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Abstract—The coexistence of a wide variety of different ap-
plications with diverse Quality of Service (QoS) requirements
calls for more sophisticated radio resource scheduling (RRS)
in 5G networks compared to previous generations. To address
this challenge, a growing body of research formulates the RRS
problem as a Markov decision process (MDP) and aims to solve
it using deep reinforcement learning (DRL). A key consideration
when formulating an MDP is the choice of reward function,
which determines the goal of the decision agent. Despite the
reward function being a critical component of an MDP, there is
currently no systematic study comparing how different reward
functions affect network performance. To this end, we carry out a
comparative study of the delay and overflow performance using
several reward functions that aim to minimize packet delays.
Through extensive simulations under different traffic and channel
conditions, we identify a reward function that can achieve near
optimal delay with up to 55 — 67% fewer packet drops than the
other investigated options, and does not require any tuning.

I. INTRODUCTION

With the evolution of cellular networks from 4G to 5G,
new RRS algorithms are needed to meet the more stringent
and varied end-user QoS requirements. It is well-known that
the RRS problem is NP-hard [1]. Due to its complexity,
conventional optimization-based solutions to the RRS problem
often cannot allocate resources to user equipments (UEs) in the
required sub-ms time span. On the other hand, due to the end-
user’s diverse and demanding QoS requirements, simple rule-
based schedulers provide sub-optimal solutions. To overcome
these limitations, a growing body of research formulates the
RRS problem as an MDP and solves it using DRL. A key
consideration when formulating an MDP is the choice of
reward function, which determines the goal(s) of the decision
agent. In the context of RRS, reward functions can be roughly
divided into two categories: 1) those that focus on maximizing
network capacity, throughput, and/or fairness (e.g., [2]-[6])
and 2) those that focus on minimizing packet delays (e.g., [7]-
[10]). Despite the reward function being a critical component
of an MDP, there is currently no systematic study comparing
how different ones affect network performance.

In this paper, we aim to bridge this gap by carrying out
a comparative study of the delay and overflow performance
achieved using different reward/cost functions that target min-
imizing queuing delays, buffer overflows, and/or packet drops.
‘We focus on such reward/cost functions for two reasons. First,
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5G networks aim to enable new delay-sensitive applications,
such as industrial control and virtual/augmented/mixed reality.
Second, existing rule-based schedulers can effectively maxi-
mize network capacity, throughput, and/or fairness, but do not
effectively optimize packet delays in general [11].

Our contributions are as follows: 1) we rigorously formulate
the multi-user downlink RRS problem as an MDP; 2) we
review five reward/cost functions used in prior literature to
minimize queuing delays; 3) we further parameterize the
reward/cost functions to penalize buffer overflows at different
levels (ranging from zero to severe penalty); and 4) through
extensive simulations under different traffic and channel con-
ditions, we identify a reward function that frequently achieves
near optimal delay with up to 55-67% fewer packet drops than
the other investigated options, does not require any tuning, and
outperforms a benchmark rule-based scheduler.

As noted earlier, the RRS problem is NP-hard. Therefore,
finding an optimal scheduling policy is unfeasible in systems
with many UEs and resource blocks (RBs). Although DRL
algorithms can be used to optimize scheduling policies in such
scenarios, they require careful hyperparameter optimization to
learn good policies and the learned policies are not guaranteed
to be optimal. Since our goal is to rigorously assess the
performance of RRS under different reward functions, it is
crucial that we can evaluate the optimal policy in each case,
to allow us to prospectively identify key performance insights
and more broadly applicable conclusions. To this end, we
formulate the downlink RRS problem assuming a single-
carrier (i.e., one RB). Furthermore, due to the well-known
curse of dimensionality [12], we limit our simulations to a
scenario with finite packet buffers and two UEs.

The remainder of this paper is organized as follows. We
review related work in Section II; present our system model
in Section III; formulate the RRS problem as an MDP and
describe how to solve it using value iteration in Section IV;
present our results in Section V; and conclude in Section VI.

II. RELATED WORK

In this section, we briefly highlight related work that focuses
on minimizing packet delays. Broadly speaking, there are
two distinct approaches to minimize packet delays when
formulating an MDP-based scheduling problem. The first
approach introduces state variables to keep track of the head
of line (HoL) delays or individual packet delays for each
UE [7], [8], [13]. For example, Gu et al. [8] formulate the
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downlink scheduling problem to maximize the total number
of packets received by UEs, while dropping packets that do
not meet certain HoL delay constraints. As another example,
Nokia’s Wireless Suite [13], which provides an Open Al
Gym compatible environment for allocating resources to UEs,
includes state variables tracking the age of every packet in
every UE’s buffer. However, tracking individual packet delays
results in an enormous state space, which limits the scalability
of this approach even when solving it with DRL.

The second approach introduces state variables to track each
UE’s buffer state and uses the buffer state as a proxy for
delay in the cost function. For example, Sharma et al. [9] use
a cost function based on the sum of changes in the buffer
state of every UE to minimize delay. Inspired by Sharma,
Robinson et al. [10] use an integer reward system based on the
change in the buffer state of UEs. Additionally, a significant
body of research leveraging reinforcement learning for optimal
transmission scheduling in single- and multi-user scenarios
makes use of a buffer state-based approach [14]-[19]. Due to
its favorable scalability compared to tracking individual packet
delays, in this paper, we focus on a buffer state based approach.

III. SYSTEM MODEL

RRS refers to the problem of allocating available radio
resources (i.e., RBs) to the requesting UEs to satisfy their
Quality of Service (QoS) requirements. In this paper, we
consider a 5G single-carrier multi-user downlink RRS problem
with a single macro base station (gNodeB) that needs to
allocate a single RB to one of the IV requesting UEs indexed
by i € {1,2,..., N} in each transmission time interval (TTI),
as illustrated in Fig. 1. We let At denote the TTI duration
(s) and index TTIs by ¢ € {0,1,...}. In TTI ¢, the gNodeB
observes the following two state variables for each UE: 1) the
number of packets b} awaiting transmission in UE 4’s buffer;
and 2) UE ¢’s channel state h!. Based on the observed states,
the gNodeB takes a scheduling action o' € {1,2,...,N},
where a! = i indicates that UE i is scheduled in TTI ¢. We
now describe each component of Fig. 1 in detail.

Packet Buffers

User Equipments
gNodeB

Fig. 1: 5G multi-user downlink scheduling model.

Channel Model: We let h! € S}, denote the channel state
(signal-to-noise ratio (SNR)) of UE ¢ at time ¢, where S,
is a discrete and finite set of channel states. As in [9], we
assume that: 1) the channel states hf t=20,1,..., evolve as
a Markov chain with stationary transition probability function
Pl (Rh!|h;); 2) the channel state can be estimated perfectly;

and 3) the channel state is constant in each TTI. Given the
scheduling action at and hﬁ, we define the transmission rate
ct(ht,a") (bits/TTI) of UE i in TTI ¢ as:

PP Blog,(1+ h)At, ifa' =1
cithi, o) = {0, if at # i, L
where B is the RB bandwidth (Hz).

Buffer Model: Packet arrivals for UE ¢ are stored in a
buffer at the gNodeB and are transmitted in first-in first-out
(FIFO) order. We denote the i-th UE’s buffer state in TTI ¢
by bt € S = {0,1,..., X}, where S}, is a finite set of possible
buffer states and X denotes the maximum buffer occupancy
in packets. We assume that packets have a fixed size of L
bits and that packet arrivals u! are independent and identically
distributed in each TTI, i.e., u! ~ P/(u), where P denotes
the packet arrival distribution. We let \; denote UE ¢’s average
packet arrival rate in bits/s.

Given its buffer state b, its channel state hf, and the
scheduling action al, the ith UE’s next buffer state bEH can

be determined by the following Lindley recursion:

Wit = min(bt — di(bl, L at) + ul, X)), 2
where d!(b!, ht,a') denotes the number of packets that UE i
transmits in TTI ¢. Importantly, d!(b!, ht,a’) cannot exceed
the number of buffered packets; therefore,

di(bf, ht,a') = min (b}, [cf(h,a") /L)), 3

where |x| denotes the floor of z.

Due to the finite buffer size X, packet overflows will occur
when more packets arrive than can be stored in the buffer. Let
o} denote the number of packet overflows and I! denote the
number of packets that enter UE ¢’s buffer in TTI ¢: i.e.,

of = max(bl—dt(bt, b, a")+ul—X,0) and I} = ul—ol. (4)
IV. PROBLEM FORMULATION

In this section, we formulate the scheduling problem under
study as an MDP. We first introduce the definition of an MDP
in Section IV-A. We then formulate the single-carrier multi-
user downlink scheduling problem as an MDP in Section IV-B.

A. Markov Decision Process (MDP) Framework

An MDP is a tuple M = (S,A,C,P,y) or M =
(S, A, R, P,~y), where: S is a set of states and s € S denotes
a state; A is a set of actions and @ € A denotes an action;
C:5xA—Rand R:S x A — R are cost and reward
functions that map states and actions to real-valued costs and
rewards, respectively; P : S x A x § — [0,1] is a transition
probability function that defines the probability of transitioning
to state s’ € S after taking action a € A in state s € S; and
v € [0,1] is a discount factor, which determines the relative
importance of immediate and future costs/rewards.

MDPs model sequential-decision problems in which the
action taken in the current state not only affects the immediate
cost/reward, but also affects the future costs/rewards through
the next state [12]. This is a fitting model of the RRS
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problem because scheduling decisions affect the immediate
and expected future queuing delays experienced by the UEs.

In the following formulation, we focus on cost functions.
To use a reward function, we replace in the analysis the cost
function with the reward function and the operator min with
max. The objective of an MDP is to determine an optimal
policy m : § — A that specifies the action to take in each
state and minimizes the expected discounted cost:

Vi) =E [ () s ms s =], )

where V™ denotes the value function under policy m; (7)*
denotes the discount factor to the ¢-th power; the expectation
is taken over the sequence of states governed by the transition
probabilities P(s|s,a); and s° is the initial state. We can
rewrite V™ (s) recursively by using the one-step transition
probability function to represent the expected future costs:

V7(s) = )+, s P& ls, m() V().
The optimal value function is defined as follows:
V*(s) = mingen V7 (s),

where II denotes the set of possible policies and V*(s)
satisfies the following Bellman equation for all s € S:

:21.1612{ s, a) —&-vzl s (s'|s,a)V* (s’)}. (6)

The optimal policy 7*(s), which gives the optimal action to
take in each state, can be determined by taking the action that
minimizes the right-hand side of (6) for all s € S.

In this paper, we use the well-known value iteration al-
gorithm to determine 7*(s). The value iteration algorithm,
formulated in Algorithm 1, takes the cost and transition
probability functions as inputs and provides the corresponding
optimal policy 7*(s) as its output.

VZi(s)

Algorithm 1 Value Iteration

Initialize V' arbitrarily (e.g., V(s) =0 for all s € S)
repeat
A<+ 0
for each s € S do:
v V(s)
V(s) < min, {C(s,
A +— max(A, v —
end for
until A < 0 (a small positive number)
Output a deterministic policy, 7*, such that for all s € S:

m*(s) = arg min, {C(s, a) + 'yzs/ P(s'|s,a)V* (s')}

)+, P(s']s,a)V"(s) }
V()

B. The Scheduling Problem as an MDP

We now map the system model in Section III to an MDP.

State: The ith UE’s state in TTI ¢ comprises its buffer and
channel states, i.e., st (bt ht) € §; = Sy x Sp,. The system
state at TTI ¢ is the combined state of all UEs, given by
st & (st sh, ..., sh) € vazl S;, where [, S; denotes the
Cartesian product of the UEs’ state sets.

Action: The action a* € A= {1,...,
UE is scheduled in TTI ¢.

Transition Probability Function: Given its packet arrival
distribution P, channel state h;, and the scheduling action a,
it follows from (2) that UE ¢ transitions from buffer state b;
to b} with probability:

N} determines which

Pib(bﬂbiv hi,a) =
ZU:O P (i) Ly =min(b;—di (b5 hara)+us, )b (7

where I is an indicator function that is set to 1 when {-} is
true and is set to 0 otherwise. Given each UE’s channel state
transition probability function P!, the joint state transition
probability can be expressed as:

N
P(s'|s,a) = H,_l Py (b|bi, hi, a) P (R |hs). (®)

Cost/Reward Functions: The total expected cost C(s,a)
(resp., reward R(s,a)) of taking action a in state s is equal to
the sum of the expected costs (resp., rewards) over all UEs:

C(s,a) = Zj\;l Ci(si,a) and R(s,a) = ZN

R; (Si, a‘) ) (9)

where C;(s;,a) (resp., R;(s;,a)) denotes the expected cost
(resp., reward) for UE i in state s; given action a.

In this paper, we explore scheduling policies based on five
different cost and reward functions. Each cost/reward function
aims to minimize delay in a different way, but all contain an
overflow cost term to penalize packet overflows. Given the ¢th
UE’s packet arrival distribution P;* and its state s;, its expected
overflow cost O;(s;,a) when action «a is taken is defined as
its expected number of overflows: i.e.,

Oi(3i7 a’) =
Zo‘f_o P (u;) max(b; — d; (b, hi, a) +u; — X,0). (10)

We now describe the five cost and reward functions in detail.
Cost function for Policy 1 (P1):

(1)

This cost function is defined as a weighted sum of the ith
UE’s buffer state (b;) and its expected overflow cost. By
Little’s law, the time-average buffer state is proportional to
the time-average queuing delay experienced by packets that
are admitted into the buffer. The expected overflow cost is
multiplied by a tunable parameter o« > 0, which denotes
the penalty per packet overflow. The term b; in this cost
function has been used in prior work on delay-sensitive point-
to-point transmission scheduling (e.g., [14], [16]) and multi-
user scheduling (e.g., [15]).
Cost function for Policy 2 (P2):

Ci(si,a) =3

In (12), b; — b; is equivalent to the difference between the
number of packets admitted into the buffer (I; defined in (4))

Ci(Si, CL) = bi + OJOZ'(Si,CL).

P! (b;|bi, hi, a) (D — bi) + aOi(si,a). (12)
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and the number of transmitted packets (d; defined in (3)). The
expected discounted cost of this term can be expressed as:

E [ZZO (O - bf)} =K [—bo +(1—7) ZZO vtb§+1} ,

which is similar to the expected discounted value
E[> 27" of the holding cost in (12), but with the
addition of a constant (—b°), a scaling factor (1 — «), and a
one-step delay (ytbﬁﬂ). We used this cost function in our
prior work on downlink scheduling [9].

Cost function for Policy 3 (P3):

Ci(si,a) = bz — dz(bl, hi, a) + OéOi(Si, a). (13)

Eq. (13) is similar to (12) but it does not count the transmission
delay (i.e., the TTI in which packets are transmitted). This
has been used in prior work on delay-sensitive point-to-point
transmission scheduling (e.g., [17], [18]).

Cost function for Policy 4 (P4):

Ci(si,a) = bi/Ni + aO;(s;, a). (14)

The first three cost functions defined above can effectively
minimize delay in single-user scenarios as in [14], [16]-[18];
however, in multi-user scenarios, the time-average sum of
the buffer states across UEs is not proportional to the time-
average sum of delays across UEs if UEs have hefterogeneous
arrival rates. In (11), we correct for this by replacing b; in
(12) with S’\— since, by Little’s law, its time-average is equal
to the time-average delay. Unfortunately, to find the optimal
policy in the finite buffer scenario, we face a chicken-and-egg
problem: we have to replace the arrival rate \; with the rate
of packets admitted into the buffer, but this quantity depends
on the policy and the optimal policy depends on this quantity.
Consequently, in our numerical results, we directly use f\—
This cost function was used in prior work on delay-constrained
MIMO transmission control [19].
Reward function for Policy 5 (P5):

Ri(Si7CL) = dl(bl,h“a) — aOi(si,a). (15)

This reward function is defined as the difference between the
number of transmitted packets and the weighted overflow cost.
Our numerical results show that maximizing the time-average
sum of packets transmitted over time effectively minimizes
packet overflows. This follows from the fact that maximizing
the system’s throughput is equivalent to minimizing the num-
ber of blocked packets [11]. As described in Section II, this
reward function was used in [8].

V. SIMULATION RESULTS

We now carry out a comparative study of the delay and
overflow performance achieved by scheduling policies that
optimize the five cost/reward functions in Section IV. We also
include the performance of a benchmark rule-based scheduler,
namely, Max-Weight, which schedules the UE a’ that has the
highest capacity-buffer product in the current TTI ¢, i.e.,

a' = argmax;c 4 { Blogy(1 4+ h))At x bl}.  (16)

We choose Max-Weight instead of the more common Pro-
portional Fair (PF) scheduling algorithm for two reasons.
First, unlike PF, Max-Weight is throughput and delay optimal
under the assumptions of a) finite buffers, b) binary arrivals,
and c) arrival, channel, and service processes with identical
statistics at different UEs [11]. Second, in our prior work
[9], Max-Weight achieved better performance in terms of
delay, throughput, and fairness than PF in a similar multi-user
downlink scheduling scenario to the one considered herein.

To evaluate the various scheduling policies, we implemented
a single-carrier multi-user downlink scheduling simulator in
Python based on the system model in Section III. Table I lists
the key simulation parameters. For the reasons explained in
Section I, we consider N = 2 UEs and one RB. We let packets
have a fixed size of L = 200 bits and each UE’s buffer store
a maximum of X = 10 packets. We consider a TTI duration
of At = 1 ms and RB bandwidth of B = 180 kHz. We
assume Poisson arrival processes with average arrival rates of
A = 100—275 kbps. We use two sets of channel states S} and
S? such that channel states in S7 are better than those in S}.
We consider discount factor v = 0.98 and overflow penalty
factors o = 0 — 100.

We use four network scenarios with different arrival rates
and channel states. Arrival rates are either homogeneous,
where both UEs have the same arrival rates (A\; = \g), or
heterogeneous, where both UEs have different arrival rates
(A1 # A2). Similarly, channel states are either homogeneous,
where both UEs’ channel states belong to S}, or heteroge-
neous, where UE 4’s channel states belong to S} (i = 1,2).
We implement value iteration as described in Algorithm 1 to
obtain optimal policies using every cost/reward function in
Section IV under different arrival rates, channel states, and
overflow penalty factors («). We evaluate each scheduling
policy based on its average packet delay and packet drop rate.
All the results are averaged over 30 epochs of 50,000 TTIs.

TABLE I: Simulation Parameters

Parameter I Value
Number of UEs, N 2
Number of RBs 1
Packet Length, L 200 bits
Buffer Size, X 10 pkts
TTI, At 1 ms
RB Bandwidth, B 180 kHz

Average Arrival Rate, A
Channel States (SNR), Sb, Sﬁ

{100, 125, 150, 175, 200, 225, 250, 275} Kbps
{3.22, 7.37, 10.48, 13.83 }, {20.02, 22.4, 25.56, 29.72 } dB
Discount Factor, v 0.98
Overflow Penalty Factor, o {0, 20, 40, 60, 80, 100}
Number of Epochs 30
Number of TTIs 50000

Fig. 2 shows the packet drop percentage (%) versus average
packet delay (ms) of different policies under homogeneous
states with overflow penalty factor « = 0. Figs. 2a and 2b
show results for homogeneous and heterogeneous arrivals,
respectively. It is clear that P5 achieves better delay and
overflow performance than Max-Weight under all tested arrival
rates. P1-P4 perform similar to each other and incur lower
average packet delays but higher packet loss rates than P5 and
Max-Weight. For example, in Fig. 2a, when A\; = Ay = 250
kbps, P5 shows a 6.18% decrease in delay and 9.14% decrease
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in packet drops compared to Max-Weight, while P1-P4 show a
7.56 — 8.05% decrease in delay but experience a 58.31 — 63%
increase in packet drops compared to P5. Similarly, in Fig. 2b,
when A\; = 250 kbps and Ao = 175 kbps, P5 shows a 14.57%
decrease in packet drops and 7.2% decrease in delay compared
to Max-Weight, while P1-P4 show a modest 4.78 — 7.46%
decrease in delay but experience an 85.28 —150.17% increase
in packet drops compared to P5.

Fig. 3 is set up the same as Fig. 2, but it shows results
under heterogeneous channel states, where UE 2 has better
channel states than UE 1. As before, P5 achieves better delay
and overflow performance than Max-Weight under the tested
arrival process while P1-P4 perform similar to each other
and incur lower average packet delays but higher packet loss
rates than P5 and Max-Weight. For example, in Fig. 3a, when
A1 = Ao = 250 kbps, PS5 shows a 19.15% decrease in
delay and a 77.64% decrease in packet drops compared to
Max Weight, while P1-P4 show a marginal 2.63 — 3.07%
decrease in delay but experience a 127.47 —157.14% increase
in packet drops compared to P5. Similarly, in Fig. 3b, P5
shows a 76.39% decrease in packet drops and 17.71% decrease
in delay compared to Max-Weight, while P1-P4 show a
negligible 1.35 — 2.24% decrease in delay but experience
123.61 — 201.39% increase in packet drops compared to P5.

Overall, Figs. 2 and 3 show that P5’s performance relative
to Max-Weight and P1-P4 improves when arrival rates and/or
channel conditions are heterogeneous rather than homoge-
neous. Max-Weight has higher delays under heterogeneous
arrival rates and channel conditions because, as noted earlier,
it is only delay optimal under specific homogeneous arrival
and channel processes. P1-P4 have poor overflow performance
because, without any overflow penalty (o = 0), the sum delay
across UEs can be minimized by allowing more packet drops.

We now examine how varying the overflow penalty factor
affects the delay and overflow performance of the policies. Fig.
4 shows the packet drop percentage (%) versus average packet
delay (ms) of P1-P5 and Max-Weight under homogeneous
channel conditions and fixed arrival rates for overflow penalty
factors « = 0 — 100. Figs. 4a and 4b show results for ho-
mogeneous (A\; = Ay = 250 kbps) and heterogeneous arrivals
(A1 = 250 Kbps and Ay = 175 kbps), respectively. Different
overflow penalty factors are distinguished by different markers.
Since Max-Weight does not include an overflow penalty, it is
represented with only one data point in each subfigure (a cyan
x). There are two regions in each subfigure where values are
difficult to distinguish. We use an inset plot to highlight the
left-most crowded region in each subfigure since the variation
in the right-most region is relatively small.

Under homogeneous arrivals (Fig. 4a), increasing o de-
creases P5’s packet drop rate by 0.26 —1.73% while increasing
its delay by 4.38 — 5.6%. Similarly, under heterogeneous
arrivals (Fig. 4b), increasing o decreases P5’s packet drop rate
by 1.68 — 4.36% while increasing its delay by 7.19 — 8.38%.
These results suggest that using PS5 with o > 0 has a relatively
small impact on its performance as it cannot dramatically
improve its already low packet drop rate.

P1, P3, and P4 behave similarly as « increases: their packet
drop rates decrease and their packet delays increase. We
observe that, in contrast to P5 with o« = 0, under P1, P3,
and P4 the overflow penalty factor requires some tuning to
simultaneously achieve low delay and low packet overflows.
P2 also behaves similar to P1, P3, and P4, but it is much
more sensitive to the overflow penalty factor. This is because,
under P2, the expected future buffer costs are scaled by
1—~+=1-0.98 = 1/50 (see the expected cost expression
after (12)) and therefore get dominated by the overflow cost.
We have also analyzed the impact of the overflow penalty
factor on the delay and packet drop rates under heterogeneous
channel states. The results are very similar to the homogeneous
channel state case, and are omitted due to space constraints.

VI. CONCLUSION

We carried out a systematic analysis of the delay and
overflow performance of different cost/reward functions used
for minimizing the delay in a single-carrier multi-user down-
link RRS scenario. Towards this objective, we formulated the
related multi-user downlink RRS problem as an MDP (i.e., the
underlying mathematical model used to describe environments
in which DRL agents learn to act). In our evaluation, we
compared the performance of each policy with Max-Weight as
a benchmark rule-based scheduler and identified that a reward
function that aims to maximize the number of transmitted
packets over time frequently achieves near optimal delay and
superior overflow performance among the investigated options,
and does not require any tuning. This reward function achieves
up to 19.15% lower delay and up to 77.64% fewer packet
drops than Max-Weight. In future work, we will extend our
investigation using DRL, while considering more than two
UEs, more than one RB, and larger packet buffers.
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Fig. 2: Homogeneous channel states with overflow penalty factor o = 0.
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