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community-level processes using many existing approaches, limiting our under-
standing of the trends and stressors for large numbers of species. Yet evaluating
the dynamics of whole communities, not just common or charismatic species, is
critical to understanding and the responses of biodiversity to ongoing environ-
mental pressures.

. A recent surge in both public science and government-funded data collection

efforts has led to a wealth of biodiversity data. However, these data collection

programmes use a wide range of sampling protocols (from unstructured, oppor-

Handling Editor: Thierry Boulinier tunistic observations of wildlife to well-structured, design-based programmes)
and record information at a variety of spatiotemporal scales. As a result, available
biodiversity data vary substantially in quantity and information content, which
must be carefully reconciled for meaningful ecological analysis.

3. Hierarchical modelling, including single-species integrated models and hierarchi-
cal community models, has improved our ability to assess and predict biodiversity
trends and processes. Here, we highlight the emerging ‘integrated community
modelling’ framework that combines both data integration and community mod-
elling to improve inferences on species- and community-level dynamics.

4, We illustrate the framework with a series of worked examples. Our three case
studies demonstrate how integrated community models can be used to extend
the geographic scope when evaluating species distributions and community-
level richness patterns; discern population and community trends over time; and
estimate demographic rates and population growth for communities of sympa-
tric species. We implemented these worked examples using multiple software
methods through the R platform via packages with formula-based interfaces and
through development of custom code in JAGS, NIMBLE and Stan.
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1 | INTRODUCTION

The consequences of global change on animal communities remain
unclear for all but the most abundant taxa because of data limitations
(Breiner et al., 2015; Kindsvater et al., 2018). As biodiversity contin-
ues to decline, it is critical to assess the status and dynamics of whole
communities, and not just those common or charismatic species with
large amounts of data. While many sampling schemes target multi-
ple species simultaneously (e.g. breeding birds via point counts, small
mammals via trapping), traditional approaches to evaluate community-
level processes require a large number of observations (Hamilton
etal., 2015; Sor et al., 2017), precluding assessments of rare or data-
deficient species. One in six species has been classified as data defi-
cient by the International Union for the Conservation of Nature (Bland
et al., 2017), leading to gaps in our understanding of the trends and
stressors for a large proportion of species, often within taxonomically
related communities. Furthermore, data sets collected by individual
researchers are generally restricted in spatiotemporal scope, resulting
in narrow and inadequate assessments of the biotic and abiotic factors
influencing species' trends when the effects of environmental factors
vary across space and/or time (Rollinson et al., 2021).

Fortunately, there has been a surge of data collection pro-
grammes in recent decades, including hundreds of public (citizen)
science (e.g. eBird, iNaturalist) and government-funded (e.g. National
Ecological Observation Network [NEON]) programmes that provide
a wealth of fine- to broad-scale data on multiple species simultane-
ously (Barnett et al., 2019; Thornhill et al., 2016). Incorporating these
distinct data sources into rigorous analyses is an ongoing challenge
because of variations in data type, quality, sampling protocols and
geographic coverage (Chandler et al., 2017; Moussy et al., 2021). Yet,
understanding and evaluating both species- and community-level
processes, including responses to environmental change, is critical
to maintaining biodiversity, and hence, a key objective of the ecolog-
ical research community (Johnson et al., 2017).

Hierarchical modelling has significantly advanced the use of such
ecological data because it allows for the separation of biological and
observation processes (Kéry & Royle, 2016) and can thus account
for variations in the types and information content of specific data

5. Integrated community models provide an exciting approach to model biologi-
cal and observational processes for multiple species using multiple data types
and sources simultaneously, thus accounting for uncertainty and sampling error
within a unified framework. By leveraging the combined benefits of both data
integration and community modelling, integrated community models can produce
valuable information about both common and rare species as well as community-
level dynamics, allowing for holistic evaluation of the effects of global change on

community analysis, data integration, hierarchical models, population dynamics

sources. Two recent advancements in hierarchical modelling are
critical to the development of rapid, comprehensive assessments of
biodiversity: (1) single-species integrated models and (2) hierarchical
community models.

Single-species integrated models combine multiple data sets
into a single model on a target species, generally by defining a joint
likelihood among available data sources (Miller et al., 2019; Schaub
& Kéry, 2021). A key advantage of integrated modelling (sometimes
referred to as data fusion) is the ability to merge multiple data types,
regardless of collection method and spatiotemporal scope (Zipkin
et al., 2021). Single-species integrated models improve inferences
through increased precision of parameter estimates (Mosnier
et al., 2015), the estimation of parameters for which no explicit data
are available (Oppel et al., 2014), and by accounting for uncertainties
and correlations among data sets (Lee et al., 2015). Single-species in-
tegrated modelling has primarily taken two forms: integrated popu-
lation models and integrated distribution models (Zipkin et al., 2019).
Integrated population models allow for a mechanistic understand-
ing of species-level processes primarily by combining demographic
data with time-series population- or site-level count data (Brown &
Collopy, 2013; Saunders et al., 2018). Integrated distribution mod-
els synthesize presence-only, detection—nondetection and/or count
data to estimate species distribution patterns and the effects of co-
variates on occurrence or abundance (Fletcher Jr. et al., 2019; Grat-
tarola et al., 2023).

Hierarchical community models link together occurrence or
abundance parameters of individual species (estimated using a sin-
gle, multispecies detection—nondetection or count data set), through
community-level distributions (Devarajan et al., 2020; Dorazio
et al., 2006; Sollmann et al., 2016). This is done either by treating
species-level parameters (i.e. intercepts or covariate effects) as ran-
dom variables arising from normal distributions, characterized by a
community-level mean and variance across species (e.g. multispecies
occurrence models; Zipkin et al., 2010; Guillera-Arroita, 2017), or by
using multivariate distributions to explicitly model species associa-
tions (e.g. joint species distribution models; Ovaskainen et al., 2017;
Warton et al., 2015). Hierarchical community models improve biolog-
ical inferences by accounting for both species-level effects and the
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aggregated effects of covariates on a community as a whole, lead-
ing to increased precision in species parameter estimates, even for
those species that were observed infrequently (Zipkin et al., 2009),
and the ability to estimate biodiversity metrics such as richness and
composition (Guillera-Arroita et al., 2019).

Despite recent advances in single-species integrated models and
hierarchical community models, there has been comparatively less
research focused on modelling multiple species using more than one
data source. Several applications of multispecies integrated popu-
lation models in which count data are combined with demographic
data have examined interactions between species, including compe-
tition (Peréon & Koons, 2012), synchrony in survival and reproduction
rates (Lahoz-Monfort et al., 2017) and predator—prey dynamics (Bar-
raquand & Gimenez, 2019; Clark, 2021; Paquet & Barraquand, 2022;
Quéroué et al., 2021). A key feature of these models is that species'
demographic rates are assumed to be influenced by the dynamics
of one or two other species such that the models account for both
abiotic effects (via covariates) and biotic interactions among species.
There are also examples of integrated community occupancy models
that combine multiple detection—nondetection data sets to estimate
species co-occurrence patterns using two or more data sets (Doser,
Leuenberger, et al., 2022; Lauret et al., 2023). Clark et al. (2017)
developed a generalized joint attribute model to estimate the dis-
tribution and abundance of multiple species using combinations of
detection—nondetection and various types of count data. In such
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models, species abundances are assumed to come from a community
level, multivariate normal distribution, thereby accounting for asso-
ciations among related species within the predefined community.
Recent efforts integrating multispecies data sets only scratch the
surface of what can be achieved by uniting available data sources on
multiple species and whole communities (Rapacciuolo & Blois, 2019),
but highlight the growing relevance of, and need for, a generalizable
modelling framework.

In this paper, we highlight the class of models broadly categorized
as integrated community models. Although the term integrated com-
munity modelling has been used with several meanings, here we define
it as a framework that links multiple data sources on multiple sympat-
ric species through a hierarchical community component. We outline
the general approach of the method, demonstrate three specific ap-
plications with different biological and observation model structures
using empirical data and simulations and offer a discussion about var-
jous factors to consider before using integrated community models.
We conclude by providing suggestions for future developments.

2 | EXPLANATION OF THE METHOD

We consider integrated community models broadly as the combi-
nation of single-species integrated models and hierarchical com-
munity models (Figure 1). Each of the different data sources (e.g.
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FIGURE 1 Integrated community models enable the estimation of the status, trends and/or population dynamics of multiple species
simultaneously by combining disparate data sources within a unified analysis framework. The schematic diagram outlines the hierarchical
approach of the integrated community modelling process: the underlying species-level biological process (yellow; e.g. abundance, z;j,, of
species i at survey location site j in year t) is modelled using relevant environmental covariates and/or demographic rates (not shown). Each
data source (y1,y2,y3, ... yD) provides a piece of information on the biological process and is connected to the biological parameters via an
observation process model (grey). Species-specific parameters are linked through community-level distributions to share information across

species (blue).
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detection—nondetection, count, demographic) can be used to inform
various components of the underlying biological process model
through hierarchical, observation models linked together with a
joint likelihood or through simpler approaches that account for vari-
ation across data sources through covariates and/or random effects
(Wikle & Berliner, 2007; Zipkin et al., 2021). Covariates can be in-
cluded using link functions to incorporate relevant biotic and abiotic
factors that influence species dynamics and detection across space
and time. The biological process models for species (Figure 1, yellow
shading) can range from simple (e.g. estimates of species occurrence;
Miller et al., 2019) to complex (e.g. estimates of species survival, re-
production and abundance; Schaub & Abadi, 2011), and depend on
both the life history and ecology of the taxonomic group and the
quantity and type of available data.

Parameters in the biological process model are linked to the
survey data through observation process models (Figure 1, grey
shading). As with the biological process, the observation models can
range from simple (e.g. fixed and/or random effects on individual
surveys or data sources) to increasingly mechanistic (e.g. modelling
detection probabilities based on covariates and recorded auxiliary
sampling information), primarily depending on the type and quantity
of available data (Dorazio, 2014; Kéry & Royle, 2016). Commonly
collected wildlife data types span a spectrum of collection effort
and information content including (from low to high): presence-only
data (observations of a species in a given location at a given time),
detection—nondetection data (records that also contain locations
that were surveyed but the species was not observed), count data
(total number of individuals observed at a location within a specific
time frame) and demographic data (e.g. capture-recapture, produc-
tivity data; to inform survival, reproduction, immigration etc.). Typ-
ically, the higher the information content, the more difficult it is to
collect the data and likely that the geographic coverage is limited. In
addition to survey type, we can classify presence-only, detection—
nondetection and count data as structured, semi-structured or
unstructured. Structured data are collected systematically with a
design protocol (e.g. NEON), while unstructured data are collected
opportunistically and without a defined purpose (e.g. iNaturalist).
Semi-structured data are typically collected in volunteer-based
monitoring programmes (e.g. eBird) that have some degree of struc-
ture (e.g. collection of auxiliary sampling information, checklists) that
helps mitigate observational and sampling biases present in unstruc-
tured data, but lack the rigorous sampling design of structured data
(Altwegg & Nichols, 2019; Kelling et al., 2019).

The various available data sources provide unique or comple-
mentary information (in terms of spatiotemporal location, life stage
and/or demography) on the biological processes of interest (Saun-
ders, Farr, et al., 2019). For example, available data sources may
consist of multiple different data types (e.g. one count and one de-
mographic data set) or may all be the same type (e.g. two detection—
nondetection data sets) but collected under distinct protocols with
different types of observation and/or sampling biases. Thus, the
value of combining available data sources can either be inference on
mechanistic biological processes (as is done in integrated population

models; Schaub & Kéry, 2021) or expansion of the spatiotemporal
scope of inference (as is done in integrated distribution models; Isaac
et al., 2020). When modelled together, the information from each
data source can be used to jointly estimate biological parameters,
improving accuracy on inferences (Pacifici et al., 2017), and in many
cases, allowing estimation of a greater number of parameters than
is possible through independent analyses of the various data sets
(Plard et al., 2019; Schaub et al., 2007).

The species-level biological and observation process models are
joined by allowing parameters to come from common, community-
level distributions (Figure 1, blue shading), which can be univariate
(e.g. Farr et al., 2019) or multivariate (e.g. Thorson et al., 2016), de-
pending on whether estimation of covariances among species is
desirable. This facilitates information sharing among species in the
community, allowing parameter estimation for all species and not
just those with large sample sizes (Zipkin et al., 2009). Additionally,
this approach produces estimates of community-level parameters
(mean across all species and variance among species), which can be
used to summarize community responses to relevant covariates and
environmental stressors (Threlfall et al., 2017).

In theory, integrated community models could be analysed with
either a frequentist or Bayesian approach. In most cases, Bayesian
analysis will be more practical to simultaneously estimate the bio-
logical and observation parameters at species and community levels.
Bayesian inference allows for maximum flexibility in terms of hier-
archical model structure and convergence (Fordyce et al., 2011) and
enables straightforward calculation of derived biodiversity metrics
(e.g. site-level richness, evenness, composition and turnover; Dora-
zio, 2016; Gelman & Hill, 2007). In our case studies, parameters are
all estimated using Bayesian analysis with Beyer several different
approaches in the R software platform (R Core Team, 2022), includ-
ing built-in packages and custom code that implements Markov chain
Monte Carlo (MCMC) algorithms via JAGS (Plummer, 2003), NIMBLE
(de Valpine et al., 2017) and Stan (Stan Development Team, 2022).

3 | WORKED EXAMPLES

Here, we show three case studies to provide practical examples
of the integrated community modelling framework that (1) extend
the geographic scope of inference to evaluate species distribu-
tions and effects of habitat for a specialized bird community, (2)
discern the population trends of open-habitat-associated butterfly
species over a recent decade and (3) estimate demographic rates
and population growth for communities of sympatric species. Our
worked examples demonstrate approaches to combine structured
and semi-structured data including detection—nondetection, site-
and population-level count and demographic data types. We show
how the integrated community modelling framework is capable of
producing inferences for both individual species (rare and com-
mon) and community-level metrics of interest. We present a gen-
eral overview and the basic methods of each case study in the
main text with details including mathematical equations and the
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specifics of implementation described in associated supplemental
materials. The complete code for the worked examples is avail-
able at https://zipkinlab.github.io/#icm2023Z and is also archived
at Zipkin et al. (2023).

3.1 | Case study 1: Spatial distributions of forest
birds across the Northeastern United States

311 | Background and motivation

Communities of species with specialized habitat requirements,
such as grassland or interior forest obligate birds, are particularly
vulnerable to global change because of limited availability of habi-
tat. Furthermore, species in specialized communities tend to be
rare, resulting in few observations within large-scale monitoring
programmes and low precision of species distribution estimates
and effects of environmental drivers (Lomba et al., 2010). In this
case study, we use an integrated community occupancy model
(Doser, Leuenberger, et al., 2022) to estimate the spatial variation
in species richness of a community of 27 interior forest obligate
bird species, most of which are rarely detected, across 11 states
in the Northeastern United States. The integrated community oc-
cupancy model combines multiple replicated and/or nonreplicated
detection—nondetection data sources in a community occupancy
modelling framework to provide inferences on species-specific and
community-level occurrence patterns across space (and time). By
sharing information across species and data sources, this approach
can yield increased precision and accuracy of species-specific oc-
currence patterns compared to single data source models and
single species models (Doser, Leuenberger, et al., 2022). Addition-
ally, the community component enables estimation of aggregated
biodiversity metrics, such as site-level species richness, that al-
lows for local-scale assessment of available habitat use by the
community.

312 | Data

We integrated detection—nondetection data on 27 interior for-
est obligate bird species from 356 routes in the North American
Breeding Bird Survey (BBS; Pardieck et al., 2020) and 10,383 eBird
checklists (Sullivan et al., 2009) across 11 states in the Northeast-
ern United States, all collected during the breeding season of 2017
(Supplemental Information S1). Many species were detected infre-
quently, with 52% and 96% of species detected at less than 30% of
the spatial locations in the BBS and eBird data sets respectively.
For the BBS data, which is a structured road-side survey, observ-
ers recorded all birds seen within a 0.4-km radius at 50 locations
(i.e. stops) along each ~39.2 km roadside survey (i.e. route). We
assigned each route to a 5 x 5 km grid cell based on its midpoint
location and aggregated the 50 stops per route into five spatial
replicates of 10 stops each (i.e. we assume each route was sampled
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five times, but the specific sampling locations occur at different
spots along the route). We summarized the detection (1) or non-
detection (0) of each species at each of the five spatial replicates.
For the eBird data, which is an opportunistic, semi-structured data
source, we assigned each complete checklist during a 3-week pe-
riod in early June (to match the time frame of the BBS data) to a
specific grid cell, and used multiple checklists within each cell as
repeat surveys for the occupancy modelling framework. To miti-
gate preferential sampling biases, we used multiple spatiotempo-
ral filtering criteria following standard recommendations for using
eBird data in occupancy models (Johnston et al., 2021; Strimas-
Mackey et al., 2020).

313 | Modelling approach

We modelled the data using an integrated community occupancy
model that consisted of individual observation models (i.e. likeli-
hoods) for the BBS and eBird data sets, which shared a species-
specific biological process model. The biological process model
described how species-specific occurrence varies across space as
a function of elevation, forest cover and five bioclimatic variables,
with individual species-specific effects treated as random vari-
ables arising from common community-level normal distributions
(Dorazio & Royle, 2005). Both observation models explicitly ac-
counted for imperfect detection by allowing detection probability
to vary across species, space and replicate surveys. For the BBS
observation component, we modelled detection probability as a
function of day of the year. For the eBird observation component,
we modelled eBird detection probability as a function of day of
the year, time of day of collection, time spent, distance travelled
and the number of observers. Similar to the biological process
model, we assumed that each of the species-specific parameters in
the observation models arise from community-level distributions.
We estimated species richness of the community in the 5 x 5 km
grid cells as a derived quantity across the Northeastern United
States. We fit the model in a Bayesian framework using the spOc-
cupancy R package (Doser, Finley, et al., 2022). We also fit the
model with custom code by calling NIMBLE through R to provide
potential users with additional implementation resources (code
provided but results not shown). See Supplemental Information S1
for full model details.

314 | Results

Species richness of the interior forest bird community varied
substantially across the northeast, with high richness across
the Appalachian and Adirondack mountains and low richness in
urban areas (Figure 2a). Spatial variation in richness and species-
specific occurrence probabilities were largely driven by forest
cover, with all species in the community showing a positive re-
lationship to the amount of local-level forest cover (Figure 2b).
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FIGURE 2 Estimates from an integrated community occupancy model for a community of 27 interior forest obligate bird species across
the Northeastern United States using a 5 x5 km grid. Panel (a) shows estimated mean species richness across the region while panel (b)
shows the estimated mean (dark line), 50% credible interval (box) and 95% credible interval (whiskers) for the effect of forest cover on
the overall community (COMM) and individual species (see Table S1.1 for species codes). Panel (c) shows estimated mean occurrence
probabilities for Black-throated Green Warblers (Setophaga virens; BTNW), a common species of least concern, while panel (d) shows mean
occurrence probabilities for Cerulean Warbler (Setophaga cerulean; CERW), a rare species that is classified as near threatened.
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The integrated community occupancy model shares information
across individual species and data sources, which allowed us to
estimate reasonably precise occurrence probabilities and covari-
ate effects throughout a broad spatial extent for common as well
as rare species (e.g. Figure 2c,d). Given that the species most
vulnerable to global change are often rarely observed in large-
scale monitoring programmes, integrated community modelling
frameworks that can leverage comparable data types (e.g. struc-
tured or semi-structured occurrence or count data) from multiple
monitoring programmes and multiple species can provide a richer
understanding of vulnerable communities and the specific spe-
cies within them.

3.2 | Case study 2: Temporal trends of butterflies
in the Midwestern United States

321 | Background and motivation

Insect communities face numerous threats, with a variety of anthro-
pogenic stressors contributing to population and diversity declines
(Forister et al., 2021; Hallmann et al., 2017; Wepprich et al., 2019).
Rigorously quantifying insect population trends is notoriously dif-
ficult due to their complex life histories (e.g. seasonal variation in ac-
tivity; Saunders, Ries, et al., 2019), rarity and elusiveness of species,
biases in long-term data sets (e.g. natural history collections; Davis
et al., 2023; Ries et al., 2019) and unbalanced sampling across space
and time in volunteer monitoring programmes (Dennis et al., 2013).
Integrating multiple data sources in a community modelling frame-
work can mitigate many of these data complexities by increasing the
amount of data available, sharing information across species and
accommodating sampling biases within individual data sources. In
this case study, we use an integrated community model to quantify
relative abundance trends in 10 open-habitat-associated butterfly
species in the Midwestern United States over a recent decade. Our
model explicitly accounts for variation at multiple spatial (i.e. site,
county) and observational levels (i.e. survey) while simultaneously
accounting for variation in expected counts between different data
sources due to differences in survey protocols and observer skills
(Zylstra et al., 2021).

322 | Data

We integrated count data from five volunteer-based monitoring
programmes to assess early-summer butterfly trends (June through
July) from 2008 to 2017 across six Midwestern US states (Iowa,
Wisconsin, Illinois, Indiana, Michigan, Ohio). We focused our analy-
sis on 10 species that are year-round residents, active during sum-
mer, inhabit open areas, multivoltine, relatively easy to detect and
adequately sampled by all monitoring programmes (Supplemental
Information S2). Four data sets come from statewide, structured
butterfly surveys: (1) Illinois Butterfly Monitoring Network (266
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spatial locations); (2) Iowa Butterfly Survey Network (61 spatial
locations); (3) Michigan Butterfly Network (133 spatial locations);
and (4) Ohio Lepidopterists (118 spatial locations). In each pro-
gramme, data are collected following a Pollard transect protocol in
which trained volunteers walk ~1 km transects weekly or biweekly
throughout the summer and record every butterfly detected (Pol-
lard, 1977), although survey protocols differ slightly among states.
While each of these four data sets has substantial, repeated tem-
poral sampling across a given summer, they are restricted in spa-
tial extent to only a single state. Our fifth data set comprises
semi-structured count data from the North American Butterfly
Association (NABA), in which volunteer observers extensively sur-
vey a 25-km diameter circle once a year, recording all butterflies
observed, by species (https://www.naba.org). We used data from
85 sites that fell within our study region and survey time period.
Alone, the NABA data may not provide reliable estimates of species
temporal trends since only one count is performed at a given site
in each year, which often does not adequately represent temporal
variation in butterfly counts due to high variation in seasonal ac-
tivity periods of species (Dennis et al., 2013; Zylstra et al., 2021).
However, NABA data have a much larger spatial extent (i.e. North
America) compared to the statewide butterfly surveys, and are thus
able to provide critical information across the full study region.

323 | Modelling approach

Our integrated community model is based on a negative binomial
hierarchical model, adapted from an analysis on monarch butterflies
(Zylstra et al., 2021). We modelled the mean expected count for each
butterfly species in a given week during a given year as a function of
multiple covariates and random effects. To account for variation in
survey effort across datasets, we included a fixed categorical vari-
able of survey protocol (five levels) and a (log) linear effect of survey
effort (i.e. the total number of surveys performed at a given spatial
location in a given week). We further included a linear and quadratic
effect of week to account for species-specific seasonal variation in
activity, a linear effect of year to estimate any temporal trends in
butterfly abundance, and random effects of county, site and year
to account for additional variation. We allowed the species-specific
effects of week to vary by year to account for differences in but-
terfly phenology across the decade. We treated each of the species-
specific parameters (intercept and covariate effects) as random
variables that come from common, parameter-specific, community-
level normal distributions. We estimated a derived annual relative
abundance index for each species as the expected number of in-
dividuals counted in a single survey (i.e. using the species-specific
intercept, linear trend of year and year random effect) to create
an average across sites and weeks. We fit the model in a Bayesian
framework using the spAbundance R package (Doser, 2023). We also
fit the model with custom code by calling Stan through R (code pro-
vided but results not shown). See Supplemental Information S2 for
full model details.
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324 | Results

The integrated community model revealed varying support for
linear trends in relative abundance across butterfly species. The
95% credible intervals of all trend estimates overlapped zero, in-
dicating uncertainty in population changes over this short time
period (Figure 3), which is not entirely unexpected for butterfly
species as insects tend to have high variations in abundance from
year to year (Didham et al., 2020; Wagner et al., 2021). Seven of
the 10 species had negative average trend estimates, with the
most support for declines in Eastern Tiger Swallowtail (Papilio
glaucus; 0.87), Cabbage White (Pieris rapae; probability negative
trend = 0.83), Peck's Skipper (Polites peckius; 0.82) and Spring/
summer Azure (Celastrina ladon; 0.80). There was mild support
(69% probability) for a declining trend across the community (log-
scale mean = —0.04) although with high uncertainty (SD = 0.08). In
our case study, the integrated community modelling framework
allowed us to take advantage of the within-season repeated sam-
pling of the statewide structured monitoring data sets while simul-
taneously leveraging the large spatial extent of the NABA data to
generate trend estimates of multiple butterfly species across the

Midwestern United States. As global climate and land-use change
continue to pose threats to animal communities, modelling frame-
works that leverage all available data sources on multiple species
can provide critical insights on which species are most vulnerable
and which may be less susceptible.

3.3 | Case study 3: Estimating species- and
community-level demographic rates and
population growth

331 | Background and motivation

Comprehensive monitoring and evaluation of biodiversity re-
quires data not only on species distribution and abundance pat-
terns but also on their demographic rates including survival and
reproduction (Beyer & Manica, 2020). However, collecting mul-
tiple data types is resource-intensive for individual species, and
orders of magnitudes harder for entire ecological communities.
Thus, analytical frameworks that can combine very different
types of data, that derive from a variety of sources and protocols,
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FIGURE 3 Relative abundance trends of 10 butterfly species and the community (COMM) in the Midwestern United States from 2008
to 2017 using an integrated community model. The probability that the linear trend estimate is less than zero is also included in each panel
(i.e. that abundance is decreasing through time). Points (posterior medians with 95% credible interval lines) show the derived annual relative
abundance index for each species. Black trend lines represent the posterior median trend estimate with the shaded area denoting the 95%
credible interval. Species that indicate a possible decline over the 10-year study period are shaded in yellow (i.e. probability of a negative
trend >0.6), while species that are likely to have increased (i.e. probability of negative trend <0.4) are shaded in blue. All others are shaded in

grey.
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are especially valuable for biodiversity assessments. In this case
study, we develop a multispecies integrated population model
that extends integrated population models (Besbeas et al., 2002;
Schaub & Kéry, 2021) to a community level within a single ana-
lytical framework. Previous work has leveraged the single-species
integrated population model to estimate interspecific interactions
within a multispecies context (e.g. Quéroué et al., 2021), but only
for a small number (i.e. two or three) of species. The approach
we outline here is capable of making inferences on tens of spe-
cies simultaneously by treating species-specific demographic
rates as random effects from shared, community-level distribu-
tions (Iknayan et al., 2014). By combining multiple data types (e.g.
population-level counts, productivity, capture-recapture data) on
multiple sympatric species, this integrated community modelling
approach has the potential to improve parameter identifiability for
species and/or demographic rates for which only limited data are
available (Zipkin & Saunders, 2018). We demonstrate the potential
utility of the multispecies integrated population modelling frame-
work using a data simulation approach.

332 | Dataand approach

To construct the multispecies integrated population model, we
first defined a biological process model that incorporates both
demographic rates and population sizes for each of 10 hypotheti-
cal species that we assume are all part of the same community. We
linked species' population sizes with their demographic rates using
a female-based, age-structured matrix model (Caswell, 2000) with
two age classes (juvenile and adult) and a pre-breeding census for
each species (Figure 4a). We assume that species-specific fecundity,
juvenile survival and adult survival are each derived from parameter-
specific, normal distributions with a community-level mean and vari-
ance (Dorazio & Royle, 2005). We used the biological process model
to simulate 100 independent, annual population-level counts (i.e.
census), productivity (i.e. number of juveniles produced per adult)
and capture-mark—recapture data sets for the hypothetical commu-
nity of 10 species over a 10-year time period. While we simulated
all three types of data (census, productivity and capture—recapture
data) for all 10 species, species differed in the relative amount of
data depending on their population size. For example, rare and de-
clining species naturally had less capture-recapture and productiv-
ity data because there were fewer individuals available for sampling.
We further assumed that all data sources were collected via design-
based, structured sampling protocols, such that the data sources are
representative of each species' population but may also contain sam-
pling error. We then estimated parameters from a joint likelihood of
the three independent data sets to make inferences on the species-
and community-level demographic rates as well as derived param-
eters, including annual population sizes and growth rates (Kéry &
Royle, 2016; Schaub & Kéry, 2021). We evalu?ted the performanq;
of the model by calculating the relative bias posteriormean ~truevalue

— truevalue
of estimated parameters at both the species and community levels.
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We fit our model by developing custom code in R and JAGS with the
jagsUI package (Kellner, 2021). See Supplemental Information S3 for
full model details.

333 | Results

The multispecies integrated population model was able to recover
the true biological parameters at both the species and community
levels with little bias, and with especially high accuracy and precision
of community-level demographic rates (Figure 4b). Mean population
growth rates across the 10 years were also highly accurate for all
species, as well as the community (Figure 4c). However, estimates of
population growth rates tended to be less precise for declining spe-
cies as compared to those species whose growth rates were positive
(Figure 4c,d), likely because declining species tend to have smaller
population sizes and thus less data available for analysis. In conduct-
ing this simple simulation, we demonstrated that combining mul-
tispecies demographic and population-level count data provides a
viable solution for quantifying species-specific and community-level
dynamics and growth rates, which can ultimately aid in biodiversity
monitoring and assessments from local to regional scales. Applica-
tions of this approach may be particularly beneficial in cases where
data are limited for some species within a community (but plentiful
for others), or when one or more data types are not collected for all
species in every year (e.g. multispecies amphibian survey data, wa-
terfowl banding data, mist net capture data of birds). As these types
of models are fairly new, additional work is necessary to understand
the full inferential benefits—and potential biases—under scenarios
that vary parameter values (e.g. low vs. high detection probability
and/or sampling error) and include an exploration as to how the
amounts of various data types influence model estimates (e.g. when
all three types of data are not available for all species in all years).

4 | THINGS TO CONSIDER BEFORE USING
THIS METHOD

Potential users should consider several points before developing an
integrated community model for their system. Initial steps in deter-
mining the utility and value of combining multispecies data sources
should focus on the specific information that could be gained from
an integrated community model and the quantity and types of avail-
able data. Data integration approaches are becoming increasingly
popular (Zipkin et al., 2021), and for good reason, as they have im-
mense potential to expand inferential and predictive capabilities
from available, yet imperfect, data (Zylstra & Zipkin, 2021). How-
ever, data integration is not without its challenges and limitations.
In some cases, combining multispecies data sources—rather than
estimating parameters separately for individual species or data
sets—may be orders of magnitude more complicated with high com-
putational burdens (Gotway & Young, 2002; Pacifici et al., 2019),
or may not substantially help to answer the particular question of
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FIGUR E 4 Multispecies integrated population models (MIPM) enable unbiased inference on species-specific and community-level
demographic parameters as well as mean population growth rates over time, as shown by our simple simulation study. Panel (a) describes
the female-based age-structured model with two age classes (juvenile and adult) and a prebreeding census that was used to link population
sizes with demographic rates with i=10 species in our hypothetical community. Species-specific demographic rates of fecundity f; , juvenile
survival ¢;; and adult survival ¢;, were derived from shared distributions with a community-level mean and variance (not shown). Panel
(b) shows the mean relative bias in estimated demographic parameters (dark line) with the 50% (box) and 95% (whiskers) credible intervals
at both the community (blue) and species (white) levels compared to a simulated truth. Population growth rates were also estimated from
the MIPM with high accuracy and precision, as shown in panel (c), where black dots show the true mean population growth rates for each
species (S1-510) and dark lines show the mean estimated values with 50% (box) and 95% credible interval (whiskers). Community-level
(COMM) growth rates were derived as the geometric mean across species. Estimated population growth rates were less precise for declining
species with low survival, as shown in panel (d) for two species (S4 and S7) with the same expected fecundity.

interest. Although integrating different data types generally helps
with parameter identifiability and precision (Doser et al., 2021; Farr
et al., 2021), data integration alone cannot correct for biases in un-
structured data or problems with collinearity among environmental
variables, especially when the drivers of such biases are unknown
or cannot be incorporated within the observation model (Simmonds
et al., 2020). Simulations and model assessments can help establish
the inferential value of integrated community models as compared
to simpler alternatives for specific study systems. Furthermore, the
quantity and types of data available have important implications
for the potential structure and complexity of the biological process
model. Although the incorporation of mechanistic processes within
models is a clear goal within ecological research, if data are unavail-
able to estimate detailed demographic parameters, no amount of

integration will be able to rectify the situation (Plard et al., 2021;
Riecke et al., 2019).

Several papers have focused on the individual challenges of
both single-species data integration (Isaac et al., 2020; Miller
et al., 2019; Zipkin et al., 2021) and hierarchical community mod-
elling (Guillera-Arroita, 2017; Iknayan et al., 2014). Successful data
integration models require consideration of the spatial extent and
scale of the various data sources to resolve mismatches in the
collection grain (e.g. through change of support; Farr et al., 2021;
Pacifici et al., 2019; Zipkin et al., 2017), spatial biases in unstruc-
tured and semi-structured data due to preferential sampling (e.g.
by including site selection within the model [Conn et al., 2017]
or spatially correlated random effects [Hefley et al., 2017]), and
issues related to unbalanced quantities of various data sources
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(e.g. through subsampling or downweighing high volume, low
information-content data [Johnston et al., 2018] or modelling bi-
ases within the likelihood [Fer et al., 2018; Tang et al., 2021]). Simi-
larly, the value of inferences within community models will depend
on how the community is defined and the proportion of species in
the community that are rare or undersampled. Statistically speak-
ing, including all species that were observed during a multispecies
data collection event within a community model is legitimate, as
the result will simply draw species-level parameters towards com-
munity averages (Dorazio & Royle, 2005). In practice, however, re-
searchers will want to have an ecological justification for including
individual species within a community modelling analysis. Addi-
tionally, when a high proportion of species are rare or infrequently
observed, it is difficult to achieve convergence in community mod-
els and parameter estimates are likely to be exceedingly imprecise
for many species (Zipkin et al., 2020), potentially rendering such
analyses less informative.

Within the context of integrated community models, the chal-
lenges of both data integration and community modelling are likely
to be present and may be exacerbated. For example, problems as-
sociated with unbalanced data in integrated community models
may be acute when the spatial extent of the study is broad (Zip-
kin et al., 2021) or the goal is to understand mechanistic processes
(Campbell et al., 2018). This is especially true if data quantities are
highly uneven among species or many species are underrepresented
or absent within a specific data source, either due to sampling con-
straints or cryptic behaviours that vary among species within the
community. Combining replicated and non-replicated data sets
typically requires more complex ways of accounting for errors in
detection (Doser, Leuenberger, et al., 2022). In many hierarchical
community models, which focus solely on estimating occurrence or
abundance rates, defining the community is done rather loosely and
may simply be ‘all species’ (all observed species, or both observed
and unobserved species if using data augmentation; Royle et al.,
2007). In the context of an integrated community model, it may be
more important to have a clear definition of, and strong biological
justification for, the target community because of the additional pa-
rameters that are estimated (e.g. demographic rates). Otherwise, in-
ferences on community parameters—as well as for rare species—may
not be biologically meaningful.

Finally, we expect there to be computational issues for many
types of integrated community models, as this is a concern for both
single-species integrated models and hierarchical community mod-
els. Many hierarchical models are analysed using Bayesian meth-
ods, such as MCMC approaches that can take an exceedingly long
time to run and may be difficult to troubleshoot. Typically, such
models are fit using common Bayesian software packages such as
JAGS, NIMBLE and Stan, which provide flexibility for defining spe-
cialized models, but require a substantial amount of programming
knowledge and custom coding. Thus, potential users should con-
sider if it is worth developing a complicated, but more adaptable,
model or if qualitatively similar inferences can be achieved using
built-in software (e.g. R packages). Fortunately, there has been
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substantial development on creating user-friendly and computa-
tionally efficient software for both single-species integrated mod-
els and community models. Simple forms of integrated community
models, like the hierarchical negative binomial model used in the
butterfly case study, can be fit using user-friendly R packages that
can accommodate a variety of random effect structures (e.g. brms
[Burkner, 2017], spAbundance [Doser, 2023]), while the integrated
community occupancy model used in the bird case study can be
fit with the spOccupancy R package (Doser, Finley, et al., 2022).
Continued development of specialized and computationally ef-
ficient software is an important avenue for future research that
can more readily facilitate the implementation of integrated com-
munity models. However, for now, many complex biological and
observational model structures are likely to require custom coding
using Bayesian programming languages.

5 | CONCLUSIONS

Integrated community models are an exciting framework to assess
biodiversity dynamics using unified approaches that can combine
data from multiple different sources that vary in information content.
Such methods can leverage public science, government-funded and
traditional, scientist-collected data sources to expand the spatial and
temporal scope of inference for the many data-deficient species on
which little is known. Integrated community models take advantage
of the collective benefits of data integration and community model-
ling frameworks, while accounting for both biological processes and
observation errors. Thus, these models can improve the accuracy
and precision on both species-level parameters and community-
level metrics, enhancing understanding about the variations in spe-
cies' response to local environmental factors and global climate and
land-use change. Future research in integrated community model-
ling could focus on approaches to assess model fit and compare
among competing model structures, incorporating wider varieties
of structured and unstructured data types including opportunistic
presence-only data and expanding inferences to communities with
greater numbers of species. The development of integrated models
also has important implications for the design of new data collec-
tion activities. Forthcoming sampling and monitoring programmes
should consider what data sets are already available on particular
species and communities in order to obtain maximally beneficial data
(Chandler et al., 2017; Moussy et al., 2021). For example, targeting
areas with limited data or collecting data on unknown demographic
rates could be particularly advantageous within an integrated com-
munity modelling framework. While integrated community models
are still at an early stage of development, given the exponentially
growing use of both single-species integrated models and hierarchi-
cal community models over the last decade, we expect there to be
much activity in this area over the next decade. Such approaches
are leading to increasingly efficient and useful assessments of bio-
diversity, which is critically important as the world's environment is
changing rapidly.

NIPUOD) pue SWId [, 3} 38 *[£20Z/21/10] U0 Areiqry autjuQ Adfip “AMsiotu) 1erg UeSIYONN A9 TI0P1'9S9T-S9E1/1T11°01/10p/wod Kojiav Areiqrourjuosjewnofsaq//:sdy woy papeojumod 0 ‘9S9zs9€ |

sdny)

00" Kojim”

ASULIT SUOWIO)) dANEAX)) o[qeorjdde oy Aq PauIdA0S AIe SOILE () ‘2SN JO I[N 10§ AIRIqIT duI[uQ) A1 UO (:



ZIPKIN et al.

e Bl Journal of Animal Ecology E%“L

AUTHOR CONTRIBUTIONS

Elise F. Zipkin conceived of the study, lead the team and wrote the
initial draft of the paper with input from Jeffrey W. Doser and Court-
ney L. Davis. Jeffrey W. Doser, Wendy Leuenberger and Courtney
L. Davis led the development and analysis of case studies one, two
and three, respectively, with input from Samuel Ayebare, Kayla L.
Davis and Elise F. Zipkin. All authors reviewed the manuscript and
provided edits during revisions.

ACKNOWLEDG EMENTS

We thank Leslie Ries and the North American Butterfly Association
(NABA) for providing access to the data used in case study two. We
thank the editors and reviewers for many helpful comments on ear-
lier drafts, especially Rob Salguero-Gomez for extensive feedback
at various stages of the writing process. This study was funded by
the United States National Science Foundation (NSF) with award
DEB-1954406.

CONFLICTOF INTEREST STATEMENT
The authors have no conflict of interest.

DATA AVAILABILITY STATEMENT

The code and data used in the integrated community modelling case
studies can be found on the Zipkin Lab Code Archive (https://zipki
nlab.github.io/) and are also permanently archived on Zenodo at
https://doi.org/10.5281/zenodo.8361425 (Zipkin et al., 2023).

ETHICS STATEMENT
Not applicable.

ORCID

Elise F. Zipkin
Jeffrey W. Doser
Courtney L. Davis

https://orcid.org/0000-0003-4155-6139
https://orcid.org/0000-0002-8950-9895
https://orcid.org/0000-0002-6467-4288

Kayla L. Davis https://orcid.org/0000-0002-9360-828X

REFERENCES

Altwegg, R., & Nichols, J. D. (2019). Occupancy models for citizen-
science data. Methods in Ecology and Evolution, 10, 8-21. https://
doi.org/10.1111/2041-210X.13090

Barnett, D. T., Duffy, P. A., Schimel, D. S., Krauss, R. E., Irvineg, K. M.,
Davis, F. W., Gross, J. E., Azuaje, E. L., Thorpe, A. S., Gudex-Cross, D.,
& Patterson, M. (2019). The terrestrial organism and biogeochemis-
try spatial sampling design for the National Ecological Observatory
Network.  Ecosphere, 10, €02540. https://doi.org/10.1002/
ecs2.2540

Barraquand, F., & Gimenez, O. (2019). Integrating multiple data
sources to fit matrix population models for interacting species.
Ecological Modelling, 411, 108713. https://doi.org/10.1016/j.ecolm
0del.2019.06.001

Besbeas, P., Freeman, S. N., Morgan, B. J. T., & Catchpole, E. A. (2002).
Integrating mark-recapture-recovery and census data to estimate
animal abundance and demographic parameters. Biometrics, 58,
540-547. https://doi.org/10.1111/j.0006-341x.2002.00540.x

Beyer, R. M., & Manica, A. (2020). Historical and projected future
range sizes of the world's mammals, birds, and amphibians. Nature

Communications, 11, 5633. https://doi.org/10.1038/s41467-020-
19455-9

Bland, L. M., Bielby, J., Kearney, S., Orme, C. D. L., Watson, J. E., & Collen,
B. (2017). Toward reassessing data-deficient species. Conservation
Biology, 3, 531-539. https://doi.org/10.1111/cobi.12850

Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming
limitations of modelling rare species by using ensembles of small
models. Journal of Animal Ecology, 6, 1210-1218. https://doi.
org/10.1111/2041-210X.12403

Brown, J. L., & Collopy, M. W. (2013). Immigration stabilizes a popula-
tion of threatened cavity-nesting raptors despite possibility of nest
box imprinting. Journal of Avian Biology, 44, 141-148. https://doi.
org/10.1111/j.1600-048X.2012.05728.x

Biirkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models
Using Stan. Journal of Statistical Software, 80(1), 1-28. https://doi.
org/10.18637/jss.v080.i01

Campbell, S. P., Zylstra, E. R., Darst, C. R., Averill-Murray, R. C., & Steidl,
R. J. (2018). A spatially explicit hierarchical model to characterize
population viability. Ecological Applications, 28, 2055-2065. https://
doi.org/10.1002/eap.1794

Caswell, H. (2000). Matrix population models: Construction, analysis, and
interpretation (2nd ed.). Sinauer Associates.

Chandler, M., See, L., Copas, K., Bonde, A. M., Lopez, B. C., Danielsen,
F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., &
Rosemartin, A. (2017). Contribution of citizen science towards in-
ternational biodiversity monitoring. Biological Conservation, 213,
280-294. https://doi.org/10.1016/j.biocon.2016.09.004

Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J., & Zhang,
S. (2017). Generalized joint attribute modeling for biodiversity
analysis: Median-zero, multivariate, multifarious data. Ecological
Monographs, 87, 34-56. https://doi.org/10.1002/ecm.1241

Clark, T. J. (2021). Large carnivore recolonization reshapes population
and community dynamics: Implications for harvest management.
Dissertation. University of Montana.

Conn, P. B., Thorson, J. T., & Johnson, D. S. (2017). Confronting prefer-
ential sampling when analysing population distributions: Diagnosis
and model-based triage. Methods in Ecology and Evolution, 8, 1535—
1546. https://doi.org/10.1111/2041-210X.12803

Davis, C. L., Guralnick, R. P., & Zipkin, E. F. (2023). Challenges and op-
portunities for using natural history collections to estimate insect
population trends. Journal of Animal Ecology, 92, 237-249. https://
doi.org/10.1111/1365-2656.13763

de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Temple
Lang, D., & Bodik, R. (2017). Programming with models: Writing
statistical algorithms for general model structures with NIMBLE.
Journal of Computational and Graphical Statistics, 26, 403—413.
https://doi.org/10.1080/10618600.2016.1172487

Dennis, E. B., Freeman, S. N., Brereton, T., & Roy, D. B. (2013). Indexing
butterfly abundance whilst accounting for missing counts and vari-
ability in seasonal pattern. Methods in Ecology and Evolution, 4, 637—
645. https://doi.org/10.1111/2041-210X.12053

Devarajan, K., Morelli, T. L., & Tenan, S. (2020). Multi-species occupancy
models: Review, roadmap, and recommendations. Ecography, 43,
1612-1624. https://doi.org/10.1111/ecog.04957

Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A.,
Menz, M. H., Miiller, J., Packer, L., Saunders, M. E., Schonrogge, K.,
Stewart, A. J. A., Yanoviak, S. P., & Hassall, C. (2020). Interpreting in-
sect declines: Seven challenges and a way forward. Insect Conservation
and Diversity, 13, 103—114. https://doi.org/10.1111/icad.12408

Dorazio, R. M. (2014). Accounting for imperfect detection and survey
bias in statistical analysis of presence-only data. Global Ecology and
Biogeography, 23, 1472—-1484. https://doi.org/10.1111/geb.12216

Dorazio, R. M. (2016). Bayesian data analysis in population ecology:
Motivations, methods, and benefits. Population Ecology, 58, 31-44.
https://doi.org/10.1007/s10144-015-0503-4

NIPUOD) pue SWId [, 3} 38 *[£20Z/21/10] U0 Areiqry autjuQ Adfip “AMsiotu) 1erg UeSIYONN A9 TI0P1'9S9T-S9E1/1T11°01/10p/wod Kojiav Areiqrourjuosjewnofsaq//:sdy woy papeojumod 0 ‘9S9zs9€ |

sdny)

00" Kojim”

ASULIT SUOWIO)) dANEAX)) o[qeorjdde oy Aq PauIdA0S AIe SAOILE () ‘2SN JO I[N 10§ AIRIqIT duI[uQ) A1 UO (:


https://zipkinlab.github.io/
https://zipkinlab.github.io/
https://doi.org/10.5281/zenodo.8361425
https://orcid.org/0000-0003-4155-6139
https://orcid.org/0000-0002-8950-9895
https://orcid.org/0000-0002-6467-4288
https://orcid.org/0000-0002-9360-828X
https://doi.org/10.1111/2041-210X.13090
https://doi.org/10.1111/2041-210X.13090
https://doi.org/10.1002/ecs2.2540
https://doi.org/10.1002/ecs2.2540
https://doi.org/10.1016/j.ecolmodel.2019.06.001
https://doi.org/10.1016/j.ecolmodel.2019.06.001
https://doi.org/10.1111/j.0006-341x.2002.00540.x
https://doi.org/10.1038/s41467-020-19455-9
https://doi.org/10.1038/s41467-020-19455-9
https://doi.org/10.1111/cobi.12850
https://doi.org/10.1111/2041-210X.12403
https://doi.org/10.1111/2041-210X.12403
https://doi.org/10.1111/j.1600-048X.2012.05728.x
https://doi.org/10.1111/j.1600-048X.2012.05728.x
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1002/eap.1794
https://doi.org/10.1002/eap.1794
https://doi.org/10.1016/j.biocon.2016.09.004
https://doi.org/10.1002/ecm.1241
https://doi.org/10.1111/2041-210X.12803
https://doi.org/10.1111/1365-2656.13763
https://doi.org/10.1111/1365-2656.13763
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1111/2041-210X.12053
https://doi.org/10.1111/ecog.04957
https://doi.org/10.1111/icad.12408
https://doi.org/10.1111/geb.12216
https://doi.org/10.1007/s10144-015-0503-4
https://orcid.org/0000-0003-4155-6139
https://orcid.org/0000-0002-8950-9895
https://orcid.org/0000-0002-6467-4288
https://orcid.org/0000-0002-9360-828X
https://doi.org/10.18637/jss.v080.i01

ZIPKIN et al.

Dorazio, R. M., & Royle, J. A. (2005). Estimating size and composition
of biological communities by modeling the occurrence of spe-
cies. Journal of the American Statistical Association, 100, 389-398.
https://doi.org/10.1198/016214505000000015

Dorazio, R. M., Royle, 1. A., Soderstrom, B., & Glimskar, A. (2006).
Estimating species richness and accumulation by modeling species
occurrence and detectability. Ecology, 87, 842-854. https://doi.
0rg/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2

Doser, J. W. (2023). “spAbundance: An R package for univariate and mul-
tivariate spatially-explicit abundance models”. R package version
v0.1.0. https://github.com/doserjef/spAbundance

Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy:
An R package for single-species, multi-species, and integrated spa-
tial occupancy models. Methods in Ecology and Evolution, 13, 1670—
1678. https://doi.org/10.1111/2041-210X.13897

Doser, J. W., Finley, A. O., Weed, A. S., & Zipkin, E. F. (2021). Integrating
automated acoustic vocalization data and point count surveys for
estimation of bird abundance. Methods in Ecology and Evolution,
12(6), 1040-1049. https://doi.org/10.1111/2041-210X.13578

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T., & Zipkin, E.
F. (2022). Integrated community occupancy models: A framework
to assess occurrence and biodiversity dynamics using multiple data
sources. Methods in Ecology and Evolution, 13, 919-932. https://doi.
org/10.1111/2041-210X.13811

Farr, M. T., Green, D. S., Holekamp, K. E., Roloff, G. J., & Zipkin, E.
F. (2019). Multispecies hierarchical modeling reveals variable
responses of African carnivores to management alternatives.
Ecological Applications, 29, e01845. https://doi.org/10.1002/
eap.1845

Farr, M. T., Green, D. S., Holekamp, K. E., & Zipkin, E. F. (2021).
Integrating distance sampling and presence-only data to estimate
abundance. Ecology, 102(1), e03204. https://doi.org/10.1002/
ecy.3204

Fer, 1., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., &
Dietze, M. C. (2018). Linking big models to big data: Efficient
ecosystem model calibration through Bayesian model emula-
tion. Biogeosciences, 15, 5801-5830. https://doi.org/10.5194/
bg-15-5801-2018

Fletcher, R. J., Jr., Hefley, T. J., Robertson, E. P., Zuckerberg, B., McCleery,
R. A., & Dorazio, R. M. (2019). A practical guide for combining data
to model species distributions. Ecology, 100, €02710. https://doi.
0rg/10.1002/ecy.2710

Fordyce, J. A., Gompert, Z., Forister, M. L., & Nice, C. C. (2011). A hier-
archical Bayesian approach to ecological count data: A flexible tool
for ecologists. PLoS ONE, 6, €26785. https://doi.org/10.1371/journ
al.pone.0026785

Forister, M. L., Halsch, C. A., Nice, C. C., Fordyce, J. A., Dilts, T.
E., Oliver, J. C., Prudic, K. L., Shapiro, A. M., Wilson, J. K., &
Glassberg, J. (2021). Fewer butterflies seen by community scien-
tists across the warming and drying landscapes of the American
West. Science, 371, 1042-1045. https://doi.org/10.1126/scien
ce.abe5585

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/
hierarchical models. Cambridge University Press.

Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial
data. Journal of the American Statistical Association, 97, 632—648.

Grattarola, F., Bowler, D., & Keil, P. (2023). Integrating presence-only and
presence-absence data to model changes in species geographic
ranges: An example in the Neotropics. Journal of Biogeography, 50,
1561-1675. https://doi.org/10.1111/jbi.14622

Guillera-Arroita, G. (2017). Modelling of species distributions, range
dynamics and communities under imperfect detection: Advances,
challenges and opportunities. Ecography, 40, 281-295. https://doi.
org/10.1111/ecog.02445

Guillera-Arroita, G., Kéry, M., & Lahoz-Monfort, J. J. (2019). Inferring spe-
cies richness using multispecies occupancy modeling: Estimation

Journal of Animal Ecology E%ﬂl 13

performance and interpretation. Ecology and Evolution, 9, 780-792.
https://doi.org/10.1002/ece3.4821

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N.,
Schwan, H., Stenmans, W., Miller, A., Sumser, H., Horren, T.,
Goulson, D., & de Kroon, H. (2017). More than 75 percent de-
cline over 27 years in total flying insect biomass in protected
areas. PLoS ONE, 12, e0185809. https://doi.org/10.1371/journ
al.pone.0185809

Hamilton, S. H., Pollino, C. A., & Jakeman, A. J. (2015). Habitat suitability
modelling of rare species using Bayesian networks: Model evalua-
tion under limited data. Ecological Modelling, 299, 64-78. https://
doi.org/10.1016/j.ecolmodel.2014.12.004

Hefley, T. J., Hooten, M. B., Hanks, E. M., Russell, R. E., & Walsh, D. P. (2017).
Dynamic spatio-temporal models for spatial data. Spatial Statistics,
20, 206-220. https://doi.org/10.1016/j.spasta.2017.02.005

Iknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014).
Detecting diversity: Emerging methods to estimate species di-
versity. Trends in Ecology & Evolution, 29, 97-106. https://doi.
0rg/10.1016/j.tree.2013.10.012

Isaac, N. J., Jarzyna, M. A., Keil, P., Dambly, L. L., Boersch-Supan, P. H.,
Browning, E., Freeman, S. N., Golding, N., Guillera-Arroita, G.,
Henrys, P. A., & Jarvis, S. (2020). Data integration for large-scale
models of species distributions. Trends in Ecology & Evolution, 35,
56-67. https://doi.org/10.1016/j.tree.2019.08.006

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M.,
Guangchun, L., & Wilmshurst, J. M. (2017). Biodiversity losses and
conservation responses in the Anthropocene. Science, 356, 270—
275. https://doi.org/10.1126/science.aam93

Johnston, A., Fink, D., Hochachka, W. M., & Kelling, S. (2018). Estimates
of observer expertise improve species distributions from citizen
science data. Methods in Ecology and Evolution, 9, 88-97. https://doi.
org/10.1111/2041-210X.12838

Johnston, A., Hochachka, W. M., Strimas-Mackey, M. E., Ruiz Gutierrez,
V., Robinson, O. J., Miller, E. T., Auer, T., Kelling, S. T., & Fink, D.
(2021). Analytical guidelines to increase the value of community
science data: An example using eBird data to estimate species dis-
tributions. Diversity and Distributions, 27, 1265-1277. https://doi.
org/10.1111/ddi.13271

Kelling, S., Johnston, A., Bonn, A., Fink, D., Ruiz-Gutierrez, V., Bonney,
R., Fernandez, M., Hochachka, W. M., Julliard, R., Kraemer, R., &
Guralnick, R. (2019). Using semi-structured surveys to improve cit-
izen science data for monitoring biodiversity. Bioscience, 69, 170—
179. https://doi.org/10.1093/biosci/biz010

Kellner, K. (2021). JagUI: A wrapper around ‘rjags’ to streamline JAGS anal-
yses. R package version 1.5.2, https://CRAN.R-project.org/packa
ge=jagsUlL

Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology:
Analysis of distribution, abundance, and species richness in R and
BUGS. Academic Press.

Kindsvater, H. K., Dulvy, N. K., Horswill, C., Juan-Jorda, M. J., Mangel,
M., & Matthiopoulos, J. (2018). Overcoming the data crisis in bio-
diversity conservation. Trends in Ecology & Evolution, 33, 676—688.
https://doi.org/10.1016/j.tree.2018.06.004

Lahoz-Monfort, J. 1., Harris, M. P., Wanless, S., Freeman, S. N., & Morgan,
B. J. (2017). Bringing it all together: Multi-species integrated pop-
ulation modelling of a breeding community. Journal of Agricultural,
Biological and Environmental Statistics, 22, 140-160. https://doi.
0rg/10.1007/s13253-017-0279-4

Lauret, V., Labach, H., David, L., Authier, M., & Gimenez, O. (2023). Using
integrated multispecies occupancy models to map co-occurrence
between bottlenose dolphins and fisheries in the Gulf of lion,
French Mediterranean Sea. Oikos, €10270. https://doi.org/10.1111/
oik.10270

Lee, A. M., Bjgrkvoll, E. M., Hansen, B. B., Albon, S. D., Stien, A., Szether,
B.-E., Engen, S., Veiberg, V., Loe, L. L., & Grgtan, V. (2015). An inte-
grated population model for a long-lived ungulate: More efficient

NIPUOD) pue SWId [, 3} 38 *[£20Z/21/10] U0 Areiqry autjuQ Adfip “AMsiotu) 1erg UeSIYONN A9 TI0P1'9S9T-S9E1/1T11°01/10p/wod Kojiav Areiqrourjuosjewnofsaq//:sdy woy papeojumod 0 ‘9S9zs9€ |

sdny)

00" Kojim”

ASULIT SUOWIO)) dANEAX)) o[qeorjdde oy Aq PauIdA0S AIe SAOILE () ‘2SN JO I[N 10§ AIRIqIT duI[uQ) A1 UO (:


https://doi.org/10.1198/016214505000000015
https://github.com/doserjef/spAbundance
https://doi.org/10.1111/2041-210X.13897
https://doi.org/10.1111/2041-210X.13578
https://doi.org/10.1111/2041-210X.13811
https://doi.org/10.1111/2041-210X.13811
https://doi.org/10.1002/eap.1845
https://doi.org/10.1002/eap.1845
https://doi.org/10.1002/ecy.3204
https://doi.org/10.1002/ecy.3204
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.1002/ecy.2710
https://doi.org/10.1002/ecy.2710
https://doi.org/10.1371/journal.pone.0026785
https://doi.org/10.1371/journal.pone.0026785
https://doi.org/10.1126/science.abe5585
https://doi.org/10.1126/science.abe5585
https://doi.org/10.1111/jbi.14622
https://doi.org/10.1111/ecog.02445
https://doi.org/10.1111/ecog.02445
https://doi.org/10.1002/ece3.4821
https://doi.org/10.1371/journal.pone.0185809
https://doi.org/10.1371/journal.pone.0185809
https://doi.org/10.1016/j.ecolmodel.2014.12.004
https://doi.org/10.1016/j.ecolmodel.2014.12.004
https://doi.org/10.1016/j.spasta.2017.02.005
https://doi.org/10.1016/j.tree.2013.10.012
https://doi.org/10.1016/j.tree.2013.10.012
https://doi.org/10.1016/j.tree.2019.08.006
https://doi.org/10.1126/science.aam93
https://doi.org/10.1111/2041-210X.12838
https://doi.org/10.1111/2041-210X.12838
https://doi.org/10.1111/ddi.13271
https://doi.org/10.1111/ddi.13271
https://doi.org/10.1093/biosci/biz010
https://cran.r-project.org/package%3DjagsUI
https://cran.r-project.org/package%3DjagsUI
https://doi.org/10.1016/j.tree.2018.06.004
https://doi.org/10.1007/s13253-017-0279-4
https://doi.org/10.1007/s13253-017-0279-4
https://doi.org/10.1111/oik.10270
https://doi.org/10.1111/oik.10270

ZIPKIN et al.

(Al Journal of Animal Ecology E%“L

data use with Bayesian methods. Oikos, 124, 806—816. https://doi.
org/10.1111/0ik.01924

Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., &
Guisan, A. (2010). Overcoming the rare species modelling paradox:
A novel hierarchical framework applied to an Iberian endemic plant.
Biological Conservation, 143, 2647-2657. https://doi.org/10.1016/j.
biocon.2010.07.007

Miller, D. A., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent
past and promising future for data integration methods to estimate
species' distributions. Methods in Ecology and Evolution, 10, 22-37.
https://doi.org/10.1111/2041-210X.13110

Mosnier, A., Doniol-Valcroze, T., Gosselin, J.-F., Lesage, V., Measures,
L. N., & Hammill, M. O. (2015). Insights into processes of pop-
ulation decline using an integrated population model: The case
of the St. Lawrence estuary beluga (Delphinapterus leucas).
Ecological Modelling, 314, 15-31. https://doi.org/10.1016/j.ecolm
odel.2015.07.006

Moussy, C., Burfield, I. J., Stephenson, P. J., Newton, A. F., Butchart, S.
H., Sutherland, W. J., Gregory, R. D., McRae, L., Bubb, P., & Roesler,
1. (2021). A quantitative global review of species population mon-
itoring. Conservation Biology, 36, €1372. https://doi.org/10.1111/
cobi.13721

Oppel, S., Hilton, G., Ratcliffe, N., Fenton, C., Daley, 1., Gray, G., Vickery,
J., & Gibbons, D. (2014). Assessing population viability while ac-
counting for demographic and environmental uncertainty. Ecology,
95, 1809-1818. https://doi.org/10.1890/13-0733.1

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan,
L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more
out of community data? A conceptual framework and its imple-
mentation as models and software. Ecology Letters, 20, 561-576.
https://doi.org/10.1111/ele.12757

Pacifici, K., Reich, B. J., Miller, D. A., Gardner, B., Stauffer, G., Singh, S.,
McKerrow, A., & Collazo, J. A. (2017). Integrating multiple data
sources in species distribution modeling: A framework for data fu-
sion. Ecology, 98, 840-850. https://doi.org/10.1002/ecy.1710

Pacifici, K., Reich, B. J., Miller, D. A., & Pease, B. S. (2019). Resolving mis-
aligned spatial data with integrated species distribution models.
Ecology, 100, e02709. https://doi.org/10.1002/ecy.2709

Paquet, M., & Barraquand, F. (2022). Assessing species interactions
using integrated predator-prey models. EcoEvoRxiv https://doi.
org/10.32942/X2RC7W

Pardieck, K., Ziolkowski, D., Jr., Lutmerding, M., Aponte, V., & Hudson, M.
A. (2020). North American breeding bird survey dataset 1966-2019.
U.S. Geological Survey Data Release. https://doi.org/10.5066/
P9J6QUF6

Peron, G., & Koons, D. N. (2012). Integrated modeling of communities:
Parasitism, competition, and demographic synchrony in sympatric
ducks. Ecology, 93, 2456-2464. https://doi.org/10.1890/11-1881.1
Plard, F., Fay, R., Kery, M., Cohas, A., & Schaub, M. (2019). Integrated
population models: Powerful methods to embed individual pro-
cesses in population dynamics models. Ecology, 100(6), €02715.
https://doi.org/10.1002/ecy.2715

Plard, F., Turek, D., & Schaub, M. (2021). Consequences of violating
assumptions of integrated population models on parameter es-
timates. Environmental and Ecological Statistics, 28(3), 667—695.
https://doi.org/10.1007/s10651-021-00507-2

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling.

Pollard, E. (1977). A method for assessing changes in the abundance
of butterflies. Biological Conservation, 12, 115-134. https://doi.
0rg/10.1016/0006-3207(77)90065-9

Quéroué, M., Barbraud, C., Barraquand, F., Turek, D., Delord, K.,
Pacoureau, N., & Gimenez, O. (2021). Multispecies integrated pop-
ulation model reveals bottom-up dynamics in a seabird predator—
prey system. Ecological Monographs, 91, e€01459. https://doi.
org/10.1002/ecm.1459

R Core Team. (2022). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. https://www.R-proje
ct.org

Rapacciuolo, G., & Blois, J. L. (2019). Understanding ecological change
across large spatial, temporal and taxonomic scales: Integrating
data and methods in light of theory. Ecography, 42, 1247-1266.
https://doi.org/10.1111/ecog.04616

Riecke, T. V., Williams, P. J., Behnke, T. L., Gibson, D., Leach, A. G.,
Sedinger, B. S., Street, P. A., & Sedinger, J. S. (2019). Integrated
population models: Model assumptions and inference. Methods
in Ecology and Evolution, 10(7), 1072-1082. https://doi.
org/10.1111/2041-210X.13195

Ries, L., Zipkin, E. F., & Guralnick, R. P. (2019). Tracking trends in mon-
arch abundance over the 20th century is currently impossible using
museum records. Proceedings of the National Academy of Sciences
of the United States of America, 116, 13745-13748. https://doi.
0rg/10.1073/pnas.1904807116

Rollinson, C. R., Finley, A. O., Alexander, M. R., Banerjee, S., Hamil, K. D.,
Koenig, L. E., Locke, D. H., Peterson, M., Tingley, M. W., Wheeler,
K., Youndflesh, C., & Zipkin, E. F. (2021). Working across space
and time: Nonstationarity in ecological research and application.
Frontiers in Ecology and the Environment, 19, 66—72. https://doi.
org/10.1002/fee.2298

Royle, J. A., Dorazio, R. M., & Link, W. A. (2007). Analysis of multinomial
models with unknown index using data augmentation. Journal of
Computational and Graphical Statistics, 16(1), 67-85.

Saunders, S. P., Cuthbert, F. J., & Zipkin, E. F. (2018). Evaluating pop-
ulation viability and efficacy of conservation management using
integrated population models. Journal of Applied Ecology, 55, 1380—
1392. https://doi.org/10.1111/1365-2664.13080

Saunders, S. P., Farr, M. T., Wright, A. D., Bahlai, C. A., Ribeiro, J. W.,
Rossman, S., Sussman, A. L., Arnold, T. W., & Zipkin, E. F. (2019).
Disentangling data discrepancies with integrated population mod-
els. Ecology, 100, e02714. https://doi.org/10.1002/ecy.2714

Saunders, S. P., Ries, L., Neupane, N., Ramirez, M. 1., Garcia-Serrano, E.,
Renddn-Salinas, E., & Zipkin, E. F. (2019). Multi-scale seasonal fac-
tors drive the size of winter monarch colonies. Proceedings of the
National Academy of Sciences of the United States of America, 116,
8609-8614. https://doi.org/10.1073/pnas.1805114116

Schaub, M., & Abadi, F. (2011). Integrated population models: A novel
analysis framework for deeper insights into population dynamics.
Journal of Ornithology, 152, 227-237.

Schaub, M., Gimenez, O., Sierro, A., & Arlettaz, R. (2007). Use of inte-
grated modeling to enhance estimates of population dynamics ob-
tained from limited data. Conservation Biology, 21, 945-955. https://
doi.org/10.1111/j.1523-1739.2007.00743.x

Schaub, M., & Kéry, M. (2021). Integrated population models: Theory and
ecological applications with R and JAGS. Academic Press.

Simmonds, E. G., Jarvis, S. G., Henrys, P. A., Isaac, N. J., & O'Hara, R. B.
(2020). Is more data always better? A simulation study of benefits
and limitations of integrated distribution models. Ecography, 43,
1413-1422. https://doi.org/10.1111/ecog.05146

Sollmann, R., Gardner, B., Williams, K. A., Gilbert, A. T., & Veit, R.
R. (2016). A hierarchical distance sampling model to estimate
abundance and covariate associations of species and commu-
nities. Methods in Ecology and Evolution, 7, 529-537. https://doi.
org/10.1111/2041-210X.12518

Sor, R., Park, Y. S., Boets, P., Goethals, P. L., & Lek, S. (2017). Effects
of species prevalence on the performance of predictive models.
Ecological Modelling, 354, 11-19. https://doi.org/10.1016/j.ecolm
odel.2017.03.006

Stan Development Team. (2022). Stan modeling language users guide
and reference manual, Version 2.31. https://mc-stan.org

Strimas-Mackey, M., Hochachka, W. M., Ruiz-Gutierrez, V., Robinson,
O. 1., Miller, E. T., Auer, T., Kelling, S., Fink, D., & Johnston, A.
(2020). Best practices for using eBird data. Version 1.0. Cornell Lab

NIPUOD) pue SWId [, 3} 38 *[£20Z/21/10] U0 Areiqry autjuQ Adfip “AMsiotu) 1erg UeSIYONN A9 TI0P1'9S9T-S9E1/1T11°01/10p/wod Kojiav Areiqrourjuosjewnofsaq//:sdy woy papeojumod 0 ‘9S9zs9€ |

sdny)

00" Kojim”

ASULIT SUOWIO)) dANEAX)) o[qeorjdde oy Aq PauIdA0S AIe SAOILE () ‘2SN JO I[N 10§ AIRIqIT duI[uQ) A1 UO (:


https://doi.org/10.1111/oik.01924
https://doi.org/10.1111/oik.01924
https://doi.org/10.1016/j.biocon.2010.07.007
https://doi.org/10.1016/j.biocon.2010.07.007
https://doi.org/10.1111/2041-210X.13110
https://doi.org/10.1016/j.ecolmodel.2015.07.006
https://doi.org/10.1016/j.ecolmodel.2015.07.006
https://doi.org/10.1111/cobi.13721
https://doi.org/10.1111/cobi.13721
https://doi.org/10.1890/13-0733.1
https://doi.org/10.1111/ele.12757
https://doi.org/10.1002/ecy.1710
https://doi.org/10.1002/ecy.2709
https://doi.org/10.32942/X2RC7W
https://doi.org/10.32942/X2RC7W
https://doi.org/10.5066/P9J6QUF6
https://doi.org/10.5066/P9J6QUF6
https://doi.org/10.1890/11-1881.1
https://doi.org/10.1002/ecy.2715
https://doi.org/10.1007/s10651-021-00507-2
https://doi.org/10.1016/0006-3207(77)90065-9
https://doi.org/10.1016/0006-3207(77)90065-9
https://doi.org/10.1002/ecm.1459
https://doi.org/10.1002/ecm.1459
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/ecog.04616
https://doi.org/10.1111/2041-210X.13195
https://doi.org/10.1111/2041-210X.13195
https://doi.org/10.1073/pnas.1904807116
https://doi.org/10.1073/pnas.1904807116
https://doi.org/10.1002/fee.2298
https://doi.org/10.1002/fee.2298
https://doi.org/10.1111/1365-2664.13080
https://doi.org/10.1002/ecy.2714
https://doi.org/10.1073/pnas.1805114116
https://doi.org/10.1111/j.1523-1739.2007.00743.x
https://doi.org/10.1111/j.1523-1739.2007.00743.x
https://doi.org/10.1111/ecog.05146
https://doi.org/10.1111/2041-210X.12518
https://doi.org/10.1111/2041-210X.12518
https://doi.org/10.1016/j.ecolmodel.2017.03.006
https://doi.org/10.1016/j.ecolmodel.2017.03.006
https://mc-stan.org/

ZIPKIN et al.

of Ornithology. https://doi.org/10.5281/zen0odo.3620739; https://
cornelllabofornithology.github.io/ebird-best-practices/

Sullivan, B. L., Wood, C. L., Lliff, M. J., Bonney, R. E., Fink, D., & Kelling, S.
(2009). eBird: A citizen-based bird observation network in the bi-
ological sciences. Biological Conservation, 142, 2282-2292. https://
doi.org/10.1016/j.biocon.2009.05.006

Tang, B., Clark, J. S., & Gelfand, A. E. (2021). Modeling spatially biased cit-
izen science effort through the eBird database. Environmental and
Ecological Statistics, 28, 609-630. https://doi.org/10.1007/s1065
1-021-00508-1

Thornhill, 1., Loiselle, S., Lind, K., & Ophof, D. (2016). The citizen science
opportunity for researchers and agencies. Bioscience, 66, 720-721.
https://doi.org/10.1093/biosci/biw089

Thorson, J. T., Ianelli, J. N., Larsen, E. A., Ries, L., Scheuerell, M. D.,
Szuwalski, C., & Zipkin, E. F. (2016). Joint dynamic species distribu-
tion models: A tool for community ordination and spatio-temporal
monitoring. Global Ecology and Biogeography, 25, 1144-1158.
https://doi.org/10.1111/geb.12464

Threlfall, C. G., Mata, L., Mackie, J. A., Hahs, A. K., Stork, N. E., Williams,

N. S., & Livesley, S. J. (2017). Increasing biodiversity in urban green
spaces through simple vegetation interventions. Journal of Applied
Ecology, 54, 1874-1883. https://doi.org/10.1111/1365-2664.12876
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R., & Stopak,
D. (2021). Insect decline in the Anthropocene: Death by a thousand
cuts. Proceedings of the National Academy of Sciences of the United
States of America, 118, €2023989118. https://doi.org/10.1073/
pnas.2023989118

Warton, D. I, Blanchet, F. G., O'Hara, R. B., Ovaskainen, O., Taskinen,
S., Walker, S. C., & Hui, F. K. C. (2015). So many variables: Joint
modeling in community ecology. Trends in Ecology & Evolution, 30,
766-779. https://doi.org/10.1016/j.tree.2015.09.007

Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J., & Haddad, N. M.
(2019). Butterfly abundance declines over 20 years of systematic
monitoring in Ohio, USA. PLoS ONE, 14, €0216270. https://doi.
org/10.1371/journal.pone.0216270

Wikle, C. K., &Berliner, L. M. (2007). A Bayesian tutorial for data assimilation.
Physica D, 230, 1-16. https://doi.org/10.1016/j.physd.2006.09.017

Zipkin, E. F., DeWan, A., & Royle, J. A. (2009). Impacts of forest frag-
mentation on species richness: A hierarchical approach to commu-
nity modelling. Journal of Applied Ecology, 46, 815—822. https://doi.
0rg/10.1111/§.1365-2664.2009.01664.x

Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S., & Lips, K. R. (2020).

Tropical snake diversity collapses after widespread amphibian loss.
Science, 367(6479), 814-816. https://doi.org/10.1126/science.aay5733
Zipkin, E. F., Doser, J. W., Davis, C. L., Leuenberger, W., Ayebare, S., &
Davis, K. L. (2023). Data from: Integrated community models: A
framework combining multi-species data sources to estimate the
status, trends, and dynamics of biodiversity. Zenodo. https://doi.
org/10.5281/zenodo.8361425

Zipkin, E. F., Inouye, B. D., & Beissinger, S. R. (2019). Innovations in data
integration for modeling populations. Ecology, 100, €02713. https://
doi.org/10.1002/ecy.2713

Journal of Animal Ecology E%ﬂt 15

Zipkin, E. F., Rossman, S., Yackulic, C. B., Wiens, J. D., Thorson, J. T., Davis,
R. J., & Grant, E. H. C. (2017). Integrating count and detection—
nondetection data to model population dynamics. Ecology, 98,
1640-1650. https://doi.org/10.1002/ecy.183

Zipkin, E. F., Royle, J. A., Dawson, D. K., & Bates, S. (2010). Multi-species
occurrence models to evaluate the effects of conservation and
management actions. Biological Conservation, 143, 479-484.
https://doi.org/10.1016/j.biocon.2009.11.016

Zipkin, E. F., & Saunders, S. P. (2018). Synthesizing multiple data types
for biological conservation using integrated population models.
Biological Conservation, 217, 240-250. https://doi.org/10.1016/j.
biocon.2017.10.017

Zipkin, E. F., Zylstra, E. R., Wright, A. D., Saunders, S. P., Finley, A. O.,
Dietze, M. C., Itter, M., & Tingley, M. W. (2021). Addressing data
integration challenges to link ecological processes across scales.
Frontiers in Ecology and the Environment, 19, 30-38. https://doi.
0rg/10.1002/fee.2290

Zylstra, E. R., Ries, L., Neupane, N., Saunders, S. P., Ramirez, M. L.,
Rendoén-Salinas, E., Oberhauser, K. S., Farr, M. T., & Zipkin, E. F.
(2021). Changes in climate drive recent monarch butterfly dy-
namics. Nature Ecology and Evolution, 5, 1441-1452. https://doi.
0rg/10.1038/s41559-021-01504-1

Zylstra, E. R., & Zipkin, E. F. (2021). Accounting for sources of uncer-
tainty when forecasting population responses to climate change.
Journal of Animal Ecology, 90, 558-561. https://doi.org/10.1111/1
365-2656.13443

SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.
Supplemental Information S1. Case study 1: Spatial distributions of
forest birds across the Northeastern United States.

Supplemental Information S2. Case study 2: Temporal trends of
butterflies in the Midwestern United States.

Supplemental Information S3. Case study 3: Estimating species- and
community-level demographic rates and population growth.

How to cite this article: Zipkin, E. F., Doser, J. W., Davis, C.
L., Leuenberger, W., Ayebare, S., & Davis, K. L. (2023).
Integrated community models: A framework combining
multispecies data sources to estimate the status, trends and
dynamics of biodiversity. Journal of Animal Ecology, 00, 1-15.
https://doi.org/10.1111/1365-2656.14012

puo) pue suud ay) 208 *[€20Z/Z1/10] U0 AreiqryauruQ A1 ‘ANSISAIUN 1o UEBIYIIN AQ Z10H1'9S9T-SIE T/ T 11°01/10p/wod Ko[m Kreiqraurjuo’s[ewinofsaq:sdny woiy papeojumo( ‘0 ‘99z§9€ I

sdny)

00" Kojim”

ASULIT SUOWIO)) dANEAX)) o[qeorjdde oy Aq PauIdA0S AIe SAOILE () ‘2SN JO I[N 10§ AIRIqIT duI[uQ) A1 UO (:


https://doi.org/10.1111/1365-2656.14012
https://doi.org/10.5281/zenodo.3620739
https://cornelllabofornithology.github.io/ebird-best-practices/
https://cornelllabofornithology.github.io/ebird-best-practices/
https://doi.org/10.1016/j.biocon.2009.05.006
https://doi.org/10.1016/j.biocon.2009.05.006
https://doi.org/10.1007/s10651-021-00508-1
https://doi.org/10.1007/s10651-021-00508-1
https://doi.org/10.1093/biosci/biw089
https://doi.org/10.1111/geb.12464
https://doi.org/10.1111/1365-2664.12876
https://doi.org/10.1073/pnas.2023989118
https://doi.org/10.1073/pnas.2023989118
https://doi.org/10.1016/j.tree.2015.09.007
https://doi.org/10.1371/journal.pone.0216270
https://doi.org/10.1371/journal.pone.0216270
https://doi.org/10.1016/j.physd.2006.09.017
https://doi.org/10.1111/j.1365-2664.2009.01664.x
https://doi.org/10.1111/j.1365-2664.2009.01664.x
https://doi.org/10.1126/science.aay5733
https://doi.org/10.5281/zenodo.8361425
https://doi.org/10.5281/zenodo.8361425
https://doi.org/10.1002/ecy.2713
https://doi.org/10.1002/ecy.2713
https://doi.org/10.1002/ecy.183
https://doi.org/10.1016/j.biocon.2009.11.016
https://doi.org/10.1016/j.biocon.2017.10.017
https://doi.org/10.1016/j.biocon.2017.10.017
https://doi.org/10.1002/fee.2290
https://doi.org/10.1002/fee.2290
https://doi.org/10.1038/s41559-021-01504-1
https://doi.org/10.1038/s41559-021-01504-1
https://doi.org/10.1111/1365-2656.13443
https://doi.org/10.1111/1365-2656.13443

