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Abstract— This paper proposes a method to evaluate the
capability of aggressive legged robot landing under significant
touchdown linear and angular velocities upon impact. Our
approach builds upon the Planar Inverted Pendulum with
Flywheel (PIPF) model and introduces a landing framework
for the first stance step on a non-dimensional basis. We develop
a nonlinear framework with iterative constrained trajectory
optimization to stabilize the first stance step prior to N-step
Capturability analysis. Performance maps across many differ-
ent initial conditions reveal approximately linear boundaries
as well as the effect of inertia, body incidence angle and
leg attacking angle on the boundary shape. Our method also
yields the engineering insight that body inertia affects the
performance map the most, hence its optimization can be
prioritized when the target is to improve robot landing efficacy.

I. INTRODUCTION

Legged robots have been developed for achieving high
agility [1]–[5] in locomotion such as fast running [6], [7],
quick stepping [8], [9], back flipping [10], [11], aggressive
jumping [12]–[15], and large-perturbation recovery [9], [16],
[17]. The increased need for maneuverability and reactivity
when operating in dynamic environments requires the robots
to perform challenging locomotion tasks which can expose
them to substantial energy and momentum that may in fact
inhibit locomotion or even cause structural damage [18].

To protect legged robots from such situations, emergency
stop under safety constraints [13], [16], [17] has been used
in practice, especially for jumping and recovery from pertur-
bations. Several landing (following a jump) controllers have
been proposed to either harness robot impedance [19], [20],
embed system dynamics into optimization problems [11],
[13], [21], or adopt trained policies in a reinforcement
learning paradigm [12]. Push-recovery strategies also inte-
grate optimization-based [9], [16] and learning-based meth-
ods [17], [22]. Meanwhile, planning of multiple foot place-
ments like N-step Capturability [23] has been investigated
as a means to account for large perturbations unable to
recover from with no-stepping balance controls [24], [25].
To our knowledge, existing approaches either focus on spe-
cific direction of motion, like horizontal [16], [22], [23] or
vertical [20], [21], or consider real-robot implementation but
with mild-to-moderate initial conditions [9], [17], [24], [26].
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Fig. 1: Planer Inverted Pendulum with Flywheel (PIPF) Model.
PIPF has an inertial flywheel body (blue) with COM (red) and
a massless prismatic leg (orange). The body sagittal axis is the
dashed arrow. General coordinates and control inputs are denoted.
The critical stage (right) at αub signifies that the maximum vertical
net force on body COM as Fnet

z,max = Fz,max −mg = 0.

On the other hand, there has been limited attention to
legged robot landing under both aggressive linear and an-
gular momentum. The reflex-recovery strategy in [27] deals
with external force disturbance that causes abrupt angular
momentum changing rate; however, the magnitude of angular
momentum may remain limited due to the short duration of
the applied disturbance. Biological evidence shows that some
legged animals can deal with aggressive landing conditions
elegantly and with little to no structural damage to their
body [28], [29]. To further advance legged robots, it is
important to evaluate the limits of a robot’s landing capability
first, before improving controllers and hardware toward their
maximum potential and enhancing the robot’s locomotion.

Methods for evaluation of landing capabilities should be
able to generalize, considering that legged robots may vary
widely in their detailed models (i.e. anchors [30]), and
testing a proposed method on each and every anchor model
would be too laborious. In contrast, templates like LIP [31]
and SLIP [32] are simpler yet shown sufficiently general
to capture fundamental legged locomotion principles [33].
The target template employed in this work is the Planar
Inverted Pendulum with Flywheel (PIPF) [25] (Fig. 1). We
also adopt a non-dimensional analysis of critical variables
and implement our method on a non-dimensional basis [25],
[34], [35] to account for a range of legged robot scales.

This paper focuses on legged robot fast landing stabi-
lization from aggressive conditions (i.e. large body angular
velocity and touch-down linear velocity) or at least relaxing
them within the first step to milder ones (i.e. only horizontal
velocity remaining) that are suitable for existing methods
like [23], [36]. The main technical result of this paper is
a nonlinear optimization-based landing framework for the
first stance step. Our proposed framework contributes to: 1)



first stance step stabilization for pitch and vertical motion
with large horizontal velocity, 2) iterative constrained landing
trajectory optimization with unknown control horizon, 3)
vertical stabilization overall horizon bounds and feasibility
conditions, 4) performance maps over aggressive initial con-
ditions for factor effect analysis, and 5) engineering insights
on robot design and control to improve landing.

II. SYSTEM MODELING

Templates in sagittal plane serve as simplified repre-
sentations to describe the underlying legged locomotion
principles [30]. Among them, the Spring-loaded Inverted
Pendulum (SLIP) [32] is mostly acknowledged for legged
running with a massless elastic leg and a point-mass body,
while its variants (e.g., [34], [37], [38]) help describe more
complex behaviors for periodic gaits. The Linear Inverted
Pendulum (LIP) [31] is a widely accepted template for legged
walking. It consists of a massless linear leg and a point-
mass body that is usually constrained in the horizontal plane
to yield linear dynamics. The Planar Inverted Pendulum
(PIP) [25] serves as a less constrained alternative to LIP
allowing the body to move freely in the sagittal plane. Body
pitch dynamics can be introduced into LIP and PIP through
an inertial flywheel replacing the point-mass body [25].

A. Planar Inverted Pendulum with Flywheel (PIPF)

PIP with Inertial Flywheel (PIPF, see Fig. 1) [25] covers
the translational motions in both horizontal and gravitational
directions as well as rotational motion around the transverse
axis, and thus, is suitable as the target model in this paper.
Here we revisit PIPF’s Euler-Lagrange Equations of Motion
(EoMs). The dynamics can be formed as

MQ̈ + b + g = F(U) , (1)

M=

 m 0 0

0 mr2 mr2

0 0 I

, b=

 −mr(β̇ + γ̇)
2

2mrṙ(β̇ + γ̇)

0

 ,

g=

 gm sin(β + γ)

g(m cos(β) cos(γ)r −m sin(β) sin(γ)r)

0

 ,
F(U) = [ F, τ, −τ ]

T
, (2)

where M is the generalized mass matrix, b the Coriolis-
centrifugal vector, g the gravitational vector, and F the gener-
alized force vector. With reference to Fig. 1, the configuration
space is Q := [r, β, γ]

T where r is the leg length, β the hip
joint angle, and γ the pitch angle of the flywheel. The input
vector U := [F, τ ]

T includes the prismatic leg force F and
the hip joint torque τ . Scalar v is the magnitude of the linear
velocity v, of which vx and vz are the horizontal and vertical
components. ω = γ̇ is the body angular velocity. θ is the
tilting-down angle of v with respect to the horizontal plane.
θ0 is the body incidence angle (discussed in Section IV-D).

Parameters m, I , g and r0 are mass, moment of inertia,
gravity constant and initial leg length, respectively. The

Cartesian state vector of the flywheel center then is
x

z

ẋ

ż

 =


xf − r cos(α)

zf + r sin(α)

ẋf − (ṙ cos(α)− rα̇ sin(α))

żf + (ṙ sin(α) + rα̇ cos(α))

 , (3)

where Xc := [x, z, ẋ, ż]
T includes the horizontal and vertical

positions and velocities of the flywheel center in the inertial
frame, Xf := [xf , zf , ẋf , żf ]

T the same Cartesian state
vector for the leg’s point foot, and α := β+γ is the attacking
angle at the point foot. Note that {ẋ, ż} and {vx, vz} are used
interchangeably in this paper.

B. Non-dimensional Analysis

Non-dimensional analysis over state variables and model
parameters is a more generalized way to investigate system
behaviors. Our method is implemented on a non-dimensional
basis to account for different parameter scales. Similar
to [25], [34], we non-dimensionalize length, linear velocity,
angular velocity, force, torque, inertia, and angle as

r̃ =
r

r0
, ṽ =

v
√
gr0

, ω̃ =
ω√
g/r0

, F̃ =
F

mg
, τ̃ =

τ

mgr0
,

Ĩ =
I

mr20
, α̃ = α, β̃ = β, γ̃ = γ, θ̃ = θ . (4)

Note that angles α, β, γ, and θ can be treated as non-
dimensional quantities by themselves. The time constant
TC :=

√
r0/g will be used to define the horizon of our

trajectory optimization problem discussed next.

III. NONLINEAR OPTIMIZATION-BASED LANDING
FOR FIRST STANCE STEP

A. Overview

Here we present the main technical result of the paper: a
nonlinear optimization-based framework for the first stance
step stabilization. We aim to enforce PIPF into a static
posture in finite steps, under the working conditions that 1)
the overall kinematic energy is too massive to dissipate in
a single step, and 2) the rotational momentum is substantial
and risks causing body flip forward. The work of N-step cap-
turability [23] has laid out a solid foundation on stabilizing
the LIP model in the horizontal plane. Therefore, we focus
on the first stance step upon landing and seek to stabilize
the PIPF’s rotational and vertical motions in the presence of
horizontal motion, as a way to relax aggressive conditions
(large angular velocity and touch-down linear velocity) to a
milder one (horizontal linear velocity only) that is reasonable
to be handled with the N-step capturability method.

Figure 2 demonstrates landing phases—the first stance
step Pss is where this paper focuses on. Correspondingly,
we propose a nonlinear optimization-based framework for
the first stance step stabilization. Figure 3 summarizes the
workflow with three major components being:

1) Pitch Stabilization aiming to stabilize both pitch and
vertical motions in the phase Pps before T1 (Section III-
B). Pitch motion is prioritized to avoid body overturning



Fig. 2: Landing Phases for PIPF. The first stance step Pss (T0-T2)
comprises the pitch stabilization Pps (T0-T1, overall horizon length
Tps) and vertical stabilization phases Pvs (T1-T2, overall horizon
length Tvs). Phase Pnc (T2-T3) represents the N-step capturability
(N = 1 here). The paper focuses on the first stance step.

that could be catastrophic to onboard sensing from an
engineering perspective.

2) Vertical Stabilization Feasibility Check investigating
the practicability of vertical stabilization at T1 and
predict its possible horizon Tvs (Section III-C).

3) Vertical Stabilization stabilizing remaining vertical
motion in the phase Pvs before T2 (Section III-D).

Table I summarizes the important variables.

TABLE I: Summary of Important Variables

Variables Dimensional
Symbol at Tk

Non-dimensional
Symbol at Tk

Length or Position rk , xk , zk r̃k , x̃k , z̃k

Linear Velocity vk , vxk , vzk ṽk , ṽxk , ṽzk

Linear Acceleration v̇k , v̇xk , v̇zk ˜̇vk , ˜̇vxk , ˜̇vzk

Angle αk , βk , γk , θk α̃k , β̃k , γ̃k , θ̃k

Angular Velocity α̇k , β̇k , γ̇k , θ̇k , ωk
˜̇αk

˜̇
βk , ˜̇γk , ˜̇θk , ω̃k

Angular Acceleration α̈k , β̈k , γ̈k , θ̈k ˜̈αk , ˜̈
βk , ˜̈γk , ˜̈θk

Note that Figure 2 defines Tk, k = 0, 1, 2.

B. Pitch Stabilization

We adopt constrained nonlinear trajectory optimization for
pitch stabilization. No assumption is made on the nominal
state trajectories 1 nor the control horizon Tps, so we seek
to iterate the optimization over a small control horizon with
updated initial values and termination conditions (Fig. 3b).
Below is the optimization setup within one iteration.

First, the small control horizon length Th is determined
for the current iteration. Considering the horizontal motion is
not the major concern for pitch stabilization, we set ṽx0, the
horizontal component of ṽ0, as a rough guess of the average
non-dimensional horizontal velocity. Then, we define Th for
each iteration during Pps via

Th|Pps = η
1

ṽx0
TC . (5)

1
ṽx0

represents the non-dimensional time to traverse a unit
length at speed ṽx0. TC is the time constant and η is the
percentage taken for each iteration. The control horizon is
Th = Tsp, p ∈ N and Ts is the time step length.

1 We do not assume any prior knowledge for the landing trajectories and
landing height so that the optimizer could search for solutions within wider
state regions instead of the neighborhood of the nominal trajectories. Only
the desired landing posture is known as no rotation and vertical motion.

Fig. 3: First Stance Step Stabilization Workflow. (a) The work-
flow of the first stance step stabilization. (b) The iterative nonlinear
trajectory optimization for the pitch/vertical stabilization.

Given the initial time t0, the continuous-time trajectory
optimization problem is formulated over [t0, t0 + Th] as

minX,U J(X)

subject to Ẋ = f(X,U), Cineq(X,U) ≤ 0
(6)

where states X =
[
Q, Q̇

]T
, configuration states Q and

inputs U are defined in Section II-A, and dynamic constraints
Ẋ = f(X,U) based on EoMs (1)–(2):

f =

[
Q̇

M−1(F(U)− b− g)

]
. (7)

The discretized cost function J := JL + JM adopts the
standard quadratic form of Lagrangian and Mayer terms as

JL = k1

p−1∑
n=1

ξż,nσ
2
˜̇z,n

+ k2

p−1∑
n=1

ξγ,nσ
2
γ̃,n + k3

p−1∑
n=1

ξγ̇,nσ
2
˜̇γ,n

σ2
˜̇z,n

= (˜̇zd − ˜̇zn)2, σ2
γ̃,n = (γ̃d − γ̃n)2, σ2

˜̇γ,n
= (˜̇γd − ˜̇γn)2

JM = k1ξż,pσ
2
˜̇z,p

+ k2ξγ,pσ
2
γ̃,p + k3ξγ̇,pσ

2
˜̇γ,p

(8)

where JL is a weighted sum of the discounted average
deviation along the control horizon and JM applies only to
the final instant. σ2

˜̇z,n
, σ2

γ̃,n, and σ2
˜̇γ,n

are deviations of ˜̇z, γ̃,
and ˜̇γ (computed by (3)–(4)) about their desired final landing
posture values denoted with superscript d at step n. Discounts
ξż,n, ξγ,n, and ξγ̇,n adjust the attention level at each time step
along the current horizon. Weights k1 < k2, k1 < k3 indicate
that pitch states are the priority to stabilize.

Note that discount sequences {ξż,n}, {ξγ,n} and {ξγ̇,n}
belong to either Uniform or Poisson distributions, so that
each sequence sums up strictly or almost to 1 and thus
accounts for discounted averaging on each non-dimensional
variable. Uniform distribution suggests equal attention of the
solver for every step, and Poisson distribution introduces a
gradual change of attention on different steps. In practice, we
adopt a reversed Poisson (with λ = 1) sequence such that the
solver focuses more on the last few steps. Observations from
various trials suggest that 1) Uniform distribution performs
reliably on stabilizing variables with small initial deviation,
like γ and γ̇ during Pvs, and 2) Poisson distribution is more
appropriate for cases with large initial deviation, like the
states in Pps, which is probably due to more flexibility on
early steps. Also note that dynamic constraints (7) with (3)
imply the coupled relationship between the horizontal and



vertical states. The optimization will keep this logic even
though the states are distinguished in the objective function.

We require the model state trajectories to be properly
constrained in the sense that 1) the body orientation allows no
excess tilting toward overturning, 2) the hip joint does not ro-
tate the leg over the body’s transverse plane, and 3) actuation
forces are limited. The major constraints Cineq(X,U) ≤ 0
include Geometric limits on the configuration space Q and
actuation limits. More specifically,

Q̃ ∈
[
Q̃min, Q̃min

]
, Q̃ :=

[
r̃, β̃, γ̃

]T
, (9)

Ũ ∈
[
Ũmin, Ũmin

]
, Ũ :=

[
F̃ , τ̃

]T
. (10)

Additional constraints may involve computing Ground
Reaction Forces (GRF) to indicate the Coulomb friction
limits and normal supporting force on foot. Nevertheless, as
shown in Fig. 4, we observe that optimization without GRF
constraints still converges to a solution with positive Ffz . It
also reveals that in most cases the required friction coefficient
is less than 3, which is within practically achievable ranges
for a rubber foot on the clean ground [39]. Thus, we run the
optimization without GRF constraints that can increase com-
plexity by requiring additional Jacobian matrices inversion.
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Fig. 4: Distributions of Factors about Ground Reaction Force
(GRF). Our optimization method excludes GRF-computed con-
straints, and the data collection is based on successful cases with
initial conditions ω̃0 ∈ [1, 5], ṽx0 ∈ [0.8, 2.0], and ṽz0 = −0.3.
The left panel illustrates the maximum µ = |Ffx

Ffz
| to denote the

required friction coefficient, with most cases marked in warm tones.
The right panel shows the minimum non-dimensional normal force
F̃fz at the foot, with no case marked in yellow as negative.

The pitch stabilization process decides to continue or
exit every time the trajectory optimization ends. We let the
attacking angle α be feasible when 0 < αmin < α <
αmax < π, so that the foot always points downward. We also
expect the neutral position α = π/2 to be reached or passed
through when phase Pps ends. As a result, the termination
logic summarizes that the pitch stabilization will

• exit with success, if the pitch dynamics is stabilized
while α ≥ π/2 and before α becomes infeasible;

• exit with failure, if the pitch dynamics is still not
stabilized when α becomes infeasible;

• continue for the next iteration, otherwise.

For the next iteration, initial state values will be updated with
configuration states Q, time derivative Q̇ and time variable
t at the final step of the current optimization solution.

C. Vertical Stabilization Feasibility Check
When the pitch stabilization ends successfully and vertical

motion is yet to be stopped, that is when

vx1 > 0, vz1 < 0, α1 >
π

2
, α̇1 > 0 , (11)

the subsequent vertical stabilization process takes over but
may encounter several ill conditions. These can include: 1)
vz is still quite large, 2) α is already close to the upper
boundary αmax, and 3) α̇ is rather large to sweep over
the remaining distance in the first stance step. The above
situations may require adjustment over the optimization setup
(e.g., the control horizon) for the vertical stabilization in Pvs
and even undermine its feasibility.

Based on the states at T1 (see Table I), we provide the
lower and upper bound estimation T lbvs and Tubvs for the overall
control horizon length Tvs of the vertical stabilization as

T lbvs =
−ṽz1(

F̃max sin α̃1 − 1
)TC

Tubvs =
− ˜̇α1 +

√
˜̇α2
1 + 2˜̈αlbvs(α̃

ub
vs − α̃1)

˜̈αlbvs
TC (12)

where ˜̈αlbvs and α̃ubvs are non-dimensional attacking angle ac-
celeration lower bound (α̈lbvs) and displacement upper bound
(αubvs), respectively, in phase Pvs, defined as2

α̈lbvs =
− cosα1(

1 + Ĩ
) r̃1
T 2
C

, αubvs =
π

2
+ cos−1 (F̃−1

max) (13)

With the lower and upper bounds in place, we define that
vertical stabilization feasibility check exits with success if

T lbvs < Tubvs , T lbvs > 0, Tubvs > 0 . (14)

D. Vertical Stabilization
The vertical stabilization process also adopts the same iter-

ative optimization setup as in pitch stabilization (Section III-
B), modulo some adjustments on the control horizon, cost
function weights and the termination logic explained next.

The small control horizon length Th of vertical stabiliza-
tion is

Th|Pvs = ηT lbvs , (15)

where η is the percentage factor same as (5), and T lbvs the
lower bound estimate of the overall horizon length Tvs
computed from (12).

Weights in the cost function (8) are modified to satisfy
k1 > k2, k1 > k3 so that the vertical motion is the priority
to stabilize.

The termination logic is adjusted so that the vertical
stabilization will

• exit with success, if the vertical motion is stabilized
before α becomes infeasible;

• exit with failure, if the vertical motion is still not
stabilized when α becomes infeasible;

• continue for the next iteration, otherwise.
2 The derivation of (12) and (13) is based on model dynamics and

kinematic constraints, and can be found at https://bit.ly/3eNT753.
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Fig. 5: State Trajectories During the First Stance Phase. Trajectories of non-dimensional states for displacement (red, left axis) and
velocity (black, right axis). The setup is consistent with (18) and (20).
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Fig. 6: Preliminary Results of Landing Sequence. Landing
trajectories during the first stance step (left-hand side of red dashed
line) and following N = 3 steps (right-hand side of red dashed
line) for PIPF model, with sample initial condition (20). Ground
is shown as red line. (Figure best viewed in color.)

IV. RESULTS AND DISCUSSION

A. Selection of Initial Conditions

The paper focuses on the aggressive conditions over ω̃0,
ṽx0 and ṽz0. For the angular velocity, we investigate the
span ω̃0 ∈ [1, 5]. For the vertical linear velocity, we study
the range ṽz0 ∈ [−0.3,−0.5]. For the horizontal linear
velocity, we determine the minimum ṽx0,min based on the
LIP model’s Capture Point (according to [25, Eq. (10)]) such
that the Capture Point is beyond the leg reach at T0 even for
vx0,min. Therefore we have

xcapture = vx0,min

√
z0
g

= ηvxr0 cosα0, ηvx > 1

vx0,min = ṽx0,min
√
gr0, z0 = r0 sinα0

⇒ṽx0,min = ηvx
cosα0√
sinα0

(16)

where α0 is prefixed and ηvx is the amplifying factor. We
set ηvx = 1.5 and the gap ∆ṽx0 = ṽx0,max− ṽx0,min = 1.2,
and compute the span ṽx0 ∈ [ṽx0,min, ṽx0,max] as

ṽx0 ∈ [0.80, 2.00], α0 = 60◦ ;

ṽx0 ∈ [0.95, 2.15], α0 = 55◦ ;

ṽx0 ∈ [1.10, 2.30], α0 = 50◦ . (17)

B. Preliminary Test

Throughout Section IV, we maintain the consistency on
the model and optimization parameters and limits as

m = 80 [kg], r0 = 1 [m], g = 9.8 [m/s2]

r̃ ∈ [0.4, 1], β̃ ∈ [0, π], γ̃ ∈ [−π/2, π/2],

F̃ ∈ [0, 2], τ̃ ∈ [−1, 1] (18)

where m, r0, and g are selected based on [35]. We also
assume the initial pitch angle γ0 = θ0, with incidence angle

θ0 computed from selected ṽx0 and ṽz0. For the cost function,
we adopt the reversed Poisson (λ = 1) for all the discounts
except ξγ,n and ξγ̇,n during Pvs; we also carefully select the
cost weights and desired values in (8) as

During Pps : k1 ∈ {100, 101, 102, 103}, k2 = 104, k3 = 105

During Pvs : k1 ∈ {106, 107, 108}, k2 = 103, k3 = 103

˜̇zd = 0.01, γ̃d = 0, ˜̇γd = 0 (19)

where we test a case with different scales for the vertical
weight k1 to rule out bad selections. We use a small positive
number for ˜̇zd to better neutralize the vertical velocity.
Other parameters like initial attacking angle α0 and non-
dimensional inertia Ĩ are tunable and investigated in Sec-
tions IV-A and IV-D, respectively.

We show results from a set of aggressive initial conditions:

ω̃0 = 3, ṽx0 = 1.2, ṽv0 = −0.3, Ĩ = 0.04, α0 = 60◦. (20)

Figure 5 depicts state trajectories in terms of different motion
aspects during the first stance step. We observe that 1) the
pitch and vertical motion are stabilized, 2) the horizontal
velocity is kept close to the initial level, and 3) the body
posture is never at risk of overturning. Figure 6 illustrates a
complete landing procedure composed of the first stance step
and next N steps from LIP model’s N-step capturability [23].

C. Performance Map over Initial Conditions

Here we investigate a performance map of various initial
conditions, with parameter values as (18) and (19). Like
in Section IV-B, we also apply Ĩ0 = 0.04 and α0 = 60◦.
With (17), we determine the search area as

ω̃0 ∈ [1, 5], ṽx0 ∈ [0.8, 2.0], ṽz0 = −0.3 . (21)

The left column of Fig. 7 shows results of our first stance
step landing for the above setup. The top panel depicts the
map of different initial condition setups assessed as either
success or failure. A linear boundary is approximated at
the right-upper corner with linear regression on the data
in the neighborhood of the boundary. In the bottom panel
we compare the Pvs duration bounds T lbvs and Tubvs , and the
optimized duration T ∗

vs across all tests in the same map.
Results show a rather small gap between Tubvs and T ∗

vs,
which suggests that the lower bound T lbvs provides a reliable
estimator of T ∗

vs. They also show the tendency to narrow the
gap between T lbvs and Tubvs as T lbvs increases, with the bound
ratio ηT = Tubvs /T

lb
vs < 10 in some of the final 30 cases.
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Fig. 7: Performance Map Analysis. Left column: A performance map (top) and Tvs graph (bottom) over initial conditions (21).
The performance map includes tested cases, boundary neighbor cases (circled in black), and the approximated boundary line. The Tvs

graph is based on the lower bound T lb
vs (blue), upper bound Tub

vs (black), and optimized duration T ∗
vs (red) of the successful cases from

the above performance map, with down-sampling and sorting by T lb
vs for better visualization. Middle 3 columns: Panels (a)–(i) present

3x3 performance maps of initial conditions ω̃0 ∈ [1, 5] and ṽx0 ∈ [0.8, 2.0]: for each column, ṽz0 = −0.3,−0.4,−0.5; for each row,
Ĩ = 0.04, 0.08, 0.12. Right column: Panels (j)–(l) show the performance maps of ω̃0 ∈ [1, 5], ṽx0 ∈ [0.8, 2.0], Ĩ = 0.04, and ṽz0 = −0.3.
Ĩ = 0.04, 0.08, 0.12 for (j), (k), and (l) respectively. Note: In all performance maps, successful cases are marked in red and failing cases
in grey. A linear bound (blue) is fitted for the data in each map, denoted with its slope m, intercept b, and variance R2 rounded to two
decimal places. Note that panel (i) has no boundary fitted due to insufficient data.

D. Impacting Factors to Performance Map

Inertia and Incidence Angle: The inertial flywheel is the
main distinction between PIPF and PIP models. Accordingly,
it serves as the major factor of interest toward determining
landing performance and performance map morphology.

To compute the inertia, we treat the flywheel as a rod with
uniformly distributed mass. We believe this approximation is
reasonable since many bipedal and quadrupedal robots can
be modeled with slim linkages in the sagittal plane (e.g., [13],
[25], [38]). The rod length is proportional to r0 as l = ηlr0;
ηl is the scaling factor. The non-dimensional inertia is

Ĩ = ml2/(12mr20) = η2l /12 . (22)

Picking ηl = {0.7, 1, 1.2} produces Ĩ = {0.04, 0.08, 0.12}
(results rounded to two decimal places). The case Ĩ = 0.04
has been studied in Sections IV-B and IV-C. In this section,
we continue the search on all three non-dimensional inertia
values under different ṽz0. Since the body incidence angle θ0
is defined by ṽz0 and ṽx0, the search also indicates the effect
comparison between the inertia and the incidence angle.

The right four columns of Fig. 7 summarize the resulting
performance maps for each combination of Ĩ and ṽz0. All
plots indicate that the linear boundary approximation is
preserved under various Ĩ , ṽz0 and α̃0. The fitted boundary
line is described with the coefficients m the slope and b the
intercept, as quantified for each plot. Panels (a)–(i) show that
along the positive Ĩ axis, there is a noticeable reduction over
both the slope level |m| and the intercept b. This observation
suggests that the boundary flattens and the landing success

rate decreases when Ĩ increases. Larger Ĩ with smaller b also
implies the undermining landing capability to handle large
initial angular velocity. On the other hand, no clear boundary
changing pattern could be summarized along the ṽz0 axis.
For example, panels (a)–(c) show that both |m| and b have a
rising tendency, which cannot be observed in panels (d)–(f).

These observations suggest that the inertia is more domi-
nant than body incidence angle in determining landing capa-
bility. Thus, it should be given priority to optimize for when
building a robot or adjusting a robot’s body morphology for
improved landing performance.

Initial Attacking Angle: Based on (16) which decreases
monotonically over α0 ∈ (0, 90◦), a smaller α0 should
handle larger ṽx0,min. Nevertheless, panels (j)–(l) in Fig. 7
only illustrate ambiguous change over boundary coefficients
m and b. This observation suggests that α0 has no obvious
effect on the boundary morphology as inertia does.

V. CONCLUSIONS

The paper contributes a nonlinear optimization-based land-
ing framework for the first stance step stabilization on the
PIPF model under considerable rotation and translational mo-
tions. The proposed method is conducted with limited prior
knowledge of nominal trajectories and control horizons. The
resulting performance maps over various initial conditions
reveal linear boundaries and the dominant effect of inertia
on landing capability. Future directions of research include
1) a mathematical approximation of the linear boundary for
faster evaluation, and 2) an online landing controller that
works near the boundary.
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