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Abstract 

1. Data deficiencies among rare or cryptic species preclude assessment of 

community-level processes using many existing approaches, limiting our under- 

standing of the trends and stressors for large numbers of species. Yet evaluating 

the dynamics of whole communities, not just common or charismatic species, is 

critical to understanding and the responses of biodiversity to ongoing environ- 

mental pressures. 

2. A recent surge in both public science and government-funded data collection 

efforts has led to a wealth of biodiversity data. However, these data collection 

programmes use a wide range of sampling protocols (from unstructured, oppor- 

tunistic observations of wildlife to well-structured, design-based programmes) 

and record information at a variety of spatiotemporal scales. As a result, available 

biodiversity data vary substantially in quantity and information content, which 

must be carefully reconciled for meaningful ecological analysis. 

3. Hierarchical modelling, including single-species integrated models and hierarchi- 

cal community models, has improved our ability to assess and predict biodiversity 

trends and processes. Here, we highlight the emerging ‘integrated community 

modelling’ framework that combines both data integration and community mod- 

elling to improve inferences on species- and community-level dynamics. 

4. We illustrate the framework with a series of worked examples. Our three case 

studies demonstrate how integrated community models can be used to extend 

the geographic scope when evaluating species distributions and community- 

level richness patterns; discern population and community trends over time; and 

estimate demographic rates and population growth for communities of sympa- 

tric species. We implemented these worked examples using multiple software 

methods through the R platform via packages with formula-based interfaces and 

through development of custom code in JAGS, NIMBLE and Stan. 
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5. Integrated community models provide an exciting approach to model biologi- 

cal and observational processes for multiple species using multiple data types 

and sources simultaneously, thus accounting for uncertainty and sampling error 

within a unified framework. By leveraging the combined benefits of both data 

integration and community modelling, integrated community models can produce 

valuable information about both common and rare species as well as community- 

level dynamics, allowing for holistic evaluation of the effects of global change on 

biodiversity. 
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1 | INTRODUC TION 

 
The consequences of global change on animal communities remain 

unclear for all but the most abundant taxa because of data limitations 

(Breiner et al., 2015; Kindsvater et al., 2018). As biodiversity contin- 

ues to decline, it is critical to assess the status and dynamics of whole 

communities, and not just those common or charismatic species with 

large amounts of data. While many sampling schemes target multi- 

ple species simultaneously (e.g. breeding birds via point counts, small 

mammals via trapping), traditional approaches to evaluate community- 

level processes require a large number of observations (Hamilton 

et al., 2015; Sor et al., 2017), precluding assessments of rare or data- 

deficient species. One in six species has been classified as data defi- 

cient by the International Union for the Conservation of Nature (Bland 

et al., 2017), leading to gaps in our understanding of the trends and 

stressors for a large proportion of species, often within taxonomically 

related communities. Furthermore, data sets collected by individual 

researchers are generally restricted in spatiotemporal scope, resulting 

in narrow and inadequate assessments of the biotic and abiotic factors 

influencing species' trends when the effects of environmental factors 

vary across space and/or time (Rollinson et al., 2021). 

Fortunately, there has been a surge of data collection pro- 

grammes in recent decades, including hundreds of public (citizen) 

science (e.g. eBird, iNaturalist) and government-funded (e.g. National 

Ecological Observation Network [NEON]) programmes that provide 

a wealth of fine- to broad-scale data on multiple species simultane- 

ously (Barnett et al., 2019; Thornhill et al., 2016). Incorporating these 

distinct data sources into rigorous analyses is an ongoing challenge 

because of variations in data type, quality, sampling protocols and 

geographic coverage (Chandler et al., 2017; Moussy et al., 2021). Yet, 

understanding and evaluating both species- and community-level 

processes, including responses to environmental change, is critical 

to maintaining biodiversity, and hence, a key objective of the ecolog- 

ical research community (Johnson et al., 2017). 

Hierarchical modelling has significantly advanced the use of such 

ecological data because it allows for the separation of biological and 

observation processes (Kéry & Royle, 2016) and can thus account 

for variations in the types and information content of specific data 

sources. Two recent advancements in hierarchical modelling are 

critical to the development of rapid, comprehensive assessments of 

biodiversity: (1) single-species integrated models and (2) hierarchical 

community models. 

Single-species integrated models combine multiple data sets 

into a single model on a target species, generally by defining a joint 

likelihood among available data sources (Miller et al., 2019; Schaub 

& Kéry, 2021). A key advantage of integrated modelling (sometimes 

referred to as data fusion) is the ability to merge multiple data types, 

regardless of collection method and spatiotemporal scope (Zipkin 

et al., 2021). Single-species integrated models improve inferences 

through increased precision of parameter estimates (Mosnier 

et al., 2015), the estimation of parameters for which no explicit data 

are available (Oppel et al., 2014), and by accounting for uncertainties 

and correlations among data sets (Lee et al., 2015). Single-species in- 

tegrated modelling has primarily taken two forms: integrated popu- 

lation models and integrated distribution models (Zipkin et al., 2019). 

Integrated population models allow for a mechanistic understand- 

ing of species-level processes primarily by combining demographic 

data with time-series population- or site-level count data (Brown & 

Collopy, 2013; Saunders et al., 2018). Integrated distribution mod- 

els synthesize presence-only, detection–nondetection and/or count 

data to estimate species distribution patterns and the effects of co- 

variates on occurrence or abundance (Fletcher Jr. et al., 2019; Grat- 

tarola et al., 2023). 

Hierarchical community models link together occurrence or 

abundance parameters of individual species (estimated using a sin- 

gle, multispecies detection–nondetection or count data set), through 

community-level distributions (Devarajan et al., 2020; Dorazio 

et al., 2006; Sollmann et al., 2016). This is done either by treating 

species-level parameters (i.e. intercepts or covariate effects) as ran- 

dom variables arising from normal distributions, characterized by a 

community-level mean and variance across species (e.g. multispecies 

occurrence models; Zipkin et al., 2010; Guillera-Arroita, 2017), or by 

using multivariate distributions to explicitly model species associa- 

tions (e.g. joint species distribution models; Ovaskainen et al., 2017; 

Warton et al., 2015). Hierarchical community models improve biolog- 

ical inferences by accounting for both species-level effects and the 
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aggregated effects of covariates on a community as a whole, lead- 

ing to increased precision in species parameter estimates, even for 

those species that were observed infrequently (Zipkin et al., 2009), 

and the ability to estimate biodiversity metrics such as richness and 

composition (Guillera-Arroita et al., 2019). 

Despite recent advances in single-species integrated models and 

hierarchical community models, there has been comparatively less 

research focused on modelling multiple species using more than one 

data source. Several applications of multispecies integrated popu- 

lation models in which count data are combined with demographic 

data have examined interactions between species, including compe- 

tition (Perón & Koons, 2012), synchrony in survival and reproduction 

rates (Lahoz-Monfort et al., 2017) and predator–prey dynamics (Bar- 

raquand & Gimenez, 2019; Clark, 2021; Paquet & Barraquand, 2022; 

Quéroué et al., 2021). A key feature of these models is that species' 

demographic rates are assumed to be influenced by the dynamics 

of one or two other species such that the models account for both 

abiotic effects (via covariates) and biotic interactions among species. 

There are also examples of integrated community occupancy models 

that combine multiple detection–nondetection data sets to estimate 

species co-occurrence patterns using two or more data sets (Doser, 

Leuenberger, et al., 2022; Lauret et al., 2023). Clark et al. (2017) 

developed a generalized joint attribute model to estimate the dis- 

tribution and abundance of multiple species using combinations of 

detection–nondetection and various types of count data. In such 

models, species abundances are assumed to come from a community 

level, multivariate normal distribution, thereby accounting for asso- 

ciations among related species within the predefined community. 

Recent efforts integrating multispecies data sets only scratch the 

surface of what can be achieved by uniting available data sources on 

multiple species and whole communities (Rapacciuolo & Blois, 2019), 

but highlight the growing relevance of, and need for, a generalizable 

modelling framework. 

In this paper, we highlight the class of models broadly categorized 

as integrated community models. Although the term integrated com- 

munity modelling has been used with several meanings, here we define 

it as a framework that links multiple data sources on multiple sympat- 

ric species through a hierarchical community component. We outline 

the general approach of the method, demonstrate three specific ap- 

plications with different biological and observation model structures 

using empirical data and simulations and offer a discussion about var- 

ious factors to consider before using integrated community models. 

We conclude by providing suggestions for future developments. 

 

 

2 | E XPL ANATION OF THE METHOD 

 
We consider integrated community models broadly as the combi- 

nation of single-species integrated models and hierarchical com- 

munity models (Figure 1). Each of the different data sources (e.g. 

 

 
 

F I G UR E 1 Integrated community models enable the estimation of the status, trends and/or population dynamics of multiple species 

simultaneously by combining disparate data sources within a unified analysis framework. The schematic diagram outlines the hierarchical 

approach of the integrated community modelling process: the underlying species-level biological process (yellow; e.g. abundance, zi,j,t, of 

species i at survey location site j in year t) is modelled using relevant environmental covariates and/or demographic rates (not shown). Each 

data source (y1 , y2 , y3 , … yD) provides a piece of information on the biological process and is connected to the biological parameters via an 

observation process model (grey). Species-specific parameters are linked through community-level distributions to share information across 

species (blue). 
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detection–nondetection, count, demographic) can be used to inform 

various components of the underlying biological process model 

through hierarchical, observation models linked together with a 

joint likelihood or through simpler approaches that account for vari- 

ation across data sources through covariates and/or random effects 

(Wikle & Berliner, 2007; Zipkin et al., 2021). Covariates can be in- 

cluded using link functions to incorporate relevant biotic and abiotic 

factors that influence species dynamics and detection across space 

and time. The biological process models for species (Figure 1, yellow 

shading) can range from simple (e.g. estimates of species occurrence; 

Miller et al., 2019) to complex (e.g. estimates of species survival, re- 

production and abundance; Schaub & Abadi, 2011), and depend on 

both the life history and ecology of the taxonomic group and the 

quantity and type of available data. 

Parameters in the biological process model are linked to the 

survey data through observation process models (Figure 1, grey 

shading). As with the biological process, the observation models can 

range from simple (e.g. fixed and/or random effects on individual 

surveys or data sources) to increasingly mechanistic (e.g. modelling 

detection probabilities based on covariates and recorded auxiliary 

sampling information), primarily depending on the type and quantity 

of available data (Dorazio, 2014; Kéry & Royle, 2016). Commonly 

collected wildlife data types span a spectrum of collection effort 

and information content including (from low to high): presence-only 

data (observations of a species in a given location at a given time), 

detection–nondetection data (records that also contain locations 

that were surveyed but the species was not observed), count data 

(total number of individuals observed at a location within a specific 

time frame) and demographic data (e.g. capture–recapture, produc- 

tivity data; to inform survival, reproduction, immigration etc.). Typ- 

ically, the higher the information content, the more difficult it is to 

collect the data and likely that the geographic coverage is limited. In 

addition to survey type, we can classify presence-only, detection– 

nondetection and count data as structured, semi-structured or 

unstructured. Structured data are collected systematically with a 

design protocol (e.g. NEON), while unstructured data are collected 

opportunistically and without a defined purpose (e.g. iNaturalist). 

Semi-structured data are typically collected in volunteer-based 

monitoring programmes (e.g. eBird) that have some degree of struc- 

ture (e.g. collection of auxiliary sampling information, checklists) that 

helps mitigate observational and sampling biases present in unstruc- 

tured data, but lack the rigorous sampling design of structured data 

(Altwegg & Nichols, 2019; Kelling et al., 2019). 

The various available data sources provide unique or comple- 

mentary information (in terms of spatiotemporal location, life stage 

and/or demography) on the biological processes of interest (Saun- 

ders, Farr, et al., 2019). For example, available data sources may 

consist of multiple different data types (e.g. one count and one de- 

mographic data set) or may all be the same type (e.g. two detection– 

nondetection data sets) but collected under distinct protocols with 

different types of observation and/or sampling biases. Thus, the 

value of combining available data sources can either be inference on 

mechanistic biological processes (as is done in integrated population 

models; Schaub & Kéry, 2021) or expansion of the spatiotemporal 

scope of inference (as is done in integrated distribution models; Isaac 

et al., 2020). When modelled together, the information from each 

data source can be used to jointly estimate biological parameters, 

improving accuracy on inferences (Pacifici et al., 2017), and in many 

cases, allowing estimation of a greater number of parameters than 

is possible through independent analyses of the various data sets 

(Plard et al., 2019; Schaub et al., 2007). 

The species-level biological and observation process models are 

joined by allowing parameters to come from common, community- 

level distributions (Figure 1, blue shading), which can be univariate 

(e.g. Farr et al., 2019) or multivariate (e.g. Thorson et al., 2016), de- 

pending on whether estimation of covariances among species is 

desirable. This facilitates information sharing among species in the 

community, allowing parameter estimation for all species and not 

just those with large sample sizes (Zipkin et al., 2009). Additionally, 

this approach produces estimates of community-level parameters 

(mean across all species and variance among species), which can be 

used to summarize community responses to relevant covariates and 

environmental stressors (Threlfall et al., 2017). 

In theory, integrated community models could be analysed with 

either a frequentist or Bayesian approach. In most cases, Bayesian 

analysis will be more practical to simultaneously estimate the bio- 

logical and observation parameters at species and community levels. 

Bayesian inference allows for maximum flexibility in terms of hier- 

archical model structure and convergence (Fordyce et al., 2011) and 

enables straightforward calculation of derived biodiversity metrics 

(e.g. site-level richness, evenness, composition and turnover; Dora- 

zio, 2016; Gelman & Hill, 2007). In our case studies, parameters are 

all estimated using Bayesian analysis with Beyer several different 

approaches in the R software platform (R Core Team, 2022), includ- 

ing built-in packages and custom code that implements Markov chain 

Monte Carlo (MCMC) algorithms via JAGS (Plummer, 2003), NIMBLE 

(de Valpine et al., 2017) and Stan (Stan Development Team, 2022). 

 

 

3 | WORKED E X AMPLES 

 
Here, we show three case studies to provide practical examples 

of the integrated community modelling framework that (1) extend 

the geographic scope of inference to evaluate species distribu- 

tions and effects of habitat for a specialized bird community, (2) 

discern the population trends of open-habitat-associated butterfly 

species over a recent decade and (3) estimate demographic rates 

and population growth for communities of sympatric species. Our 

worked examples demonstrate approaches to combine structured 

and semi-structured data including detection–nondetection, site- 

and population-level count and demographic data types. We show 

how the integrated community modelling framework is capable of 

producing inferences for both individual species (rare and com- 

mon) and community-level metrics of interest. We present a gen- 

eral overview and the basic methods of each case study in the 

main text with details including mathematical equations and the 
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specifics of implementation described in associated supplemental 

materials. The complete code for the worked examples is avail- 

able at https://zipkinlab.github.io/#icm2023Z and is also archived 

at Zipkin et al. (2023). 

 

 

3.1 | Case study 1: Spatial distributions of forest 

birds across the Northeastern United States 

 
3.1.1 |  Background and motivation 

 
Communities of species with specialized habitat requirements, 

such as grassland or interior forest obligate birds, are particularly 

vulnerable to global change because of limited availability of habi- 

tat. Furthermore, species in specialized communities tend to be 

rare, resulting in few observations within large-scale monitoring 

programmes and low precision of species distribution estimates 

and effects of environmental drivers (Lomba et al., 2010). In this 

case study, we use an integrated community occupancy model 

(Doser, Leuenberger, et al., 2022) to estimate the spatial variation 

in species richness of a community of 27 interior forest obligate 

bird species, most of which are rarely detected, across 11 states 

in the Northeastern United States. The integrated community oc- 

cupancy model combines multiple replicated and/or nonreplicated 

detection–nondetection data sources in a community occupancy 

modelling framework to provide inferences on species-specific and 

community-level occurrence patterns across space (and time). By 

sharing information across species and data sources, this approach 

can yield increased precision and accuracy of species-specific oc- 

currence patterns compared to single data source models and 

single species models (Doser, Leuenberger, et al., 2022). Addition- 

ally, the community component enables estimation of aggregated 

biodiversity metrics, such as site-level species richness, that al- 

lows for local-scale assessment of available habitat use by the 

community. 

 

 

3.1.2 | Data 

 
We integrated detection–nondetection data on 27 interior for- 

est obligate bird species from 356 routes in the North American 

Breeding Bird Survey (BBS; Pardieck et al., 2020) and 10,383 eBird 

checklists (Sullivan et al., 2009) across 11 states in the Northeast- 

ern United States, all collected during the breeding season of 2017 

(Supplemental Information S1). Many species were detected infre- 

quently, with 52% and 96% of species detected at less than 30% of 

the spatial locations in the BBS and eBird data sets respectively. 

For the BBS data, which is a structured road-side survey, observ- 

ers recorded all birds seen within a 0.4-km radius at 50 locations 

(i.e. stops) along each ~39.2 km roadside survey (i.e. route). We 

assigned each route to a 5 × 5 km grid cell based on its midpoint 

location and aggregated the 50 stops per route into five spatial 

replicates of 10 stops each (i.e. we assume each route was sampled 

five times, but the specific sampling locations occur at different 

spots along the route). We summarized the detection (1) or non- 

detection (0) of each species at each of the five spatial replicates. 

For the eBird data, which is an opportunistic, semi-structured data 

source, we assigned each complete checklist during a 3-week pe- 

riod in early June (to match the time frame of the BBS data) to a 

specific grid cell, and used multiple checklists within each cell as 

repeat surveys for the occupancy modelling framework. To miti- 

gate preferential sampling biases, we used multiple spatiotempo- 

ral filtering criteria following standard recommendations for using 

eBird data in occupancy models (Johnston et al., 2021; Strimas- 

Mackey et al., 2020). 

 

 

3.1.3 |  Modelling approach 

 
We modelled the data using an integrated community occupancy 

model that consisted of individual observation models (i.e. likeli- 

hoods) for the BBS and eBird data sets, which shared a species- 

specific biological process model. The biological process model 

described how species-specific occurrence varies across space as 

a function of elevation, forest cover and five bioclimatic variables, 

with individual species-specific effects treated as random vari- 

ables arising from common community-level normal distributions 

(Dorazio & Royle, 2005). Both observation models explicitly ac- 

counted for imperfect detection by allowing detection probability 

to vary across species, space and replicate surveys. For the BBS 

observation component, we modelled detection probability as a 

function of day of the year. For the eBird observation component, 

we modelled eBird detection probability as a function of day of 

the year, time of day of collection, time spent, distance travelled 

and the number of observers. Similar to the biological process 

model, we assumed that each of the species-specific parameters in 

the observation models arise from community-level distributions. 

We estimated species richness of the community in the 5 × 5 km 

grid cells as a derived quantity across the Northeastern United 

States. We fit the model in a Bayesian framework using the spOc- 

cupancy R package (Doser, Finley, et al., 2022). We also fit the 

model with custom code by calling NIMBLE through R to provide 

potential users with additional implementation resources (code 

provided but results not shown). See Supplemental Information S1 

for full model details. 

 

 

3.1.4 | Results 

 
Species richness of the interior forest bird community varied 

substantially across the northeast, with high richness across 

the Appalachian and Adirondack mountains and low richness in 

urban areas (Figure 2a). Spatial variation in richness and species- 

specific occurrence probabilities were largely driven by forest 

cover, with all species in the community showing a positive re- 

lationship to the amount of local-level forest cover (Figure 2b). 
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F I G UR E 2 Estimates from an integrated community occupancy model for a community of 27 interior forest obligate bird species across 

the Northeastern United States using a 5 × 5 km grid. Panel (a) shows estimated mean species richness across the region while panel (b) 

shows the estimated mean (dark line), 50% credible interval (box) and 95% credible interval (whiskers) for the effect of forest cover on 

the overall community (COMM) and individual species (see Table S1.1 for species codes). Panel (c) shows estimated mean occurrence 

probabilities for Black-throated Green Warblers (Setophaga virens; BTNW), a common species of least concern, while panel (d) shows mean 

occurrence probabilities for Cerulean Warbler (Setophaga cerulean; CERW), a rare species that is classified as near threatened. 
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The integrated community occupancy model shares information 

across individual species and data sources, which allowed us to 

estimate reasonably precise occurrence probabilities and covari- 

ate effects throughout a broad spatial extent for common as well 

as rare species (e.g. Figure 2c,d). Given that the species most 

vulnerable to global change are often rarely observed in large- 

scale monitoring programmes, integrated community modelling 

frameworks that can leverage comparable data types (e.g. struc- 

tured or semi-structured occurrence or count data) from multiple 

monitoring programmes and multiple species can provide a richer 

understanding of vulnerable communities and the specific spe- 

cies within them. 

 

 

3.2 | Case study 2: Temporal trends of butterflies 

in the Midwestern United States 

 
3.2.1 |  Background and motivation 

 
Insect communities face numerous threats, with a variety of anthro- 

pogenic stressors contributing to population and diversity declines 

(Forister et al., 2021; Hallmann et al., 2017; Wepprich et al., 2019). 

Rigorously quantifying insect population trends is notoriously dif- 

ficult due to their complex life histories (e.g. seasonal variation in ac- 

tivity; Saunders, Ries, et al., 2019), rarity and elusiveness of species, 

biases in long-term data sets (e.g. natural history collections; Davis 

et al., 2023; Ries et al., 2019) and unbalanced sampling across space 

and time in volunteer monitoring programmes (Dennis et al., 2013). 

Integrating multiple data sources in a community modelling frame- 

work can mitigate many of these data complexities by increasing the 

amount of data available, sharing information across species and 

accommodating sampling biases within individual data sources. In 

this case study, we use an integrated community model to quantify 

relative abundance trends in 10 open-habitat-associated butterfly 

species in the Midwestern United States over a recent decade. Our 

model explicitly accounts for variation at multiple spatial (i.e. site, 

county) and observational levels (i.e. survey) while simultaneously 

accounting for variation in expected counts between different data 

sources due to differences in survey protocols and observer skills 

(Zylstra et al., 2021). 

 

 

3.2.2 | Data 

 
We integrated count data from five volunteer-based monitoring 

programmes to assess early-summer butterfly trends (June through 

July) from 2008 to 2017 across six Midwestern US states (Iowa, 

Wisconsin, Illinois, Indiana, Michigan, Ohio). We focused our analy- 

sis on 10 species that are year-round residents, active during sum- 

mer, inhabit open areas, multivoltine, relatively easy to detect and 

adequately sampled by all monitoring programmes (Supplemental 

Information S2). Four data sets come from statewide, structured 

butterfly surveys: (1) Illinois Butterfly Monitoring Network (266 

spatial locations); (2) Iowa Butterfly Survey Network (61 spatial 

locations); (3) Michigan Butterfly Network (133 spatial locations); 

and (4) Ohio Lepidopterists (118 spatial locations). In each pro- 

gramme, data are collected following a Pollard transect protocol in 

which trained volunteers walk ~1 km transects weekly or biweekly 

throughout the summer and record every butterfly detected (Pol- 

lard, 1977), although survey protocols differ slightly among states. 

While each of these four data sets has substantial, repeated tem- 

poral sampling across a given summer, they are restricted in spa- 

tial extent to only a single state. Our fifth data set comprises 

semi-structured count data from the North American Butterfly 

Association (NABA), in which volunteer observers extensively sur- 

vey a 25-km diameter circle once a year, recording all butterflies 

observed, by species (https://www.naba.org). We used data from 

85 sites that fell within our study region and survey time period. 

Alone, the NABA data may not provide reliable estimates of species 

temporal trends since only one count is performed at a given site 

in each year, which often does not adequately represent temporal 

variation in butterfly counts due to high variation in seasonal ac- 

tivity periods of species (Dennis et al., 2013; Zylstra et al., 2021). 

However, NABA data have a much larger spatial extent (i.e. North 

America) compared to the statewide butterfly surveys, and are thus 

able to provide critical information across the full study region. 

 

 

3.2.3 |  Modelling approach 

 
Our integrated community model is based on a negative binomial 

hierarchical model, adapted from an analysis on monarch butterflies 

(Zylstra et al., 2021). We modelled the mean expected count for each 

butterfly species in a given week during a given year as a function of 

multiple covariates and random effects. To account for variation in 

survey effort across datasets, we included a fixed categorical vari- 

able of survey protocol (five levels) and a (log) linear effect of survey 

effort (i.e. the total number of surveys performed at a given spatial 

location in a given week). We further included a linear and quadratic 

effect of week to account for species-specific seasonal variation in 

activity, a linear effect of year to estimate any temporal trends in 

butterfly abundance, and random effects of county, site and year 

to account for additional variation. We allowed the species-specific 

effects of week to vary by year to account for differences in but- 

terfly phenology across the decade. We treated each of the species- 

specific parameters (intercept and covariate effects) as random 

variables that come from common, parameter-specific, community- 

level normal distributions. We estimated a derived annual relative 

abundance index for each species as the expected number of in- 

dividuals counted in a single survey (i.e. using the species-specific 

intercept, linear trend of year and year random effect) to create 

an average across sites and weeks. We fit the model in a Bayesian 

framework using the spAbundance R package (Doser, 2023). We also 

fit the model with custom code by calling Stan through R (code pro- 

vided but results not shown). See Supplemental Information S2 for 

full model details. 
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3.2.4 | Results 

 
The integrated community model revealed varying support for 

linear trends in relative abundance across butterfly species. The 

95% credible intervals of all trend estimates overlapped zero, in- 

dicating uncertainty in population changes over this short time 

period (Figure 3), which is not entirely unexpected for butterfly 

species as insects tend to have high variations in abundance from 

year to year (Didham et al., 2020; Wagner et al., 2021). Seven of 

the 10 species had negative average trend estimates, with the 

most support for declines in Eastern Tiger Swallowtail (Papilio 

glaucus; 0.87), Cabbage White (Pieris rapae; probability negative 

trend = 0.83), Peck's Skipper (Polites peckius; 0.82) and Spring/ 

summer Azure (Celastrina ladon; 0.80). There was mild support 

(69% probability) for a declining trend across the community (log- 

scale mean = −0.04) although with high uncertainty (SD = 0.08). In 

our case study, the integrated community modelling framework 

allowed us to take advantage of the within-season repeated sam- 

pling of the statewide structured monitoring data sets while simul- 

taneously leveraging the large spatial extent of the NABA data to 

generate trend estimates of multiple butterfly species across the 

Midwestern United States. As global climate and land-use change 

continue to pose threats to animal communities, modelling frame- 

works that leverage all available data sources on multiple species 

can provide critical insights on which species are most vulnerable 

and which may be less susceptible. 

 

 

3.3 | Case study 3: Estimating species- and 

community-level demographic rates and 

population growth 

 

3.3.1 |  Background and motivation 

 
Comprehensive monitoring and evaluation of biodiversity re- 

quires data not only on species distribution and abundance pat- 

terns but also on their demographic rates including survival and 

reproduction (Beyer & Manica, 2020). However, collecting mul- 

tiple data types is resource-intensive for individual species, and 

orders of magnitudes harder for entire ecological communities. 

Thus, analytical frameworks that can combine very different 

types of data, that derive from a variety of sources and protocols, 

 

 

FI G U R E 3  Relative abundance trends of 10 butterfly species and the community (COMM) in the Midwestern United States from 2008 

to 2017 using an integrated community model. The probability that the linear trend estimate is less than zero is also included in each panel 

(i.e. that abundance is decreasing through time). Points (posterior medians with 95% credible interval lines) show the derived annual relative 

abundance index for each species. Black trend lines represent the posterior median trend estimate with the shaded area denoting the 95% 

credible interval. Species that indicate a possible decline over the 10-year study period are shaded in yellow (i.e. probability of a negative 

trend >0.6), while species that are likely to have increased (i.e. probability of negative trend <0.4) are shaded in blue. All others are shaded in 

grey. 
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are especially valuable for biodiversity assessments. In this case 

study, we develop a multispecies integrated population model 

that extends integrated population models (Besbeas et al., 2002; 

Schaub & Kéry, 2021) to a community level within a single ana- 

lytical framework. Previous work has leveraged the single-species 

integrated population model to estimate interspecific interactions 

within a multispecies context (e.g. Quéroué et al., 2021), but only 

for a small number (i.e. two or three) of species. The approach 

we outline here is capable of making inferences on tens of spe- 

cies simultaneously by treating species-specific demographic 

rates as random effects from shared, community-level distribu- 

tions (Iknayan et al., 2014). By combining multiple data types (e.g. 

population-level counts, productivity, capture–recapture data) on 

multiple sympatric species, this integrated community modelling 

approach has the potential to improve parameter identifiability for 

species and/or demographic rates for which only limited data are 

available (Zipkin & Saunders, 2018). We demonstrate the potential 

utility of the multispecies integrated population modelling frame- 

work using a data simulation approach. 

 

 

3.3.2 |  Data and approach 

 

To construct the multispecies integrated population model, we 

first defined a biological process model that incorporates both 

demographic rates and population sizes for each of 10 hypotheti- 

cal species that we assume are all part of the same community. We 

linked species' population sizes with their demographic rates using 

a female-based, age-structured matrix model (Caswell, 2000) with 

two age classes (juvenile and adult) and a pre-breeding census for 

each species (Figure 4a). We assume that species-specific fecundity, 

juvenile survival and adult survival are each derived from parameter- 

specific, normal distributions with a community-level mean and vari- 

ance (Dorazio & Royle, 2005). We used the biological process model 

to simulate 100 independent, annual population-level counts (i.e. 

census), productivity (i.e. number of juveniles produced per adult) 

and capture–mark–recapture data sets for the hypothetical commu- 

nity of 10 species over a 10-year time period. While we simulated 

all three types of data (census, productivity and capture–recapture 

data) for all 10 species, species differed in the relative amount of 

data depending on their population size. For example, rare and de- 

clining species naturally had less capture–recapture and productiv- 

ity data because there were fewer individuals available for sampling. 

We further assumed that all data sources were collected via design- 

based, structured sampling protocols, such that the data sources are 

representative of each species' population but may also contain sam- 

pling error. We then estimated parameters from a joint likelihood of 

the three independent data sets to make inferences on the species- 

and community-level demographic rates as well as derived param- 

eters, including annual population sizes and growth rates (Kéry & 

Royle, 2016; Schaub & Kéry, 2021). We evaluated the performance 

of the model by calculating the relative bias posterior mean − true value 
true value 

of estimated parameters at both the species and community levels. 

We fit our model by developing custom code in R and JAGS with the 

jagsUI package (Kellner, 2021). See Supplemental Information S3 for 

full model details. 

 

 

3.3.3 | Results 

 
The multispecies integrated population model was able to recover 

the true biological parameters at both the species and community 

levels with little bias, and with especially high accuracy and precision 

of community-level demographic rates (Figure 4b). Mean population 

growth rates across the 10 years were also highly accurate for all 

species, as well as the community (Figure 4c). However, estimates of 

population growth rates tended to be less precise for declining spe- 

cies as compared to those species whose growth rates were positive 

(Figure 4c,d), likely because declining species tend to have smaller 

population sizes and thus less data available for analysis. In conduct- 

ing this simple simulation, we demonstrated that combining mul- 

tispecies demographic and population-level count data provides a 

viable solution for quantifying species-specific and community-level 

dynamics and growth rates, which can ultimately aid in biodiversity 

monitoring and assessments from local to regional scales. Applica- 

tions of this approach may be particularly beneficial in cases where 

data are limited for some species within a community (but plentiful 

for others), or when one or more data types are not collected for all 

species in every year (e.g. multispecies amphibian survey data, wa- 

terfowl banding data, mist net capture data of birds). As these types 

of models are fairly new, additional work is necessary to understand 

the full inferential benefits—and potential biases—under scenarios 

that vary parameter values (e.g. low vs. high detection probability 

and/or sampling error) and include an exploration as to how the 

amounts of various data types influence model estimates (e.g. when 

all three types of data are not available for all species in all years). 

 

 

4 | THINGS TO CONSIDER BEFORE USING 

THIS METHOD  

 
Potential users should consider several points before developing an 

integrated community model for their system. Initial steps in deter- 

mining the utility and value of combining multispecies data sources 

should focus on the specific information that could be gained from 

an integrated community model and the quantity and types of avail- 

able data. Data integration approaches are becoming increasingly 

popular (Zipkin et al., 2021), and for good reason, as they have im- 

mense potential to expand inferential and predictive capabilities 

from available, yet imperfect, data (Zylstra & Zipkin, 2021). How- 

ever, data integration is not without its challenges and limitations. 

In some cases, combining multispecies data sources—rather than 

estimating parameters separately for individual species or data 

sets—may be orders of magnitude more complicated with high com- 

putational burdens (Gotway & Young, 2002; Pacifici et al., 2019), 

or may not substantially help to answer the particular question of 
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F I G UR E 4 Multispecies integrated population models (MIPM) enable unbiased inference on species-specific and community-level 

demographic parameters as well as mean population growth rates over time, as shown by our simple simulation study. Panel (a) describes 

the female-based age-structured model with two age classes (juvenile and adult) and a prebreeding census that was used to link population 

sizes with demographic rates with i = 10 species in our hypothetical community. Species-specific demographic rates of fecundity fi , juvenile 

survival ¢i,1 and adult survival ¢i,2 were derived from shared distributions with a community-level mean and variance (not shown). Panel 

(b) shows the mean relative bias in estimated demographic parameters (dark line) with the 50% (box) and 95% (whiskers) credible intervals 

at both the community (blue) and species (white) levels compared to a simulated truth. Population growth rates were also estimated from 

the MIPM with high accuracy and precision, as shown in panel (c), where black dots show the true mean population growth rates for each 

species (S1–S10) and dark lines show the mean estimated values with 50% (box) and 95% credible interval (whiskers). Community-level 

(COMM) growth rates were derived as the geometric mean across species. Estimated population growth rates were less precise for declining 

species with low survival, as shown in panel (d) for two species (S4 and S7) with the same expected fecundity. 

 

interest. Although integrating different data types generally helps 

with parameter identifiability and precision (Doser et al., 2021; Farr 

et al., 2021), data integration alone cannot correct for biases in un- 

structured data or problems with collinearity among environmental 

variables, especially when the drivers of such biases are unknown 

or cannot be incorporated within the observation model (Simmonds 

et al., 2020). Simulations and model assessments can help establish 

the inferential value of integrated community models as compared 

to simpler alternatives for specific study systems. Furthermore, the 

quantity and types of data available have important implications 

for the potential structure and complexity of the biological process 

model. Although the incorporation of mechanistic processes within 

models is a clear goal within ecological research, if data are unavail- 

able to estimate detailed demographic parameters, no amount of 

integration will be able to rectify the situation (Plard et al., 2021; 

Riecke et al., 2019). 

Several papers have focused on the individual challenges of 

both single-species data integration (Isaac et al., 2020; Miller 

et al., 2019; Zipkin et al., 2021) and hierarchical community mod- 

elling (Guillera-Arroita, 2017; Iknayan et al., 2014). Successful data 

integration models require consideration of the spatial extent and 

scale of the various data sources to resolve mismatches in the 

collection grain (e.g. through change of support; Farr et al., 2021; 

Pacifici et al., 2019; Zipkin et al., 2017), spatial biases in unstruc- 

tured and semi-structured data due to preferential sampling (e.g. 

by including site selection within the model [Conn et al., 2017] 

or spatially correlated random effects [Hefley et al., 2017]), and 

issues related to unbalanced quantities of various data sources 

10  | ZIPKIN et al. 
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(e.g. through subsampling or downweighing high volume, low 

information-content data [Johnston et al., 2018] or modelling bi- 

ases within the likelihood [Fer et al., 2018; Tang et al., 2021]). Simi- 

larly, the value of inferences within community models will depend 

on how the community is defined and the proportion of species in 

the community that are rare or undersampled. Statistically speak- 

ing, including all species that were observed during a multispecies 

data collection event within a community model is legitimate, as 

the result will simply draw species-level parameters towards com- 

munity averages (Dorazio & Royle, 2005). In practice, however, re- 

searchers will want to have an ecological justification for including 

individual species within a community modelling analysis. Addi- 

tionally, when a high proportion of species are rare or infrequently 

observed, it is difficult to achieve convergence in community mod- 

els and parameter estimates are likely to be exceedingly imprecise 

for many species (Zipkin et al., 2020), potentially rendering such 

analyses less informative. 

Within the context of integrated community models, the chal- 

lenges of both data integration and community modelling are likely 

to be present and may be exacerbated. For example, problems as- 

sociated with unbalanced data in integrated community models 

may be acute when the spatial extent of the study is broad (Zip- 

kin et al., 2021) or the goal is to understand mechanistic processes 

(Campbell et al., 2018). This is especially true if data quantities are 

highly uneven among species or many species are underrepresented 

or absent within a specific data source, either due to sampling con- 

straints or cryptic behaviours that vary among species within the 

community. Combining replicated and non-replicated data sets 

typically requires more complex ways of accounting for errors in 

detection (Doser, Leuenberger, et al., 2022). In many hierarchical 

community models, which focus solely on estimating occurrence or 

abundance rates, defining the community is done rather loosely and 

may simply be ‘all species’ (all observed species, or both observed 

and unobserved species if using data augmentation; Royle et al., 

2007). In the context of an integrated community model, it may be 

more important to have a clear definition of, and strong biological 

justification for, the target community because of the additional pa- 

rameters that are estimated (e.g. demographic rates). Otherwise, in- 

ferences on community parameters—as well as for rare species—may 

not be biologically meaningful. 

Finally, we expect there to be computational issues for many 

types of integrated community models, as this is a concern for both 

single-species integrated models and hierarchical community mod- 

els. Many hierarchical models are analysed using Bayesian meth- 

ods, such as MCMC approaches that can take an exceedingly long 

time to run and may be difficult to troubleshoot. Typically, such 

models are fit using common Bayesian software packages such as 

JAGS, NIMBLE and Stan, which provide flexibility for defining spe- 

cialized models, but require a substantial amount of programming 

knowledge and custom coding. Thus, potential users should con- 

sider if it is worth developing a complicated, but more adaptable, 

model or if qualitatively similar inferences can be achieved using 

built-in software (e.g. R packages). Fortunately, there has been 

substantial development on creating user-friendly and computa- 

tionally efficient software for both single-species integrated mod- 

els and community models. Simple forms of integrated community 

models, like the hierarchical negative binomial model used in the 

butterfly case study, can be fit using user-friendly R packages that 

can accommodate a variety of random effect structures (e.g. brms 

[Bürkner, 2017], spAbundance [Doser, 2023]), while the integrated 

community occupancy model used in the bird case study can be 

fit with the spOccupancy R package (Doser, Finley, et al., 2022). 

Continued development of specialized and computationally ef- 

ficient software is an important avenue for future research that 

can more readily facilitate the implementation of integrated com- 

munity models. However, for now, many complex biological and 

observational model structures are likely to require custom coding 

using Bayesian programming languages. 

 

 

5 | CONCLUSIONS 

 
Integrated community models are an exciting framework to assess 

biodiversity dynamics using unified approaches that can combine 

data from multiple different sources that vary in information content. 

Such methods can leverage public science, government-funded and 

traditional, scientist-collected data sources to expand the spatial and 

temporal scope of inference for the many data-deficient species on 

which little is known. Integrated community models take advantage 

of the collective benefits of data integration and community model- 

ling frameworks, while accounting for both biological processes and 

observation errors. Thus, these models can improve the accuracy 

and precision on both species-level parameters and community- 

level metrics, enhancing understanding about the variations in spe- 

cies' response to local environmental factors and global climate and 

land-use change. Future research in integrated community model- 

ling could focus on approaches to assess model fit and compare 

among competing model structures, incorporating wider varieties 

of structured and unstructured data types including opportunistic 

presence-only data and expanding inferences to communities with 

greater numbers of species. The development of integrated models 

also has important implications for the design of new data collec- 

tion activities. Forthcoming sampling and monitoring programmes 

should consider what data sets are already available on particular 

species and communities in order to obtain maximally beneficial data 

(Chandler et al., 2017; Moussy et al., 2021). For example, targeting 

areas with limited data or collecting data on unknown demographic 

rates could be particularly advantageous within an integrated com- 

munity modelling framework. While integrated community models 

are still at an early stage of development, given the exponentially 

growing use of both single-species integrated models and hierarchi- 

cal community models over the last decade, we expect there to be 

much activity in this area over the next decade. Such approaches 

are leading to increasingly efficient and useful assessments of bio- 

diversity, which is critically important as the world's environment is 

changing rapidly. 
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