

1 **Impact of strongback on structure with varying damper and stiffness**
2 **irregularity arrangements**

4 **Sima Abolghasemi, Nicholas Wierschem*, and Mark D. Denavit**

5 Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA

6 *Corresponding Author, nwiersch@utk.edu, 851 Neyland Drive Knoxville TN 37996-2313

7 **Abstract**

8 Structures susceptible to soft story mechanisms are particularly vulnerable to earthquakes because
9 damage concentrated at a single story can lead to premature failure of the structure. The strongback, a
10 stiff vertical spine pinned at the structure's base and running its height, has been proposed as a way to
11 impose a more uniform pattern of floor displacements and prevent soft story mechanisms. However,
12 changes in the impact of strongbacks on the performance of structures remain unclear when considering
13 vertical stiffness irregularities at different positions along the height of a structure and different
14 arrangements of energy dissipation devices in a structure. This study aims to address these gaps through
15 an extensive parametric experimental investigation varying the location of vertical stiffness irregularities
16 and the arrangement of dampers in a small-scale four-story elastic structure with and without a
17 strongback. For this study, each configuration of the structure is loaded with shake table-produced seismic
18 ground motion. The results of this study show that, regardless of which story a stiffness irregularity is
19 located, the strongback significantly reduces the maximum story drift in the structure. Furthermore, with
20 the strongback, the maximum story and roof drift are insensitive to damper position and distribution,
21 whereas, without it, the damper position significantly impacts the structural performance. The
22 strongback's ability to protect against soft story vertical irregularities, regardless of their locations, and
23 the insensitivity of structural performance to damper arrangement when utilizing a strongback, presents
24 promising new options for structural design, architectural design, and remediation efforts.

25 **Keywords:** Strongback, soft story mechanism, damper arrangement, stiffness irregularity, experimental

26 **1. Introduction**

27 Structures susceptible to soft story mechanisms are particularly vulnerable to earthquakes as these
28 mechanisms result in localized damage concentration and the non-ductile premature failure of the
29 structure. Connecting a vertical elastic spine, also known as a strongback, to a primary structural system
30 is one proposed method to prevent the formation of soft story mechanisms. Elastic spines have also been
31 proposed to help address vertical structural irregularities in design.

32 The strongback is a stiff and strong element or group of elements that is pinned at the base of a structure
33 and runs the height of the structure. As a result, the strongback experiences rigid body motion when the
34 structure has uniform drift, but provides significant resistance to any other pattern of drifts, such as those
35 that would be present with a soft story mechanism. By preventing premature failure due to a soft story
36 mechanism, the strongback is intended to help structures have an overall more ductile response [1], [2].

37 The fundamental concept behind the strongback, imposing a displacement pattern to reduce or prevent
38 the concentration of damage, has been studied under different names as well, including the hinged wall
39 [3], rocking steel shear wall [4], [5], spine frame [6]–[8], stiff rocking core [9], and vertical rigid truss [2],
40 [10]. Furthermore, some basic structural elements, including continuous columns [11], have been

41 identified as possessing similar capabilities as the strongback, imposing a displacement pattern, if
42 designed with sufficient stiffness and strength.

43 The efficient design of strongbacks and other types of elastic spines is an area of current research. Design
44 by nonlinear response history analysis is an option but is difficult to implement in practice. Simplified
45 modal pushover analysis [12] and generalized modified modal superposition [13] are among the simpler
46 methods that have been proposed specifically for the design of strongback systems. Both methods
47 consider the higher mode effects and partial yield mechanisms that can complicate strongback design.
48 With the formation of a global plastic mechanism being a primary goal of strongback systems, the theory
49 of plastic mechanism control [14] may also be well-suited for their design. However, none of these simpler
50 methods have been included in design standards yet.

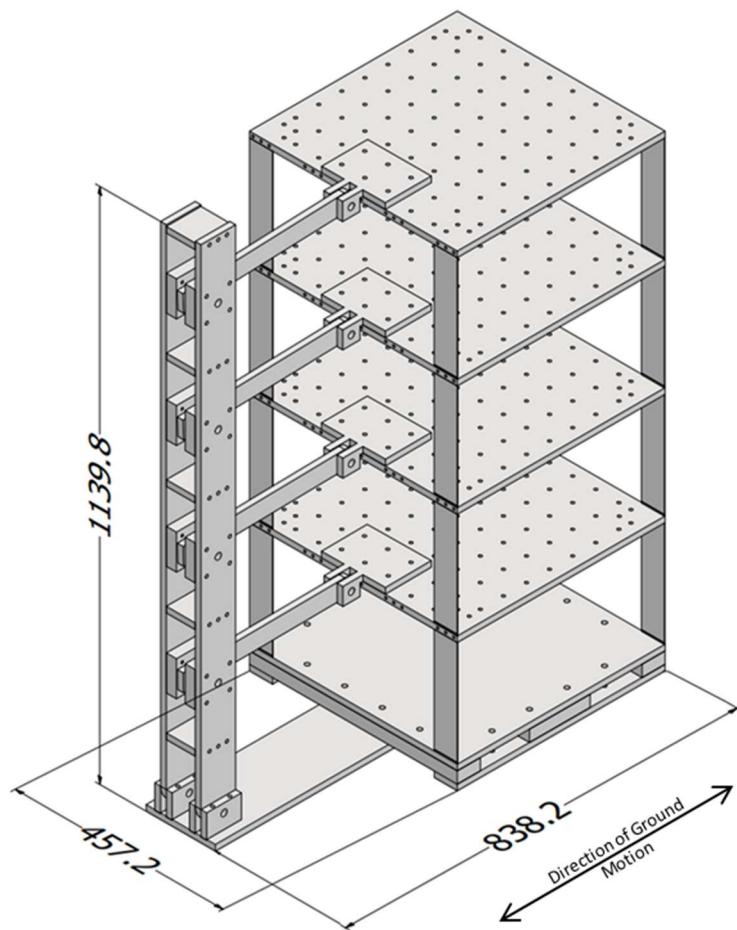
51 Many numerical studies have investigated the performance of systems that behave like strongbacks [1],
52 [10], [15], [16], but experimental studies on these systems are limited. Simpson and Mahin [2] studied the
53 weak-story behavior of a nearly full-scale two-story structure with a strongback that effectively delayed
54 or prevented soft-story formation even after the rupture of the structure's buckling-restrained braces. Hu
55 et al. [7] studied a self-centering companion spine composed of two rigid spines and friction dampers to
56 enhance structural response and mitigate damage during seismic events using an experimental structural
57 model based on a length scale of 0.35. A collaborative study conducted by a U.S.-Japan team [17] focused
58 on the full-scale testing of a frame-spine system with force-limiting connections added to a moment-
59 resistant frame. Due to the large scales considered and other experimental complexities, the majority of
60 the experimental works related to strongbacks have featured a small number of tests or a single test; thus,
61 wider-ranging experimental parametric studies on structures with strongbacks have not been performed.
62 The stiffness of the strongback and the stiffness of the primary structure (i.e., the structure into which the
63 strongback is incorporated) are both important and impact the behavior of the combined system. Chen
64 et al. [15] numerically investigated the impact of strongback stiffness and strength on the behavior of a
65 three-story special concentrically braced frame with an attached strongback. Lin et al. [18] conducted a
66 numerical study on several stiffness configurations for the strongback, considering both the overall
67 stiffness of the strongback and the distribution of stiffness in the strongback. This work also investigated
68 the effectiveness of the strongback for different primary structure types: a three-story shear deformation-
69 dominated structure and a nine-story flexure deformation-dominated structure. Other work explicitly
70 considered the impact of a strongback on a structure with a story with reduced stiffness [2], but this work
71 did not vary the position of the soft story vertical irregularity in the structure. Consequently, investigations
72 focusing on the effectiveness of the strongback given changes to the primary structure's stiffness are
73 limited.

74 There have been many investigations on improving structural behavior and mitigating soft-story
75 mechanisms through the use of energy dissipation devices [19], [20] and buckling restrained braces [21],
76 [22]. The effects of including different types of energy dissipation devices in structures with strongbacks
77 have also been considered. Qu et al. [23] investigated the effectiveness of shear-type steel dampers that
78 were distributed throughout the height of an eleven-story steel-reinforced concrete frame with pin-
79 supported walls. Wang et al. [24] also investigated a pin-supported wall frame structure and considered
80 hysteretic and viscoelastic dampers in this structure. Hu et al. [7] proposed the use of friction spring
81 dampers with recentering properties that were distributed along the height of a steel structure that
82 featured a pair of rigid spines. Palermo et al. [10] numerically investigated a structure with a strongback
83 and several configurations of viscous dampers in the structure, including dampers at each story, at some
84 select stories, and concentrated vertically at the base of the strongback. This work concluded that the
85 strongback's presence allowed for the increase in seismic performance effectiveness of these different
86 configurations of viscous dampers due to a more uniform potential for energy dissipation by dampers

87 located throughout the height of the structure. While some studies have investigated the impact of
88 damper configurations in a strongback system, the effect of concentrating all of the structure's dampers
89 in one story and the effect of the location of that damped story, have not been widely considered or
90 experimentally investigated. This is an important gap in knowledge as the ability to concentrate dampers
91 at a single story can add desirable design flexibility.

92 The objective of this work is to determine the effect of the position of stiffness irregularities in a primary
93 structure and the arrangement of dampers in the structure on the dynamic performance and properties
94 of a structure with a strongback. This experimental investigation was performed with a small-scale four-
95 story model structure with and without an attached strongback subjected to shake table-produced ground
96 motion. This investigation is composed of an experimental parametric analysis that considers the location
97 of stiffness irregularities, produced by reducing the column thickness in specific stories, and considering
98 the arrangement of dampers in different stories of the structure. The scale and limited complexity of the
99 model enabled this experimental parametric analysis to consider more system configurations and ground
100 motions than other experimental studies on strongback systems. The impacts of the stiffness irregularities
101 and damper arrangement are evaluated considering the resulting maximum story and roof drift of the
102 structure as well as changes in the structure's first natural frequency and first mode damping coefficient.
103 Data from these tests were used to develop an understanding of how the dynamic behavior and response
104 of the structure changes due to the stiffness irregularities and damper arrangement with and without the
105 strongback.

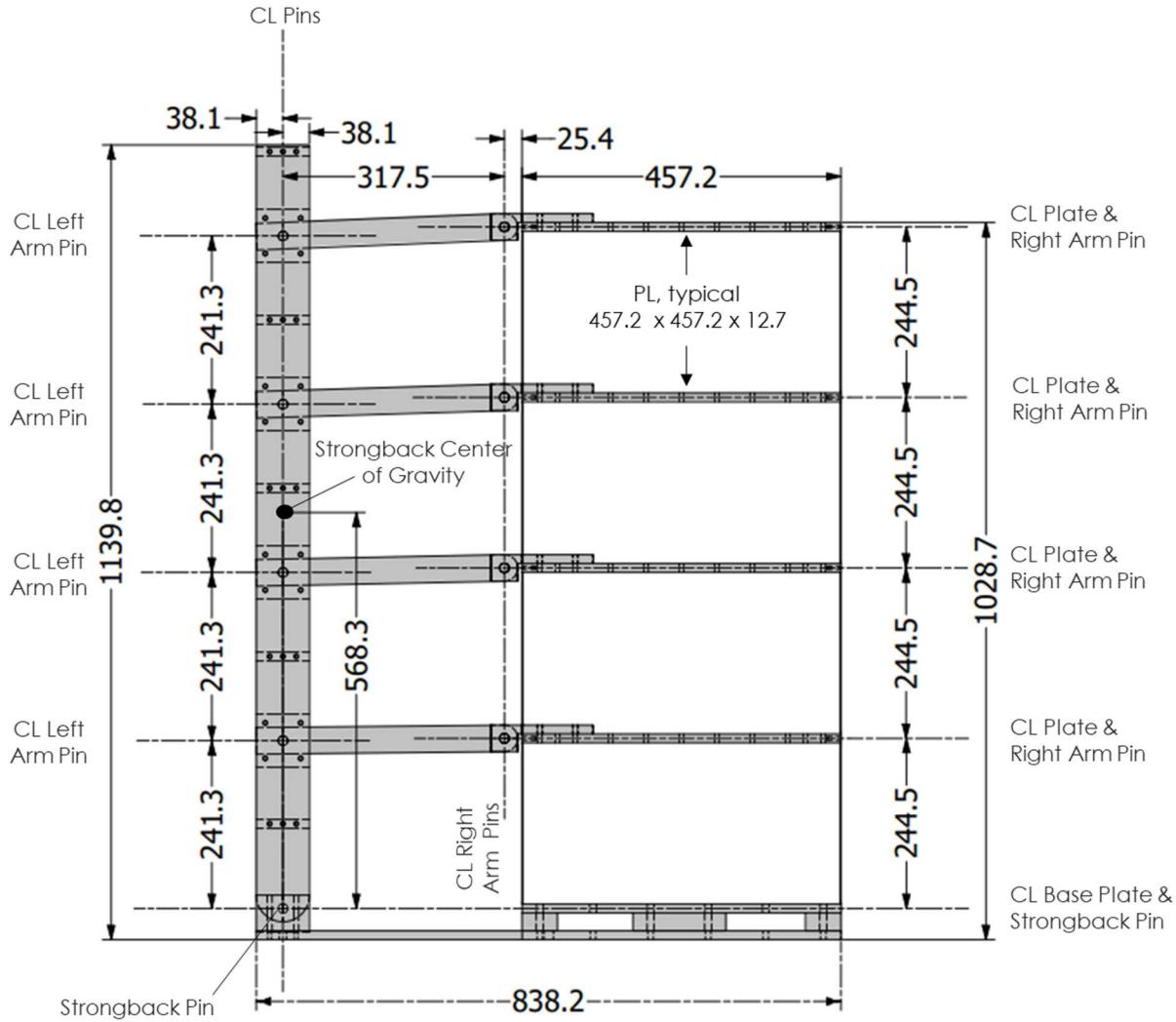
106 This paper is organized as follows. Section 2 describes the primary structure and strongback used in this
107 experimental study. Section 3 presents the system configurations considered to investigate the effects of
108 stiffness irregularities and the arrangement of dampers in the structure. Furthermore, this section
109 describes the ground motions considered and the instrumentation used to measure the response of the
110 structure. The results of the experimental parametric investigation are presented and discussed in Section
111 4, where they are divided into a study investigating the effects of stiffness irregularities and a study
112 investigating the impact of damper arrangements. In Section 5, the results of the studies are summarized,
113 and conclusions are presented.


114 **2. Physical Model**

115 The physical model used in this work was a four-story structure (referred to as the primary structure) with
116 a strongback attached to it. An isometric view of the physical model is shown in Figure 1. Figure 2 shows
117 an elevation view of the physical model and is annotated with key dimensions. Details on the structure
118 dimensions not shown in Figure 1 and Figure 2 can be found in the design drawings for this structure [25].
119 Tests were performed on this physical model with and without the strongback attached to the primary
120 structure. In order to avoid damage and enable a large parametric study with this model, this structure
121 was designed to remain elastic during testing.

122 Each of the four floors and the base of the primary structure was a 457.2 mm x 457.2 mm x 12.7 mm 6061-
123 T6511 aluminum plate. Grade 1095 spring steel columns were located in the corners of the structure and
124 bolted to the sides of the plate, forming a moment-resisting connection. The columns were 50.8 mm wide
125 and had a thickness of either 1.575 mm (original thickness) or 1.067 mm (reduced thickness). The columns
126 were oriented in the same direction such that the overall structure was flexible in one lateral direction
127 and stiff in the orthogonal lateral direction, and the connections were such that the bending span of the
128 columns was the clear story height. The center-to-center height of each story was 244.5 mm and the clear
129 story height was 231.8 mm. The flexural rigidity, EI , of the spring steel columns, was determined through
130 a three-point bending test as $EI = 3.205 \text{ N}\cdot\text{m}^2$ and $1.049 \text{ N}\cdot\text{m}^2$ for the original and reduced thickness
131 columns, respectively.

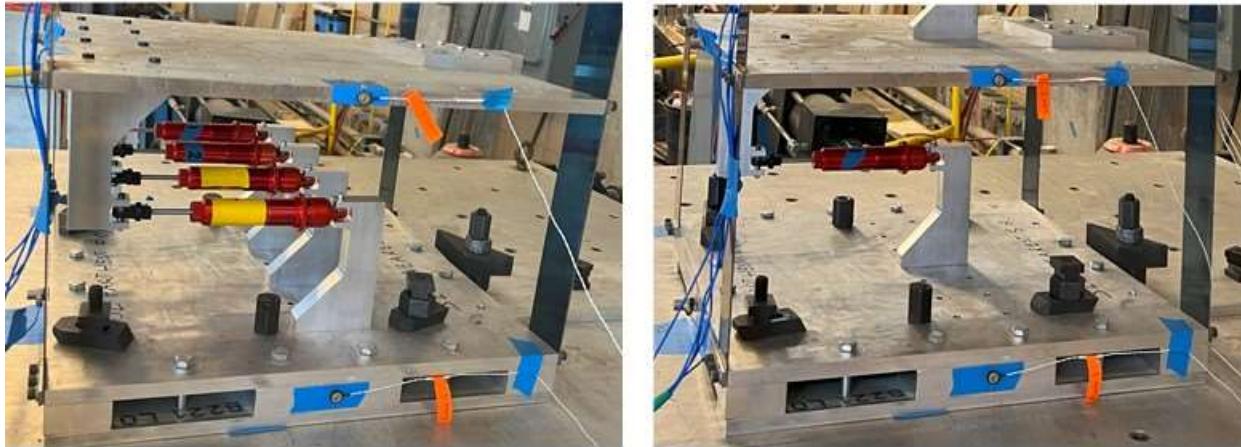
132 The strongback was constructed from two 76.2 mm wide and 12.7 mm thick aluminum plates. The plates
133 were joined together by several connector pieces. The strongback was pinned at the base using a partially
134 threaded bolt. The centerline of the strongback pin was at the same elevation as the centerline of the
135 base plate. The strongback was attached to the primary structure at each floor with aluminum link arms
136 with cross-sectional dimensions of 38.1 mm width and 12.7 mm thickness that were pinned at the
137 strongback (left arm pin) and brackets (right arm pin). The brackets were rigidly connected to the floor
138 plates. The centerline of the right arm pins was at the same elevation as the centerline of the floor plates.
139 Due to a design error, the center-to-center spacing of the left arm pins was 241.3 mm, less than the story
140 height of the primary structure, resulting in the arms being slightly tilted when the structure is in its
141 undeformed position. The strongback was oriented such that it rotated about its base pin with motion in
142 the flexible direction of the primary structure.


143 The mass of each floor, including associated hardware (e.g., the bracket, but not the link arm), was 8.083
144 kg. The mass of each of the original thickness columns was 0.154 kg. The mass of each of the reduced
145 thickness columns was 0.113 kg. The mass of each link arm was 0.576 kg. The mass of the strongback,
146 including associated hardware, was 10.156 kg. The center of gravity of the strongback was 568.3 mm
147 above the center of the strongback pin. In cases when the strongback is not present, the strongback, link
148 arms, and associated hardware were removed, but the brackets connected to the floor plates remained.

149
150

151 Figure 1: Isometric view of the physical model of the primary structure with the strongback- units are
152 mm

153



154
155 Figure 2: Dimensioned elevation view of the primary structure with the strongback – units are mm, CL =
156 centerline

157 The dampers used in this study were shock absorbers that were repurposed from an intended use in
158 hobby radio-controlled cars. These devices provide damping through the dynamic motion of a plunger
159 through an oil-filled chamber. The dampers were filled with 30-weight oil, which was determined to be
160 an appropriate viscosity based on a preliminary investigation. The properties of each of the four dampers
161 used in this study were characterized in a separate single-degree-of-freedom test structure subjected to
162 shaped random ground motion. Each damper was pin connected to two sets of aluminum mounts fixed
163 to the test structure's top and bottom plates. From these tests, the average effective viscous damping
164 provided by a single damper was identified to be 77 ± 23 Ns/m. The variability in the estimated effective
165 viscous damping existed for the different dampers as well as the same damper in repeated trials.

166 A pair of aluminum brackets were used to connect each damper between floors of the primary structure.
167 The mass of a single damper with brackets and associated hardware was 0.733 kg. When considering a
168 distributed arrangement of the dampers, a damper was placed in each story of the primary structure at
169 the centerline of the floor and orientated in the flexible direction of the structure. When considering

170 concentrated arrangements of the dampers, all four dampers were placed in a single story, arranged
171 symmetrically along the centerline of the floor, and orientated in the flexible direction of the
172 structure. Figure 3 shows photos of the dampers connected in a story of the structure in the concentrated
173 and distributed configurations.

174
175 Figure 3: Dampers connected in a story of the structure. Left- Concentrated arrangement in the first
176 story, Right- Distributed arrangement showing first story only.

177 **3. Description of Experimental Tests**

178 This section describes the structure configurations, ground motions, and data collected during the
179 experimental tests.

180 **3.1. Structure configurations**

181 Table 1 shows the system configurations utilized for the experimental testing. To investigate the impact
182 of stiffness irregularities on the dynamic performance of the model structure, tests were performed for
183 configurations where reduced thickness columns were installed in lieu of the original thickness columns
184 in a single story. There were eight such configurations, four (one for each story) times two (with and
185 without strongback). Additionally, two configurations (with and without strongback) with all original
186 thickness columns were tested as a control. No dampers were used in any of the tests investigating
187 stiffness irregularities.

188 To investigate the impact of damper arrangement, tests were performed for configurations where all four
189 dampers were installed in a single story. There were eight such configurations, four (one for each story)
190 times two (with and without strongback). Additionally, two configurations (with and without strongback)
191 with the dampers distributed one per story were tested as a control. Original thickness columns were
192 used in all stories for all tests investigating damper arrangement.

193

Table 1: System configurations for stiffness irregularity and damper arrangement tests

Test Type	Strongback Config.	Config. Name	Column thickness at Each Story				Number of Damper at Each Story			
			1st	2nd	3rd	4th	1st	2nd	3rd	4th
Stiffness Irregularity (SI)	No Strongback	SI1	R	O	O	O	---	---	---	---
		SI2	O	R	O	O	---	---	---	---
		SI3	O	O	R	O	---	---	---	---
		SI4	O	O	O	R	---	---	---	---
		NSI	O	O	O	O	---	---	---	---
	Strongback (SB)	SI1-SB	R	O	O	O	---	---	---	---
		SI2-SB	O	R	O	O	---	---	---	---
		SI3-SB	O	O	R	O	---	---	---	---
		SI4-SB	O	O	O	R	---	---	---	---
		NSI-SB	O	O	O	O	---	---	---	---
Damper Arrangement	No Strongback	DC1	O	O	O	O	4	---	---	---
		DC2	O	O	O	O	---	4	---	---
		DC3	O	O	O	O	---	---	4	---
		DC4	O	O	O	O	---	---	---	4
		DDA	O	O	O	O	1	1	1	1
	Strongback (SB)	DC1-SB	O	O	O	O	4	---	---	---
		DC2-SB	O	O	O	O	---	4	---	---
		DC3-SB	O	O	O	O	---	---	4	---
		DC4-SB	O	O	O	O	---	---	---	4
		DDA-SB	O	O	O	O	1	1	1	1

O: Original column thickness R: Reduced column thickness

As seen in Table 1, SI1, SI2, SI3, and SI4 refer to configurations without the strongback and with the stiffness irregularity in the first, second, third, and fourth stories, respectively. NSI refers to the configuration with no stiffness irregularity in the primary structure and without the strongback. DC1, DC2, DC3, and DC4 indicate configurations without the strongback and dampers concentrated in the first, second, third, and fourth stories, respectively. DDA refers to the distributed damper configuration where all stories have one damper and without the strongback. The same configurations, but with the strongback, are denoted with “-SB” appended to the configuration name.

3.2. Ground motions

A 6 degree-of-freedom shake table at the University of Tennessee was used to provide ground motions for this testing. This table is 1.2 m x 1.2 m and was designed and built by Shore Western Manufacturing.

To avoid biasing the results of this study towards a single earthquake record, six seismic ground motions were used to assess the differences in the seismic response of the structural configurations shown in Table 1, specifically story and roof drift. The six records chosen were recorded from historic events and were obtained from the Pacific Earthquake Engineering Research Center (PEER) ground motion database [26], and some have been widely used for shake table testing [27], [17], [28]–[33]. In all cases, only component A, as denoted in the PEER database, of the recorded ground motions was used. These ground motions were applied as unidirectional horizontal motions by the shake table in the flexible direction of the structure. The records were scaled down separately to an amplitude that resulted in significant motion of the physical model without damaging it. While the shake table is unable to perfectly replicate each of the

215 ground motions, an iterative process was used before testing the structure to produce shake table
216 commands that largely reproduce the desired ground motions. The properties of the six recorded historic
217 seismic ground motions are provided in Table 2.

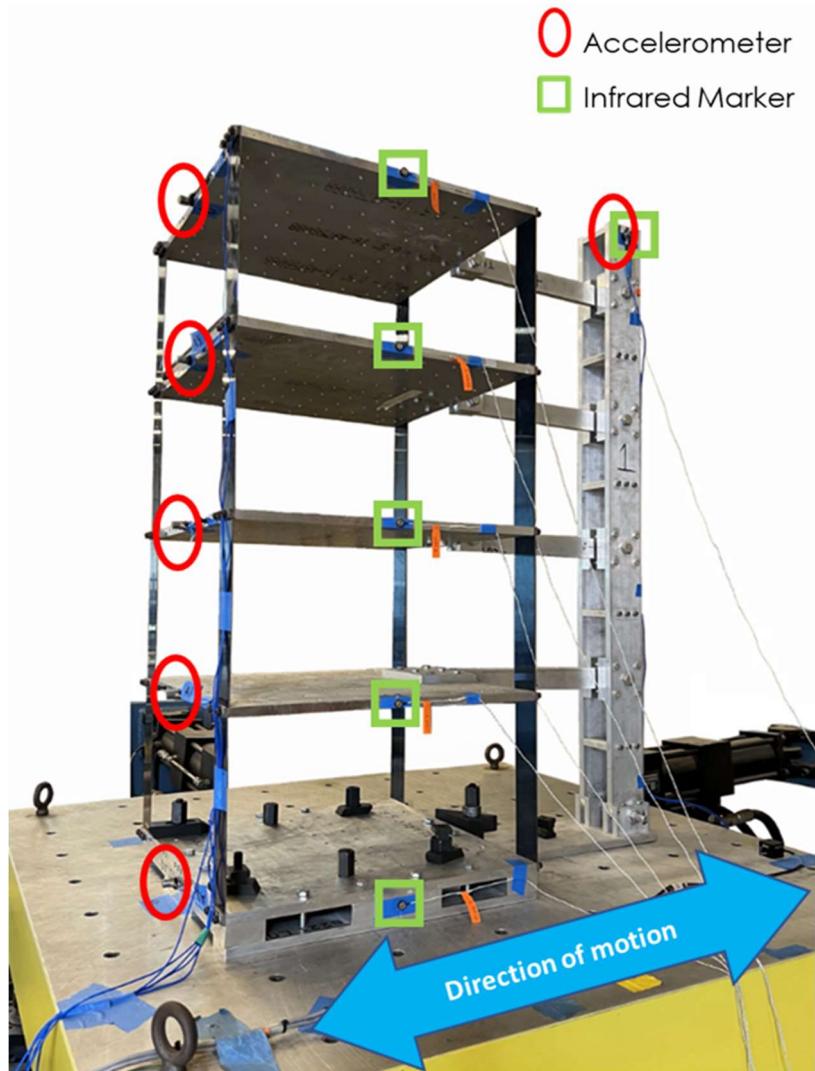
218 Table 2: Identifying information and properties of ground motions used for shake table tests

No.	Earthquake name	Station	Year	Mag.	Unscaled PGA max (g)	Scaled % used for the test
1	Northridge	Beverly Hills-Mulhol	1994	6.7	0.52	15
2	Kobe, Japan	Shin-Osaka	1995	6.9	0.24	20
3	Imperial Valley	El Centro Array #11	1979	6.5	0.38	30
4	Manjil, Iran	Abbar	1990	7.4	0.51	30
5	Chi-Chi, Taiwan	CHY101	1999	7.6	0.44	20
6	Landers	Coolwater	1992	7.3	0.42	20

219 In addition to the recorded seismic ground motions, a shaped white noise loading was employed to
220 examine the dynamic properties of the model structure, especially its first natural frequency and first
221 mode damping ratio. This type of load was chosen for evaluating the structure's dynamic properties as
222 the longer duration and broadband nature of this loading allowed for estimating the system's frequency
223 response functions with more clarity and definition. The white noise loading was generated from a 300-
224 second random acceleration that was subjected to a lowpass filter with a cutoff frequency of 200 Hz. This
225 load was also applied as ground motion by the shake table in the flexible direction of the structure. The
226 white noise was scaled such that the maximum response of the structure when subjected to the white
227 noise was comparable to that for the recorded ground motions.

228 Each of the seven ground motion records (six seismic records and one shaped white noise) was applied to
229 each of the 20 structure configurations (Table 1). As a result, 140 shake table tests were performed for
230 this study.

231 **3.3. Instrumentation and data acquisition**


232 PCB model 352C33SN accelerometers connected to a data acquisition system with a sampling rate of
233 10,240 Hz were used to capture the acceleration of the ground (shake table) and the acceleration of each
234 floor of the structure. The accelerometers were mounted to the middle of the side of each floor plate and
235 the base plate. These accelerometers measured the acceleration in the structure's flexible direction,
236 which was the primary direction of motion. Additionally, two accelerometers were mounted on top of the
237 strongback and orientated to measure along both horizontal directions. These acceleration
238 measurements were primarily used to estimate the structures' natural frequency and damping.

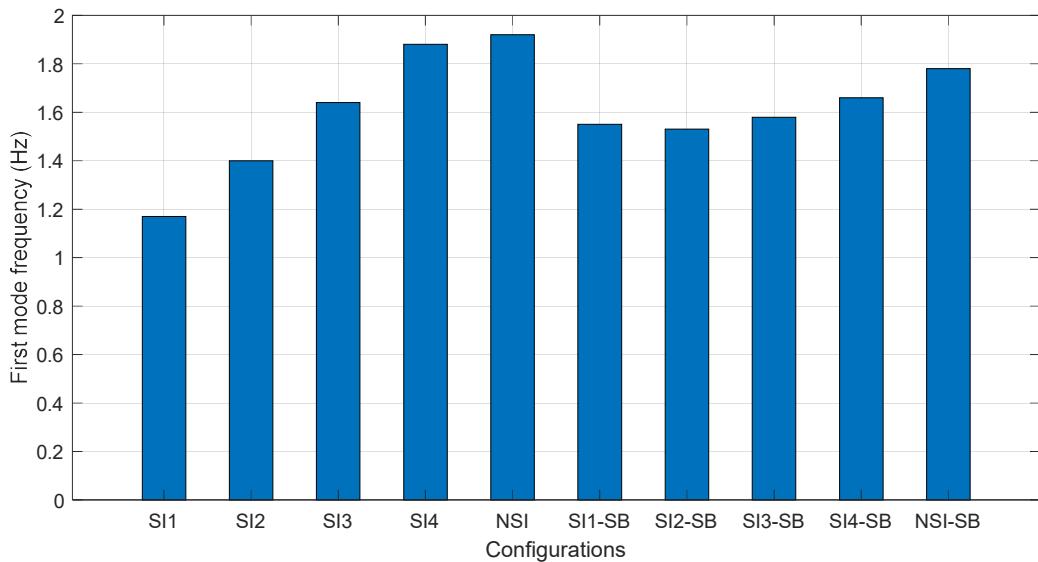
239 The displacement response of each floor plate, the base plate, and the strongback were captured using
240 an NDI Optotrak, an optical measurement system that tracks emitted infrared light from markers placed
241 on these components. This system used a sampling rate of 50 Hz. The absolute position of each marker
242 was measured in three dimensions with a separate data acquisition system and synchronized with the
243 acceleration measurements in post-processing. The motion of the structure in its flexible direction was
244 extracted from the three-dimensional marker position data. These displacement measurements were
245 used to calculate the resulting story and roof drifts.

246 The arrangement of the accelerometers and infrared markers on the structure is shown in Figure 4.

247 The system response to the white noise was used to estimate the structure's first-mode natural frequency
248 and damping ratio for each system configuration. Numerical frequency response functions were

249 estimated between the roof absolute acceleration and the base absolute acceleration using the tfeestimate
250 function in MATLAB [34]. Curve fitting was then used to match a single degree-of-freedom analytical
251 dynamic model to the numerical frequency response functions produced from the experimental data
252 using the system identification toolbox in MATLAB [35]. This curve fit only considered the frequency
253 response function values within ± 0.5 Hz of an initial estimate of the first mode frequency. Finalized system
254 first mode damping and natural frequency estimates were then extracted from the natural frequency and
255 damping ratio of the fit analytical single-degree-of-freedom model.

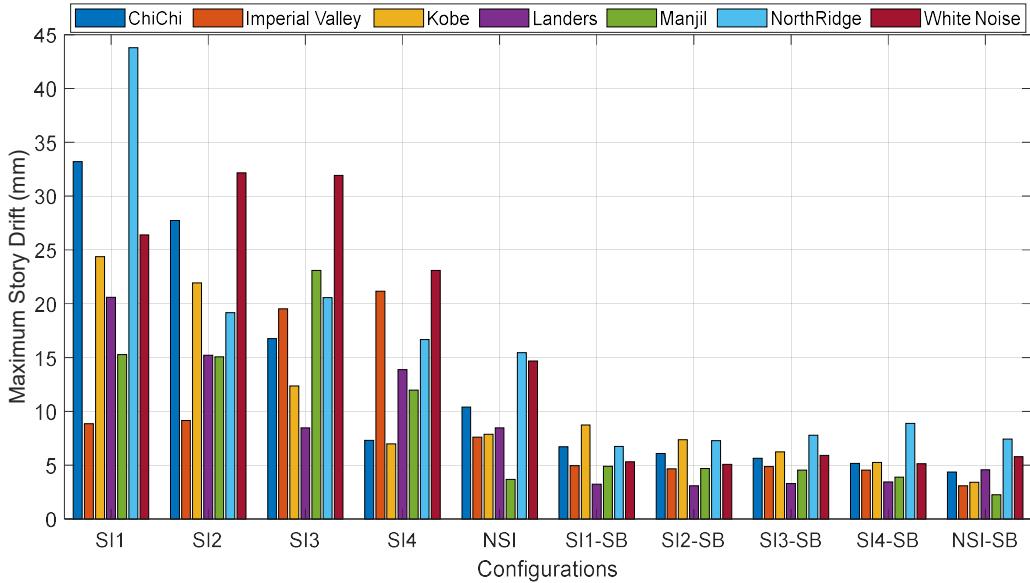
256
257 Figure 4: Primary structure with the strongback on the shake table with annotations highlighting the
258 instrumentation


259 **4. Results and Discussion**

260 The experimental results and discussion thereof are divided into two parts. The first part presents and
261 discusses results from the stiffness irregularity study and the second part presents and discusses results
262 from the damper arrangement study.

263 **4.1. Stiffness irregularity**

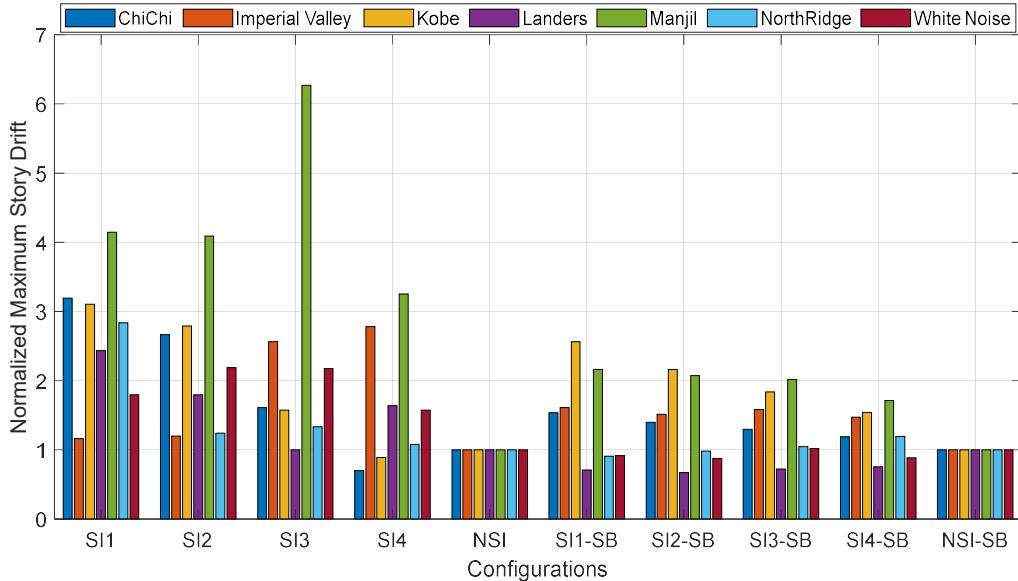
264 The first natural frequency for each of the ten system configurations in the stiffness irregularity study
265 (Table 1), as determined from the acceleration data from the shaped white noise tests, is shown in Figure
266 5. This data shows that reducing the stiffness of a story decreases the natural frequency regardless of the
267 presence of a strongback. However, with a strongback the decrease is less pronounced. For both with and
268 without a strongback, the decrease in natural frequency is, in general, more pronounced as reduced
269 thickness columns are positioned in progressively lower stories of the structure.


270 With all original thickness columns (i.e., configurations NSI and NSI-SB), the estimated first mode
271 frequency of the structure with the strongback is lower than without the strongback. This result is due to
272 the additional mass provided to the system by the strongback and not the presence of a decrease in
273 stiffness resulting from the strongback. Shifts in the first mode frequency due to stiffness irregularities are
274 shown in Figure 5 with and without the strongback. These results show much greater consistency in the
275 first mode frequency results for the configurations with the strongback. Specifically, the difference
276 between the highest and lowest first natural frequency is shown to be 0.77 Hz without a strongback and
277 0.30 Hz when the strongback is utilized. These results suggest that the strongback can limit the impact of
278 stiffness irregularities on the dynamic properties of the system, which may lead to more stable and
279 predictable performance under different loading conditions.

280
281 Figure 5: Estimated first mode frequency of the structure with and without the strongback given the
282 structural configurations used for the stiffness irregularity study

283 Figure 6 shows the response of all the structure configurations in the stiffness irregularity study to the
284 seven different ground motions. For each data point in Figure 6, the maximum story drift is calculated
285 over the duration of the test and over all the stories. As seen from this figure, there is a wide range of
286 results from the different configurations of the structure to the ground motions. As expected due to the
287 varying nature and frequency content of the ground motions, no one configuration yields the maximum
288 or minimum story drifts for all of the ground motions. Figure 6 does show that, in general, the presence
289 of a strongback results in a significant reduction in the maximum story drift. While some of this reduction
290 in maximum story drift is related to the stiffness effects of the strongback, much of this reduction can be
291 attributed to the increased effective damping in the structure as a result of friction in the pinned joints of
292 the strongback. While increased damping is present with the strongback in this experimental model, the

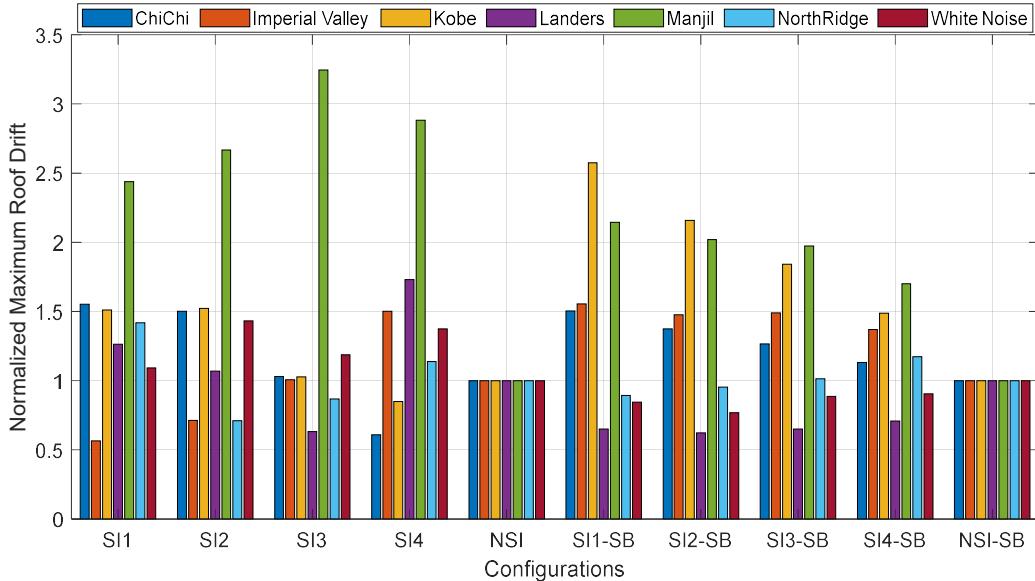
293 strongback itself would not significantly increase damping in a realistic structure as it would not be
294 designed to be an energy dissipating element.



295

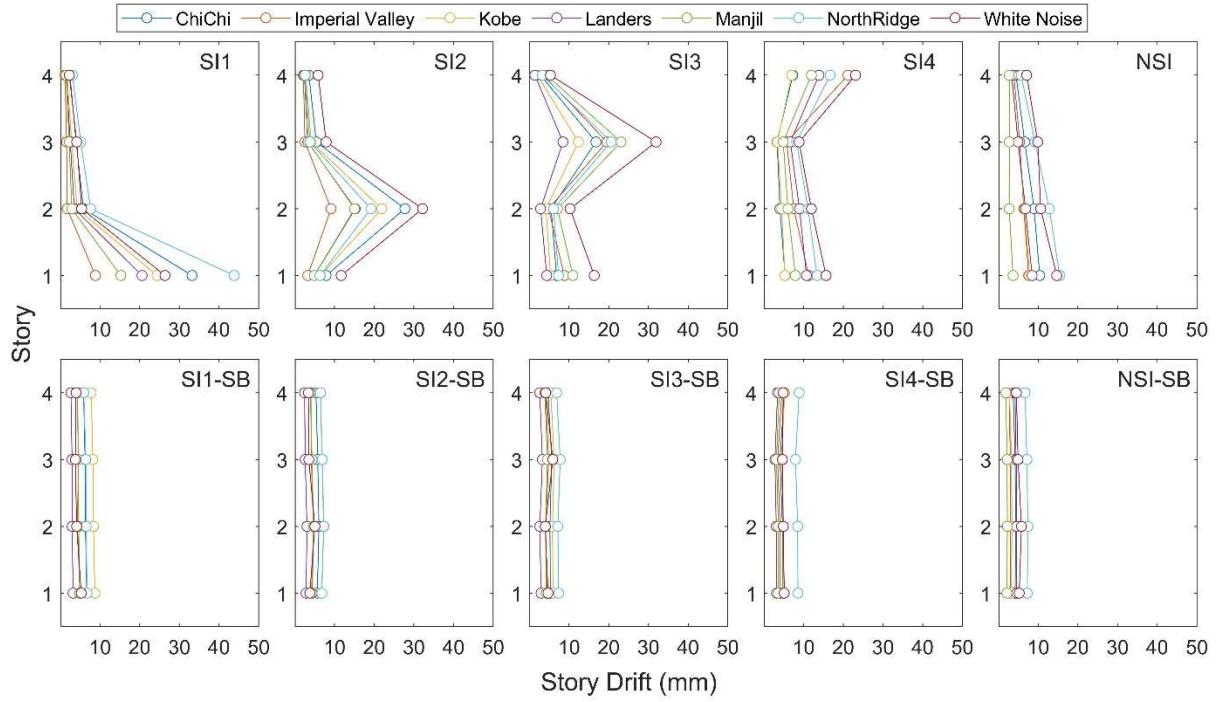
296 Figure 6: Maximum story drift from tests in the stiffness irregularity study.

297 To compensate for the damping differences in the structure with and without the strongback, the
298 maximum story drifts for all configurations and ground motions were normalized and plotted in Figure 7.
299 For each ground motion, the maximum story drift was normalized by dividing by the maximum story drift
300 from configuration NSI (for configurations without the strongback) or NSI-SB (for configurations with the
301 strongback). The use of this normalization enables identification of the impact of the stiffness irregularity
302 on the maximum story drift, controlling for differences in mass and damping. The results in Figure 7 show
303 that with and without the strongback, the maximum story drift, in general, increases with the presence of
304 a stiffness irregularity and that the increase in maximum story drift grows as the stiffness irregularity is
305 positioned lower in the structure. Furthermore, in general, the normalized maximum story drift is higher
306 for the structure without the strongback: the peak normalized maximum drift without the strongback is
307 6.27 and the peak with the strongback is 2.57.


308 There are a number of counter-examples to the general trends discussed in the previous paragraph. This
309 is not unexpected due to the complex interaction between the dynamics of the structure and the ground
310 motions, which both vary in frequency content. Given this variability, rather than comparing individual
311 test results, the average and standard deviation of the results can be considered. The average normalized
312 maximum story drift with a stiffness irregularity is 2.25 for configurations without a strongback and 1.37
313 for configurations with a strongback. The standard deviation for configurations with a stiffness irregularity
314 is 1.22 for configurations without a strongback and 0.52 for configurations with a strongback. These
315 results show that, while the strongback is not guaranteed to have a beneficial effect; on average, it greatly
316 reduces normalized maximum story drifts resulting from the presence of the stiffness irregularities
317 considered.

318

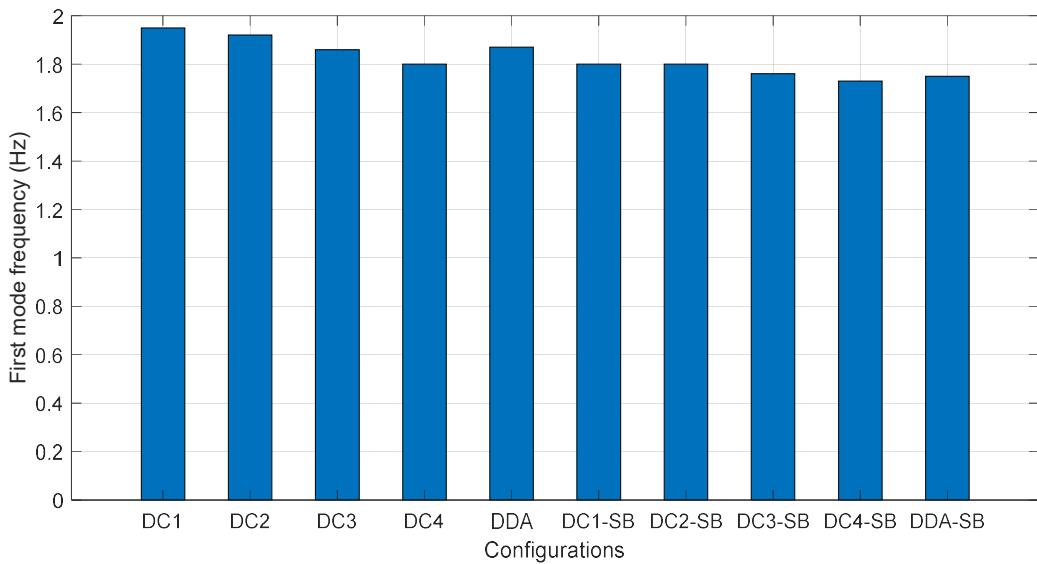
319 Figure 7: Normalized maximum story drift from tests in the stiffness irregularity study. Normalization of
 320 results from each record are performed with respect to the NSI configuration story drift results for
 321 systems without the strongback and with respect to the NSI-SB configuration story drift results for
 322 systems with the strongback


323 The maximum roof drifts for all configurations and ground motions were normalized in the same manner
 324 as for Figure 7 and are plotted in Figure 8. The peak normalized maximum roof drift without the
 325 strongback is 3.25, which is much lower than the peak normalized maximum story drift without the
 326 strongback which was 6.27, and the peak normalized maximum roof drift with the strongback is 2.57,
 327 which, when rounded, is the same as the peak maximum story drift value with the strongback.
 328 Furthermore, the average normalized maximum roof drift for configurations with a stiffness irregularity
 329 was found to be 1.38 for configurations without a strongback and 1.33 for configurations with a
 330 strongback. The standard deviation of the normalized maximum roof drift for configurations with a
 331 stiffness irregularity was found to be 0.68 for configurations without a strongback and 0.53 for
 332 configurations with a strongback. The consistency of the resulting normalized maximum story drift and
 333 maximum roof drift with the strongback indicates that the strongback imposes nearly uniform story drifts
 334 despite stiffness irregularities. In contrast, the large difference in normalized maximum story and roof
 335 drift values without the strongback is indicative of deformation concentrations.

336

337 Figure 8: Normalized maximum roof drift from tests in the stiffness irregularity study. Normalization of
 338 results from each record are performed with respect to the NSI configuration roof drift results for
 339 systems without the strongback and with respect to the NSI-SB configuration roof drift results for
 340 systems with the strongback

341 Figure 9 shows the maximum drift for each story over the length of the excitation for all configurations in
 342 the stiffness irregularity study, with and without the strongback, and for all seismic records. This figure
 343 shows that, without the strongback, the maximum story drift is observed at the story with the stiffness
 344 irregularity. However, when a strongback is utilized, the drift is largely uniformly distributed across all
 345 stories for all seismic records. Even in the case where there is no stiffness irregularity, the presence of the
 346 strongback yields significantly more uniform story drift distribution. The results indicate that regardless
 347 of the position of the stiffness irregularity, the strongback effectively achieves uniform distribution of drift
 348 along the height of the structure.

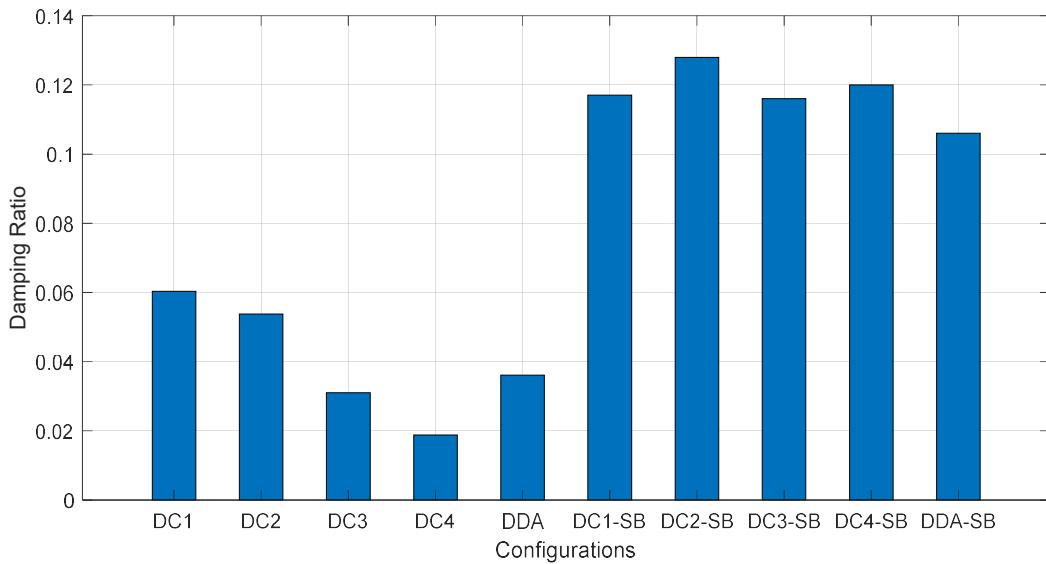


349

350 Figure 9: Story drifts with and without strongback for all configurations in the stiffness irregularity study
 351 and for all seismic records

352 **4.2. Damper arrangement**

353 The first natural frequency for each of the ten system configurations in the damper arrangement study
 354 (Table 1), as determined from the acceleration data from the shaped white noise tests, are shown in Figure
 355 10. Comparing the frequencies of configurations DDA and DDA-SB in Figure 10 and configurations of NSI
 356 and NSI-SB in Figure 5, it is seen that the addition of the dampers leads to a small change in the first-mode
 357 frequency. While the addition of viscous damping does not typically change the natural frequency of
 358 structures, the dampers used in this work did not add solely pure viscous damping; rather, the dampers
 359 and their mounts have an associated mass and physical dampers have a complicated restoring force that
 360 includes stiffness effects. The results in Figure 10 shows that the first mode natural frequency increases
 361 as the location of the concentrated dampers moves down the height of the structure; however, these
 362 changes in first mode frequency are small compared to the changes observed in Figure 5 for the different
 363 locations of reduced thickness columns. Additionally, the results in Figure 10 show that the first natural
 364 frequency is lower for configurations with the strongback, which is expected due to the additional mass
 365 of the strongback.

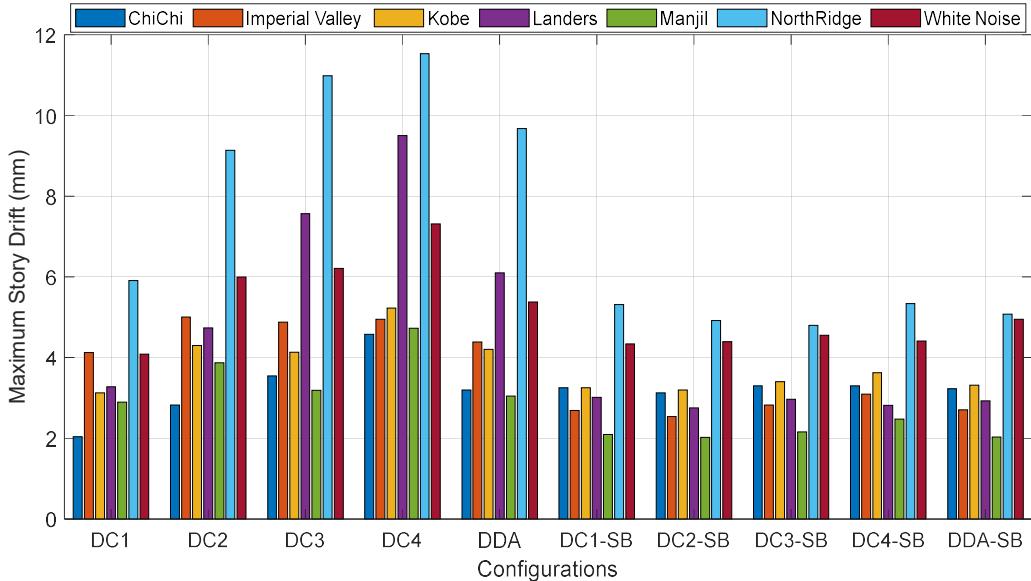


366

367 Figure 10: Estimated first mode frequency of the structure with and without the strongback given the
 368 structural configurations used for the damper arrangement study

369 The estimated damping associated with each configuration's first natural frequency was produced using
 370 the results with the white noise loading and are shown in Figure 11. This figure shows that with the
 371 strongback there is much higher first mode damping, which is the expected result for this model due to
 372 added frictional effects from the pins of the strongback at the base and its connections to each floor.
 373 Figure 11 also shows that the estimated damping for the configurations without the strongback change
 374 significantly with some of the concentrated damper configurations having higher estimated damping than
 375 the distributed configuration and some having lower estimated damping. In contrast, the estimated
 376 damping with the strongback is more consistent when comparing the estimated values from the
 377 concentrated and distributed damper configurations.

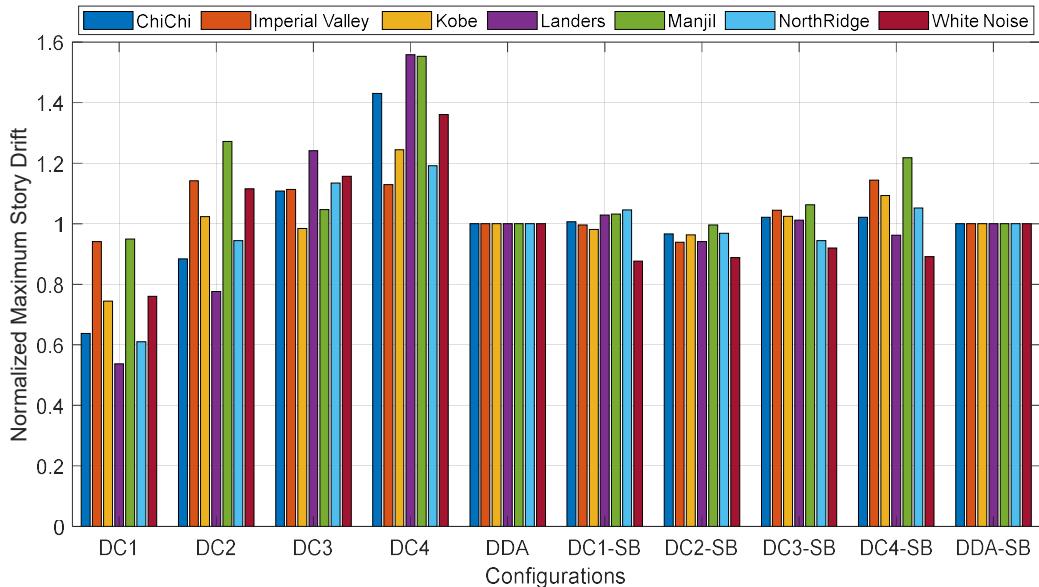
378



379

380 Figure 11: Estimated damping ratio of the structure with and without the strongback given the structural
381 configurations used for the damper arrangement study

382 Figure 12 shows the maximum story drift calculated from the response of all the structure configurations
383 in the damper arrangement study to the seven different ground motions considered. To compensate for
384 the damping differences in the structure with and without the strongback, the maximum story drifts for
385 all configurations and ground motions were normalized and plotted in Figure 13. For each ground motion,
386 the maximum story drift was normalized by dividing by the maximum story drift from configuration DDA
387 (for configurations without the strongback) or DDA-SB (for configurations with the strongback). The use
388 of this normalization enables identification of the impact of the damper arrangement on the maximum
389 story drift, controlling for differences in mass and damping.


390 The results in Figure 13 show that the largest and smallest normalized maximum drift without the
391 strongback are 1.56 and 0.54 and the largest and smallest normalized maximum drift with the strongback
392 are 1.22 and 0.88. The average normalized maximum story drift with concentrated dampers was found to
393 be 1.06 for configurations without a strongback and about 1.00 for configurations with a strongback.
394 Additionally, the standard deviation with concentrated dampers was found to be 0.26 for configurations
395 without a strongback and 0.08 for configurations with a strongback. These results show that the
396 placement and concentration of dampers has a large impact on the response of the system without the
397 strongback; furthermore, with the dampers considered in this investigation, this included times where the
398 impact is beneficial and other times where the impact is detrimental. In contrast these results also show
399 that the placement and concentration of dampers has little effect on the system with a strongback.

400

401

Figure 12: Maximum story drift from tests in the damper arrangement study.

402

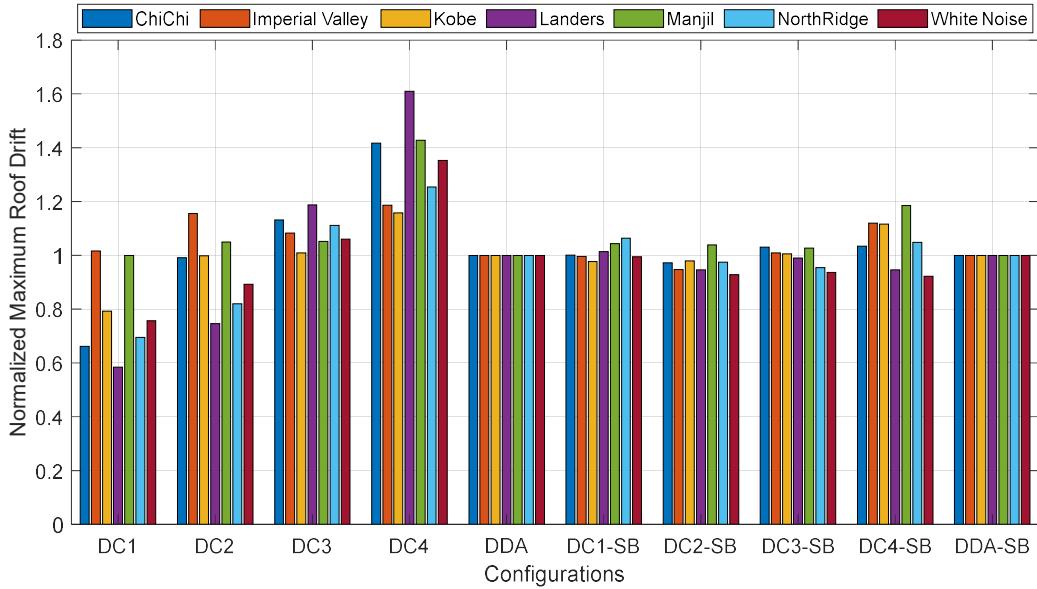
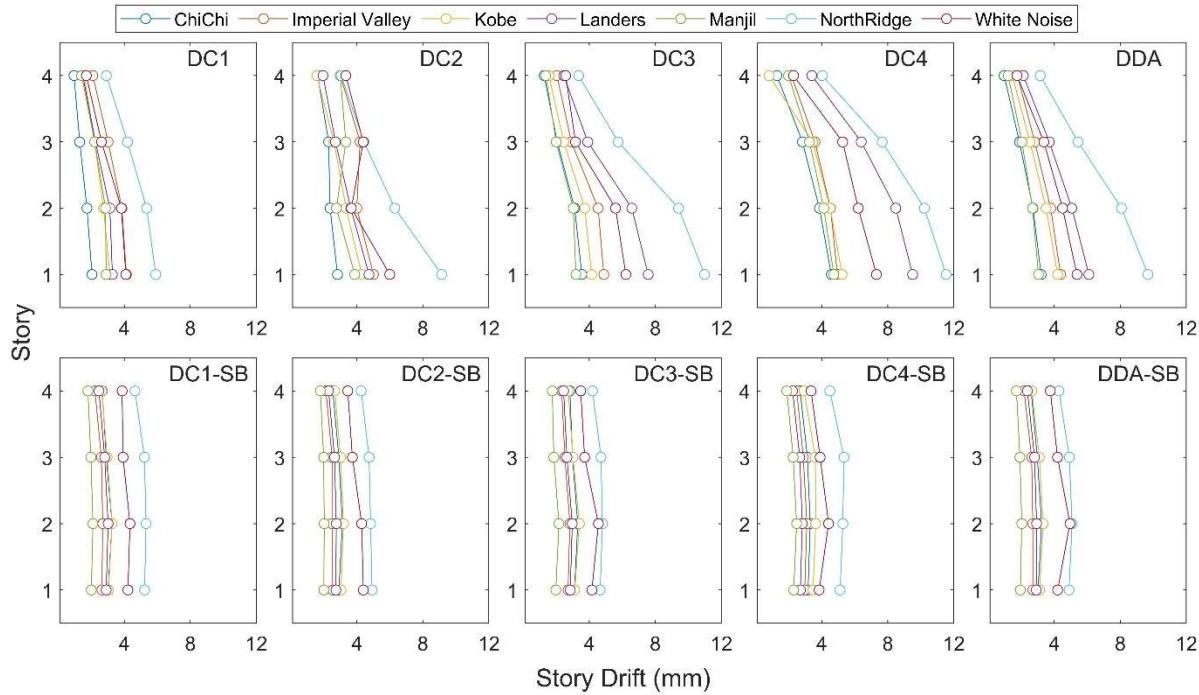

403
404
405
406

Figure 13: Normalized maximum story drift from tests in the damper arrangement study. Normalization of results from each record are performed with respect to the DDA configuration story drift results for systems without the strongback and with respect to the DDA-SB configuration story drift results for systems with the strongback

407
408
409
410
411
412
413

The normalized maximum roof drifts for all configurations and ground motions were calculated and are plotted in Figure 14. For each ground motion, the maximum roof drift was normalized with respect to the distributed dampers and no strongback configuration (DDA) for systems without a strongback and with respect to the distributed dampers with a strongback configuration (DDA-SB) for systems with a strongback. From the results in Figure 14, the average normalized maximum roof drift with concentrated dampers was found to be 1.04 for configurations without a strongback and 1.01 for configurations with a strongback. The standard deviation of the normalized maximum roof drift with concentrated dampers

414 was found to be 0.26 for configurations without a strongback and 0.06 for configurations with a
 415 strongback. The consistency of the resulting normalized maximum story drift with the maximum roof drift
 416 both with the strongback and without the strongback indicates that this concentration of dampers does
 417 not lead to a large increase in concentration of localized story drift, which was seen considering stiffness
 418 irregularities.



419

420 Figure 14: Normalized maximum roof drift from tests in the damper arrangement study. Normalization
 421 of results from each record are performed with respect to the DDA configuration roof drift results for
 422 systems without the strongback and with respect to the DDA-SB configuration roof drift results for
 423 systems with the strongback

424 Figure 15 shows the story drifts for all configurations in the damper arrangement study, with and without
 425 the strongback, and for all seismic records. This figure shows that, without the strongback, there are
 426 differences in the patterns and amplitudes of maximum story drift observed for the different damper
 427 arrangements, but, in general, story drifts are more concentrated in the lower stories of the structure.
 428 However, when a strongback is utilized, the drift is largely uniformly distributed across all stories for all
 429 seismic records and damper arrangements and the damper arrangement has a smaller impact on the
 430 amplitudes of the story drift.

431

432

433 Figure 15: Story drifts of structure with and without strongback for all damper arrangement
 434 configurations and for all seismic records

435 **5. Conclusions**

436 The main focus of this work was to explore the impacts of damper arrangement and the location of soft
 437 story vertical stiffness irregularities on the dynamic behavior and properties of a structure with a
 438 strongback. The investigation was carried out through experiments conducted on a small-scale four-story
 439 structure that was subjected to ground motion generated by a shake table. This small-scale structure was
 440 tested with and without an attached strongback. The location of stiffness irregularities resulting from a
 441 reduction in column thickness at specific stories and the distribution of dampers at various stories of the
 442 structure were separately varied in the experiments. Maximum story and roof drift of the structure and
 443 the changes in its first natural frequency and damping were evaluated. As expected, due to the complex
 444 interaction of varying structural dynamics and ground motion dynamics, large variability in the results
 445 were observed considering the different ground motions. However, based on the results of this work, the
 446 following conclusions can be made:

- 447 • Without the strongback, the first mode frequency of the structure changed significantly
 448 depending on the location of the stiffness irregularity at different stories in the structure. In
 449 contrast, the inclusion of the strongback, a stiff elastic spine, resulted only in small changes in first
 450 mode frequency when evaluating the structure with stiffness irregularities at different stories.
- 451 • Without the strongback, the maximum story drifts were measured to be much higher on average
 452 than compared to with the strongback, even when controlling for the additional mass and
 453 damping of the strongback in the model.

454 • In both the stiffness irregularity study and the damper arrangement study, it was observed that
455 the use of the strongback resulted in a largely uniform distribution of story drift along the height
456 of the structure regardless of the stiffness irregularity or damper arrangement considered.

457 • The inclusion of the strongback resulted in consistency in the estimated first mode damping and
458 maximum story drift when evaluating the structure with different damper arrangements.

459 The strongback's ability to protect against soft story vertical stiffness irregularities, regardless of their
460 location, presents promising new options for structural design, architectural design, and the remediation
461 of existing structures. Furthermore, the results of this work suggest that, with the strongback, energy
462 dissipation devices can achieve similar levels of effectiveness if they are distributed throughout a structure
463 or concentrated at one level or perhaps concentrated in a single large device. A topic of investigation that
464 logically follows on the results of this study is the behavior of strongbacks combined with innovative
465 energy dissipation devices that are well-suited to being concentrated. Also, the development of design
466 methods for strongback systems that consider various distributions of energy dissipation devices and
467 intentional stiffness irregularities is still needed.

468 **Acknowledgments**

469 The authors thank Paxton Lifsey for helping design the physical model used in this work and Griffin Barley
470 for helping with the experimental testing.

471 This work was supported by the National Science Foundation under Grant No. 1940197. Any opinions,
472 findings, and conclusions or recommendations expressed in this material are those of the authors and do
473 not necessarily reflect the views of the National Science Foundation.

474 **References**

- 475 [1] M. S. Faramarzi and T. Taghikhany, "A comparative performance-based seismic assessment of
476 strongback steel braced frames," *Journal of Building Engineering*, vol. 44, p. 102983, Dec. 2021, doi:
477 10.1016/j.jobe.2021.102983.
- 478 [2] B. G. Simpson and S. A. Mahin, "Experimental and Numerical Investigation of Strongback Braced
479 Frame System to Mitigate Weak Story Behavior," *Journal of Structural Engineering*, vol. 144, no. 2,
480 p. 04017211, Feb. 2018, doi: 10.1061/(ASCE)ST.1943-541X.0001960.
- 481 [3] B. Alavi and H. Krawinkler, "Strengthening of moment-resisting frame structures against near-fault
482 ground motion effects," *Earthquake Engineering & Structural Dynamics*, vol. 33, no. 6, pp. 707–722,
483 2004, doi: 10.1002/eqe.370.
- 484 [4] G. S. Djojo, G. C. Clifton, and R. S. Henry, "Rocking steel shear walls with energy dissipation devices,"
485 presented at the 2014 NZSEE Annual Conference, 2014.
- 486 [5] M. R. Eatherton *et al.*, "Design Concepts for Controlled Rocking of Self-Centering Steel-Braced
487 Frames," *Journal of Structural Engineering*, vol. 140, no. 11, p. 04014082, Nov. 2014, doi:
488 10.1061/(ASCE)ST.1943-541X.0001047.
- 489 [6] X. Chen, H. Tagawa, and J. A. S. Mateus, "Seismic performance of steel frame structure adopting
490 parallel spine frames with elastic braces," *Engineering Structures*, vol. 267, p. 114640, Sep. 2022,
491 doi: 10.1016/j.engstruct.2022.114640.
- 492 [7] S. Hu, W. Wang, and B. Qu, "Self-centering companion spines with friction spring dampers:
493 Validation test and direct displacement-based design," *Engineering Structures*, vol. 238, p. 112191,
494 Jul. 2021, doi: 10.1016/j.engstruct.2021.112191.
- 495 [8] T. Takeuchi, X. Chen, and R. Matsui, "Seismic performance of controlled spine frames with energy-
496 dissipating members," *Journal of Constructional Steel Research*, vol. 114, pp. 51–65, Nov. 2015, doi:
497 10.1016/j.jcsr.2015.07.002.

- 498 [9] D. Slovenec, A. Sarebanha, M. Pollino, G. Mosqueda, and B. Qu, "Hybrid Testing of the Stiff Rocking
 499 Core Seismic Rehabilitation Technique," *Journal of Structural Engineering*, vol. 143, no. 9, p. 500
 04017083, Sep. 2017, doi: 10.1061/(ASCE)ST.1943-541X.0001814.
- 501 [10] M. Palermo, V. Laghi, G. Gasparini, S. Silvestri, and T. Trombetti, "Seismic Design and Performances
 502 of Frame Structures Connected to a Strongback System and Equipped with Different Configurations
 503 of Supplemental Viscous Dampers," *Frontiers in Built Environment*, vol. 7, 2021, Accessed: Apr. 14,
 504 2023. [Online]. Available: <https://www.frontiersin.org/articles/10.3389/fbuil.2021.748087>
- 505 [11] G. A. MacRae, Y. Kimura, and C. Roeder, "Effect of Column Stiffness on Braced Frame Seismic
 506 Behavior," *Journal of Structural Engineering*, vol. 130, no. 3, pp. 381–391, Mar. 2004, doi:
 507 10.1061/(ASCE)0733-9445(2004)130:3(381).
- 508 [12] B. G. Simpson and D. Rivera Torres, "Simplified Modal Pushover Analysis to Estimate First- and
 509 Higher-Mode Force Demands for Design of Strongback-Braced Frames," *Journal of Structural
 510 Engineering*, vol. 147, no. 12, p. 04021196, Dec. 2021, doi: 10.1061/(ASCE)ST.1943-541X.0003163.
- 511 [13] A. Martin and G. G. Deierlein, "Generalized modified modal superposition procedure for seismic
 512 design of rocking and pivoting steel spine systems," *Journal of Constructional Steel Research*, vol.
 513 183, p. 106745, Aug. 2021, doi: 10.1016/j.jcsr.2021.106745.
- 514 [14] R. Montuori, E. Nastri, and V. Piluso, "Theory of plastic mechanism control: A new approach for the
 515 optimization of seismic resistant steel frames," *Earthquake Engineering & Structural Dynamics*, vol.
 516 51, no. 15, pp. 3598–3619, 2022, doi: 10.1002/eqe.3737.
- 517 [15] C. H. Chen, I. J. Tsai, and Y. Tang, "Drift Concentration of a Three-Story Special Concentrically Braced
 518 Frame with Strongback under Earthquake Loading," *AMM*, vol. 863, pp. 287–292, Feb. 2017, doi:
 519 10.4028/www.scientific.net/AMM.863.287.
- 520 [16] X. Chen, T. Takeuchi, and R. Matsui, "Seismic Performance and Evaluation of Controlled Spine
 521 Frames Applied in High-rise Buildings," *Earthquake Spectra*, vol. 34, no. 3, pp. 1431–1458, Aug. 2018,
 522 doi: 10.1193/080817EQS157M.
- 523 [17] L. Fahnestock *et al.*, "U.S.-JAPAN COLLABORATION FOR SHAKE TABLE TESTING OF A FRAME-SPINE
 524 SYSTEM WITH FORCE-LIMITING CONNECTIONS," in *17th World Conference on Earthquake
 525 Engineering, 17WCEE*, Sendai, Japan - September 27th to October 2nd, 2021, 2021. Accessed: Apr.
 526 13, 2023. [Online]. Available: <https://www.semanticscholar.org/paper/U.S.-JAPAN-COLLABORATION-FOR-SHAKE-TABLE-TESTING-OF-Fahnestock-Sause/8dc5985c7331d2c92c4ecc7cb6641081e080c76c>
- 529 [18] J.-L. Lin, M.-K. Kek, and K.-C. Tsai, "Stiffness configuration of strongbacks to mitigate inter-story drift
 530 concentration in buildings," *Engineering Structures*, vol. 199, p. 109615, Nov. 2019, doi:
 531 10.1016/j.engstruct.2019.109615.
- 532 [19] S. S. Swain and S. K. Patro, "Seismic Protection of Soft Storey Buildings Using Energy Dissipation
 533 Device," in *Advances in Structural Engineering*, V. Matsagar, Ed., New Delhi: Springer India, 2015,
 534 pp. 1311–1338. doi: 10.1007/978-81-322-2193-7_102.
- 535 [20] A. Siar Mahmood Shah and S. Moradi, "Cyclic response sensitivity of energy dissipating steel plate
 536 fuses," *Structures*, vol. 23, pp. 799–811, Feb. 2020, doi: 10.1016/j.istruc.2019.12.026.
- 537 [21] L. Panian, N. Bucci, and B. Janhunen, "BRBM Frames: An Improved Approach to Seismic-Resistant
 538 Design Using Buckling-Restrained Braces," pp. 632–643, Dec. 2015, doi:
 539 10.1061/9780784479728.052.
- 540 [22] N. Mashhadiali, S. Saadati, S. A. M. Mohajerani, and P. Ebadi, "Hybrid braced frame with buckling-
 541 restrained and strong braces to mitigate soft story," *Journal of Constructional Steel Research*, vol.
 542 181, p. 106610, Jun. 2021, doi: 10.1016/j.jcsr.2021.106610.
- 543 [23] Z. Qu, A. Wada, S. Motoyui, H. Sakata, and S. Kishiki, "Pin-supported walls for enhancing the seismic
 544 performance of building structures," *Earthquake Engineering & Structural Dynamics*, vol. 41, no. 14,
 545 pp. 2075–2091, 2012, doi: 10.1002/eqe.2175.

- 546 [24] X. Wang, Z. Qu, and T. Gong, "Role of dampers on the seismic performance of pin-supported wall-
547 frame structures," *Earthq. Eng. Vib.*, vol. 22, no. 2, pp. 453–467, Apr. 2023, doi:
548 10.1007/s11803-022-2092-5.
- 549 [25] Lifsey, P., Drake, C., Wierschem, N., Abolghasemi, S., and Denavit, M., "Structural Design Drawings."
550 in Impact of strongback on structure with varying damper and stiffness irregularity arrangements,
551 DesignSafe-Cl, 2023. doi: 10.17603/ds2-r5wm-6b46.
- 552 [26] T. D. Ancheta *et al.*, "NGA-West2 Database," *Earthquake Spectra*, vol. 30, no. 3, pp. 989–1005, Aug.
553 2014, doi: 10.1193/070913EQS197M.
- 554 [27] F. Alemdar and F. M. A. Al-Gaadi, "Experimental Study of Earthquake Simulator for 3D Cold-Formed
555 Steel Frame Structure," *Lat. Am. j. solids struct.*, vol. 19, p. e426, Jan. 2022, doi: 10.1590/1679-
556 78256812.
- 557 [28] A. B. K. Teh and C. Venkatratnam, "Design and development of a seismic shaking table for evaluation
558 and analysis of the performance of elastomeric bearing," in *2015 IEEE Student Conference on*
559 *Research and Development (SCOReD)*, Dec. 2015, pp. 111–116. doi:
560 10.1109/SCOReD.2015.7449306.
- 561 [29] A. Maree *et al.*, "Shaking Table Experiments of Dry Storage Casks," Aug. 2015.
- 562 [30] X. Lu, Y. Chen, and Y. Mao, "Shaking table model test and numerical analysis of a supertall building
563 with high-level transfer storey," 2012, doi: 10.1002/tal.632.
- 564 [31] D. Lignos, "Sidesway collapse of deteriorating structural systems under seismic excitations," Ph.D.,
565 Stanford University, United States -- California, 2008. Accessed: Jul. 13, 2022. [Online]. Available:
566 <https://www.proquest.com/docview/304469377/abstract/201B72AF97E74781PQ/1>
- 567 [32] X. Lu, Y. Zhou, and F. Yan, "Shaking Table Test and Numerical Analysis of RC Frames with Viscous
568 Wall Dampers," *Journal of Structural Engineering*, vol. 134, no. 1, pp. 64–76, Jan. 2008, doi:
569 10.1061/(ASCE)0733-9445(2008)134:1(64).
- 570 [33] C. S. Li, S. S. Lam, M. Z. Zhang, and Y. L. Wong, "Shaking Table Test of a 1:20 Scale High-Rise Building
571 with a Transfer Plate System," *Journal of Structural Engineering*, vol. 132, no. 11, pp. 1732–1744,
572 Nov. 2006, doi: 10.1061/(ASCE)0733-9445(2006)132:11(1732).
- 573 [34] The MathWorks Inc, "MATLAB version: 9.9 (R2020b)." The MathWorks Inc., Natick, Massachusetts,
574 United States, 2020. [Online]. Available: <https://www.mathworks.com>
- 575 [35] The MathWorks Inc, "System Identification Toolbox version: 9.13 (R2020b)." The MathWorks Inc.,
576 Natick, Massachusetts, United States, 2020. [Online]. Available: <https://www.mathworks.com>
- 577