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Abstract—Machine learning is becoming an increasingly inte-
gral component of mobile applications. However, the execution of
compute-heavy neural models (e.g., for computer vision tasks) on
resource-constrained devices is challenging due to their limited
computing power, memory, and energy reservoir. While edge
computing mitigates these issues, the transfer of information-
rich signals over capacity-limited and time-varying wireless
channels may result in large latency and latency variations.
Herein, we propose a methodology to route heterogeneous tasks
across the resources and layers of systems composed of mobile
devices and edge servers. Different from prior work, we consider
aspects of real-world systems, such as context switching, task
accumulation, and the interplay between communications and
computing components of the overall pipeline, that are rarely
captured in abstract models. To optimize the task flow, we
use a deep reinforcement learning agent trained on real-world
data collected using a system we developed. The agent uses an
articulate definition of state drawing features from several logical
blocks of the system. Results indicate that the agent adapts the
routing of tasks to parameters controlling their heterogeneity, as
well as the hardware setup and the state of the wireless channel.

Index Terms—Resource allocation, Task offloading, Context-
aware control, Edge computing.

I. INTRODUCTION

Machine learning is becoming an increasingly crucial com-
ponent of mobile applications. Emerging applications, such as
augmented reality (AR), often produce streams of data analysis
tasks (e.g., image analysis or speech-to-text) that not only
are computationally intense, but also heterogeneous in nature.
While the “local” execution of the tasks onboard mobile
platforms is inherently challenging due to the limitations of
these platforms, emerging distributed computing strategies
over layered systems - i.e., mobile-edge-cloud - suffer from the
need to transfer information-rich data and signals over wireless
and wireline channels with finite and time-varying capacity, as
well as from the limitations of infrastructure-level servers (and
especially edge servers) and the inevitable need to share such
resources across multiple mobile devices.

In this context, the allocation and optimization of com-
puting resources across the layers of articulate systems is
an extremely important problem. Recent contributions present
frameworks that optimize performance metrics such as energy
consumption [1], task performance [2]–[4], and latency [5]
individually. However, most existing work tends to base their
solutions on abstract models of the system’s operations that
often fail to capture the intricate behavior of real-world

Fig. 1: Illustration of system model considered in this paper:
a multi-layered mobile-edge system collaborates toward the
timely execution of a heterogeneous stream of computing
tasks. Each layer has multiple resources, e.g., CPUs and GPUs.

deployments, while also typically considering a homogeneous
streams of tasks (e.g., object detection).

The focus of this paper is the management of streams
of heterogeneous tasks over layered systems composed of
mobile devices (MD) and edge servers (ES) or ES and cloud
servers (CS), where each unit embeds multiple resources: i.e.,
Central Processing Units (CPUs) and Graphical Processing
Units (GPUs). The system is illustrated in Fig. 1. Different
from most prior work, we consider the influence on the
system dynamics of context switching, task accumulation, and
the interdependence between communication layer timing and
computing performance, which all have a considerable impact
on the system behavior and performance. In this context, we
propose a predictive framework that controls in real-time (i)
the routing of individual tasks across the resources and layers
of the system, and (2) the machine learning model assigned
to each task to minimize latency, energy consumption while
maximizing task performance.

The engine of the framework we propose takes the form of
a deep reinforcement learning algorithm (DRL), whose input
features include multiple core system components such as
CPU, GPU, memory usage, and wireless channel statistics.
In order to train and test the framework, we developed a real-
world system composed of a task generator, the DRL agent
that receives and allocates the input queue of tasks, and a
dispatcher that routes the tasks received based on the actions
chosen by the DRL agent. Based on this setup, we collect a
comprehensive dataset, described in detail in Section VII.

To summarize, this paper makes the following contributions:
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(1) We develop a framework for the management of hetero-
geneous computing tasks’ flow across multi-layered systems
that accounts for real-world effects such as context switching,
task accumulation, and intricate interdependencies between
communication and computing components of the system.

(2) We build a multi-layer system empowered with the abil-
ity to dynamically route tasks across layers and computing
components. Notably, in contrast with contributions focusing
computing on one of the layers (e.g., edge computing), all the
layers of the system collaborate toward the efficient and timely
completion of the incoming tasks. We perform dynamic allo-
cation of heterogeneous machine learning tasks. We leverage
the allocation and model decisions based on the status of each
layer and implement a multi-objective performance function
that maximizes the resources of each layer.

(3) We design and train a deep reinforcement learning al-
gorithm that controls task routing and allocation taking as
input statistics of computing and wireless resources, the
queue of incoming tasks, the status of the models, and
tasks dispatched. Training is performed on a comprehen-
sive dataset that we pledge to release to the community.
The source code of our framework and the dataset is in
https://tinyurl.com/heterogeneousTaskScheduling

(4) We evaluate our solution and show empirically that dif-
ferent settings and characteristics of the system (e.g. task
arrival distribution, hardware configuration) result in different
decisions regarding the allocation policy. In a setting where the
MD is an embedded platform with relatively low computing
capabilities (e.g., an NVIDIA Jetson Nano) the optimal policy
privileges allocation of tasks to the CPU to avoid a large
delay penalty associated with context switching – while also
using low-complexity neural models to contain the increase
in execution time with respect to allocating the task to the
GPU. If a more powerful embedded platform is used (e.g.,
an NVIDIA Xavier AGX in our experiments) the controller
expresses a more pronounced preference toward using larger
neural models and performing inference locally on the GPU.
We also show that fixed policies such as traditional edge
computing (that is, all tasks are routed to the edge server)
incurs a degraded latency up to 5x times, in the worst case,
compared to a dynamic optimized policy.

The rest of this paper is organized as follows. In section
II, we illustrate the impact of context-switching on end-to-
end delay when inference is performed in multiple processors
and platforms. Next, in section III we summarize relevant
contributions to the tasks allocation and routing in multi-
layered systems and compare them with our work. We propose
a system model and its performance metrics in section IV. In
section V, we provide details about the hardware setting and
the software implementation of our system. We describe our
solution in Section VI. Sections VII and VIII describe the
dataset collected to perform experiments as well as the results
obtained using our proposed framework. Finally, Section IX
concludes the paper.

II. MOTIVATION

In this section, we illustrate the impact of context switching
- which to the best of our knowledge is not considered in
existing literature on task management in collaborative multi-
layered systems. In order to support heterogeneous tasks,
unless sufficient resources (e.g., memory) are available, the
system will need to switch context as the current task changes
over time. For instance, a neural network model needs to be
loaded in the memory of a GPU in order to be executed.
This preparation phase may take a considerable amount of
time (e.g., a large fraction of a second), and may impair the
continuity of execution of the stream of tasks.

To illustrate the impact of model loading, we consider a
setting where two platforms from the NVIDIA Jetson family
– particularly the Jetson Nano, and Xavier AGX – are used
as mobile devices. We note that they differ in terms of
computing capabilities, the internal configuration of resources,
and energy consumption. The NVIDIA Jetson Nano (NVIDIA
JN) architecture has a shared physical memory between the
CPU and GPU. The key advantage of this architecture is that
data transfers are performed less frequently compared to an
architecture with separate discrete memory per processor (that
is, CPU memory isolated from GPU memory). However, the
small size of the memory prevents the program from opening
multiple processes to decouple the loading from the inference
in neural network models. The latter architecture platform used
as MD, the NVIDIA Xavier AGX (NVIDIA JXA), has high
memory bandwidth – the speed we can read or store data into
the memory, deep learning accelerators, and a cache coherence
between CPU and GPU which helps reduce latency overhead
and bandwidth usage. The cache coherence [6] is important
in our case as a data tensor or neural model can be stored
and retrieved directly from it instead of the main memory
through the CPU. Our framework automatically adapts the
management of the computing tasks across the layers of the
system and their components to these factors without the need
for the designer to hard-code a platform-specific policy.

We illustrate our observations by means of simple exper-
iments over the setting we will describe in detail later in
the paper. In these experiments, we generate a stream of
200 tasks composed of two distinct classes, that is, image
classification and image segmentation, each associated with
a neural model (SegFormer-B1 [7] and EfficientNet-B1 [8]).
The number of tasks of the same class is distributed uniformly
such that when there are 2 context changes in a stream
of 200 tasks, we have 100 image classification tasks and
100 image segmentation tasks. As shown in Fig. 3 and 2,
context switching has a computing platform-dependent impact
on the execution timeline. In the figures, we can see that
the CPU – a general-purpose processing unit that fetches
instructions out-of-order but executes them sequentially – is
not optimized to perform matrix operations associated, for
instance, with the execution of neural network models and
tends to have a stabilized task delay even against context
switching. Conversely, the GPU, a specific purpose processing
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unit that performs parallel thread execution, requires data
transfer from the main memory at least once, and potentially
at every context switch. This can have a considerable impact
on task delay when a new task is allocated to a specific unit. In
addition to the expected differences among processors, there
are some differences in the task delay dynamics which depend
on the platform architecture. As shown in the pictures, if
the NVIDIA JN is used, the CPU inference delay increases
linearly as the frequency of context switching increases while
the GPU inference increases close to exponentially due to their
memory architecture.

Fig. 2: Loading model and inference latency in NVIDIA
Jetson Xavier AGX for different context-change values across
different ML tasks and processing units.

Fig. 3: Model loading and inference latency in the Jetson Nano
for different context-change frequencies across different ML
tasks and processing units.

We note that context switching is influenced by the order of
task arrivals into the system. We also observe how the timing
of task arrivals, which at a fine grain is also influenced by the
communication layer as well if tasks are allocated to the edge
server – has an impact on batch processing on the GPUs: a
critical component of inference acceleration.

III. RELATED WORK

To the best of our knowledge, there are no available studies
on context-switching and inference performance interdepen-
dence focused on multi-layered systems. The closest class
of contributions in the literature targets the optimization of
inference performance by task offloading in one or more layers
(e.g. mobile device to edge server or edge server to cloud).
We summarize this work and contrast it with the contributions
of this paper in the following.

Task offloading in the context of edge computing – often
referred to as Mobile Edge Computing Systems (MECS) – has
been extensively studied [9]. We can categorize this problem
by the execution methodology: full offloading - where the
whole computing task is offloaded to the edge server, partial
offloading - where portions of the computing task are offloaded
and others are executed locally on the mobile device. Guo et
al. [4] and Fresa et al. [3] are examples of full offloading
where the objective is to maximize the accuracy of inference
tasks. Matsubara et al. [10] and Zhao et al. [11] perform partial
offloading to optimize the balance between end-to-end delay,
energy consumption and task performance using techniques
such as split computing, early exit, and data compression [12].

Mobile-Edge-Cloud cooperation frameworks have been de-
veloped. For instance, Hong et al. and Zhang et al. [2], [13]
present methodologies to allocate data tasks on the available
resources optimizing customer performance metrics. These
frameworks showed promising results in simulated data and
were controlled under the assumption of homogeneous tasks
and hardware setups.

Task scheduling and placement in MECS has been largely
studied to optimize multiple performance metrics such as end-
to-end delay and available resources (e.g CPU, GPU) [14]–
[16], and [17] among others. In particular, Shu et al. [15]
consider explicit task dependencies and heterogeneous servers
to reduce the overall task delay. Zhang et al. [17] also focuses
on task delay and tasks dependencies, however, the proposed
solution is evaluated on real-world heterogeneous edge servers
(i.e. multiple CPU, GPU, and network configurations).

IV. SYSTEM MODEL AND OPTIMIZATION OBJECTIVES

In this section, we first describe the model of the system
we consider and then define performance measures and opti-
mization objectives.

A. System Model
We consider a multi-layered system where a MD and

an ES collaborate to complete a stream of tasks generated
by the MD. Formally, we define the task arrival process
T = {Ti}i=1,2,..., where Ti=(ti, ci) is the i–th task arrival
described by the arrival time ti and ci∈{1, . . . ,K} is the
task class. The MD and ES are wirelessly connected and
composed of multiple computing resources - namely GPUs
and CPUs - characterized by different computing power. We
denote resources at the MD as RMD

n , n={1, . . . , NMD} and
at the ES as RES

n , n={1, . . . , NES}, and group them in the
set Rn, n={1, . . . , NMD +NES}.

At a high level, in this work, a task corresponds to a set
of data to be analyzed using a deep neural network. When
a task arrives at the MD, it enters the finite queue QMD.
Tasks are then processed sequentially by the management
function (ni,mi)=A(Ti), where ni points to a resource in
{1, . . . , NMD + NES}. The control variable mi determines
the neural model used for the execution of the task. Multiple
queues in the MD are used to route the incoming tasks to a
particular resource queue (See Fig.1).
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If ni corresponds to a resource on the MD, then the task is
sent to that computing unit - which has its internal task queue.
Conversely, if ni is a resource on the ES, the task is sent to the
radio interface and will eventually enter the ES’ queue QES -
where the entry will also contain the pair (ni,mi).

B. Performance Measures

We define a set of relevant performance measures that will
guide our optimization rationale.

Task-Level: We define two key metrics at the task level:
task performance and task latency. The former is primarily
associated with the selection of the model used to complete
the tasks. For instance, a more complex neural model will most
likely achieve a better average performance (where the average
is over the data samples acquired by the MD) compared to
a lower complexity model. We then define pc(c,m) as the
expected normalized task performance associated with a task
of class c when model m is used.

Moreover, we denote hi as the time at which task i is
completed and define the task latency as li = hi − ti. We
note that latency is the sum of multiple components, including
queueing time, execution time, communication time (if the
task is executed on the ES), and context switching. While it
is indeed possible to abstract these components, in real-world
systems they are determined by complex software-hardware
effects and interdependencies that are difficult to capture using
available modeling strategies, also due to the influence of
temporal patterns of the system state.

System-Level: At the system level, we focus on power con-
sumption at the MD. We define the instantaneous - normalized
- power consumption time τ as wτ . Intuitively, and similarly
to the latency, the power consumption also is the result of a
rather complex definition of system state and its pattern that
makes it hard to use simple abstractions.

C. Optimization Objectives

The objective of the framework we propose is to jointly
maximize the expected task performance

P = E

[
∑

i

pci(ci,mi)

]
, (1)

while minimizing the expected task latency

L = E

[
∑

i

li

]
(2)

and average power consumption

W = E

[∫

τ
w(τ)dτ

]
. (3)

The expectations are computed over realizations of the
stochastic process describing the system behavior. We remark
that due to the complexity of the system we resort to optimiza-
tion and evaluation based on datasets collected experimentally.

V. SYSTEM ARCHITECTURE

In this section, we describe in detail the system we de-
veloped. An overview of the system is provided in Fig. 4.
The software we developed has a modular structure and
includes the following modules: task generator, dispatcher,
and logger. Note that the latter is not only used to evaluate
performance, but also to compose the real-time state used
by the DRL agent to select the actions. Our task generator
initiates a background process that generates a stream of tasks
according to a particular distribution. Our dispatcher manages
the reception of tasks and the execution of the tasks using
torch libraries such as multiprocessing [18] and cuda [19],
when tasks are allocated locally, the dispatcher is able to
perform loading (when required) and inference. If the tasks
are allocated to the Edge, the dispatcher prepares and sends
the message to be transmitted using the wireless interface of
the MD. Our loggers are hardware customized, where we use
the Tegra Utility [20] integrated within the Jetson platforms
to obtain the state of the hardware.

Fig. 4: Schematics of the system implementation.

A. Computing Tasks

We developed a tasks generator module that defines a
sequence of tasks to be dispatched. This module creates
distributions of tasks based on three parameters: (1) the set
of tasks, (2) the distribution of the time between tasks, and
(3) the probability of switching from one task to another in
the arrival sequence.

For the sake of simplicity, we focus our attention on com-
puter vision, specifically on image classification and semantic
segmentation. This choice is motivated by the availability of
families of models designed for resource-constrained systems
providing performance proportional to their complexity [7],
[8]. We consider two families of models: EfficientNet (which
we could identify as m0 and m1 for effficientnet-b0 and
efficientnet-b1) [8] for image classification and SegFormer
(which we could identify as m2 and m3 for segformer-b0 and
segformer-b1) [7] semantic segmentation. We use pre-trained
models from the HuggingFace [21] repository.

In general, image classification models tend to have lower
complexity compared to those designed for the much more
difficult image segmentation task. This leads to different
memory usage and, in general, task execution times for the
two tasks. For instance, model m1 or efficientnet-b1 has 19M
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parameters takes 0.3s in JN and 0.071s in JXA while m3 or
segformer-b1 with 50.3M parameters takes 0.5s in JN and
0.075s in JXA.

B. Task Dispatching

We implement the task dispatching process using batches,
where a batch is a minimum number of tasks needed to
initiate the allocation process. We use the multiple producer-
consumer paradigms to establish communication between the
task generator and the scheduler. The input queue is a process-
safe data structure that shares data between processes allowing
the tasks to be passed from the Task Generator module to the
DRL agent. Once the tasks are received by the DRL agent,
we obtain the most recent network and computing features.
The computing and network logs are hardware-customized
modules running in the background to provide an accurate
state of the mobile device.

C. Hardware-Software Setup

The MD and ES hardware setup differ in capacity, but also
in the OS implementation, which has implications for how
we extract the real-time state of the hardware and the system
operations. Our framework is built to run on multiple NVIDIA
boards as MD and multiple Desktop-Linux computers as ES
(See Tables I, II).

The wireless antenna adapter used in the JN platform was
used to transmit messages at 2.4GHz, the antenna gain is 5dbi.
We use the same frequency to transmit messages from the JXA
platform, however, the antenna gain is slightly higher (6dBi).
We empirically observed a neglectable change in the RTT for
the proposed scenarios.

Mobile Device Edge Server
NVIDIA Jetson Nano Laptop

CPU Quad-core ARM A57 @
1.43 GHz

11th Gen Intel(R)
Core(TM) i7-11800H @

2.30GHz
GPU 128-core NVIDIA

Maxwell™
NVIDIA GeForce RTX

3050 Ti
Memory 4GB 64-bit LPDDR4

25.6GB/s
32 GB DDR4 at 3200

MHz (2 x 16 GB), dual
channel

AI
Perfor-
mance

472 GFLOPS 1.69TFLOPS

Network Wifi 802.11 ac Wifi 802.11 ac

TABLE I: Hardware Settings I

VI. DEEP REINFORCEMENT LEARNING FRAMEWORK

As mentioned earlier, we optimize task allocation across the
layers and resources of the system as well as the model used
to complete the task. In the following, we define the structure
of decision-making, how the state is composed, and how we
transpose the abstract performance measures we defined earlier
into the real-world system we deployed.

We adopt a double deep Q network (DDQN) [22] algo-
rithm as the core engine of our framework because it is
a sequential decision-making problem. DDQN is model-free

Mobile Device Edge Server
Jetson Xavier AGX Jetson Orin

CPU 8-core NVIDIA Carmel
Armv8.2 64-bit

12-core Arm
Cortex-A78AE v8.2

64-bit
GPU NVIDIA Volta

architecture with 512
NVIDIA cores

NVIDIA Ampere
architecture with 2048
NVIDIA CUDA cores

Memory 64GB 256-bit, 136.5GB/s 32GB 256-bit, 204.8
GB/s

AI
Perfor-
mance

22TOP 275 TOPS

Wifi Wifi 802.11 ac Wifi 802.11 ac

TABLE II: Hardware Settings II

DRL that leverages the greedy policy implemented by deep
Q Network (DQN) algorithms while reducing overestimation.
In the DDQN algorithm, the greedy policy is evaluated using
a second neural network. We refer the interested reader to
[22] for a thorough description of the algorithm, which we
summarize at a high level in Algorithm 1.

A. Decision Timing
We define a time step as the interval between a task arriving

at the QMD (i.e. input queue) in the DRL agent and the result
of the inference being obtained. The input queue is separated
into a queue per resource available (QRi ) which enables
asynchronous inference execution processes and consequently
stores the individual real-time latency. This management of
tasks facilitates the differentiation between the delay of the
task and the total time in the time step. In fact, the time step
is an upper bound of the latency.

B. State and Action space
The state space represents the available resources and in-

terfaces in the MD, which is readily observable by the agent
without the need to exchange information over the wireless
link. In particular, we consider blocks of computing, task,
model, and network features. We then define the global state as
S = {QMD, C, T,M,N} composed of 43 parameters, where
QMD is the number of tasks in the input queue, C is the
state of the computing resources in the MD, T , and M are the
statistics of the recent tasks dispatched and the neural network
models recently used, and N is a set of features from the IP,
TCP, and wireless interface. The specific variables used in the
implementation are given in Section VII.

Actions are applied to batches of tasks, and the action space
is A = {a0, .., aN}, where ai = (mj , pk) is the pair composed
of the neural model to be used to perform inference and the
resource (e.g. CPU, GPU) chosen to perform inference at the
current batch of tasks. Therefore N = M×P , where M is the
maximum number of neural network models per task and P
is the maximum number of processors that can be used based
on the hardware specifications.

C. Reward Function
As indicated in Section IV, we define a multi-objective

optimization objective that includes task delay, normalized task
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Algorithm 1 Multi-Layered System with Double DQN
Initialize Agent and Neural Network parameters: pri-
mary network Qθ, target network Qθ′ , and replay bufferD
Initialize Framework parameters: dispatcher configura-
tion, task generator, computing feature logger, network
feature logger processes
Initialize Environment parameters: action space, size of
the batch of tasks, number of classes of tasks, the wireless
connection configuration
for episode e = 1, N do

while dispatched tasks < total tasks
& size(input queue) > 0 do

Select a random action at with probability ε.
Otherwise, select at = argmaxaQ(st, a; θ)
Execute action at, collect reward rt+1 and observe next
state st+1

Log the experience (timestamp, st, rt+ 1, st+1)
Store the transition (st, at, rt+1, st+1) in D
if s is terminal state then

break
end if

end while
end for
for each update state do

sample et = (st, at, rt+1, st+ 1) from D
Compute target Q value:
Q∗(st, at; θ) ≈ rt + γQθ(st+1, argmaxa′Q′(st, a′))
Do gradient descent step on (Q∗(st, at)−Qθ(st, at))2

Update target network parameters:
θ′ ← θ

end for
Terminate all processes initialized by the Framework

accuracy, and power consumption (measured over a time step).
Our reward function reflects the objectives using a sigmoid
function that penalizes the performance metrics to be outside
a desired region. The overall performance is calculated as the
sum of the weighted average of the normalized optimization
objectives. This implies that the normalized accuracy is used
as inverse since the more accurate, the smaller the value of the
overall performance is and consequently, the reward is higher.

We compute the expectation of the performance as the
average normalized accuracy of the task class based on the
model selected. Since we use trained neural network models,
we consider the documented accuracy to normalize the values
in an interval [0,1] such that they are comparable. The latency
is measured in real-time, we timestamp tasks at arrival time
and retrieve the total time when the results are available to
the MD. This latency is averaged among the tasks dispatched
in each batch. Finally, power consumption is obtained as
an instantaneous measure from the kernel variables. We use
the interval duration to extract an approximate energy con-
sumption within the time step. Energy consumption also is
normalized.

Then, the overall reward function is defined as follows:

Rt =

{
S if resources available at time t

−1 otherwise
, (4)

where S = 1/(1 + ex) and x =
∑N

i=1 wiδ̇∗ and δ represents
the vector of the normalized performance metrics, in our case:
end-to-end delay, accuracy and power consumption.

D. Architecture
The architecture of the proposed DDQN implementation

relies on custom modules such as the environment, task gen-
erator, dispatcher, and loggers. The main characteristic of the
DDQN algorithm is the experience replay and target network
deployment to stabilize the optimization. In our case, to build
the online neural network model we adopted a sequential
structure starting with 3 layers of 1-dimensional convolutions
and Relu as an activation function, a flattened layer, and 2
lineal layers with Relu as an activation function. Our inputs are
state-action pairs, which is the 1-dimensional vector and the
output is the Q-value that corresponds to the selected action.

VII. DATASET

In order to train the neural network embedded in the DDQN,
we collected a dataset that captures the experiences of our
DRL agent in a complex environment with the aim to test and
evaluate schemes build to optimize computing resources.

Fig. 5: Experimental setup: Indoors space with a wall and a
door between the Edge Server and the Mobile Device. The
mobile device was located in a hallway at different distances
from the Edge server.

We implemented two types of policies in the experiments,
the baseline policies which are CPU, GPU, and EDGE ONLY.
The CPU policy refers to performing inference of all tasks gen-
erated on the CPU regardless of the context change, the same
rule applies to the GPU ONLY and EDGE ONLY policies. The
latter type of policy implemented is random which provides
a non-biased sample of the action space. We log the state of
the MD in the computer, network, tasks, and model features
for the time the experiments ran. Finally, we log the output
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Fig. 6: End-to-end tasks delay vs. state features for NVIDIA Jetson Nano. The left plots show mobile device features with the
agents trained to adapt to the context changes. The right plot shows the wireless representative feature with the agents trained
to adapt to the changes in distances

Fig. 7: End-to-end tasks delay vs. state features for Jetson Xavier AGX. The left plots show mobile device features with the
agents trained to adapt to the context changes. The right plot shows the wireless representative feature with the agents trained
to adapt to the changes in distances

or reward of our system implementation. As part of modeling
a complex environment, we use two scenarios composed of
two hardware settings to show that variation in computing and
wireless capacities enables variation in the optimal allocation
policy. The hardware settings are listed in I and II. The first
setting uses an NVIDIA JN board as MD: an embedded
computer with limited computing capabilities. This device is
designed for simple machine-learning models. Moreover, the
CUDA memory is shared with the CPU, which results in some
limitations if we decouple the loading from the inference in
machine learning tasks. The wireless interface is not integrated
into this board, we have added a USB Wifi antenna adapter
that facilitates wireless communication. In the first setting, we
use a Laptop - Linux as the ES. This latter platform not only
possesses a larger computing power but also uses a standard
architecture. The second setting uses an NVIDIA JXA board
as MD: an embedded platform that reduces task latency and
memory bandwidth due to the zero-copy functionality active
for the CUDA memory. For this board, we acquired a Wifi
antenna, with a larger antenna gain than the JN. As ES, we use

an NVIDIA Orin board, which has 10x the computing power
and embeds inference accelerators [23]. We define experiments
based on the following parameters: a hardware setting, a
specific distance between the ES and the MD, a distribution of
the heterogeneous tasks and a policy. We recorded information
from 9 experiments per hardware setting and per policy (see
details in Table III). The dataset is composed of a collection

Parameter Values
Hardware settings Table I and Table II
ES-MD distance 3, 6, and 12 mts

Tasks distributions 4, 8, 20 context changes
Policies Random, EDGE ONLY, CPU ONLY, and

GPU ONLY
Actions configuration

(processors)
GPU, CPU and EDGE accordingly

Actions configuration
(models)

Semantic segmentation: SegFormer B0 and
B1 [7]. Image Classification: EfficientNet

B0 and B1 [8]

TABLE III: Experiment parameters

of the DRL agent experiences per experiment, an experience
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Fig. 8: Ranking of actions per trained agent within scenario I

Fig. 9: Ranking of actions per trained agent within scenario II

contains the timestamp, the state, the chosen action, and the
next state. The state is formed by the computing, tasks, model,
and network features.

VIII. RESULTS

Based on the dataset described in the previous section, we
train the DRL agent and deploy it on the considered scenarios.
We name the scenarios in terms of MD, policy, and frequency
of context switching. For instance, the policy deployed by the
agent in an environment when the context changes 4 times and
uses the information of the NVIDIA JN is defined as nano-cc-
4. The weights of latency, accuracy, and energy consumption
we use in the training phase are [0.6, 0.3, 0.1], respectively.

In Fig. 6 and Fig 7, we show the average end-to-end task
delay for selected state features of each hardware setting. The
% of CPU load, memory, and power consumption are features
of the state of the mobile device, while the % of lost WLAN
packets corresponds to changes in link quality. Policies that
allocate all the tasks to one processor emphasize the impact
of context change, which tends to dominate the other delay
components as we increase the degree of heterogeneity of the
tasks. For instance, under the CPU ONLY policy, the overall
latency in the various environments tends to saturate as the
frequency of context switching increases. The GPU ONLY
policy tends to consume less power and more memory com-
pared to CPU ONLY policy in all environments. As expected,
the EDGE ONLY policy suffers from the impairments of the
wireless channel, especially as the MD-ES distance increases.

The policy adopted from the environment where the MD has
an NVIDIA JN hardware setting is shown in Fig. 6 (nano-cc-
4, nano-cc-8, and nano-cc-20). In Fig. 6, we observe that the
DRL agent achieves smaller delays than the baseline policies

– CPU ONLY and GPU ONLY – when the context change
frequency is smaller than 20. This is because the DRL agent
policy is prioritizing delay over power consumption of the MD.
Further, the number of consecutive tasks of the same class is
larger compared to the nano-cc-20 environment, and then there
is more room for adaptation. Consequently, the improvement
of the end-to-end delay when the context change is 8 is higher
compared to 4. On the other hand, the DRL agent deployed in
the environments where the distance between the MD and ES
varies (nano-dis-3, nano-dis-6, nano-dis-12) show a superior
reduction of the end-to-end delays ( 60% of the time) as the
DRL agent policy is choosing to perform some tasks locally.

The policy obtained from the environment where the
NVIDIA JXA is the MD, showed in table II (xavier-cc-4,
xavier-cc-8, xavier-cc-20), only improves the end-to-end delay
compared to the baseline policies – CPU ONLY and GPU
ONLY – for the scenario when the context change occurs 20
times in a sequence of tasks. This is because the hardware
is powerful enough to repeatedly use complex models, and
therefore the policy is prioritizing local computing with a
stable delay for the low frequency context change scenario.
Additionally, we note that the end-to-end delay achieved by
our policy is 2.5x times smaller compared to the EDGE ONLY
policy.

In figures 6 and 7, we show the relationship between the
state of the MD and one of the metrics used to optimize the
trained agent (e.g. end-to-end delay). Importantly, the actions
are taken by the DRL agent to achieve such performance
show that different policies apply to different scenarios. To
illustrate this effect, we show the ranking of actions used in
each of the policies adopted by the DRL agent (see Fig. 8 and
Fig. 9). The most selected actions for variations in context
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change frequency for the NVIDIA JXA setting are a low
complexity model in CPU for the image classification task
and either high or low complexity in ES for the segmentation
task; which shows that diversification of resources for tasks
allocation enables performance improvements. This policy is
reasonable due to the convergence in delay that occurs when
the model is placed in the CPU instead of the GPU.

The policy obtained from the environment that varies the
hardware of the MD and ES follows a pattern based on the
context-change frequency; for instance, in the NVIDIA JN
setting the most selected action for the scenario with the least
context-change frequency is the same as the one with the
highest context-change frequency (nano-cc-4 and nano-cc-20
respectively). This is the option with a high-complexity model
for the image classification tasks and a low-complexity model
for the image segmentation tasks placed in the CPU. Only the
nano-cc-8 environment’s first choice places the models in the
GPU and the ES with low and high complexity respectively.

The policy obtained from the environment that varies in MD
to ES distance (e.g. nano-dis-3, nano-dis-6, nano-dis-12) in
NVIDIA JXA and NVIDIA JN implements different actions.
NVIDIA JXA agents privilege actions that select resources
onboard the ES. For instance, the second in the ranking of
actions chosen in the NVIDIA JXA environment includes
dispatching all image classification tasks to the ES, where the
high complexity is preferred in the closest distance and the low
complexity is preferred when the distance between the mobile
device and the ES increases. Conversely, the second choice in
the ranking of the choices in the NVIDIA JN setting shows a
preference for dispatching tasks locally where the GPU is used
at the same time as the CPU. For actions 1, 24, and 6 (See
Fig. 9) the image segmentation tasks are always dispatched to
the GPU. This empirically shows that the policy is adapting
to the changes in hardware in each scenario as well as to the
changes in the environment.

IX. CONCLUSIONS

In this paper, we presented a framework for the control
of task routing across the layers and computing units of edge
computing systems. Different from most prior work, we resort
to the use of a real-world deployment to capture important
effects, such as context switching, that greatly impact perfor-
mance in systems characterized by streams of heterogeneous
tasks. We train a DRL agent to control the allocation of tasks
to the system devices and computing units in response to
a complex definition of the state that incorporates features
observable by the mobile device and demonstrate that the agent
applies different policies to different hardware settings, task
arrival settings, and other general features of the system.
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