi

t
sj

) 
while explicitly accounting 

i i 
for imperfect detection, we obtain k ¼ 1,…, Kj sampling 

where λΤ is the ith row of factor loadings from an N × q 

loading matrix Λ, and w
t
sj

) 
is a q × 1 vector of indepen- 

dent spatial factors at site j. We achieve computational 

improvements and dimension reduction by setting 

q << N, where often a small number of factors (e.g., 

q ¼ 5) is sufficient (Taylor-Rodriguez et al., 2019; 

Zhang & Banerjee, 2021). We account for residual species 

correlations using individual responses (i.e., loadings) to 

the q latent spatial factors. Factor loadings explain the 

occurrence of multiple species at the same location 

beyond what is explained by the covariates included in 

the model; co-occurring species will have similar species- 

specific factor loadings (i.e., they will have the same sign). 

The residual interspecies covariance matrix Σ ¼ ΛΛΤ has 

rank q << N and, hence, is singular. Shirota et al. (2019) 

discuss its use and interpretation in detecting species 
clustering. 

replicates at each site j. Let yi,k 

t
sj

) 
denote the detection 

(1) or nondetection (0) of species i during replicate k at 

site j. We model the observed data yi,k 

t
sj

) 
conditional on 

the  true  species-specific  occurrence  zi

t
sj

) 
at  site  j 

following 

yi,k 

t
sj

) 
j zi

t
sj

) 
~ Bernoulli

t
πi,k

t
sj

)
zi

t
sj

))
, ð6Þ 

where πi,k

t
sj

) 
is the probability of detecting species i at 

site j during replicate k given the species is present at the 
site (i.e., zi

t
sj

) 
¼ 1). Note that when the species is not 

present at site j (i.e., zi

t
sj

) 
¼ 0), (6) implies yi,k 

t
sj

) 
¼ 0 

(i.e., we assume no false-positive detections). We model 

πi,k

t
sj

) 
as  a  function  of  site  and/or  replicate-level 

covariates that may influence species-specific detection 

probability. Specifically, 

Let wr

t
sj

) 
denote the value of the rth spatial factor at t t )) t ) 

site j, where r ¼ 1,…, q. Following Taylor-Rodriguez et al. 
(2019) and Tikhonov et al. (2020), we model w 

t
s 

) 
using 

logit πi,k sj ¼ αi,1 +  

t¼2 

vt,k sj αi,t , ð7Þ 

an NNGP (Datta et al., 2016) to achieve computational 

efficiency when modeling a large number of spatial loca- 

tions. Thus, 

where vt,k

t
sj

) 
is the value of covariate t at site j during 

replicate k, αi,t is a regression coefficient corresponding 

to  vt,k

t
sj

)
,  and  αi,1  is  a  species-specific  intercept. 
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i 



r 

 
 

Analogous to the species-specific occurrence effects (5), 

we assume all species-specific detection parameters (i.e., 

αi,t for all t ¼ 1,…, pπ) arise from community-level normal 

distributions. 

 

 

Prior specification and identifiability 
considerations 

 
We assume normal priors for mean parameters and 

inverse-Gamma priors for variance parameters. Following 

Taylor-Rodriguez et al. (2019), we set all elements in the 

upper triangle of the factor loadings matrix Λ equal to 0 

and its diagonal elements equal to 1 to ensure 

identifiability of the spatial factors. Additionally, we fix 

the spatial variance parameters σ2 to 1. We assign stan- 

dard normal priors for elements in Λ below the upper 

diagonal and assign each spatial decay parameter ϕr an 

independent uniform prior. 

 

 

Model implementation and alternative 
models 

 
We implement the spatial factor multi-species occupancy 

model in a Bayesian framework in the function 

sfMsPGOcc within our open-source spOccupancy R pack- 

age (Doser et al., 2022). We employ the computational 

algorithms discussed in Finley et al. (2022) to ensure that 

spatially explicit models are computationally feasible for 

large data sets. The Bayesian framework allows us to eas- 

ily calculate biodiversity metrics, with fully propagated 

uncertainty, as derived quantities. For example, we can 

estimate species richness of the entire community (or a 

subset of species in the community) by summing up the 

latent occurrence state zi

t
sj

) 
at each site j for all species 

of interest at each iteration to yield a full posterior distri- 

bution for species richness. We use a Po'lya-Gamma data 

augmentation scheme (Polson et al., 2013) to yield an 

efficient Gibbs sampler (see Appendix S1 for full details). 

We compare the spatial factor multi-species occu- 

pancy model to five alternative models, each of which 

addresses a subset of the three complexities (Table 1). We 

provide functionality for all five alternative models in the 

spOccupancy R package, and subsequently refer to all 

models by their spOccupancy function name (Table 1). 

Our first alternative model is a nonspatial latent factor 

JSDM (lfJSDM) that does not account for imperfect detec- 

tion, analogous to many standard JSDM approaches 

(Wilkinson et al., 2019). Our second alternative model is 

a spatial factor JSDM (sfJSDM) that does not account for 

imperfect detection, similar to the NNGP model of 

Tikhonov et al. (2020). Our third alternative model is the 

T A B L E  1 Characteristics of the six models used in the 

simulation study and case study, as well as the function name for 

model implementation in the spOccupancy R package (Doser 

et al., 2022). 
 

spOccupancy 

function 

Species 

correlations 

Spatial 

autocorrelation 

Imperfect 

detection 

lfJSDM ✓    

sfJSDM ✓  ✓   

msPGOcc   ✓  

spMsPGOcc  ✓  ✓  

lfMsPGOcc ✓   ✓  

sfMsPGOcc ✓  ✓  ✓  

Abbreviations: lfJSDM, latent factor joint species distribution model; 

lfMsPGOcc, latent factor multi-species occupancy model; msPGOcc, 

multi-species occupancy model; sfJSDM, spatial factor joint species 

distribution model; sfMsPGOcc, spatial factor multi-species occupancy 

model; spMsPGOcc, spatial multi-species occupancy model. 

 

 

basic nonspatial multi-species occupancy model 

(msPGOcc) that does not incorporate residual species 

correlations (Dorazio & Royle, 2005). Our fourth alterna- 

tive model is a spatial multi-species occupancy model 

(spMsPGOcc) that does not incorporate residual species 

correlations and estimates a separate NNGP spatial 

process for each species (Doser et al., 2022). Finally, our 

fifth alternative model is a nonspatial latent factor 

multi-species occupancy model (lfMsPGOcc) that accounts 

for residual species correlations and imperfect detection, 

analogous to the model of Tobler et al. (2019), except we use 

a logit formulation of the model. See Appendices S1 and S2 

for full model details. 

 

 

SIMULATION STUDY  

 
We used simulations to compare estimates from the spa- 

tial factor multi-species occupancy model to estimates 

from the five alternative models (Table 1). We generated 

100 detection–nondetection data sets for each of six 

simulation scenarios, where the data were simulated with 

different combinations of the three complexities. 

We simulated data under situations that roughly 

corresponded to the six alternative models to assess how 

each model performed under “ideal” data conditions for 

that model, as well as when the data did not meet all 

the assumptions of the modeling framework. More spe- 

cifically, we generated data with (1) residual species cor- 

relations and constant imperfect detection, (2) residual 

species correlations, constant imperfect detection, and 

spatial autocorrelation, (3) imperfect detection only, 

(4)  imperfect  detection  and  spatial  autocorrelation, 

(5) residual species correlations and imperfect detection, 

4 of 11 DOSER ET AL. 
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and (6) residual species correlations, imperfect detec- 

tion, and spatial autocorrelation. 

We simulated detection–nondetection data from 

N ¼ 10 species at J ¼ 225 sites with K ¼ 3 replicates at 

each site for each of the 100 data sets for the six simula- 

tion scenarios. We used an exponential correlation 

function for spatially explicit data generation scenarios 

(Scenarios 2, 4, 6). For scenarios leveraging a factor 

model (Scenarios 1, 2, 5, 6), we generated the data using 

q ¼ 3 latent factors. As there are often many potential 

covariates that explain multi-species occurrence patterns 

in empirical data sets, we simulated data with 15 spatially 

varying occurrence covariates for all scenarios and five 

observational-level detection covariates for scenarios where 

detection probability was not constant (Scenarios 3–6). 

We specified reasonable values for all parameters in the 

model (see Appendix S2 for full details). For each data 

set in each scenario, we ran three chains each of 15,000 

samples, with a burn-in of 10,000 samples and a thin- 

ning rate of 5, resulting in a total of 3000 Markov chain 

Monte Carlo (MCMC) samples for each of the six alter- 

native models. We fit all models using the spOccupancy 

R package (Doser et al., 2022). We assessed the perfor- 

mance of the models by comparing the root mean 

squared error and 95% coverage rates for the 

species-specific occurrence probabilities and the occur- 

rence covariate effect. 

 

 

CASE STUDY  

 
We applied the spatial factor multi-species occupancy 

model to detection–nondetection data from the North 

American Breeding Bird Survey (Pardieck et al., 2020) in 

2018 on N ¼ 98 bird species at J ¼ 2619 routes (i.e., sites) 

across the continental US. The 98 species belong to two 

distinct biogeographical communities following the defi- 

nitions in Bateman et al. (2020), with 66 species in the 

eastern forest bird community and 32 species in 

the grassland bird community. Our objectives for this 

case study were to (1) develop spatially explicit maps of 

species richness for the two communities across the con- 

tinental US, (2) determine if the latent spatial factors (w) 

and the species-specific factor loadings (Λ) distinguish 

the two communities of birds, and (3) assess the benefits 

of accounting for species correlations, imperfect detec- 

tion, and spatial autocorrelation. At 50 points along each 

route (called “stops”), observers performed a 3-min point 

count survey of all birds seen or heard within a 0.4 km 

radius. We summarized the data for each species at each 

site into K ¼ 5 spatial replicates (each comprising data 

from 10 of the 50 stops), where each spatial replicate took 

value 1 if the species was detected at any of the 10 stops 

in that replicate, and value 0 if the species was not 

detected. Using five replicates was more computationally 

efficient than treating each of the 50 stops as spatial repli- 

cates, and exploratory analyses revealed minimal differ- 

ences between models using the full 50 stop data 

(Appendix S2). 

Using the spatial factor multi-species occupancy 

model, we modeled the route-level occurrence of the 

98 species as a function of five bioclimatic variables and 

eight land cover variables (Appendix S2). We modeled 

detection as a function of the day of the survey (linear 

and quadratic), the start time of the first survey (linear), 

and a random observer effect. Note that all detection 

covariates only varied across Breeding Bird Survey (BBS) 

routes, not across spatial replicates within a route. We 

standardized all variables to have a mean of 0 and a stan- 

dard deviation of 1. We fit the model using 15 nearest 

neighbors, an exponential correlation function, and q ¼ 5 

latent spatial factors. We subsequently predicted occur- 

rence for the 98 species across the continental US to gen- 

erate spatially explicit maps of species richness, with 

associated uncertainty, for the two bird communities. 

To determine whether the spatial factor multi-species 

occupancy model provided benefits for predicting species 

distributions and biodiversity metrics, we fit four 

additional alternative models (msPGOcc, lfMsPGOcc, 

lfJSDM, sfJSDM). For the models that did not explicitly 

model imperfect detection (lfJSDM and sfJSDM), we col- 

lapsed the data with five replicates at each site into a 

single binary value, which takes value 1 if the species 

was detected in any of the five replicates and 0 if not. 

Additionally, because the detection covariates we 

included in the model only varied by site and not by rep- 

licate, we included the detection covariates together with 

the occurrence covariates in the two JSDMs without a 

distinct submodel, which is a common approach used to 

account for sampling variability in models that do not 

explicitly account for imperfect detection (Ovaskainen 

et al., 2017). We used the Widely Applicable Information 

Criterion (WAIC; Watanabe, 2010) to compare the per- 

formance of the three occupancy models (msPGOcc, 

lfMsPGOcc, and sfMsPGOcc) and the two JSDMs without 

imperfect detection (lfJSDM and sfJSDM). However, as 

the two JSDMs without imperfect detection used a col- 

lapsed form of the data used in the occupancy models, 

we could not directly compare all five models using 

WAIC. Thus, we additionally fit all models using 75% of 

the data points and kept the remaining 25% of the data 

points for evaluation of model predictive performance. 

We assessed out-of-sample predictive performance using 

the observed data at the hold-out locations as well as 

latent occupancy predictions at the hold-out locations 

generated  from  models  fit  with  only  the  hold-out 
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locations. See Appendix S2: Section S3 for details. All 

models were fit using functions in spOccupancy. In all 

cases, model parameter estimates were based on three 

chains, each with 150,000 iterations, a burn-in period of 

100,000 iterations, and a thinning rate of 50. We assessed 

convergence using visual assessment of trace plots and 

the Gelman–Rubin (Brooks & Gelman, 1998) diagnostic 

using the coda package (Plummer et al., 2006). See 

Appendix S3 for a detailed overview and recommenda- 

tions for convergence assessment using our proposed 

modeling approach. 

 

 

RESULTS  

Simulation study 

 
Failing to account for residual species correlations had 

negative impacts on both the accuracy and the precision 

of model estimates (Table 2; Appendix S2: Tables S1 

and S2). Estimates from msPGOcc, which did not 

account for residual species correlations, had larger bias 

(Appendix S2: Tables S1 and S2), and low coverage rates 

(Table 2) for both latent occurrence and covariate effects 

when data were simulated with residual correlations 

between species. spMsPGOcc, which accounts for spatial 

autocorrelation but ignores species correlations, had less 

bias and better coverage rates than msPGOcc in these 

scenarios, but still had higher bias in occurrence proba- 

bilities and lower coverage rates than models that did 

account for species correlations and imperfect detection. 

Therefore, accounting for spatial autocorrelation miti- 

gates some, but not all, of the negative impacts of incor- 

rectly assuming independence between species. 

When data were simulated with imperfect detection 

that varied across sites and replicates, ignoring imperfect 

detection resulted in higher bias and low coverage rates 

for both occurrence probability and covariate effects 

(Table 2; Appendix S2: Tables S1 and S2). However, when 

detection was high and constant over sites and replicates 

(Scenarios 1 and 2), bias in lfJSDM and sfJSDM was com- 

parable with models that address imperfect detection and 

coverage rates were closer to the expected 95%, in partic- 

ular for the latent occurrence probability (Appendix S2: 

Tables S1 and S2). Notably, the decreased coverage rates 

were less drastic for estimating occurrence probability 

when failing to account for imperfect detection compared 

with estimates from a standard multi-species occupancy 

 

 

T A B L E  2 Estimated coverage rates of simulated species-specific occurrence probabilities and covariate effects for six different 

simulation scenarios and six models of varying complexity, as well as average run time.  

Model 

Parameter Scenario lfJSDM sfJSDM msPGOcc spMsPGOcc lfMsPGOcc sfMsPGOcc 

ψi

t
sj 

) 1 91.5 90.8 68.9 88.1 95.6 95.3 

 2 91.6 91.0 69.1 89.1 95.5 95.4 

 3 85.6 84.8 95.0 96.4 95.5 95.5 

 4 77.5 76.4 80.2 93.1 95.7 95.5 

 5 75.3 74.2 71.3 88.5 95.5 95.3 

 6 76.0 75.0 72.2 89.6 95.3 95.2 

βi 1 88.7 88.2 82.0 91.1 95.2 95.1 

 2 88.8 88.2 82.2 91.7 94.9 94.9 

 3 73.8 73.1 95.1 94.4 90.4 90.8 

 4 65.9 65.0 89.1 94.0 94.7 94.7 

 5 64.2 63.6 83.6 91.7 95.2 95.0 

 6 65.7 64.6 85.1 92.7 94.9 94.9 

Run time  1.55 3.17 3.00 6.17 3.31 5.24 

Note: Coverage rates are defined as the percentage of species-specific occurrence probabilities (ψi

t
sj

)
) or covariate effects contained within the 95% credible 

interval, averaged across the 10 species and 100 simulated data sets. Run time is the number of minutes for the model to complete 15,000 Markov chain Monte 

Carlo (MCMC) iterations, averaged across all six simulation scenarios and 100 simulated data sets. Data were generated with t he following characteristics for 

the six simulation scenarios: (1) residual species correlations and constant, high detection; (2) residual species correlations, constant and high detection, spatial 

autocorrelation; (3) imperfect detection; (4) imperfect detection and spatial autocorrelation; (5) residual species correlati ons and imperfect detection; and (6) 

residual species correlations, imperfect detection, and spatial autocorrelation.  

Abbreviations: lfJSDM, latent factor joint species distribution model; lfMsPGOcc, latent factor multi-species occupancy model; msPGOcc, multi-species 

occupancy model; sfJSDM, spatial factor joint species distribution model; sfMsPGOcc, spatial factor multi-species occupancy model; spMsPGOcc, spatial 

multi-species occupancy model. 
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model (msPGOcc) when ignoring residual correlations 

when present. Alternatively, failing to account for imper- 

fect detection when present resulted in larger bias and 

lower coverage rates in occurrence covariate effect esti- 

mates compared with a model that ignored residual cor- 

relations and/or spatial autocorrelation when present. 

Ignoring spatial autocorrelation had minimal impacts on 

the average bias, particularly when accounting for resid- 

ual correlations, but coverage rates were substantially 

low for both latent occurrence and the covariate effect for 

msPGOcc (Table 2). 

 

 

Case study 

 
The spatial factor multi-species occupancy model 

predicted high species richness for the eastern forest bird 

community across the eastern US and high species rich- 

ness for the grassland bird community in the Northern 

Great Plains region (Figure 1). Further, the model 

distinguished between the two bird communities via the 

species-specific factor loadings and the spatial factors 

(Appendix S2: Figures S1–S5). Compared with the stan- 

dard multi-species occupancy model (msPGOcc), incor- 

porating residual species correlations (lfMsPGOcc) 

yielded a lower WAIC (417,954 vs. 395,094), while 

additionally accounting for spatial autocorrelation 

(sfMsPGOcc) further reduced the WAIC (390,607; 

Appendix S2: Table S3). Failing to account for spatial 

autocorrelation led to unreasonable species richness esti- 

mates for the two communities across large portions of 

the US (Figure 2A,B). Additionally, the spatially explicit 

JSDM without imperfect detection (sfJSDM) 

outperformed the nonspatial JSDM without imperfect 

detection (lfJSDM) according to WAIC (84,192 vs. 

87,615). 

Analogous to model comparison using WAIC, the 

two models that accounted for spatial autocorrelation 

(sfJSDM and sfMsPGOcc) had the smallest out-of-sample 

model deviance, with sfJSDM outperforming sfMsPGOcc 

when assessing performance based on the raw detection– 

nondetection data. However, when estimating predictive 

performance using estimates of species occurrence 

generated from three occupancy model fits, sfMsPGOcc 

 

 

 
 

F I G  U RE 1 Predicted mean species richness for the eastern forest bird community (A) and the grassland bird community (C), as well as 

their associated standard deviations (B, D) using a spatial latent factor multi-species occupancy model (sfMsPGOcc). 
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F I G  U RE 2 Difference in predicted mean richness between a spatial latent factor multi-species occupancy model (sfMsPGOcc) and two 

simpler alternative models. Panels (A) and (B) show differences between the nonspatial latent factor multi -species occupancy model 

(lfMsPGOcc) for the eastern forest and grassland bird communities, respectively, while panels (C) and (D) show differences with the spatial 

factor joint species distribution model without imperfect detection (sfJSDM). 

 

 

outperformed sfJSDM (Appendix S2: Table S3), suggesting 

that accounting for imperfect detection provides 

improved predictive performance of the latent ecologi- 

cal process. Further, estimates of species richness 

from sfJSDM were substantially lower across the US 

for both the eastern forest and grassland bird commu- 

nity (Figure 2C,D) compared with estimates from 

sfMsPGOcc. 

 

 

DISCUSSION  

 
Multi-species detection–nondetection data are often com- 

plicated by residual correlations among species detections 

(Ovaskainen et al., 2010), imperfect detection of species 

(MacKenzie et al., 2002), and spatial autocorrelation 

(Latimer et al., 2009). While many methods exist to accom- 

modate a subset of these complexities (e.g., Tikhonov 

et al., 2020; Tobler et al., 2019), no approaches exist that 

simultaneously incorporate all three complexities, despite 

the well recognized impacts of ignoring them. Here, we 

developed a spatial factor multi-species occupancy model 

that simultaneously accounts for residual species correla- 

tions, imperfect detection, and spatial autocorrelation in a 

computationally efficient framework. We showed using 

simulations that ignoring these three complexities 

when present leads to inferior inference and prediction. 

Further, the spatial factor multi-species occupancy 

model improved predictive performance compared to 

models that failed to address the three complexities in 

an empirical case study of 98 bird species across the 

continental US. 

In our simulation study, failing to account for 

residual species correlations, imperfect detection, and/or 

spatial autocorrelation when present led to increased bias 

and low coverage rates. We found that the standard 

multi-species occupancy model (msPGOcc) had high 

bias and low coverage rates for both the latent 

occurrence and occurrence covariate effects for all sce- 

narios  except  when  data  were  simulated  without 
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species correlations and spatial autocorrelation which results in predictions that are not able to use the 

(Table 2, Appendix S2: Tables S1 and S2), clearly indi- 

cating the importance of accommodating these data 

complexities if they exist. Similarly, estimates from 

JSDMs that failed to account for imperfect detection 

resulted in increased bias and low coverage rates, 

although these findings were less prominent under 

ideal scenarios of constant, high detection probability. 

Interestingly, Table 2 suggests that if it is not possible 

to accommodate all three complexities (e.g., because of 

limited resources and small sample sizes) determining 

which complexities to ignore will depend on the study 

objectives. For example, when data were simulated with 

imperfect detection and species correlations, coverage 

rates were better for lfJSDM than msPGOcc for the 

occurrence probability estimates, but coverage rates 

from msPGOcc were better than lfJSDM for the occur- 

rence covariate effect. This suggests that under these 

scenarios, lfJSDM would be better for prediction, while 

msPGOcc would be better for inference. Our simulation 

study did not consider all potential complexities when 

comparing the performance of JSDMs, such as differing 

degrees of residual species correlations versus spatial auto- 

correlation or assessment of the sensitivity of model perfor- 

mance to more complex forms of spatial dependence 

(e.g., Mohankumar & Hefley, 2022). However, our results 

do illustrate that specific data characteristics and 

research questions will determine whether it is necessary 

to account for residual species correlations, imperfect 

detection, and/or spatial autocorrelation. Our findings, 

as well as additional simulation studies geared toward 

specific ecological scenarios, could have important impli- 

cations for designing detection–nondetection surveys to 

meet specific objectives. We include code to fit all six 

alternative models (Table 1) in the spOccupancy R pack- 

age, as well as functions for data simulation and model 

comparison to enable ecologists and conservation practi- 

tioners to accommodate these three complexities using 

accessible and well documented software. See 

Appendix S4 for a detailed vignette on fitting these 

models in spOccupancy. 

In the breeding bird case study, accounting for species 

correlations, imperfect detection, and spatial autocorrela- 

tion in the spatial factor multi-species occupancy model 

resulted in improved predictive performance compared 

with models that failed to address all three complexities. 

Accounting for species correlations in lfMsPGOcc 

improved model fit over the standard multi-species occu- 

pancy model (msPGOcc) according to WAIC but did not 

improve predictive performance for the out-of-sample 

deviance metric using the raw data (Appendix S2: 

Table S3). This is likely a result of treating the latent fac- 

tors as independent standard normal random variables, 

estimated values of the latent variables at nearby sampled 

locations to improve prediction at nonsampled locations. 

Alternatively, the spatial factor multi-species occupancy 

model (sfMsPGOcc) had the smallest WAIC and the best 

predictive performance for both deviance metrics among 

the three occupancy models. Further, sfJSDM substan- 

tially outperformed lfJSDM according to all criteria. 

These results demonstrate how assigning spatial structure 

to the latent factors in a model that accounts for species 

correlations can yield large improvements in model pre- 

dictive performance. We thus recommend using 

sfMsPGOcc when there is a desire to account for species 

correlations and the primary goal of the analysis is 

prediction. 

The spatial factor multi-species occupancy model 

leverages a spatial factor dimension reduction approach 

(Hogan & Tchernis, 2004; Ren & Banerjee, 2013; 

Zhang & Banerjee, 2021) and NNGPs (Datta et al., 2016) 

to ensure computational efficiency when modeling data 

sets with a large number of species (e.g., >100) and/or 

spatial locations (e.g., 100,000). Our proposed model 

requires the specification of the number of latent spatial 

factors (q) as well as the number of neighbors to use in 

the NNGP. When choosing the number of nearest 

neighbors for the NNGP, Datta et al. (2016) showed 

15 neighbors is sufficient for most data sets, with as few 

as five neighbors providing adequate performance for cer- 

tain data sets. Determining the optimal number of factors 

for a given data set is not straightforward and will vary 

depending on the characteristics of the specific community 

of species (e.g., species rarity, variability among species). 

See Appendix S3 for recommendations and considerations 

for making this decision, as well as a discussion on assessing 

the convergence of these high-dimensional models. 

The use of spatial replicates in the BBS case study 

instead of the more traditional temporal replicates used 

in an occupancy modeling framework may lead to an 

upward bias in the estimated occupancy probabilities 

(Kendall & White, 2009). Additionally, the large spatial 

scale of the BBS data (each route is ~39.2 km in length) 

likely influences the estimates of the residual species 

co-occurrence patterns. Data collected at a smaller spatial 

scale using temporal replicates may provide more accu- 

rate estimates of occupancy and species co-occurrence pat- 

terns. Regardless of how the data are collected, we caution 

against the interpretation of the residual co-occurrences as 

true biological interactions, as co-occurrence does not 

imply an interaction (Poggiato et al., 2021). 

The latent spatial factors and the species-specific 

factor loadings can provide insight into the additional 

processes that govern the distributions of species in the 

modeled community. In our case study, we found 
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the spatial factors showed clear distinctions between the 

two bird communities. See Appendix S2 for additional 

discussion on interpreting the latent factors and 

Appendices S3 and S4 for practical information on how 

to troubleshoot MCMC convergence problems with the 

factor loadings. 

As both the number and size of multi-species detection– 

nondetection data sets increase, we require computationally 

efficient models and software to address common data 

complexities. Our spatial factor multi-species occupancy 

model extends previous approaches (Tikhonov et al., 2020; 

Tobler et al., 2019) to efficiently model species-specific and 

community-level occurrence patterns while accounting 

for residual species correlations, imperfect detection, and 

spatial autocorrelation. Our proposed framework, together 

with its user-friendly implementation in the spOccupancy 

R package (Doser et al., 2022), will enable ecologists to 

study spatial variation in species occurrence and 

co-occurrence patterns, develop spatially explicit maps of 

individual species distributions and biodiversity metrics, 

and explicitly account for common complexities in 

multi-species detection–nondetection data. 
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