2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) | 978-1-6654-6483-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/PIMRC56721.2023.10293754

Deep Reinforcement Learning for Downlink
Scheduling in 5G and Beyond Networks: A Review

Michael Seguin, Anjali Omer, Mohammad Koosha, Filippo Malandra, Nicholas Mastronarde
University at Buffalo, Department of Electrical Engineering
Email: {mpseguin, anjaliom, mkoosha, filippom, nmastron} @buffalo.edu

Abstract—The coexistence of a wide variety of different ap-
plications with diverse Quality of Service (QoS) and Quality
of Experience (QoE) requirements calls for more sophisticated
radio resource scheduling in 5G and beyond (5GB) networks
compared to previous generations. To address this challenge,
a growing body of research has explored deep reinforcement
learning (DRL) to solve the radio resource scheduling problem.
In this paper, we review representative literature on the topic of
downlink scheduling for 5GB networks using DRL, with emphasis
on fine-grained approaches that directly allocate resource blocks
(RBs) to user equipments (UEs). We conclude by discussing four
ways to improve upon this early-stage research and identify some
open problems that must be solved to make DRL a viable solution
to the downlink scheduling problem in SGB networks.

I. INTRODUCTION

With the evolution of cellular networks from 4G to 5G
and beyond (5GB), end-user Quality of Service (QoS) and
Quality of Experience (QoE) requirements have become more
stringent and varied. In [1], 3GPP lists the driving factors
for 5G as Virtual Reality (VR), industrial control, Internet
of Things (IoT), and ubiquitous on-demand coverage. These
key applications can be served by the three main connectivity
types in 5G New Radio (NR): Enhanced Mobile Broadband
(eMBB), Ultra Low Latency Communication (URLLC), and
Massive Machine Type Communication (mMTC) [2].

To meet the challenging requirements introduced by these
applications, performance in 5GB mobile networks needs to
considerably improve with respect to older generations. In [3],
3GPP focuses on Key Performance Indicators (KPI) for each
connectivity type. For example, eMBB aims for peak data
rates of 20 Gbps and a downlink user plane latency of 4 ms;
URLLC aims for a downlink user plane latency of 0.5 ms; and
KPIs for mMTC focus on power-saving and connection density
requirements. 6G networks will require at least an order of
magnitude improvement in data rates, latency, connectivity
density, and energy efficiency compared to 5G [4].

In parallel to these developments, Deep Reinforcement
Learning (DRL) has emerged as an effective data-driven ap-
proach for solving sophisticated sequential-decision problems
with high-dimensional, continuous, or infinite state and action
spaces. In 2015, DeepMind used a Deep Q-Network (DQN) to

A. Omer’s, M. Koosha’s, and N. Mastronarde’s work was supported by
NSF award #2030157 and F. Malandra’s work was supported by NSF award
#2105230.

play Atari 2600 games [5]. In 2016, they developed AlphaGo
using a combination of supervised learning and Reinforcement
Learning (RL) to play the game Go [6]. Three years later,
OpenAl developed a DRL algorithm to play Dota 2, which
was able to win 99.4% of 7,000 games [7]. Such breakthroughs
have driven interest in DRL across many domains, including
radio resource scheduling in 5GB networks.

The coexistence of a wide variety of different applications
with diverse and ambitious QoS and QoE requirements calls
for more sophisticated radio resource scheduling. DRL offers a
promising solution to address these challenges because it can:
(1) pull more parameters into the decision-making process than
traditional scheduling algorithms; (2) consider more complex
objective functions comprising multiple (potentially compet-
ing) objectives; (3) account for how scheduling decisions
affect the immediate and expected future network performance;
and (4) enable sub-ms scheduling decisions after training.
Consequently, a growing body of literature has focused on the
use of DRL to solve the 5G downlink scheduling problem.

Existing DRL approaches for 5G scheduling can be roughly
broken into two categories: coarse- and fine-grained ap-
proaches [8]. Coarse-grained approaches use DRL to select
among several traditional rule-based schedulers to make the
scheduling decision in each time slot. In contrast, fine-grained
approaches use DRL to directly allocate resource blocks (RBs)
to User Equipments (UEs). Scheduling may be performed
one RB at a time or jointly across all RBs. Both methods
have shown promise for downlink scheduling in 5G cellular
networks; however, we focus on the fine-grained approach
in this review as it has greater potential to exceed the
performance of existing schedulers, but poses more challenges
due to the exponential number of possible scheduling actions.

The papers in this review were selected as follows. We
searched Google Scholar using combinations of keywords
“deep reinforcement learning,” “downlink scheduling,” “4G,”
and “5G.” We identified 32 papers published since 2019 that
matched the keywords AND focused on the allocation of RBs.
Out of these, we retained 11 papers on fine-grained 5G
downlink scheduling using DRL. Based on our selection
criteria, the review excludes papers that focus on course-
grained scheduling, that consider problems beyond RB alloca-
tion (beamforming, power control, interference coordination,
network slicing, etc.), or use standard RL (e.g., Q-learning).

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

Our contributions are as follows: 1) We review 11 papers
published from 2019-2022 that use DRL to solve the fine-
grained downlink scheduling problem; 2) We compare these
papers in terms of the selected DRL algorithms, the states,
actions, and rewards used in their problem formulations, and
the unique aspects of each approach; and 3) We identify
four directions to improve upon this early stage research and
highlight some open problems. Although the reviewed papers
largely focus on DRL in 5G networks, our insights hold true
for 6G networks whose higher complexity and performance
requirements will demand improved DRL algorithms. The
remainder of this paper is organized as follows: Section II
reviews the 5G resource grid, the radio resource scheduling
problem, Markov Decision Processs (MDPs), and DRL; Sec-
tion III reviews the literature on DRL for downlink scheduling
in 5G networks; and Section IV concludes the paper.

II. PRELIMINARIES
A. Resource Grid

Similar to LTE, the physical layer in 5G NR is represented
using a resource grid, as illustrated in Fig. 1. The resource
grid shows the subdivision of resources in time (y-axis) and
frequency (x-axis). The smallest units in the figure are the
resource elements (REs), each of which spans one subcarrier in
the frequency domain and one Orthogonal Frequency-Division
Multiplexing (OFDM) symbol in the time domain.

Unlike 4G/LTE, which only supports one subcarrier spacing
(Af = 15 kHz), 5G NR supports five subcarrier spacings:
Af = 2" .15 kHz, where p € {0,1,2,3,4} is the so-called
numerology. Note that numerology p = 0 corresponds to
the subcarrier spacing used in 4G/LTE. In the time-domain,
downlink channels are divided into frames of 10 ms each. Each
frame consists of ten 1 ms subframes. Each subframe is further
divided into Ny = 2* slots with duration Ty, = ﬁ ms,
such that higher numerologies have shorter slot durations.

Finally, the smallest scheduling unit in time and frequency
is an RB, which is twelve subcarriers wide and one slot long.
The total number of RBs in the resource grid depends on the
total system bandwidth and the numerology.

B. Radio Resource Scheduling

As previously mentioned, the number of RBs available
to UEs in both uplink and downlink directions is limited
by the bandwidth. The problem of allocating RBs to UEs,
performed by the gNodeB, is usually referred to as radio
resource scheduling, and it is proven to be NP-hard [9]. In the
remainder of this paper, we will focus our discussion on the
downlink radio resource scheduling problem. An illustration
of this problem is shown in Fig. 1, where, for example, UE1
is allocated one RB in one slot and UE2 is allocated one
RB in another slot. Due to the complexity of this problem
and its hard time requirements (a decision needs to be taken
each ms), it is typically solved with heuristic or rule-based
algorithms that are based on a comparison of per-UE per-RB
metrics. Specifically, in each slot, the jth RB is allocated to

Total Number of Subcarriers

of Subcarriers = 12
1]

[

[0}

5 : Yo

>

7]

[0}

j

o

ERB - UE1 BRB - UE2 m Resource Element

Fig. 1. 5G resource grid and radio resource scheduling

the ith UE if the metric m;; is the largest across all UEs,
i.e., m;; = maxy my;. Each mobile operator can choose the
metrics and scheduling policies that work best in their network
since 3GPP has intentionally not standardized them in LTE
and 5G. Different radio resource scheduling algorithms use
different metrics to achieve different goals. An extensive list
of downlink schedulers can be found in [10].

While rule-based schedulers can achieve excellent per-
formance in terms of throughput and fairness, DRL based
schedulers can potentially optimize networks when UEs have
heterogeneous QoS and QoE requirements in terms of not only
throughput and fairness, but also Packet Drop Rates (PDRs),
buffer delays, and application-specific utility functions.

C. Markov Decision Process

Before we discuss DRL and its application to downlink
scheduling, we introduce the concept of an MDP. An MDP
is a tuple M = (S, A, R, P,), where: S is a set of states and
s € S denotes a state; A is a set of actions and a € A denotes
an action; R : S x A — R is a reward function that maps states
and actions to a real-valued reward (we will also refer to cost
functions, denoted by C' : SxA — R); P: SxAxS — [0,1]
is a transition probability function that defines the probability
of transitioning to state s’ € S after taking action a € A in
state s € S; v € [0, 1] is a discount factor, which determines
the relative importance of immediate and future rewards.

MDPs are used to model sequential-decision problems in
which the actions taken in the current state not only affect
the immediate reward, but also the subsequent state [11]. The
objective of an MDP is to determine an optimal policy m : S —
A that specifies the action to take in each state and maximizes
the expected discounted reward: i.e.,

max V7(s) = mgx]E {ZZO Y R(s¢,a0)|s = so,w} , (D

where V™ denotes the value function under policy 7 and the
expectation is over the sequence of states. The optimal value
function satisfies the following Bellman equation:

V*(s) = max {R(s, a) + VZs'es p(51|s,a)v*(3/)}7 (2)

Q*(s,a)

where V'* denotes the optimal value function, which indicates
how good it is to be in each state under the optimal policy
m*, and Q* denotes the optimal action-value function, which

indicates how good it is to take an arbitrary action a in state

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

State s,
Action a,
Agent
Reward r,
Next
Rewardr,,,
Environment
Next
State s,

Fig. 2. The agent—environment interaction in an MDP [12]

s and then follow the optimal policy thereafter. Note that
7*(s) = maxeea Q*(s,a). If we consider a cost function,
then we replace — in (1) and (2) — the reward function with
the cost function and max with min.

If the state and action spaces are discrete and finite and
both the transition probability and reward functions are known,
then an MDP can be solved numerically using dynamic pro-
gramming (e.g., value iteration). However, problems with high-
dimensional, continuous, or infinite state and action spaces,
or for which the transition probability and reward functions
are unknown, cannot be solved in this manner. DRL, which
uses Deep Neural Networks (DNN5s) to approximate the value
function and/or policy, is a promising solution to such prob-
lems and has attracted significant attention as a solution to the
downlink scheduling problem in 5G networks, which involves
high-dimensional state spaces (e.g., comprising the buffer and
channel states of all UEs) and high-dimensional action spaces
(e.g., determining the allocation of RBs to UEs).

Note that MDPs and DRL differ from classical
convex/integer/non-linear optimization methods since MDPs
optimize long-term performance (see (1)) rather than a
one-shot objective function and DRL is data-driven rather
than model-based.

D. Deep Reinforcement Learning

In DRL, an agent interacts with an environment over dis-
crete time steps as illustrated in Fig. 2. In each time step
t € {0,1,...}, the agent observes its state s; € S, takes an
action a; € A, receives a reward r; € R, and transitions
to a new state s;11 € S. The environment is assumed to
behave according to an MDP, such that s;11 ~ P(-|s¢,a:) and
E[r:] = R(st,a:). Each experience tuple (s, at, s, Sty1) is
then stored in an experience replay buffer £. In 5G scheduling,
each time step ¢ typically corresponds to one slot.

We now briefly introduce two of the most popular DRL
algorithms used for downlink scheduling: DQN [5] and Deep
Deterministic Policy Gradient (DDPG) [13]. In a DQN, we
approximate the action-value function using a DNN parame-
terized by 0 and aim to minimize the following mean squared
error (MSE) loss function:

L(e) = Estwpﬁ, at~pg, rt [(Q(5t7at;0) - yt)2:|) (3)

where [is the behavioral policy (which determines the
scheduling actions), p? is the discounted state visitation prob-
ability (which is a measure of the frequency with which dif-

ferent states are visited), and y' = r* +yQ(s'*, 7(s!T1); 9).
During training, L(6) is estimated by sampling mini-batches
of experience tuples from the experience replay buffer £.
DQNs are not well-suited for problems with large action
spaces because determining the action in each time slot re-
quires maximizing over the action-value function, i.e., at =
arg max,e 4 Q(s?, a; 0), which is computationally impractical.
DDPG, a so-called actor-critic method, overcomes this limi-
tation by directly learning a parameterized policy (or actor)
7(s; @). The action-value function (or critic) network 6 is then
updated to minimize a similar loss function to (3) and the actor
network ¢ is updated using a sampled policy gradient (using
randomly sampled mini-batches of experience tuples), i.e.,

Vo = Egenps [VoQ(s' m(s%;) 0)]
= Egtnpi [VaQ(5',0:0)lamr(stig) Vor(s's)], (4)

which is the gradient of the policy’s performance. Although
DDPG is designed to solve problems with continuous actions,
it can also work with a large number of discrete actions, as in
the downlink scheduling problem. In our review, we will see
another actor-critic algorithm called Advantage Actor-Critic
(A2C), which is a synchronous version of the Asynchronous
Advantage Actor-Critic (A3C) algorithm [14].

III. DRL FOR DOWNLINK SCHEDULING IN 5G

In this section, we review 11 papers published from 2019
to 2022 that are representative of the literature using DRL for
fine-grained 5G downlink scheduling. A high-level summary of
each paper is provided in Table I, including a brief description
of the considered problem, the specific DRL algorithm that
the authors use to solve it, and basic information about the
underlying MDP (i.e., states, actions, and rewards).

In [15], Wang et al. consider a single-carrier downlink
scheduling scenario with saturated traffic conditions, in which
a single resource block group (RBG) is allocated to a UE in
each scheduling period. They investigate three approaches to
solve the problem: direct-learning, dual-learning, and expert
learning. Direct-learning is based on a vanilla DDPG algo-
rithm that directly learns from the environment. Dual-learning
leverages two independent DDPG agents (say, agents A and
B) that are trained alternately, and rewards Agent A when
it does better than agent B, and vice versa. Lastly, expert-
learning is similar to dual-learning, but one of the DDPG
agents is replaced with the PF scheduling algorithm, i.e., the
“expert.” Direct- and dual-learning achieve better throughput
than Proportional Fair (PF), but are less fair. Expert-learning,
on the other hand, obtains nearly the same performance as PF.

In [16], Sharma et al. consider downlink scheduling for
time-sensitive applications. They define the ith UE’s cost as
the change in its buffer state from time step ¢ to ¢+ 1 and the
total cost as the sum of this metric across UEs. They solve the
problem using vanilla DDPG. Their simulation results show
improvements in average delay and fairness compared to Max-
Weight [25], PF, and Max-Channel Quality Indicator (CQI)
under heterogeneous traffic conditions, achieving up to 55%

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

COMPARISON OF FINE-GRAINED DRL-BASED DOWNLINK SCHEDULING PAPERS

TABLE I

Ref. Description Algorithm State Action Reward/Cost
Single-carrier DL g]rDethG—;j;]ed Instantaneous and average rates Direct: weighted sum of
[15] scheduling with a single and e;c ort ’ folr cach UEl & ’ Scheduled UE on one RBG throughput and JFI;
RBG and saturated traffic 1 XD Dual/Expert: competition-based
earning
DL scheduler for N UE scheduled on each RB e
[16] time-sensitive traffic DDPG Buffer states and CQI for all UEs (jointly for all RBs) Sum of buffer state changes
DL scheduling with high Channel power fgdmg, sum .Of " Fraction RBs allocated to ngh.ted sum of sum capacity,
[17] . DDPG source requests, inverse minimum sum timeouts, and sum packet
priority UEs . . each UE
time-to-timeout for each UE rate
[18] Ei:_i::il:ll‘e/; tlng traffic K-DDPG HoL delays and SNRs for each UE ~ #RBs allocated to each UE #packets received by UEs
Fraction RBs allocated to UCTS: product of sum-SSLs of
(1o] || Joint DL scheduler for DDPG SIRs of VB R LLC Ul eMBB/URLLC UEs, eMBB/URLLC UEs; SWTS:
eMBB and URLLC traffic US 4 zﬁ wval ’ fraction RBs each eMBB product of sum-reliability of
rathic armvals UE loses to URLLC UEs eMBB/URLLC UEs
. . LSTM/Pointer
DL gchedullng O.t one RB Network Throughput, buffer state, JFI, Scheduled UE on current
[20] at a time. Generalizes across . . . Total throughput and JFI
the number of UEs trained with CQI RB (one RB at a time)
’ A2C
R . _ LSTM/Pointer Rewards reducing UE buffer
DL scheduler [hdt. general Network Scheduled UE on each RB states, penalizes scheduling in-
[21] izes across changing num- . . CQIs and buffer states for each UE .. . X
bers of UEs and RBs trained with (jointly for all RBs) active UEs and leaving UEs un-
DDPG scheduled for a long time
DL scheduler called Scheduled UE on current Modified Max-CQI with data
[8] LEASCH that schedules DDQN Eligibility, data rate, and fairness X rate discounted by resource
R RB (one RB at a time) . .
UEs one RB at a time sharing fairness
Tx rates for each UE on each
[22] Delay-aware DL scheduler ESII\\II—bdsed on RB, UE buffer states, UE HoL (ij)};ﬁgul?gr lj]];: ;]I;S;"wh RB Sum-HoL delays
delays, and UE data arrivals y
(23] DL scheduling of one RBG DON Achievable data rate and fairness ~ Scheduled UE on current Product of the scheduled UE’s
at a time indicator for each UE RBG (one RBG at a time) throughput and its PF ratio
. Instantaneous and average rate .
DL scheduling of one RB at L . . > Scheduled UE on current Weighted sum of throughput,
(24111 4 ime A2C 3‘;‘1‘5 space in the buffer, HoL ' "RB at a time) JFL, and PDR

lower delay than the best benchmark (Max-Weight) as the
numbers of UEs and RBs increase.

In [17], Gracla et al. propose a DDPG-based downlink
scheduler that provides higher QoS to high-priority users, such
as emergency vehicles. The algorithm determines the fraction
of RBs allocated to each UE and includes a post-processing
step to remove inefficient actions. They compare their pro-
posed DDPG-based scheduler against Maximum Throughput
(MT), Max-Min-Fair, Delay-Sensitive, DQN-based, and Ran-
dom scheduling algorithms. In their simulation results, DDPG
achieves the highest sum packet rate, highest sum-reward, and
fewest emergency vehicle timeouts. However, MT and Delay-
Sensitive achieved slightly better capacities and fewer latency
violations, respectively, than DDPG.

In [18], Gu et al. focus on downlink scheduling for time-
sensitive [oT traffic with the goal of maximizing the throughput
of packets that meet certain head-of-line (HoL) delay con-
straints. They observe that vanilla DDPG converges slowly and
achieves poor performance. To overcome its limitations, they
propose an improved algorithm called Knowledge-assisted
Deep Deterministic Policy Gradient (K-DDPG) that uses a
multi-head critic, reward shaping, and importance sampling.
They conduct an ablation study that shows that the multi-
head critic has the biggest impact on the average and worst-
case reward among users. The multi-head critic uses a critic
network (that approximates the value function) with one output
representing the performance of each UE rather than a single

output representing the aggregate performance across all UEs
as in vanilla DDPG. This improves learning performance by
directing gradient updates towards underperforming UEs. They
demonstrate a 30%-50% reduction in packet losses (due to
HoL delay violations) compared to Earliest Deadline First and
Round-Robin (RR) schedulers.

In [19], Li and Zhang focus on joint scheduling of URLLC
and eMBB traffic when URLLC UEs can be scheduled on
resources that were already allocated to eMBB UEs (so-
called puncturing). They investigate two DDPG-based solu-
tions to this problem, namely, system-wide trade-off schedul-
ing (SWTS) and user-centric trade-off scheduling (UCTS),
which use different reward functions. SWTS uses a reward
function defined based on the reliability of eMBB and URLLC
UEs, which is set to 1 if a UE’s rate requirement is met, and
0 otherwise. UCTS uses a reward function defined based on
the service satisfaction levels (SSLs) of UEs, which denote the
fraction of a UE’s rate requirement that is met. They determine
that SWTS does a better job guaranteeing the performance of
eMBB UEs and that it achieves the best trade-off between
eMBB and URLLC performance.

All papers that we have reviewed so far use feed forward
neural network architectures that do not support varying input
sizes. This has two important consequences. First, if the
number of UEs varies over time, then the DRL agent needs to
be trained to accommodate the maximum number of UEs that
could be encountered, and the inputs will need to be padded

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

with zeros when there are fewer UEs. Second, if the number
of UEs is fixed, then new DRL agents will need to be trained
to handle networks with different numbers of UEs and RBs.
To overcome this limitation, some papers have exploited so-
called pointer networks [20,21]. A pointer network can take
in a variable length input sequence and select members of the
input sequence as its output. In the context of DRL for 5G
scheduling, this means that the states of a variable number of
UEs can be provided as input to the pointer network, and the
output(s) can specify which UE(s) to allocate to the RB(s).

In [20], Al-Tam et al. propose a Long Short-Term Memory
(LSTM)/pointer network-based downlink scheduler that they
train using A2C. Their solution is designed to schedule one
RB at a time and allows the same network to be reused for
scheduling each RB. This considerably reduces the network
complexity compared to solutions that jointly schedule all
RBs in each time step. Their simulation results show that the
pointer network can be trained once and used for different
numbers of UEs while achieving comparable performance to
a PF scheduler and better performance than an RR scheduler
in terms of both throughput and fairness.

In [21], Robinson and Kunz propose another LSTM/pointer
network-based downlink scheduler, but they train it using
DDPG rather than A2C. Their solution is designed to jointly
allocate all RBs in each time step. In their simulations, they
demonstrate that their pointer network can be trained once and
used for a variable number of UEs and RBs while achieving
comparable performance to PF and RR in terms of throughput,
but worse performance in terms of fairness.

In [8], Al-Tam et al. propose Learn to Schedule (LEASCH),
which uses a Double DQN (DDQN) to schedule UEs one RB
at a time. Their simulation results show that LEASCH achieves
5-21% better throughput and 2-5% better fairness than PF and
RR under different numbers of UEs, different numerologies,
and different system bandwidths.

In [22], Zhang et al. propose a DQN-based delay-aware
downlink scheduler that is implemented with a Recurrent
Neural Network (RNN) and uses the sum-HoL delay as a
cost function. They simulate their algorithm in a network with
two UEs and an unspecified number of RBs. They compare
their algorithm to PF, max-CQI, and RR. Their proposed
algorithm achieves 33% lower delay and 59% lower queue
lengths than the next best benchmark (PF), with approximately
7% lower throughput than PF and max-CQI. In [23], Walaa
et al. also use a DQN-based downlink scheduler, but for the
joint optimization of throughput and fairness. Their approach
allocates one RB at a time and they evaluate it using the
3GPP 5G NR compliant MATLAB 5G toolbox. Their DQN-
based approach outperforms PF and RR in terms of median
throughput while achieving slightly lower Jain’s fairness index
(JFI) under two different numerologies.

In [24], Xu et al. use A2C with the goal of maximizing
long-term throughput and fairness, and minimizing the PDR.
Similar to [8,20,23], they learn a policy to schedule one
RBG at a time. They propose to use the same network to

make scheduling decisions for each RBG, while iteratively
updating the state as RBGs are allocated to UEs. Their
solution outperforms PF by 10.54%, 0.3% and 7.64% in terms
of throughput, fairness, and PDR, respectively, and achieves
similar performance to two genie-aided schedulers that have
access to non-causal information about the channel states and
packet arrivals. Additionally, they show that it is possible to
train a policy on a single RBG and deploy it in a network
with ten RBGs; however, this comes at a slight performance
penalty compared to directly training the policy on ten RBGs.

IV. DISCUSSION AND CONCLUSION

We have reviewed 11 articles that use DRL for fine-grained
downlink scheduling in 5GB networks based on the selection
criteria in Section I. While significant steps have been made,
we have identified four ways to improve upon this early-stage
research and some open problems that must be solved to make
DRL a viable solution to the downlink scheduling problem.

Learned policies have limited generalizability: A major
hurdle in adopting DRL to solve the downlink scheduling
problem is its limited flexibility in dealing with mobility,
time-varying traffic arrivals, and varying numbers of UEs and
RBs. Policies learned with DRL work best when they are
deployed in the same environment in which they were trained
and when the environment is stationary. However, if UEs
are mobile and have non-stationary traffic arrivals, then their
experienced channel conditions, achievable rates, and buffer
state transition probabilities will vary over time. Unfortunately,
if the scheduling policies learned using DRL cannot deal with
these variations, then their performance will quickly degrade
below that achieved by simple rule-based schedulers. How to
effectively deal with non-stationary environments is an open
problem that demands further investigation.

In parallel, the DRL algorithms used in many of the re-
viewed papers need to be retrained if the numbers of UEs
or RBs change. However, among the reviewed papers, two
promising approaches to overcome this challenge have been
proposed. One option is to schedule one RB at a time and use
the same policy to make the scheduling decision at each RB [8,
20,23,24]. In this way, it is possible to train a single policy
that can be deployed in networks with different numbers of
RBs. Second, two papers explore the use of pointer networks
that can be trained once and then deployed in settings with
different numbers of UEs [20] or UEs and RBs [21]. These
approaches warrant deeper investigation to understand the
involved tradeoffs in performance and generalizability.

Reward functions must be selected carefully: Many of the
reviewed papers consider reward functions that are based on
some combination of throughput and fairness. These generally
achieve performance on par with rule-based schedulers such
as PF. This is an important result because it shows that DRL
can effectively learn good scheduling policies. Meanwhile,
several of the reviewed papers consider buffer backlogs [16]
or HoL delays in their reward functions [22], or enforce delay
constraints through specific state variables [17,18]. These

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

often show substantial gains over rule-based schedulers with
respect to delay-based performance metrics.

Max-Weight scheduling is throughput optimal, while PF
can flexibly trade off throughput and fairness. Since these
simple myopic algorithms can achieve excellent performance
in terms of throughput and fairness, it is difficult to imagine a
situation where DRL would definitively outperform them with
respect to these metrics. On the other hand, the inclusion of
delay-based rewards and state variables leads to a sequential-
decision problem in which the current scheduling action affects
the immediate and future delays experienced by the UEs.
We believe that future work should identify and focus on
such sequential-decision problems because DRL can solve
them better than rule-based schedulers. For example, VR
streaming could benefit from DRL due to its stringent delay
constraints and inter-packet dependencies that arise during
video encoding. In such problems, however, it may still be
beneficial to initialize the DRL algorithm to behave like PF as
a good starting point (e.g., using the approach in [15]).

Problem formulations are not rigorous: Pioneering re-
search on DRL in the Machine Learning (ML) community
often focuses on developing algorithms that can solve a wide
range of problems. The algorithms are typically evaluated us-
ing well-known benchmark environments, ranging from Atari
games to complex control problems. Nokia’s Wireless Suite
[26] (used in [20]) is the only effort that we are aware of to pro-
vide benchmark environments for wireless communications.
Detailed mathematical models of the environments are usually
not presented and in many cases (e.g., Atari games) an MDP
describing the environment cannot be rigorously formulated.

In contrast, each paper in this review considers a unique
variation of the downlink scheduling problem with different
states, actions, rewards, and transition probabilities (see Ta-
ble I). Although these problems can all be rigorously formu-
lated as MDPs, there is often insufficient detail to understand
exactly what problem is being solved and why DRL is an
appropriate solution to it. We argue that future work using DRL
for downlink scheduling (and optimizing wireless networks
in general) must clearly formulate the underlying MDP and,
most importantly, describe how the next state depends on the
current state and action in the problem under study. Since
MDPs are used to model sequential-decision problems (see
Section II-C), demonstrating these dependencies is critical to
justify formulating the problem as an MDP. It is also critical
to highlight the components of the reward and transition
probability functions that are unknown and to quantify the sizes
of the state and action spaces. These details help justify why
DRL is needed to solve the problem.

Research is challenging to reproduce and compare:
Reproducibility is fundamental to science, and is especially
important to push the frontiers of ML-based research. In the
context of DRL for 5G downlink scheduling, there are four es-
sential components needed to reproduce results: 1) a complete
problem formulation; 2) the simulation environment; 3) the
DRL algorithm implementation; and 4) the hyperparameters

used to generate results. Without these, it becomes incredibly
challenging to replicate results and comparatively evaluate
different solutions, ultimately hindering research advancements
in the application of DRL in 5GB networks.

REFERENCES

3GPP TS 22.261, Service requirements for the 5G system, V18.3.0 ed.,

3GPP, 2021, http://bit.ly/3TuoD6F.

S. Yost, “5G—it’s not here yet, but closer than you think.” EMBEDDED

REVOLUTION, 2017.

3GPP TR 38913, Study on Scenarios and Requirements for Next

Generation Access Technologies, V16.0.0 ed., 3GPP, 2020.

Z. Zhang et al., “6G wireless networks: Vision, requirements, architec-

ture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3,

pp. 28-41, 2019.

[5] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver et al., “Mastering the game of go with deep neural networks

and tree search,” nature, vol. 529, no. 7587, pp. 484489, 2016.

C. Berner et al., “Dota 2 with large scale deep reinforcement learning,”

arXiv preprint arXiv:1912.06680, 2019.

[8] F. Al-Tam, N. Correia, and J. Rodriguez, “Learn to schedule (LEASCH):
A deep reinforcement learning approach for radio resource scheduling
in the 5G MAC layer,” IEEE Access, vol. 8, pp. 108 088-108 101, 2020.

[9] H.-S. Liao, P.-Y. Chen, and W.-T. Chen, “An efficient downlink radio
resource allocation with carrier aggregation in LTE-advanced networks,”
IEEE Trans. Mobile Comput., vol. 13, no. 10, pp. 2229-2239, 2014.

[10] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
packet scheduling in LTE cellular networks: Key design issues and a
survey,” IEEE Commun. Surveys Tuts., vol. 15, pp. 678700, 2012.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Intl. Conf. Machine Learning, 2016, pp. 1928-1937.

[15] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Deep
reinforcement learning for scheduling in cellular networks,” in 71th Intl.
Conf. Wireless Commun. and Signal Process. (WCSP), 2019, pp. 1-6.

[16] N. Sharma et al., “Deep reinforcement learning for delay-sensitive LTE
downlink scheduling,” in IEEE Intl. Symp. Pers., Indoor, Mobile Radio
Commun., 2020, pp. 1-6.

[17] S. Gracla, E. Beck, C. Bockelmann, and A. Dekorsy, “Learning resource
scheduling with high priority users using deep deterministic policy
gradients,” in IEEE Intl. Conf. Commun., 2022, pp. 4480-4485.

[18] Z. Gu et al., “Knowledge-assisted deep reinforcement learning in 5G
scheduler design: From theoretical framework to implementation,” IEEE
J. Sel. Areas Commun., 2021.

[19] J.Li and X. Zhang, “Deep reinforcement learning-based joint scheduling
of eMBB and URLLC in 5G networks,” IEEE Wireless Commun. Lett.,
vol. 9, no. 9, pp. 15431546, 2020.

[20] F. Al-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio resource
scheduling with deep pointer networks and reinforcement learning,”
in IEEE Intl. Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2020, pp. 1-6.

[21] A. Robinson and T. Kunz, “Downlink scheduling in LTE with deep
reinforcement learning, LSTMs and pointers,” in IEEE Mil. Commun.
Conf., 2021, pp. 763-770.

[22] T. Zhang, S. Shen, S. Mao, and G.-K. Chang, “Delay-aware cellular
traffic scheduling with deep reinforcement learning,” in IEEE Global
Commun. Conf., 2020, pp. 1-6.

[23] W. AlQwider, T. F. Rahman, and V. Marojevic, “Deep Q-Network for
5G NR downlink scheduling,” in IEEE Intl. Conf. Commun. Workshops,
2022, pp. 312-317.

[24] C. Xu et al., “Buffer-aware wireless scheduling based on deep reinforce-
ment learning,” in IEEE Wireless Commun. and Netw. Conf., 2020.

[25] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466478, 1993.

[26] Nokia, “Wireless suite,” 2021, https://github.com/nokia/wireless-suite.

[1

—

[2

—

[3

[4

=

[6

=

[7

—

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

