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Abstract: While the nervous system may be best known as the sensory communication center
of an organism, recent research has revealed a myriad of multifaceted roles for both the CNS
and PNS from early development to adult regeneration and remodeling. These systems work to
orchestrate tissue pattern formation during embryonic development and continue shaping pattering
through transitional periods such as metamorphosis and growth. During periods of injury or
wounding, the nervous system has also been shown to influence remodeling and wound healing. The
neuronal mechanisms responsible for these events are largely conserved across species, suggesting
this evidence may be important in understanding and resolving many human defects and diseases. By
unraveling these diverse roles, this paper highlights the necessity of broadening our perspective on the
nervous system beyond its conventional functions. A comprehensive understanding of the complex
interactions and contributions of the nervous system throughout development and adulthood has
the potential to revolutionize therapeutic strategies and open new avenues for regenerative medicine
and tissue engineering. This review highlights an important role for the nervous system during
the patterning and maintenance of complex tissues and provides a potential avenue for advancing
biomedical applications.
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1. Introduction

The development of metazoan, multicellular organisms, starts with a single cell which
gives rise to a myriad of highly specialized cell types. Throughout the process, cells must
coordinate the cell behaviors necessary to build highly complex tissues and organs in a
deterministic manner. One of the most important of these early tissues is the neuroectoderm.
In vertebrates, this ectodermally derived tissue gives rise to the neural tube (NT), which
will form the central nervous system (CNS), and neural crest cells (NCCs), which will
contribute to an array of structures including peripheral nerves [1-3]. Interestingly, not
only are neuroectodermal-derived tissues critical for the creation of the nervous system,
they also play important roles during tissue patterning throughout development, the
replacement of missing structures during regeneration, and the remodeling of existing
structures [1,2,4-7]. Abnormalities in neuronal development do not only affect the cognitive
and communicative abilities of an organism but also the early development of birth defects
such as cleft palates as well the organism’s postnatal ability to grow and repair adult body
structures [8-10]. This review begins by providing a brief background describing early
developmental processes that contribute to tissue patterning events and will summarize
the breadth of research describing the nervous system’s contributions to the building, and
even rebuilding, of embryonic structures as well as a potential role for this system in the
resolution of developmental defects.
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2. How Do We Build an Organism? From Embryo to Juvenile to Adult Body Plans
2.1. Neural Ectoderm in Development

In early chordate development, the portion of the ectoderm known as the neural plate
begins to fold and fuse to become the neural tube during primary neural tube formation [11].
Primary neural tube (NT) closures ensure proper brain formation, while secondary closures
at the lower sacral and caudal levels help modulate the patterning of the spinal cord [11,12].
Proper closure of the NT is essential for avoiding patterning defects such as spina bifida
and craniorachischisis in which the central nervous system is exposed to amniotic fluid,
resulting in severe neuroepithelial degeneration [11,13-17]. In addition to the CNS, the
neural ectoderm also gives rise to one of the most diverse cell populations within the
developing embryo, the neural crest cells (NCCs). Delaminating from the dorsal portion of
the neural tube, NCCs constitute a transient, multipotent cell population that is essential
for the development of the peripheral nervous system (PNS) as well as contribute to a
plethora of non-neuronal structures such as the craniofacial skeleton and components of
the cardiovascular system [4,18-21]. These versatile cells depart from the NT through an
epithelial to mesenchymal transition, allowing them to migrate and differentiate into their
final cell fates across the embryo [19,22-26]. A more complete and in-depth history of
neural crest lineage migration can be found in a recent review by the Bronner lab [27].

2.2. The CNS as a Regulator of Craniofacial and Anatomical Patterning

In vertebrates, the central nervous system of the developing embryo is comprised of
the brain and spinal cord, which help to regulate the overall sensory—motor functioning
of the organism. The brain is in control of information processing and behavior and
physiologic maintenance, while the spinal cord acts as the main communication network
between the brain and the rest of the body [28]. Beyond its well-studied role as the primary
control center for the adult organism, several studies uncovered additional roles for the CNS
in tissue patterning during development. For example, experiments using Xenopus laevis
demonstrated that the removal of the brain during early development led to diminished
muscle mass as well as disorganization of the somites [29]. Similarly, early removal of the
salamander nervous system via NT excision resulted in severely decreased muscle mass
during limb development [30]. In mammals, the disruption of early neural functioning
resulted in abnormal olfactory pathway development [31,32].

One of the best examples of the brain’s influence during the embryonic patterning of
non-neuronal tissues can be observed during the development of the face [8,33]. Starting
during early development, the nervous system begins laying the groundwork for craniofa-
cial patterning through the coordination of cranial neural crest cells [34]. Cranial neural
crest cells, a subpopulation of NCCs, are derived from the anterior neural tube and migrate
to build an array of tissue types within the face such as connective tissue, cranial nerves
and cranial jaw cartilages [23,35-38]. The brain and the face develop very closely, both
molecularly via cranial neural crest cells signaling as well as mechanically through physical
contact, creating a linked developmental relationship [39-44]. Because the development of
each of these structures depends on the proper patterning of the other, several researchers
postulated that the brain and the face are morphologically integrated, as the interaction of
their respective traits leads to covariance within the system [44-48]. Additional evidence for
this integration was described in a detailed study of craniosynostosis, which is a condition
where the infant’s skull plates fuse together before the brain is fully grown, resulting in
an abnormal head shape and an overall reduction in brain size [49]. Prior to this study, it
was assumed that brain defects were a direct response to the physical parameters of the
head [50-52]. However, Motch Perrine and colleagues (2017) argue that the development of
many key brain structures and functions occur prior to the fusion of the infant’s skull plates.
Thus, the timing of patterning events reveals that simple head morphology is not the only
contributing factor that results in brain malformations in this condition. Likewise, research
has shown that in cases of craniosynostosis driven by mutations in fibroblast growth factor
receptors, such as Apert or Crouzon syndromes, there are also signs of brain mispatterning
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prior to improper suture closures [49,53-59]. Consequently, it is likely that the defects
observed in brain development are due to multiple factors including the early disruption
of key developmental processes within the CNS such as migration and proliferation and
then later from physical compression via skull fusion.

In addition to craniosynostosis, a wide range of abnormal phenotypes can arise
when the nervous system deviates from normal development. Orofacial defects, the most
common in the US, occur in one in every 700 births per year on average [60]. Many
of these defects are contributed to, if not primarily caused by, improper patterning of
the nervous system during early development [61]. For example, the loss of VEGFa, a
growth factor involved in neurogenesis, in neural crest cells results in cleft palates, which
constitute one of these common orofacial defects [62]. Neuroepithelial apoptosis, resulting
from TCOF1 mutations, leads to Treacher—Collins syndrome, which is a congenital birth
defect defined by underdeveloped craniofacial structures such as jaws and cheekbones [63].
Additionally, Sonic hedgehog signaling from the forebrain acts as an organizing cue for
developing jaw morphology, resulting in hypoplasia of the skeleton or disorders such as
holoprosencephaly [64—66].

2.3. The Peripheral Nervous System’s Role in Developmental Patterning

Although studies examining neural development frequently focus on brain forma-
tion, proper establishment of both the central and peripheral nervous systems is vital
for the overall patterning of the embryo. Interactions of peripheral nerves with adjacent
developing structures have been shown to impact normal development across numerous
species, potentially acting as a conserved signaling center. For example, in humans, the
development of the autonomic nervous system, the branch of the PNS responsible for
involuntary physiologic maintenance, is necessary for proper respiratory and cardiac func-
tioning [67-70]. Additionally, in children who experience obstetrical brachial plexus injury
at birth, the peripheral nerve damage can result in limb dysplasia characterized by reduced
limb lengths and muscle atrophy [71].

In other mammals such as mice, peripheral sensory nerves known as Schwann cells
are necessary for the guidance of blood vessel branching and alignment of the arteries
in the developing skin [72]. Similarly, nerve growth factor directed innervation within
the mouse femur has also been shown to be essential for vascularization and ossification
during limb development [73]. Work with mice salivary glands demonstrated a vital role for
parasympathetic innervation in the maintenance of progenitor cells necessary for epithelial
organogenesis, which is a process important not only in the development of the gland
but also tissue regeneration through adulthood [74]. Additionally, both fetal and neonatal
denervation of the sciatic nerve in rats results in an absence of skeletal muscle specification
and, thus, the inability to produce distinct adult muscle fibers [75]. In newborn rabbits,
ablation of facial nerves resulted in stunted skeletal development with reduced muscle
functioning [76]. Facial nerve ablation of prepubertal rabbits was also shown to result in
misdirected growth of the snout due to the biomechanical effects of facial paralysis [77].

This control system extends beyond mammalian species as well. For example, the
regulation of paraxial mesoderm programed cell death in chicken somites via neurotrophins
has been shown to be crucial for sclerotome or skeletal differentiation [78]. Interestingly,
proper innervation of the wings and legs of chick embryos was also found to be necessary
for skeletal growth with poorly innervated groups showing a reduction in overall size
of about 20 percent [79]. Additionally, chicken embryos rely on the NT-derived signal,
neurotrophin-3, for proper skin formation via epithelial-to-mesenchymal conversion of
dermatome progenitors [80]. Fish such as Danio rerio also rely on this signaling center for
key developmental processes. In zebrafish, the misregulation of myelinating cells in the
central and peripheral nervous systems shows corresponding defects in craniofacial and
melanocyte morphologies as well as swimming behaviors [81].

Furthermore, though more often studied in adult organisms, neurotransmitters such
as serotonin and dopamine play key roles in early development and, when dysregulated via
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pharmacologic modulation, can lead to defects in craniofacial structures such as cartilage
and eyes as well as muscle, pigment and vascular patterning across the organism [82-85].
Serotonin in particular has been shown to have an immense impact on patterning through-
out development, as described in [86].

3. How Do We Maintain Proper Patterning of the Adult Body Plan?
3.1. Neuronal Control of Organ System Function, Patterning, and Maintenance

Even after embryonic development, the nervous system’s role in maintaining pattern-
ing and physiologic functioning remains vital throughout the lifetime of an organism. As
cellular and molecular turnover is occurring every day, the adult body relies on neural
circuitry to support the growth and upkeep of tissues such as skin, muscle, and vascu-
lature [87-89]. The skin is a human’s largest and most dynamic organ; its roles include
protecting the internal organs from the environment, helping with water regulation, and
acting as a sensory conduit [90]. Because the skin plays such an important role, it has a
high cellular turnover rate to maintain homeostasis [91-94]. Epithelial maintenance is very
closely tied to sympathetic nerve functioning; when this functioning is disrupted due to
diseases such as diabetes or Parkinson’s, a breakdown of proper epidermal homeostasis
is observed [95,96]. Interestingly, in diabetic patients, the skin has difficulty regulating
water due to damaged sympathetic nerve fibers, which leads to hyperhidrosis as well as
dehydrated skin [97-99]. In addition, within the organism, the epithelia of the intestines
also requires enteric neural inputs to properly regulate cellular differentiation, nutrient
absorption, and the movement of microbes within the gut [100,101].

Beyond the epithelia, another highly proliferative organ, the liver, relies on the hepatic
nervous system for its regenerative abilities via parasympathetic modulation of the vagus
nerve [102,103]. Although the specific mechanisms by which hepatic innervation allows for
the regulation of liver homeostasis vary between species, the autonomic nervous system
has been shown to be vital for both cellular regeneration and apoptosis [104-107]. Even
though the enteric nervous system plays an important role in maintaining liver function, it
can also have harmful effects on gut health when misregulated [108]. Abnormal serotonin
signaling as well as enteric neuronal activation has been shown to exacerbate irritable
bowel syndrome pathogenesis [109-111].

Muscles are another example of a tissue that requires a good deal of maintenance,
as they undergo a tremendous amount of morphologic remodeling over the course of an
organism’s lifetime [112-114]. The sympathetic neurons of the heart are vital in regulating
cardiomyocyte size, which is an important factor in heart disease [115]. In addition to its
role in epithelial maintenance, the enteric nervous system is also an important regulator
of intestinal muscular contractions and dilations, which is a process necessary for nutri-
tional absorption [116]. Sympathetic control of the vascular system via neuromediators
such as norepinephrine is responsible for the vasoconstriction of vascular smooth mus-
cles, allowing for blood pressure regulation during exercise [117-120]. During periods of
hypoxia, where oxygen availability is limited, the peripheral nervous system modulates
vasodilation to increase muscle blood flow improving oxygen delivery [121,122]. Skeletal
muscle atrophy or wasting is a common phenotype associated with demyelinating dis-
eases such as multiple sclerosis and Charcot-Marie—Tooth disease due to both disuse and
denervation [123-127]. Skeletal muscle wasting has also been seen in patients following
acute strokes, with evidence showing that neuromuscular electrical stimulation can prevent
or reduce these pattern alterations [128-130]. In mice models, research has shown that
inflammatory signaling from the CNS influences the anabolic or catabolic regulation of
skeletal muscle via the hypothalamic—pituitary—adrenal (HPA) axis [131].

In addition to the examples described above, the misregulation of the CNS and PNS
can lead to a breakdown of sensory systems. The neurodegeneration that characterizes
Parkinson’s syndrome also affects the functioning of the eyes; in early stages of the disease,
the impaired regulation of neurotransmitters and metabolism of monoamines leads to
decreased tear fluids, inflammation of the eyelids, and retinal thinning [132,133]. In the
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mouth of rats, denervation of the gustatory nerves, the chorda tympani and lingual nerves,
alters the size and number of taste bud cells [134]. Similarly, recent work in mice has shown
that sonic hedgehog (Shh)-expressing gustatory neurons play an important role in taste
bud differentiation [135,136]. This was observed in humans prescribed the Shh inhibiting
drug, sonidegib, for cancer treatment and later confirmed in mice [137,138].

While in most of the aforementioned cases, innervation was important for the general,
normal maintenance of the system, recent research suggests that altered innervation could
also play a role in disease. For example, in patients with prostate cancer, hyperinner-
vation has been shown to increase tumorigenesis via sympathetic neonerves and even
metastasis via parasympathetic nerves [139]. A similar phenomenon has been shown in
chronic pancreatic inflammation and later malignancy [140-142]. Additionally, work in
mouse models has contributed evidence for therapeutic effects of denervation on gastric
tumorigenesis [143]. A more complete assessment of the nervous system’s role in cancer
regulation has been reviewed by Saloman et al. [144].

3.2. Transformation toward an Adult Patterning

For many animals, part of their development toward creating an adult body plan
requires the reorganization of whole tissue structures. One of the best studied examples of
this remodeling has been examined in metamorphic animals. Metamorphosis is a highly
coordinated process by which neuroendocrine signaling allows for the breakdown and
rebuilding of juvenile structures to prepare an organism for adult functioning. Throughout
this daunting undertaking, both the CNS and the PNS play key roles in supporting and
permitting these repatterning events. For example, in insects such as Drosophila melanogaster,
the metathoracic innervation to the indirect flight muscles is necessary for the formation of
the dorsoventral muscles and, to a lesser extent, the dorsal longitudinal muscles through
myoblast generation during metamorphosis [145,146]. The ablation of the pupal stage
motor neurons not only leads to muscular degeneration but also issues with adult eclo-
sion [147]. The innervation of Manduca sexta muscles has also been shown to be vital in
myoblast proliferation during metamorphosis via EcR-B1 upregulation [148].

Some species of sea slugs such as the Phyllaplysia taylori and Phesilla sibogae use am-
pullary neurons to interact with their environment to make decisions on the timing of
metamorphic induction, often delaying the onset of metamorphosis indefinitely and only
proceeding when their sensory system detects optimal environmental conditions [149,150].
When their apical sensory organ is damaged or ablated, these organisms fail to respond to
chemical metamorphic cues [151]. The role of the apical ganglion’s role in gastropod sen-
sory and metamorphic maintenance has been established [152]. Interestingly, in sea squirts,
it has been suggested that papillary sensory neurons and rostral trunk epidermal neurons
act as chemoreceptors and mechanoreceptors, respectively [153]. Thus, it seems likely that
ascidians use these sensory mechanisms to interact with their environment to initiate or
delay metamorphic events through neurotransmitter signaling [153-157]. Another sensory
system found in Portunus trituberculatus (swimming crab) has been reported to play an im-
portant role for tissue patterning. In this animal, the eyestalk neurosecretory system is vital
for proper metamorphic transitioning through endocrine regulation [158,159]. Eyestalk
ablation affects metamorphosis in a time-dependent manner with early ablation resulting
in transition inhibition and later ablations resulting in morphological changes such as small
dorsal span and furcae [159].

The nervous system also plays a vital role in vertebrate metamorphosis, which is ob-
served most commonly in organisms such as frogs. In these amphibians, as well as related
vertebrates, this process is primarily controlled by the regulation of thyroid hormone (TH)
activity via the hypothalamus and pituitary gland, which use neural networks and neuroen-
docrine pathways to communicate environmental cues to trigger metamorphosis [160]. The
process of TH-mediated metamorphosis has been thoroughly reviewed elsewhere, allowing
this review to focus on additional routes of metamorphic pattern control [161-163]. For
example, previous research demonstrated that the proper innervation of limb buds during
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early metamorphosis is necessary for proper bone and muscle maturation in developing
Rana pipiens and Xenopus laevis limbs [164,165]. In addition, tadpoles with severe brain or
spinal cord defects are unable to reabsorb their tail tissue during metamorphosis [165].

Fish also undergo a form of metamorphosis as they develop from larval to juvenile
stages. For instance, during flatfish metamorphosis, the most dramatic pattern shift occurs
when the ears and eyes shift to one side of the face. To assure that the oculomotor and
vestibular systems remain functioning after this drastic shift, the central nervous system
undergoes unique restructuring where the secondary vestibular neurons terminate on
vertical extraoculomotor and trochlear nuclei, which is a process not seen in other vertebrate
systems [166]. Furthermore, the pigment of these fish is regulated by the central nervous
system via synaptic regulation with disrupted functioning causing dyschromia during
metamorphosis [167]. Danio rerio show similar neuronal control of pigment patterning as
their melanophores, xanthophores and iridophores travel along different peripheral nerves
to create their multicolored striated appearance [168-170].

Although humans do not go through what we would classically consider metamorpho-
sis, we do undergo many developmental transitions where our body plans and functions
shift to accommodate lifestyle needs—for instance, during the prenatal to perinatal shift
as well as sexual maturation during puberty. Researchers have seen indications that there
may be shared mechanisms between amphibian metamorphosis and human development
driving these transitional changes, potentially suggesting numerous uncovered roles for
the nervous system in human patterning [171,172]. For example, studies have shown that
humans utilize thyroid hormones T3 and T4, important endocrine modulators in amphib-
ian metamorphosis, during the pre to postnatal transition period [173-175]. Additionally,
studies have found that a genetic loci involved in the metamorphic timing of C. elegans and
Xenopus laevis is conserved in humans for the modulation of sexual maturation [176-178].
Evidence of these shared mechanisms suggests a closer tie between metamorphosis and
human growth and maturation than previously considered, and it may be an important
route of exploration in the future.

4. Resolution of Abnormal Body Plans
4.1. Regeneration

In addition to the important roles CNS and PNS play during the creation and mainte-
nance of complex structures, the nervous system is also a key player during the regeneration
of damaged tissues. During wounding events, many organisms require innervation of
the surrounding tissues to produce neurotrophic factors necessary for apical epithelial
cap (AEC), and later blastema, formation and functioning [179,180]. In mammalian regen-
eration and dermal healing, nerve-derived mesenchymal cells dedifferentiate to play a
vital role in blastema maintenance and later for the development of new bone and skin
tissues [181]. One of the best examples of regeneration can be seen in planaria, which can
rebuild over 99% of their tissue from as little as 1/279th of their bodies [182]. Flatworms
appear to utilize central nervous system and gap junction instructional cues to pattern their
anterior/posterior axes, often resulting in double-headed worms when disrupted [183,184].
The CNS also appears to play a role in planaria fission frequency via mechanosensory
neuron patterning [185]. In addition, these organisms also require regulation of the neuro-
transmitter serotonin to properly regenerate eye structures [186].

Another classic model for regeneration is salamanders, which have remarkable regen-
erative abilities, especially in limb regrowth. For example, some amphibians can regenerate
entire limbs after a wounding event, which can occur in large part due to proper inner-
vation of the injury location [7,187]. In both newts and axolotls, protein gradients are
modulated by axons in the injured limb to promote blastema formation and allow for regen-
eration [188-190]. Although axolotls are highly regenerative, repeated injury to the limb
bud reduces the overall size of the regenerate potentially due to reduced innervation [191].
When fully denervated, axolotls completely lose their ability to form the vital blastema; this
phenotype can be rescued by the introduction of exogenous Neuregulin-1, suggesting a
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role for NRG1/ErbB2 signaling in nerve-dependent regeneration [192]. In addition to limb
regeneration, axolotls also require the peripheral nervous system for bone regeneration
of the mandible [193]. Although adult frogs lack the regenerative abilities of some of
their fellow amphibians, pre-metamorphic tadpoles have very comparable regenerative
abilities to salamanders, which they maintain until metamorphic stages [194]. As long
as there is proper innervation, tadpoles have been shown to repair their tails and optic
nerves as well as limbs [195-198]. Interestingly, this effect is not simply blastema-specific;
research on tadpole tail regeneration has shown that even spinal cord manipulations far
anterior of the wound site resulted in severe disruptions in regeneration [199]. In addition,
in post-metamorphic amphibians, the telencephalon has shown regenerative capabilities
dependent on reconnection with the olfactory nerve [200]. In anuran froglets, limb regen-
eration also shows nerve-dependent restrictions [201,202]. Although anuran amphibians
such as Xenopus laevis tend to lose their regenerative capacities in adulthood, they retain
some abilities to initiate regeneration, which can be enhanced by hyperinnervation; when
the forelimb is hyperinnervated, there is increased coordination of patterning marked by
increased cartilage branching and cellular proliferation [203].

Outside of amphibians, zebrafish also possess remarkable regenerative abilities similar
to pre-metamorphic tadpoles and utilize facets of the nervous system to help coordinate
cellular behaviors. For example, adult zebrafish utilize cardiac innervation for cardiomy-
ocyte regeneration after heart injury via cholinergic signaling [10]. In addition to heart
regeneration, zebrafish can also repair amputated fins as long as their nerve fibers are
intact [204,205].

Although not generally thought of as regenerative, mammals also have some limited
capacities for nerve-dependent repair. Adults who lose the tip of their finger are able to use
Schwann cell precursors to form a blastema and thus regenerate correctly patterned digit
tissue [206]. In denervated mouse digits, the regenerated tissue showed disorganization
of bone as well as loose mesenchymal tissue [207]. Like zebrafish, mice were also shown
to have cardiac regenerative abilities within their first week post-birth, assuming there is
sufficient neural activity [10]. With the breadth of research supporting the nervous systems’
role in wound and injury repair, it may suggest a potential additional role in pathological
tissue remodeling or the remodeling in response to injury or disease.

4.2. Non-Metamorphic Remodeling

Although there is a tremendous amount of research supporting the nervous system'’s
vast role in tissue restoration via regeneration, how we remodel existing, but abnormal,
structures has been less well studied. Throughout an organism’s lifetime, they experi-
ence numerous challenges including injury, environmental changes, or birth defects, some
of which are able to trigger remodeling events [208,209]. How the nervous system may
influence or even drive these events is largely unexplored. However, a few previous
studies provide evidence for a potential organizational role for neuronal tissues during
non-metamorphic remodeling events. For example, adult snapping shrimp experience not
only the regeneration of claws after removal but also subsequent axon-mediated remodel-
ing of minor to major claws, allowing them to better survive in their environment [210,211].
Similarly, peripheral nerve patterning influences the size and shape of annually regrown
deer antlers and, in cases of injury, can result in remodeling toward a unique tine pattern
not seen in the original body plan [212]. Mollusks are another group that relies on neural
regulation for patterning both in growth and remodeling. The shells of these organisms
display unique, highly coordinated pigment patterns controlled by underling neural net-
works; during their lifespan, they maintain their patterning even during periods of growth
or damage, using their complex network of axons to return to uniform pigment bands [213].
In fish such as the zebrafish and crucian carp, gills undergo remodeling events in response
to hypoxia, likely initiated by neuroepithelial cells, to increase surface area and develop
protruding lamellae [214,215]. After injury events in mammals such as mice and humans,
neuropeptide Y, a peptide expressed by the CNS and PNS necessary for homeostatic mainte-
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nance, plays a vital role in both bone remodeling as well as cardiac remodeling via increased
angiogenesis [216-218]. The necessity of proper innervation becomes increasingly apparent
in individuals with nerve damage such as diabetic neuropathy, where wound healing is
significantly delayed and often marked by increased scarring [9,219-222].

5. Conclusions and Future Perspectives

All across the animal kingdom, the nervous system is working to build, repair and
maintain morphological patterning. Although the primary role for this system may be
sensory integration and signaling, it is impossible to ignore the importance of neural
control on form and function. The literature cited in this review highlights the intricate
and versatile nature of the nervous system by demonstrating the nervous system’s vital
secondary role in shaping and supporting patterning across not only species but also life
stages. Thus, it stands to reason that this system may function as a fascinating new target
for future therapeutic treatment research. The breadth of research described in this review
strongly suggests that the nervous system may act as a vital signaling or communication
center responsible for organizing and coordinating directional information to influence
pattern formation throughout all stages of an organisms’ lifetime. Comparing these inter-
species phenomena may be invaluable in deciphering underlying mechanisms that could
be harnessed to mitigate or treat a wide range of developmental disorders. For example,
work across regenerative species such as salamanders or zebrafish can better inform us
about the potential role of mechanisms like hyperinnervation on appendage regrowth.
These findings fill essential gaps in our understanding of human wound healing and
provide new avenues for work in regenerative medicine. Research investigating the effects
of damaged or mispatterned nerves on tissue development and remodeling could also
be groundbreaking in preventing disorders such as muscle wasting, vastly improving
the quality of life for many patients. Additionally, information on how the early nervous
system influences developmental pattern formation may allow us to predict comorbidity
between many common birth defects, potentially providing earlier routes for diagnosis and
repair. By further investigating the functioning of neural components across developmental
phases, we can hopefully uncover a potentially groundbreaking puzzle piece revealing
novel routes to defect resolutions or even prevention.
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