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Abstract—The coexistence of a wide variety of different ap-
plications with diverse Quality of Service (QoS) requirements
calls for more sophisticated radio resource scheduling (RRS)
in 5G networks compared to previous generations. To address
this challenge, a growing body of research formulates the RRS
problem as a Markov decision process (MDP) and aims to solve
it using deep reinforcement learning (DRL). A key consideration
when formulating an MDP is the choice of reward function,
which determines the goal of the decision agent. Despite the
reward function being a critical component of an MDP, there is
currently no systematic study comparing how different reward
functions affect network performance. To this end, we carry out a
comparative study of the delay and overflow performance using
several reward functions that aim to minimize packet delays.
Through extensive simulations under different traffic and channel
conditions, we identify a reward function that can achieve near
optimal delay with up to 55− 67% fewer packet drops than the
other investigated options, and does not require any tuning.

I. INTRODUCTION

With the evolution of cellular networks from 4G to 5G,

new RRS algorithms are needed to meet the more stringent

and varied end-user QoS requirements. It is well-known that

the RRS problem is NP-hard [1]. Due to its complexity,

conventional optimization-based solutions to the RRS problem

often cannot allocate resources to user equipments (UEs) in the

required sub-ms time span. On the other hand, due to the end-

user’s diverse and demanding QoS requirements, simple rule-

based schedulers provide sub-optimal solutions. To overcome

these limitations, a growing body of research formulates the

RRS problem as an MDP and solves it using DRL. A key

consideration when formulating an MDP is the choice of

reward function, which determines the goal(s) of the decision

agent. In the context of RRS, reward functions can be roughly

divided into two categories: 1) those that focus on maximizing

network capacity, throughput, and/or fairness (e.g., [2]–[6])

and 2) those that focus on minimizing packet delays (e.g., [7]–

[10]). Despite the reward function being a critical component

of an MDP, there is currently no systematic study comparing

how different ones affect network performance.

In this paper, we aim to bridge this gap by carrying out

a comparative study of the delay and overflow performance

achieved using different reward/cost functions that target min-

imizing queuing delays, buffer overflows, and/or packet drops.

We focus on such reward/cost functions for two reasons. First,
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5G networks aim to enable new delay-sensitive applications,

such as industrial control and virtual/augmented/mixed reality.

Second, existing rule-based schedulers can effectively maxi-

mize network capacity, throughput, and/or fairness, but do not

effectively optimize packet delays in general [11].

Our contributions are as follows: 1) we rigorously formulate

the multi-user downlink RRS problem as an MDP; 2) we

review five reward/cost functions used in prior literature to

minimize queuing delays; 3) we further parameterize the

reward/cost functions to penalize buffer overflows at different

levels (ranging from zero to severe penalty); and 4) through

extensive simulations under different traffic and channel con-

ditions, we identify a reward function that frequently achieves

near optimal delay with up to 55-67% fewer packet drops than

the other investigated options, does not require any tuning, and

outperforms a benchmark rule-based scheduler.

As noted earlier, the RRS problem is NP-hard. Therefore,

finding an optimal scheduling policy is unfeasible in systems

with many UEs and resource blocks (RBs). Although DRL

algorithms can be used to optimize scheduling policies in such

scenarios, they require careful hyperparameter optimization to

learn good policies and the learned policies are not guaranteed

to be optimal. Since our goal is to rigorously assess the

performance of RRS under different reward functions, it is

crucial that we can evaluate the optimal policy in each case,

to allow us to prospectively identify key performance insights

and more broadly applicable conclusions. To this end, we

formulate the downlink RRS problem assuming a single-

carrier (i.e., one RB). Furthermore, due to the well-known

curse of dimensionality [12], we limit our simulations to a

scenario with finite packet buffers and two UEs.

The remainder of this paper is organized as follows. We

review related work in Section II; present our system model

in Section III; formulate the RRS problem as an MDP and

describe how to solve it using value iteration in Section IV;

present our results in Section V; and conclude in Section VI.

II. RELATED WORK

In this section, we briefly highlight related work that focuses

on minimizing packet delays. Broadly speaking, there are

two distinct approaches to minimize packet delays when

formulating an MDP-based scheduling problem. The first

approach introduces state variables to keep track of the head

of line (HoL) delays or individual packet delays for each

UE [7], [8], [13]. For example, Gu et al. [8] formulate the
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downlink scheduling problem to maximize the total number

of packets received by UEs, while dropping packets that do

not meet certain HoL delay constraints. As another example,

Nokia’s Wireless Suite [13], which provides an Open AI

Gym compatible environment for allocating resources to UEs,

includes state variables tracking the age of every packet in

every UE’s buffer. However, tracking individual packet delays

results in an enormous state space, which limits the scalability

of this approach even when solving it with DRL.

The second approach introduces state variables to track each

UE’s buffer state and uses the buffer state as a proxy for

delay in the cost function. For example, Sharma et al. [9] use

a cost function based on the sum of changes in the buffer

state of every UE to minimize delay. Inspired by Sharma,

Robinson et al. [10] use an integer reward system based on the

change in the buffer state of UEs. Additionally, a significant

body of research leveraging reinforcement learning for optimal

transmission scheduling in single- and multi-user scenarios

makes use of a buffer state-based approach [14]–[19]. Due to

its favorable scalability compared to tracking individual packet

delays, in this paper, we focus on a buffer state based approach.

III. SYSTEM MODEL

RRS refers to the problem of allocating available radio

resources (i.e., RBs) to the requesting UEs to satisfy their

Quality of Service (QoS) requirements. In this paper, we

consider a 5G single-carrier multi-user downlink RRS problem

with a single macro base station (gNodeB) that needs to

allocate a single RB to one of the N requesting UEs indexed

by i ∈ {1, 2, . . . , N} in each transmission time interval (TTI),

as illustrated in Fig. 1. We let ∆t denote the TTI duration

(s) and index TTIs by t ∈ {0, 1, . . .}. In TTI t, the gNodeB

observes the following two state variables for each UE: 1) the

number of packets bti awaiting transmission in UE i’s buffer;

and 2) UE i’s channel state ht
i. Based on the observed states,

the gNodeB takes a scheduling action at ∈ {1, 2, . . . , N},

where at = i indicates that UE i is scheduled in TTI t. We

now describe each component of Fig. 1 in detail.
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Fig. 1: 5G multi-user downlink scheduling model.

Channel Model: We let ht
i ∈ Sh denote the channel state

(signal-to-noise ratio (SNR)) of UE i at time t, where Sh

is a discrete and finite set of channel states. As in [9], we

assume that: 1) the channel states ht
i, t = 0, 1, . . ., evolve as

a Markov chain with stationary transition probability function

Ph
i (h

′
i|hi); 2) the channel state can be estimated perfectly;

and 3) the channel state is constant in each TTI. Given the

scheduling action at and ht
i, we define the transmission rate

cti(h
t
i, a

t) (bits/TTI) of UE i in TTI t as:

c
t

i(h
t

i, a
t) =

{

B log
2
(1 + ht

i)△t, if at = i

0, if at ̸= i,
(1)

where B is the RB bandwidth (Hz).

Buffer Model: Packet arrivals for UE i are stored in a

buffer at the gNodeB and are transmitted in first-in first-out

(FIFO) order. We denote the i-th UE’s buffer state in TTI t
by bti ∈ Sb = {0, 1, ..., X}, where Sb is a finite set of possible

buffer states and X denotes the maximum buffer occupancy

in packets. We assume that packets have a fixed size of L
bits and that packet arrivals ut

i are independent and identically

distributed in each TTI, i.e., ut
i ∼ Pu

i (u), where Pu
i denotes

the packet arrival distribution. We let λi denote UE i’s average

packet arrival rate in bits/s.

Given its buffer state bti, its channel state ht
i, and the

scheduling action at, the ith UE’s next buffer state bt+1
i can

be determined by the following Lindley recursion:

bt+1
i = min(bti − dti(b

t
i, h

t
i, a

t) + ut
i, X), (2)

where dti(b
t
i, h

t
i, a

t) denotes the number of packets that UE i
transmits in TTI t. Importantly, dti(b

t
i, h

t
i, a

t) cannot exceed

the number of buffered packets; therefore,

dti(b
t
i, h

t
i, a

t) = min
(

bti, +c
t
i(h

t
i, a

t)/L,
)

, (3)

where +x, denotes the floor of x.

Due to the finite buffer size X , packet overflows will occur

when more packets arrive than can be stored in the buffer. Let

oti denote the number of packet overflows and lti denote the

number of packets that enter UE i’s buffer in TTI t: i.e.,

oti = max(bti−dti(b
t
i, h

t
i, a

t)+ut
i−X, 0) and lti = ut

i−oti. (4)

IV. PROBLEM FORMULATION

In this section, we formulate the scheduling problem under

study as an MDP. We first introduce the definition of an MDP

in Section IV-A. We then formulate the single-carrier multi-

user downlink scheduling problem as an MDP in Section IV-B.

A. Markov Decision Process (MDP) Framework

An MDP is a tuple M = (S,A, C, P, γ) or M =
(S,A, R, P, γ), where: S is a set of states and s ∈ S denotes

a state; A is a set of actions and a ∈ A denotes an action;

C : S × A → R and R : S × A → R are cost and reward

functions that map states and actions to real-valued costs and

rewards, respectively; P : S × A × S → [0, 1] is a transition

probability function that defines the probability of transitioning

to state s′ ∈ S after taking action a ∈ A in state s ∈ S; and

γ ∈ [0, 1] is a discount factor, which determines the relative

importance of immediate and future costs/rewards.

MDPs model sequential-decision problems in which the

action taken in the current state not only affects the immediate

cost/reward, but also affects the future costs/rewards through

the next state [12]. This is a fitting model of the RRS
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problem because scheduling decisions affect the immediate

and expected future queuing delays experienced by the UEs.

In the following formulation, we focus on cost functions.

To use a reward function, we replace in the analysis the cost

function with the reward function and the operator min with

max. The objective of an MDP is to determine an optimal

policy π : S → A that specifies the action to take in each

state and minimizes the expected discounted cost:

V π(s) = E

[

∑∞

t=0
(γ)tCt(st, π(st))|s = s0

]

, (5)

where V π denotes the value function under policy π; (γ)t

denotes the discount factor to the t-th power; the expectation

is taken over the sequence of states governed by the transition

probabilities P (s′|s, a); and s0 is the initial state. We can

rewrite V π(s) recursively by using the one-step transition

probability function to represent the expected future costs:

V π(s) = C(s, π(s)) + γ
∑

s′∈S
P (s′|s, π(s))V π(s′).

The optimal value function is defined as follows:

V ∗(s) = minπ∈Π V π(s),

where Π denotes the set of possible policies and V ∗(s)
satisfies the following Bellman equation for all s ∈ S:

V ∗(s) = min
a∈A

{

C(s, a) + γ
∑

s′∈S
P (s′|s, a)V ∗(s′)

}

. (6)

The optimal policy π∗(s), which gives the optimal action to

take in each state, can be determined by taking the action that

minimizes the right-hand side of (6) for all s ∈ S .

In this paper, we use the well-known value iteration al-

gorithm to determine π∗(s). The value iteration algorithm,

formulated in Algorithm 1, takes the cost and transition

probability functions as inputs and provides the corresponding

optimal policy π∗(s) as its output.

Algorithm 1 Value Iteration

Initialize V arbitrarily (e.g., V (s) = 0 for all s ∈ S)
repeat
△← 0
for each s ∈ S do:

v ← V (s)
V (s)← mina

{

C(s, a) + γ
∑

s′
P (s′|s, a)V ∗(s′)

}

△← max(△, |v − V (s)|)
end for

until △ < θ (a small positive number)
Output a deterministic policy, π∗, such that for all s ∈ S:

π
∗(s) = argmina

{

C(s, a) + γ
∑

s′
P (s′|s, a)V ∗(s′)

}

B. The Scheduling Problem as an MDP

We now map the system model in Section III to an MDP.

State: The ith UE’s state in TTI t comprises its buffer and

channel states, i.e., sti ≜ (bti, h
t
i) ∈ Si = Sb ×Sh. The system

state at TTI t is the combined state of all UEs, given by

st ≜ (st1, s
t
2, ...., s

t
N ) ∈

∏N

i=1 Si, where
∏N

i=1 Si denotes the

Cartesian product of the UEs’ state sets.

Action: The action at ∈ A = {1, . . . , N} determines which

UE is scheduled in TTI t.
Transition Probability Function: Given its packet arrival

distribution Pu
i , channel state hi, and the scheduling action a,

it follows from (2) that UE i transitions from buffer state bi
to b′i with probability:

P b
i (b

′
i|bi, hi, a) =

∑∞

ui=0
Pu
i (ui)I{b′

i
=min(bi−di(bi,hi,a)+ui,X)}, (7)

where I{·} is an indicator function that is set to 1 when {·} is

true and is set to 0 otherwise. Given each UE’s channel state

transition probability function Ph
i , the joint state transition

probability can be expressed as:

P (s′|s, a) =
∏N

i=1
P b
i (b

′
i|bi, hi, a)P

h
i (h

′
i|hi). (8)

Cost/Reward Functions: The total expected cost C(s, a)
(resp., reward R(s, a)) of taking action a in state s is equal to

the sum of the expected costs (resp., rewards) over all UEs:

C(s, a) =
∑N

i=1

Ci(si, a) and R(s, a) =
∑N

i=1

Ri(si, a), (9)

where Ci(si, a) (resp., Ri(si, a)) denotes the expected cost

(resp., reward) for UE i in state si given action a.

In this paper, we explore scheduling policies based on five

different cost and reward functions. Each cost/reward function

aims to minimize delay in a different way, but all contain an

overflow cost term to penalize packet overflows. Given the ith
UE’s packet arrival distribution Pu

i and its state si, its expected

overflow cost Oi(si, a) when action a is taken is defined as

its expected number of overflows: i.e.,

Oi(si, a) =
∑∞

ui=0
Pu
i (ui)max(bi − di(bi, hi, a) + ui −X, 0). (10)

We now describe the five cost and reward functions in detail.

Cost function for Policy 1 (P1):

Ci(si, a) = bi + αOi(si, a). (11)

This cost function is defined as a weighted sum of the ith
UE’s buffer state (bi) and its expected overflow cost. By

Little’s law, the time-average buffer state is proportional to

the time-average queuing delay experienced by packets that

are admitted into the buffer. The expected overflow cost is

multiplied by a tunable parameter α g 0, which denotes

the penalty per packet overflow. The term bi in this cost

function has been used in prior work on delay-sensitive point-

to-point transmission scheduling (e.g., [14], [16]) and multi-

user scheduling (e.g., [15]).

Cost function for Policy 2 (P2):

Ci(si, a) =
∑X

b′
i
=0

P
b

i (b
′

i|bi, hi, a)(b
′

i − bi) + αOi(si, a). (12)

In (12), b′i − bi is equivalent to the difference between the

number of packets admitted into the buffer (li defined in (4))
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and the number of transmitted packets (di defined in (3)). The

expected discounted cost of this term can be expressed as:

E

[

∑∞

t=0
γt(bt+1

i − bti)
]

= E

[

−b0 + (1− γ)
∑∞

t=0
γtbt+1

i

]

,

which is similar to the expected discounted value

E [
∑∞

t=0 γ
tbti] of the holding cost in (12), but with the

addition of a constant (−b0), a scaling factor (1 − γ), and a

one-step delay (γtbt+1
i ). We used this cost function in our

prior work on downlink scheduling [9].

Cost function for Policy 3 (P3):

Ci(si, a) = bi − di(bi, hi, a) + αOi(si, a). (13)

Eq. (13) is similar to (12) but it does not count the transmission

delay (i.e., the TTI in which packets are transmitted). This

has been used in prior work on delay-sensitive point-to-point

transmission scheduling (e.g., [17], [18]).

Cost function for Policy 4 (P4):

Ci(si, a) = bi/λi + αOi(si, a). (14)

The first three cost functions defined above can effectively

minimize delay in single-user scenarios as in [14], [16]–[18];

however, in multi-user scenarios, the time-average sum of

the buffer states across UEs is not proportional to the time-

average sum of delays across UEs if UEs have heterogeneous

arrival rates. In (11), we correct for this by replacing bi in

(12) with bi
λi

since, by Little’s law, its time-average is equal

to the time-average delay. Unfortunately, to find the optimal

policy in the finite buffer scenario, we face a chicken-and-egg

problem: we have to replace the arrival rate λi with the rate

of packets admitted into the buffer, but this quantity depends

on the policy and the optimal policy depends on this quantity.

Consequently, in our numerical results, we directly use bi
λi

.

This cost function was used in prior work on delay-constrained

MIMO transmission control [19].

Reward function for Policy 5 (P5):

Ri(si, a) = di(bi, hi, a)− αOi(si, a). (15)

This reward function is defined as the difference between the

number of transmitted packets and the weighted overflow cost.

Our numerical results show that maximizing the time-average

sum of packets transmitted over time effectively minimizes

packet overflows. This follows from the fact that maximizing

the system’s throughput is equivalent to minimizing the num-

ber of blocked packets [11]. As described in Section II, this

reward function was used in [8].

V. SIMULATION RESULTS

We now carry out a comparative study of the delay and

overflow performance achieved by scheduling policies that

optimize the five cost/reward functions in Section IV. We also

include the performance of a benchmark rule-based scheduler,

namely, Max-Weight, which schedules the UE at that has the

highest capacity-buffer product in the current TTI t, i.e.,

at = argmaxi∈A
{

B log2(1 + ht
i)△t× bti

}

. (16)

We choose Max-Weight instead of the more common Pro-

portional Fair (PF) scheduling algorithm for two reasons.

First, unlike PF, Max-Weight is throughput and delay optimal

under the assumptions of a) finite buffers, b) binary arrivals,

and c) arrival, channel, and service processes with identical

statistics at different UEs [11]. Second, in our prior work

[9], Max-Weight achieved better performance in terms of

delay, throughput, and fairness than PF in a similar multi-user

downlink scheduling scenario to the one considered herein.

To evaluate the various scheduling policies, we implemented

a single-carrier multi-user downlink scheduling simulator in

Python based on the system model in Section III. Table I lists

the key simulation parameters. For the reasons explained in

Section I, we consider N = 2 UEs and one RB. We let packets

have a fixed size of L = 200 bits and each UE’s buffer store

a maximum of X = 10 packets. We consider a TTI duration

of ∆t = 1 ms and RB bandwidth of B = 180 kHz. We

assume Poisson arrival processes with average arrival rates of

λ = 100−275 kbps. We use two sets of channel states S1
h and

S2
h such that channel states in S2

h are better than those in S1
h.

We consider discount factor γ = 0.98 and overflow penalty

factors α = 0− 100.

We use four network scenarios with different arrival rates

and channel states. Arrival rates are either homogeneous,

where both UEs have the same arrival rates (λ1 = λ2), or

heterogeneous, where both UEs have different arrival rates

(λ1 ̸= λ2). Similarly, channel states are either homogeneous,

where both UEs’ channel states belong to S1
h, or heteroge-

neous, where UE i’s channel states belong to Si
h (i = 1, 2).

We implement value iteration as described in Algorithm 1 to

obtain optimal policies using every cost/reward function in

Section IV under different arrival rates, channel states, and

overflow penalty factors (α). We evaluate each scheduling

policy based on its average packet delay and packet drop rate.

All the results are averaged over 30 epochs of 50,000 TTIs.

TABLE I: Simulation Parameters
Parameter Value

Number of UEs, N 2

Number of RBs 1

Packet Length, L 200 bits

Buffer Size, X 10 pkts

TTI, △t 1 ms

RB Bandwidth, B 180 kHz

Average Arrival Rate, λ {100, 125, 150, 175, 200, 225, 250, 275} kbps

Channel States (SNR), S1

h
,S2

h
{3.22, 7.37, 10.48, 13.83 }, {20.02, 22.4, 25.56, 29.72 } dB

Discount Factor, γ 0.98

Overflow Penalty Factor, α {0, 20, 40, 60, 80, 100}
Number of Epochs 30

Number of TTIs 50000

Fig. 2 shows the packet drop percentage (%) versus average

packet delay (ms) of different policies under homogeneous

states with overflow penalty factor α = 0. Figs. 2a and 2b

show results for homogeneous and heterogeneous arrivals,

respectively. It is clear that P5 achieves better delay and

overflow performance than Max-Weight under all tested arrival

rates. P1-P4 perform similar to each other and incur lower

average packet delays but higher packet loss rates than P5 and

Max-Weight. For example, in Fig. 2a, when λ1 = λ2 = 250
kbps, P5 shows a 6.18% decrease in delay and 9.14% decrease
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in packet drops compared to Max-Weight, while P1-P4 show a

7.56−8.05% decrease in delay but experience a 58.31−63%

increase in packet drops compared to P5. Similarly, in Fig. 2b,

when λ1 = 250 kbps and λ2 = 175 kbps, P5 shows a 14.57%

decrease in packet drops and 7.2% decrease in delay compared

to Max-Weight, while P1-P4 show a modest 4.78 − 7.46%

decrease in delay but experience an 85.28−150.17% increase

in packet drops compared to P5.

Fig. 3 is set up the same as Fig. 2, but it shows results

under heterogeneous channel states, where UE 2 has better

channel states than UE 1. As before, P5 achieves better delay

and overflow performance than Max-Weight under the tested

arrival process while P1-P4 perform similar to each other

and incur lower average packet delays but higher packet loss

rates than P5 and Max-Weight. For example, in Fig. 3a, when

λ1 = λ2 = 250 kbps, P5 shows a 19.15% decrease in

delay and a 77.64% decrease in packet drops compared to

Max Weight, while P1-P4 show a marginal 2.63 − 3.07%

decrease in delay but experience a 127.47−157.14% increase

in packet drops compared to P5. Similarly, in Fig. 3b, P5

shows a 76.39% decrease in packet drops and 17.71% decrease

in delay compared to Max-Weight, while P1-P4 show a

negligible 1.35 − 2.24% decrease in delay but experience

123.61− 201.39% increase in packet drops compared to P5.

Overall, Figs. 2 and 3 show that P5’s performance relative

to Max-Weight and P1-P4 improves when arrival rates and/or

channel conditions are heterogeneous rather than homoge-

neous. Max-Weight has higher delays under heterogeneous

arrival rates and channel conditions because, as noted earlier,

it is only delay optimal under specific homogeneous arrival

and channel processes. P1-P4 have poor overflow performance

because, without any overflow penalty (α = 0), the sum delay

across UEs can be minimized by allowing more packet drops.

We now examine how varying the overflow penalty factor

affects the delay and overflow performance of the policies. Fig.

4 shows the packet drop percentage (%) versus average packet

delay (ms) of P1-P5 and Max-Weight under homogeneous

channel conditions and fixed arrival rates for overflow penalty

factors α = 0 − 100. Figs. 4a and 4b show results for ho-

mogeneous (λ1 = λ2 = 250 kbps) and heterogeneous arrivals

(λ1 = 250 Kbps and λ2 = 175 kbps), respectively. Different

overflow penalty factors are distinguished by different markers.

Since Max-Weight does not include an overflow penalty, it is

represented with only one data point in each subfigure (a cyan

×). There are two regions in each subfigure where values are

difficult to distinguish. We use an inset plot to highlight the

left-most crowded region in each subfigure since the variation

in the right-most region is relatively small.

Under homogeneous arrivals (Fig. 4a), increasing α de-

creases P5’s packet drop rate by 0.26−1.73% while increasing

its delay by 4.38 − 5.6%. Similarly, under heterogeneous

arrivals (Fig. 4b), increasing α decreases P5’s packet drop rate

by 1.68− 4.36% while increasing its delay by 7.19− 8.38%.

These results suggest that using P5 with α > 0 has a relatively

small impact on its performance as it cannot dramatically

improve its already low packet drop rate.

P1, P3, and P4 behave similarly as α increases: their packet

drop rates decrease and their packet delays increase. We

observe that, in contrast to P5 with α = 0, under P1, P3,

and P4 the overflow penalty factor requires some tuning to

simultaneously achieve low delay and low packet overflows.

P2 also behaves similar to P1, P3, and P4, but it is much

more sensitive to the overflow penalty factor. This is because,

under P2, the expected future buffer costs are scaled by

1 − γ = 1 − 0.98 = 1/50 (see the expected cost expression

after (12)) and therefore get dominated by the overflow cost.

We have also analyzed the impact of the overflow penalty

factor on the delay and packet drop rates under heterogeneous

channel states. The results are very similar to the homogeneous

channel state case, and are omitted due to space constraints.

VI. CONCLUSION

We carried out a systematic analysis of the delay and

overflow performance of different cost/reward functions used

for minimizing the delay in a single-carrier multi-user down-

link RRS scenario. Towards this objective, we formulated the

related multi-user downlink RRS problem as an MDP (i.e., the

underlying mathematical model used to describe environments

in which DRL agents learn to act). In our evaluation, we

compared the performance of each policy with Max-Weight as

a benchmark rule-based scheduler and identified that a reward

function that aims to maximize the number of transmitted

packets over time frequently achieves near optimal delay and

superior overflow performance among the investigated options,

and does not require any tuning. This reward function achieves

up to 19.15% lower delay and up to 77.64% fewer packet

drops than Max-Weight. In future work, we will extend our

investigation using DRL, while considering more than two

UEs, more than one RB, and larger packet buffers.
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Fig. 2: Homogeneous channel states with overflow penalty factor α = 0.
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Fig. 3: Heterogeneous channel states with overflow penalty factor α = 0.
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