
Deep Reinforcement Learning for Downlink

Scheduling in 5G and Beyond Networks: A Review

Michael Seguin, Anjali Omer, Mohammad Koosha, Filippo Malandra, Nicholas Mastronarde

University at Buffalo, Department of Electrical Engineering

Email: {mpseguin, anjaliom, mkoosha, filippom, nmastron}@buffalo.edu

Abstract—The coexistence of a wide variety of different ap-
plications with diverse Quality of Service (QoS) and Quality
of Experience (QoE) requirements calls for more sophisticated
radio resource scheduling in 5G and beyond (5GB) networks
compared to previous generations. To address this challenge,
a growing body of research has explored deep reinforcement
learning (DRL) to solve the radio resource scheduling problem.
In this paper, we review representative literature on the topic of
downlink scheduling for 5GB networks using DRL, with emphasis
on fine-grained approaches that directly allocate resource blocks
(RBs) to user equipments (UEs). We conclude by discussing four
ways to improve upon this early-stage research and identify some
open problems that must be solved to make DRL a viable solution
to the downlink scheduling problem in 5GB networks.

I. INTRODUCTION

With the evolution of cellular networks from 4G to 5G

and beyond (5GB), end-user Quality of Service (QoS) and

Quality of Experience (QoE) requirements have become more

stringent and varied. In [1], 3GPP lists the driving factors

for 5G as Virtual Reality (VR), industrial control, Internet

of Things (IoT), and ubiquitous on-demand coverage. These

key applications can be served by the three main connectivity

types in 5G New Radio (NR): Enhanced Mobile Broadband

(eMBB), Ultra Low Latency Communication (URLLC), and

Massive Machine Type Communication (mMTC) [2].

To meet the challenging requirements introduced by these

applications, performance in 5GB mobile networks needs to

considerably improve with respect to older generations. In [3],

3GPP focuses on Key Performance Indicators (KPI) for each

connectivity type. For example, eMBB aims for peak data

rates of 20 Gbps and a downlink user plane latency of 4 ms;

URLLC aims for a downlink user plane latency of 0.5 ms; and

KPIs for mMTC focus on power-saving and connection density

requirements. 6G networks will require at least an order of

magnitude improvement in data rates, latency, connectivity

density, and energy efficiency compared to 5G [4].

In parallel to these developments, Deep Reinforcement

Learning (DRL) has emerged as an effective data-driven ap-

proach for solving sophisticated sequential-decision problems

with high-dimensional, continuous, or infinite state and action

spaces. In 2015, DeepMind used a Deep Q-Network (DQN) to

A. Omer’s, M. Koosha’s, and N. Mastronarde’s work was supported by
NSF award #2030157 and F. Malandra’s work was supported by NSF award
#2105230.

play Atari 2600 games [5]. In 2016, they developed AlphaGo

using a combination of supervised learning and Reinforcement

Learning (RL) to play the game Go [6]. Three years later,

OpenAI developed a DRL algorithm to play Dota 2, which

was able to win 99.4% of 7,000 games [7]. Such breakthroughs

have driven interest in DRL across many domains, including

radio resource scheduling in 5GB networks.

The coexistence of a wide variety of different applications

with diverse and ambitious QoS and QoE requirements calls

for more sophisticated radio resource scheduling. DRL offers a

promising solution to address these challenges because it can:

(1) pull more parameters into the decision-making process than

traditional scheduling algorithms; (2) consider more complex

objective functions comprising multiple (potentially compet-

ing) objectives; (3) account for how scheduling decisions

affect the immediate and expected future network performance;

and (4) enable sub-ms scheduling decisions after training.

Consequently, a growing body of literature has focused on the

use of DRL to solve the 5G downlink scheduling problem.

Existing DRL approaches for 5G scheduling can be roughly

broken into two categories: coarse- and fine-grained ap-

proaches [8]. Coarse-grained approaches use DRL to select

among several traditional rule-based schedulers to make the

scheduling decision in each time slot. In contrast, fine-grained

approaches use DRL to directly allocate resource blocks (RBs)

to User Equipments (UEs). Scheduling may be performed

one RB at a time or jointly across all RBs. Both methods

have shown promise for downlink scheduling in 5G cellular

networks; however, we focus on the fine-grained approach

in this review as it has greater potential to exceed the

performance of existing schedulers, but poses more challenges

due to the exponential number of possible scheduling actions.

The papers in this review were selected as follows. We

searched Google Scholar using combinations of keywords

“deep reinforcement learning,” “downlink scheduling,” “4G,”

and “5G.” We identified 32 papers published since 2019 that

matched the keywords AND focused on the allocation of RBs.

Out of these, we retained 11 papers on fine-grained 5G

downlink scheduling using DRL. Based on our selection

criteria, the review excludes papers that focus on course-

grained scheduling, that consider problems beyond RB alloca-

tion (beamforming, power control, interference coordination,

network slicing, etc.), or use standard RL (e.g., Q-learning).

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

Our contributions are as follows: 1) We review 11 papers

published from 2019-2022 that use DRL to solve the fine-

grained downlink scheduling problem; 2) We compare these

papers in terms of the selected DRL algorithms, the states,

actions, and rewards used in their problem formulations, and

the unique aspects of each approach; and 3) We identify

four directions to improve upon this early stage research and

highlight some open problems. Although the reviewed papers

largely focus on DRL in 5G networks, our insights hold true

for 6G networks whose higher complexity and performance

requirements will demand improved DRL algorithms. The

remainder of this paper is organized as follows: Section II

reviews the 5G resource grid, the radio resource scheduling

problem, Markov Decision Processs (MDPs), and DRL; Sec-

tion III reviews the literature on DRL for downlink scheduling

in 5G networks; and Section IV concludes the paper.

II. PRELIMINARIES

A. Resource Grid

Similar to LTE, the physical layer in 5G NR is represented

using a resource grid, as illustrated in Fig. 1. The resource

grid shows the subdivision of resources in time (y-axis) and

frequency (x-axis). The smallest units in the figure are the

resource elements (REs), each of which spans one subcarrier in

the frequency domain and one Orthogonal Frequency-Division

Multiplexing (OFDM) symbol in the time domain.

Unlike 4G/LTE, which only supports one subcarrier spacing

(∆f = 15 kHz), 5G NR supports five subcarrier spacings:

∆f = 2µ · 15 kHz, where µ ∈ {0, 1, 2, 3, 4} is the so-called

numerology. Note that numerology µ = 0 corresponds to

the subcarrier spacing used in 4G/LTE. In the time-domain,

downlink channels are divided into frames of 10 ms each. Each

frame consists of ten 1 ms subframes. Each subframe is further

divided into Nslot = 2µ slots with duration Tslot =
1

Nslot
ms,

such that higher numerologies have shorter slot durations.

Finally, the smallest scheduling unit in time and frequency

is an RB, which is twelve subcarriers wide and one slot long.

The total number of RBs in the resource grid depends on the

total system bandwidth and the numerology.

B. Radio Resource Scheduling

As previously mentioned, the number of RBs available

to UEs in both uplink and downlink directions is limited

by the bandwidth. The problem of allocating RBs to UEs,

performed by the gNodeB, is usually referred to as radio

resource scheduling, and it is proven to be NP-hard [9]. In the

remainder of this paper, we will focus our discussion on the

downlink radio resource scheduling problem. An illustration

of this problem is shown in Fig. 1, where, for example, UE1

is allocated one RB in one slot and UE2 is allocated one

RB in another slot. Due to the complexity of this problem

and its hard time requirements (a decision needs to be taken

each ms), it is typically solved with heuristic or rule-based

algorithms that are based on a comparison of per-UE per-RB

metrics. Specifically, in each slot, the jth RB is allocated to

Total Number of Subcarriers

O
ne

 S
ub

fra
m

e

RB - UE1 RB - UE2

of Subcarriers = 12

Δ�
Tslot

Resource Element

Fig. 1. 5G resource grid and radio resource scheduling

the ith UE if the metric mij is the largest across all UEs,

i.e., mij = maxk mkj . Each mobile operator can choose the

metrics and scheduling policies that work best in their network

since 3GPP has intentionally not standardized them in LTE

and 5G. Different radio resource scheduling algorithms use

different metrics to achieve different goals. An extensive list

of downlink schedulers can be found in [10].

While rule-based schedulers can achieve excellent per-

formance in terms of throughput and fairness, DRL based

schedulers can potentially optimize networks when UEs have

heterogeneous QoS and QoE requirements in terms of not only

throughput and fairness, but also Packet Drop Rates (PDRs),

buffer delays, and application-specific utility functions.

C. Markov Decision Process

Before we discuss DRL and its application to downlink

scheduling, we introduce the concept of an MDP. An MDP

is a tuple M = (S,A, R, P, γ), where: S is a set of states and

s ∈ S denotes a state; A is a set of actions and a ∈ A denotes

an action; R : S×A → R is a reward function that maps states

and actions to a real-valued reward (we will also refer to cost

functions, denoted by C : S×A → R); P : S×A×S → [0, 1]
is a transition probability function that defines the probability

of transitioning to state s′ ∈ S after taking action a ∈ A in

state s ∈ S; γ ∈ [0, 1] is a discount factor, which determines

the relative importance of immediate and future rewards.

MDPs are used to model sequential-decision problems in

which the actions taken in the current state not only affect

the immediate reward, but also the subsequent state [11]. The

objective of an MDP is to determine an optimal policy π : S →
A that specifies the action to take in each state and maximizes

the expected discounted reward: i.e.,

max
π

V π(s) = max
π

E

[∑∞

t=0
γtR(st, at)|s = s0, π

]

, (1)

where V π denotes the value function under policy π and the

expectation is over the sequence of states. The optimal value

function satisfies the following Bellman equation:

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S
P (s′|s, a)V ∗(s′)

}

︸ ︷︷ ︸

Q∗(s,a)

, (2)

where V ∗ denotes the optimal value function, which indicates

how good it is to be in each state under the optimal policy

π∗, and Q∗ denotes the optimal action-value function, which

indicates how good it is to take an arbitrary action a in state

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

Agent

Environment

Next
Reward rt+1

Action at

Next
State st+1

Reward rt

State st

Fig. 2. The agent–environment interaction in an MDP [12]

s and then follow the optimal policy thereafter. Note that

π∗(s) = maxa∈A Q∗(s, a). If we consider a cost function,

then we replace – in (1) and (2) – the reward function with

the cost function and max with min.

If the state and action spaces are discrete and finite and

both the transition probability and reward functions are known,

then an MDP can be solved numerically using dynamic pro-

gramming (e.g., value iteration). However, problems with high-

dimensional, continuous, or infinite state and action spaces,

or for which the transition probability and reward functions

are unknown, cannot be solved in this manner. DRL, which

uses Deep Neural Networks (DNNs) to approximate the value

function and/or policy, is a promising solution to such prob-

lems and has attracted significant attention as a solution to the

downlink scheduling problem in 5G networks, which involves

high-dimensional state spaces (e.g., comprising the buffer and

channel states of all UEs) and high-dimensional action spaces

(e.g., determining the allocation of RBs to UEs).

Note that MDPs and DRL differ from classical

convex/integer/non-linear optimization methods since MDPs

optimize long-term performance (see (1)) rather than a

one-shot objective function and DRL is data-driven rather

than model-based.

D. Deep Reinforcement Learning

In DRL, an agent interacts with an environment over dis-

crete time steps as illustrated in Fig. 2. In each time step

t ∈ {0, 1, . . .}, the agent observes its state st ∈ S , takes an

action at ∈ A, receives a reward rt ∈ R, and transitions

to a new state st+1 ∈ S . The environment is assumed to

behave according to an MDP, such that st+1 ∼ P (·|st, at) and

E[rt] = R(st, at). Each experience tuple (st, at, rt, st+1) is

then stored in an experience replay buffer E . In 5G scheduling,

each time step t typically corresponds to one slot.

We now briefly introduce two of the most popular DRL

algorithms used for downlink scheduling: DQN [5] and Deep

Deterministic Policy Gradient (DDPG) [13]. In a DQN, we

approximate the action-value function using a DNN parame-

terized by θ and aim to minimize the following mean squared

error (MSE) loss function:

L(θ) = Est∼ρβ , at∼β, rt

[(
Q(st, at;θ)− yt

)2
]

, (3)

where β is the behavioral policy (which determines the

scheduling actions), ρβ is the discounted state visitation prob-

ability (which is a measure of the frequency with which dif-

ferent states are visited), and yt = rt + γQ(st+1, π(st+1);θ).
During training, L(θ) is estimated by sampling mini-batches

of experience tuples from the experience replay buffer E .

DQNs are not well-suited for problems with large action

spaces because determining the action in each time slot re-

quires maximizing over the action-value function, i.e., at =
argmaxa∈A Q(st, a;θ), which is computationally impractical.

DDPG, a so-called actor-critic method, overcomes this limi-

tation by directly learning a parameterized policy (or actor)

π(s;φ). The action-value function (or critic) network θ is then

updated to minimize a similar loss function to (3) and the actor

network φ is updated using a sampled policy gradient (using

randomly sampled mini-batches of experience tuples), i.e.,

∇φJ ≈ Est∼ρβ

[
∇φQ(st, π(st;φ);θ)

]

= Est∼ρβ

[
∇aQ(st, a;θ)|a=π(st;φ)∇φπ(s

t;φ)
]
, (4)

which is the gradient of the policy’s performance. Although

DDPG is designed to solve problems with continuous actions,

it can also work with a large number of discrete actions, as in

the downlink scheduling problem. In our review, we will see

another actor-critic algorithm called Advantage Actor-Critic

(A2C), which is a synchronous version of the Asynchronous

Advantage Actor-Critic (A3C) algorithm [14].

III. DRL FOR DOWNLINK SCHEDULING IN 5G

In this section, we review 11 papers published from 2019

to 2022 that are representative of the literature using DRL for

fine-grained 5G downlink scheduling. A high-level summary of

each paper is provided in Table I, including a brief description

of the considered problem, the specific DRL algorithm that

the authors use to solve it, and basic information about the

underlying MDP (i.e., states, actions, and rewards).

In [15], Wang et al. consider a single-carrier downlink

scheduling scenario with saturated traffic conditions, in which

a single resource block group (RBG) is allocated to a UE in

each scheduling period. They investigate three approaches to

solve the problem: direct-learning, dual-learning, and expert

learning. Direct-learning is based on a vanilla DDPG algo-

rithm that directly learns from the environment. Dual-learning

leverages two independent DDPG agents (say, agents A and

B) that are trained alternately, and rewards Agent A when

it does better than agent B, and vice versa. Lastly, expert-

learning is similar to dual-learning, but one of the DDPG

agents is replaced with the PF scheduling algorithm, i.e., the

“expert.” Direct- and dual-learning achieve better throughput

than Proportional Fair (PF), but are less fair. Expert-learning,

on the other hand, obtains nearly the same performance as PF.

In [16], Sharma et al. consider downlink scheduling for

time-sensitive applications. They define the ith UE’s cost as

the change in its buffer state from time step t to t+1 and the

total cost as the sum of this metric across UEs. They solve the

problem using vanilla DDPG. Their simulation results show

improvements in average delay and fairness compared to Max-

Weight [25], PF, and Max-Channel Quality Indicator (CQI)

under heterogeneous traffic conditions, achieving up to 55%

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF FINE-GRAINED DRL-BASED DOWNLINK SCHEDULING PAPERS

Ref. Description Algorithm State Action Reward/Cost

[15]
Single-carrier DL
scheduling with a single
RBG and saturated traffic

DDPG-based
direct, dual,
and expert
learning

Instantaneous and average rates
for each UE

Scheduled UE on one RBG
Direct: weighted sum of
throughput and JFI;
Dual/Expert: competition-based

[16]
DL scheduler for
time-sensitive traffic

DDPG Buffer states and CQI for all UEs
UE scheduled on each RB
(jointly for all RBs)

Sum of buffer state changes

[17]
DL scheduling with high
priority UEs

DDPG
Channel power fading, sum of re-
source requests, inverse minimum
time-to-timeout for each UE

Fraction RBs allocated to
each UE

Weighted sum of sum capacity,
sum timeouts, and sum packet
rate

[18]
DL scheduler for
time-sensitive IoT traffic

K-DDPG HoL delays and SNRs for each UE #RBs allocated to each UE #packets received by UEs

[19]
Joint DL scheduler for
eMBB and URLLC traffic

DDPG
SNRs of eMBB/URLLC UEs,
capacity of eMBB UEs, URLLC
UE traffic arrivals

Fraction RBs allocated to
eMBB/URLLC UEs,
fraction RBs each eMBB
UE loses to URLLC UEs

UCTS: product of sum-SSLs of
eMBB/URLLC UEs; SWTS:
product of sum-reliability of
eMBB/URLLC UEs

[20]
DL scheduling of one RB
at a time. Generalizes across
the number of UEs.

LSTM/Pointer
Network
trained with
A2C

Throughput, buffer state, JFI,
CQI

Scheduled UE on current
RB (one RB at a time)

Total throughput and JFI

[21]
DL scheduler that general-
izes across changing num-
bers of UEs and RBs

LSTM/Pointer
Network
trained with
DDPG

CQIs and buffer states for each UE
Scheduled UE on each RB
(jointly for all RBs)

Rewards reducing UE buffer
states, penalizes scheduling in-
active UEs and leaving UEs un-
scheduled for a long time

[8]
DL scheduler called
LEASCH that schedules
UEs one RB at a time

DDQN Eligibility, data rate, and fairness
Scheduled UE on current
RB (one RB at a time)

Modified Max-CQI with data
rate discounted by resource
sharing fairness

[22] Delay-aware DL scheduler
DQN-based on
RNN

Tx rates for each UE on each
RB, UE buffer states, UE HoL
delays, and UE data arrivals

Scheduled UE on each RB
(jointly for all RBs)

Sum-HoL delays

[23]
DL scheduling of one RBG
at a time

DQN
Achievable data rate and fairness
indicator for each UE

Scheduled UE on current
RBG (one RBG at a time)

Product of the scheduled UE’s
throughput and its PF ratio

[24]
DL scheduling of one RB at
a time

A2C
Instantaneous and average rate,
spare space in the buffer, HoL
delay

Scheduled UE on current
RB (one RB at a time)

Weighted sum of throughput,
JFI, and PDR

lower delay than the best benchmark (Max-Weight) as the

numbers of UEs and RBs increase.

In [17], Gracla et al. propose a DDPG-based downlink

scheduler that provides higher QoS to high-priority users, such

as emergency vehicles. The algorithm determines the fraction

of RBs allocated to each UE and includes a post-processing

step to remove inefficient actions. They compare their pro-

posed DDPG-based scheduler against Maximum Throughput

(MT), Max-Min-Fair, Delay-Sensitive, DQN-based, and Ran-

dom scheduling algorithms. In their simulation results, DDPG

achieves the highest sum packet rate, highest sum-reward, and

fewest emergency vehicle timeouts. However, MT and Delay-

Sensitive achieved slightly better capacities and fewer latency

violations, respectively, than DDPG.

In [18], Gu et al. focus on downlink scheduling for time-

sensitive IoT traffic with the goal of maximizing the throughput

of packets that meet certain head-of-line (HoL) delay con-

straints. They observe that vanilla DDPG converges slowly and

achieves poor performance. To overcome its limitations, they

propose an improved algorithm called Knowledge-assisted

Deep Deterministic Policy Gradient (K-DDPG) that uses a

multi-head critic, reward shaping, and importance sampling.

They conduct an ablation study that shows that the multi-

head critic has the biggest impact on the average and worst-

case reward among users. The multi-head critic uses a critic

network (that approximates the value function) with one output

representing the performance of each UE rather than a single

output representing the aggregate performance across all UEs

as in vanilla DDPG. This improves learning performance by

directing gradient updates towards underperforming UEs. They

demonstrate a 30%-50% reduction in packet losses (due to

HoL delay violations) compared to Earliest Deadline First and

Round-Robin (RR) schedulers.

In [19], Li and Zhang focus on joint scheduling of URLLC

and eMBB traffic when URLLC UEs can be scheduled on

resources that were already allocated to eMBB UEs (so-

called puncturing). They investigate two DDPG-based solu-

tions to this problem, namely, system-wide trade-off schedul-

ing (SWTS) and user-centric trade-off scheduling (UCTS),

which use different reward functions. SWTS uses a reward

function defined based on the reliability of eMBB and URLLC

UEs, which is set to 1 if a UE’s rate requirement is met, and

0 otherwise. UCTS uses a reward function defined based on

the service satisfaction levels (SSLs) of UEs, which denote the

fraction of a UE’s rate requirement that is met. They determine

that SWTS does a better job guaranteeing the performance of

eMBB UEs and that it achieves the best trade-off between

eMBB and URLLC performance.

All papers that we have reviewed so far use feed forward

neural network architectures that do not support varying input

sizes. This has two important consequences. First, if the

number of UEs varies over time, then the DRL agent needs to

be trained to accommodate the maximum number of UEs that

could be encountered, and the inputs will need to be padded

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

with zeros when there are fewer UEs. Second, if the number

of UEs is fixed, then new DRL agents will need to be trained

to handle networks with different numbers of UEs and RBs.

To overcome this limitation, some papers have exploited so-

called pointer networks [20, 21]. A pointer network can take

in a variable length input sequence and select members of the

input sequence as its output. In the context of DRL for 5G

scheduling, this means that the states of a variable number of

UEs can be provided as input to the pointer network, and the

output(s) can specify which UE(s) to allocate to the RB(s).

In [20], Al-Tam et al. propose a Long Short-Term Memory

(LSTM)/pointer network-based downlink scheduler that they

train using A2C. Their solution is designed to schedule one

RB at a time and allows the same network to be reused for

scheduling each RB. This considerably reduces the network

complexity compared to solutions that jointly schedule all

RBs in each time step. Their simulation results show that the

pointer network can be trained once and used for different

numbers of UEs while achieving comparable performance to

a PF scheduler and better performance than an RR scheduler

in terms of both throughput and fairness.

In [21], Robinson and Kunz propose another LSTM/pointer

network-based downlink scheduler, but they train it using

DDPG rather than A2C. Their solution is designed to jointly

allocate all RBs in each time step. In their simulations, they

demonstrate that their pointer network can be trained once and

used for a variable number of UEs and RBs while achieving

comparable performance to PF and RR in terms of throughput,

but worse performance in terms of fairness.

In [8], Al-Tam et al. propose Learn to Schedule (LEASCH),

which uses a Double DQN (DDQN) to schedule UEs one RB

at a time. Their simulation results show that LEASCH achieves

5–21% better throughput and 2–5% better fairness than PF and

RR under different numbers of UEs, different numerologies,

and different system bandwidths.

In [22], Zhang et al. propose a DQN-based delay-aware

downlink scheduler that is implemented with a Recurrent

Neural Network (RNN) and uses the sum-HoL delay as a

cost function. They simulate their algorithm in a network with

two UEs and an unspecified number of RBs. They compare

their algorithm to PF, max-CQI, and RR. Their proposed

algorithm achieves 33% lower delay and 59% lower queue

lengths than the next best benchmark (PF), with approximately

7% lower throughput than PF and max-CQI. In [23], Walaa

et al. also use a DQN-based downlink scheduler, but for the

joint optimization of throughput and fairness. Their approach

allocates one RB at a time and they evaluate it using the

3GPP 5G NR compliant MATLAB 5G toolbox. Their DQN-

based approach outperforms PF and RR in terms of median

throughput while achieving slightly lower Jain’s fairness index

(JFI) under two different numerologies.

In [24], Xu et al. use A2C with the goal of maximizing

long-term throughput and fairness, and minimizing the PDR.

Similar to [8, 20, 23], they learn a policy to schedule one

RBG at a time. They propose to use the same network to

make scheduling decisions for each RBG, while iteratively

updating the state as RBGs are allocated to UEs. Their

solution outperforms PF by 10.54%, 0.3% and 7.64% in terms

of throughput, fairness, and PDR, respectively, and achieves

similar performance to two genie-aided schedulers that have

access to non-causal information about the channel states and

packet arrivals. Additionally, they show that it is possible to

train a policy on a single RBG and deploy it in a network

with ten RBGs; however, this comes at a slight performance

penalty compared to directly training the policy on ten RBGs.

IV. DISCUSSION AND CONCLUSION

We have reviewed 11 articles that use DRL for fine-grained

downlink scheduling in 5GB networks based on the selection

criteria in Section I. While significant steps have been made,

we have identified four ways to improve upon this early-stage

research and some open problems that must be solved to make

DRL a viable solution to the downlink scheduling problem.

Learned policies have limited generalizability: A major

hurdle in adopting DRL to solve the downlink scheduling

problem is its limited flexibility in dealing with mobility,

time-varying traffic arrivals, and varying numbers of UEs and

RBs. Policies learned with DRL work best when they are

deployed in the same environment in which they were trained

and when the environment is stationary. However, if UEs

are mobile and have non-stationary traffic arrivals, then their

experienced channel conditions, achievable rates, and buffer

state transition probabilities will vary over time. Unfortunately,

if the scheduling policies learned using DRL cannot deal with

these variations, then their performance will quickly degrade

below that achieved by simple rule-based schedulers. How to

effectively deal with non-stationary environments is an open

problem that demands further investigation.

In parallel, the DRL algorithms used in many of the re-

viewed papers need to be retrained if the numbers of UEs

or RBs change. However, among the reviewed papers, two

promising approaches to overcome this challenge have been

proposed. One option is to schedule one RB at a time and use

the same policy to make the scheduling decision at each RB [8,

20, 23, 24]. In this way, it is possible to train a single policy

that can be deployed in networks with different numbers of

RBs. Second, two papers explore the use of pointer networks

that can be trained once and then deployed in settings with

different numbers of UEs [20] or UEs and RBs [21]. These

approaches warrant deeper investigation to understand the

involved tradeoffs in performance and generalizability.

Reward functions must be selected carefully: Many of the

reviewed papers consider reward functions that are based on

some combination of throughput and fairness. These generally

achieve performance on par with rule-based schedulers such

as PF. This is an important result because it shows that DRL

can effectively learn good scheduling policies. Meanwhile,

several of the reviewed papers consider buffer backlogs [16]

or HoL delays in their reward functions [22], or enforce delay

constraints through specific state variables [17, 18]. These

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

often show substantial gains over rule-based schedulers with

respect to delay-based performance metrics.

Max-Weight scheduling is throughput optimal, while PF

can flexibly trade off throughput and fairness. Since these

simple myopic algorithms can achieve excellent performance

in terms of throughput and fairness, it is difficult to imagine a

situation where DRL would definitively outperform them with

respect to these metrics. On the other hand, the inclusion of

delay-based rewards and state variables leads to a sequential-

decision problem in which the current scheduling action affects

the immediate and future delays experienced by the UEs.

We believe that future work should identify and focus on

such sequential-decision problems because DRL can solve

them better than rule-based schedulers. For example, VR

streaming could benefit from DRL due to its stringent delay

constraints and inter-packet dependencies that arise during

video encoding. In such problems, however, it may still be

beneficial to initialize the DRL algorithm to behave like PF as

a good starting point (e.g., using the approach in [15]).

Problem formulations are not rigorous: Pioneering re-

search on DRL in the Machine Learning (ML) community

often focuses on developing algorithms that can solve a wide

range of problems. The algorithms are typically evaluated us-

ing well-known benchmark environments, ranging from Atari

games to complex control problems. Nokia’s Wireless Suite

[26] (used in [20]) is the only effort that we are aware of to pro-

vide benchmark environments for wireless communications.

Detailed mathematical models of the environments are usually

not presented and in many cases (e.g., Atari games) an MDP

describing the environment cannot be rigorously formulated.

In contrast, each paper in this review considers a unique

variation of the downlink scheduling problem with different

states, actions, rewards, and transition probabilities (see Ta-

ble I). Although these problems can all be rigorously formu-

lated as MDPs, there is often insufficient detail to understand

exactly what problem is being solved and why DRL is an

appropriate solution to it. We argue that future work using DRL

for downlink scheduling (and optimizing wireless networks

in general) must clearly formulate the underlying MDP and,

most importantly, describe how the next state depends on the

current state and action in the problem under study. Since

MDPs are used to model sequential-decision problems (see

Section II-C), demonstrating these dependencies is critical to

justify formulating the problem as an MDP. It is also critical

to highlight the components of the reward and transition

probability functions that are unknown and to quantify the sizes

of the state and action spaces. These details help justify why

DRL is needed to solve the problem.

Research is challenging to reproduce and compare:

Reproducibility is fundamental to science, and is especially

important to push the frontiers of ML-based research. In the

context of DRL for 5G downlink scheduling, there are four es-

sential components needed to reproduce results: 1) a complete

problem formulation; 2) the simulation environment; 3) the

DRL algorithm implementation; and 4) the hyperparameters

used to generate results. Without these, it becomes incredibly

challenging to replicate results and comparatively evaluate

different solutions, ultimately hindering research advancements

in the application of DRL in 5GB networks.

REFERENCES

[1] 3GPP TS 22.261, Service requirements for the 5G system, V18.3.0 ed.,
3GPP, 2021, http://bit.ly/3TuoD6F.

[2] S. Yost, “5G—it’s not here yet, but closer than you think.” EMBEDDED
REVOLUTION, 2017.

[3] 3GPP TR 38.913, Study on Scenarios and Requirements for Next

Generation Access Technologies, V16.0.0 ed., 3GPP, 2020.
[4] Z. Zhang et al., “6G wireless networks: Vision, requirements, architec-

ture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 28–41, 2019.

[5] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] C. Berner et al., “Dota 2 with large scale deep reinforcement learning,”
arXiv preprint arXiv:1912.06680, 2019.

[8] F. Al-Tam, N. Correia, and J. Rodriguez, “Learn to schedule (LEASCH):
A deep reinforcement learning approach for radio resource scheduling
in the 5G MAC layer,” IEEE Access, vol. 8, pp. 108 088–108 101, 2020.

[9] H.-S. Liao, P.-Y. Chen, and W.-T. Chen, “An efficient downlink radio
resource allocation with carrier aggregation in LTE-advanced networks,”
IEEE Trans. Mobile Comput., vol. 13, no. 10, pp. 2229–2239, 2014.

[10] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
packet scheduling in LTE cellular networks: Key design issues and a
survey,” IEEE Commun. Surveys Tuts., vol. 15, pp. 678–700, 2012.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.
[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[13] T. P. Lillicrap et al., “Continuous control with deep reinforcement

learning,” arXiv preprint arXiv:1509.02971, 2015.
[14] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”

in Intl. Conf. Machine Learning, 2016, pp. 1928–1937.
[15] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Deep

reinforcement learning for scheduling in cellular networks,” in 11th Intl.

Conf. Wireless Commun. and Signal Process. (WCSP), 2019, pp. 1–6.
[16] N. Sharma et al., “Deep reinforcement learning for delay-sensitive LTE

downlink scheduling,” in IEEE Intl. Symp. Pers., Indoor, Mobile Radio

Commun., 2020, pp. 1–6.
[17] S. Gracla, E. Beck, C. Bockelmann, and A. Dekorsy, “Learning resource

scheduling with high priority users using deep deterministic policy
gradients,” in IEEE Intl. Conf. Commun., 2022, pp. 4480–4485.

[18] Z. Gu et al., “Knowledge-assisted deep reinforcement learning in 5G
scheduler design: From theoretical framework to implementation,” IEEE

J. Sel. Areas Commun., 2021.
[19] J. Li and X. Zhang, “Deep reinforcement learning-based joint scheduling

of eMBB and URLLC in 5G networks,” IEEE Wireless Commun. Lett.,
vol. 9, no. 9, pp. 1543–1546, 2020.

[20] F. Al-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio resource
scheduling with deep pointer networks and reinforcement learning,”
in IEEE Intl. Workshop on Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), 2020, pp. 1–6.
[21] A. Robinson and T. Kunz, “Downlink scheduling in LTE with deep

reinforcement learning, LSTMs and pointers,” in IEEE Mil. Commun.

Conf., 2021, pp. 763–770.
[22] T. Zhang, S. Shen, S. Mao, and G.-K. Chang, “Delay-aware cellular

traffic scheduling with deep reinforcement learning,” in IEEE Global

Commun. Conf., 2020, pp. 1–6.
[23] W. AlQwider, T. F. Rahman, and V. Marojevic, “Deep Q-Network for

5G NR downlink scheduling,” in IEEE Intl. Conf. Commun. Workshops,
2022, pp. 312–317.

[24] C. Xu et al., “Buffer-aware wireless scheduling based on deep reinforce-
ment learning,” in IEEE Wireless Commun. and Netw. Conf., 2020.

[25] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466–478, 1993.

[26] Nokia, “Wireless suite,” 2021, https://github.com/nokia/wireless-suite.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:07:39 UTC from IEEE Xplore. Restrictions apply.

