[EEN

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Engineered production of bioactive polyphenolic O-glycosides

Jie Ren', Caleb Don Barton!, Jixun Zhan*

Department of Biological Engineering, Utah State University, 4105 Old Main Hill,

Logan, UT 84322-4105, USA

! These authors contributed equally to this review.

* To whom correspondence should be addressed. E-mail: jixun.zhan@usu.edu.



mailto:jixun.zhan@usu.edu

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

ABSTRACT

Polyphenolic compounds (such as quercetin and resveratrol) possess potential
medicinal values due to their various bioactivities, but poor water solubility hinders
their health benefits to humankind. Glycosylation is a well-known post-modification
method to biosynthesize natural product glycosides with improved hydrophilicity.
Glycosylation has profound effects on decreasing toxicity, increasing bioavailability
and stability, together with changing bioactivity of polyphenolic compounds. Therefore,
polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals.
Engineered biosynthesis provides an environmentally friendly and cost-effective
approach to generate polyphenolic glycosides through the use of various
glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar
moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar
acceptors such as polyphenolic compounds. In this review, we systematically review
and summarize the representative polyphenolic O-glycosides with various bioactivities
and their engineered biosynthesis in microbes with different biotechnological strategies.
We also review the major routes towards NDP-sugar formation in microbes, which is
significant for producing unusual or novel glycosides. Finally, we discuss the trends in
NDP-sugar based glycosylation research to promote the development of prodrugs that

positively impact human health and wellness.

Keywords:

Polyphenolic compounds
Polyphenolic O-glycosides
Bioactivities

Bioavailability



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Glycosylation
Glycosyltransferase
Biosynthesis

Engineered production



77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1. Introduction

Scientists, nutritionists, food manufacturers, and consumers have great interest in
dietary polyphenols due to their enormous health benefits to humans. Polyphenols are
often acquired from dietary sources including fruits, beverages (fruit juice, wine, tea,
coffee, and beer), vegetables, whole grains, soy products, dry legumes and cereals
(Scalbert and Williamson, 2000). In recent years, extensive epidemiological research
studies have shown that consumption of a polyphenol-rich diet can prevent humans
from developing various degenerative and chronic diseases, including cancers
(Ferrazzano et al., 2011; Yang et al.,, 2000), inflammation (Bowden, 1999),
cardiovascular (atherosclerosis) and neurodegenerative diseases (McSweeney and
Seetharaman, 2015), liver disorder (Bose et al., 2008), obesity (Lu et al., 2012), diabetes
(Scalbert et al., 2005), aging (Cherniack, 2010), and infectious diseases (Rasouli et al.,
2017). The broad spectrum of bioactivities within the polyphenol family makes these
compounds excellent targets for the development of potential medicines and
nutraceuticals (Yang et al., 2018). Most of the aforementioned diseases are related to
oxidative stress from reactive oxygen and nitrogen species (Duthie and Brown, 1994;
Goldberg and Hasler, 1996; Tsao, 2010). Moreover, polyphenols have antibacterial and
antifungal activities (Papuc et al., 2017), which can be used as natural preservatives for
the meat industry (Ferrazzano et al., 2011). Polyphenols are reducing agents with strong
antioxidant activities that can work together with other dietary reducing agents, such as
vitamin C, vitamin E and carotenoids to protect body tissues from excess reactive

oxygen species (ROS) (Williams et al., 2004). Furthermore, in terms of their chemical
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nature, polyphenols are the most abundant antioxidants in our daily diets, reducing
oxidative damage to lipids, proteins, enzymes, carbohydrates, and DNA in living cells
and tissues (Cirillo et al., 2016).

Polyphenols are a large group of natural compounds with one or more hydroxyl
groups attached to the phenyl ring, and some of them occur as glycosides in nature
(Quideau et al., 2011). At present, over 8,000 phenolic structures have been identified,
and they are a collective term for several sub-groups of phenolic compounds. Based on
the chemical structures, polyphenols can mainly be divided into six groups, including
flavonoids, phenolic compounds, stilbenes, curcuminoids, lignans, and polyphenolic
amides (Tsao, 2010). Among them, flavonoids and phenolic compounds account for
two thirds and nearly the remaining one third of the total dietary polyphenol intake,
respectively. Studies have shown that new flavonoids and their glycosides continue to
be identified from nature (Hu et al., 2022; Jiang et al., 2022; Suleimen et al., 2022;
Veitch and Grayer, 2008; Wu et al., 2022; Zhong et al., 2022). Flavanols, including
proanthocyanidins, anthocyanins and their oxidation products, are the most abundant
flavonoids in the human diet (Scalbert and Williamson, 2000). As the secondary
metabolites produced by plants, polyphenols can not only help the growth and
development of the plants, but also act as phytoalexin to protect themselves against
biotic stress resulting from other organisms such as bacteria, viruses, fungi, and
herbivores (Rasouli et al., 2016; Yang et al., 2018).

In addition to the diverse health benefits for humankind, there are many other

advantages of polyphenols, including easy accessibility, high response specificity, and
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low toxicity. However, rapid metabolism and low bioavailability of polyphenols are
non-negligible problems (Rasouli et al., 2017; Suresh and Nangia, 2018). Attaching a
glycosidic moiety to the polyphenols, called glycosylation, can not only provide a
structurally diverse pool of flavonoids, but also provides a simple and effective way to
improve their water solubility and stability (Yang et al., 2018). The change of
hydrophilicity can further influence the pharmacokinetic properties of the respective
compounds, including circulation, elimination and concentration regulation in body
fluids (Kren and Martinkova, 2001). Therefore, glycosylation can modulate polyphenol
bioactivities, bioavailability and, in some cases, even their color and taste. The
bioactivity and bioavailability of flavonoid glycosides in vivo are often related to each
other (Arbeldez et al., 2015; Zhang et al., 2014). Glycoconjugates also have other
functions, including information storage and transfer, energy storage, maintenance of
cell structural integrity, molecular recognition, signaling, virulence, and chemical
defense (Thibodeaux et al., 2008). Researchers have proved the importance of sugar
moieties in bioactive natural products (Weymouth-Wilson, 1997), including various
antibiotics (Luzhetskyy et al., 2005). Phenolic hydroxyl groups are generally good
targets for biological glycosylation, and some biologically active polyphenols only
occur naturally in their glycosylated forms. Polyphenol glycosides are shown to possess
various biological activities, such as antioxidant, immunomodulatory, and anticancer
activities (Kim et al., 2015; La Ferla et al., 2011).

Glycosylation can change the chemical and physical properties of polyphenols,

which helps the stabilization, enhancement of water solubility, and detoxification of
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polyphenols. In the past two decades, many researchers have tried to harness the power
of biological catalysts to modify the sugar structures and glycosylation patterns of
polyphenolic natural products both in vivo and in vitro. With the help of bioengineering
methodology together with biochemical and structural studies of sugar biosynthetic
enzymes and GTs, the development of more effective and even novel glyco-drugs
development has been facilitated. In this review, we summarize some of the most
common bioactive phenolic glycosides and biological approaches to produce them.
This review will not only shed light on the diverse combinatorial biosynthetic
mechanisms and natural product evolution in bacteria, but also provide various methods

to manipulate sugar biosynthetic machinery for generating clinically useful agents.

2. Classification of polyphenolic compounds, functions of glycosylation, and
production approaches of polyphenolic glycosides

Polyphenolic compounds feature one or more aromatic rings, with hydroxyl
groups attached to various positions of the core structures. Based on their parent
structures, polyphenolic compounds can be mainly classified into two groups:
flavonoids and non-flavonoids. Flavonoids have a general 15-carbon skeleton structure
with C¢-C3-Cs backbone featuring the two phenyl rings, namely ring A and ring B.
Flavonoids represent more than 50% of total polyphenolic compounds Due to the
hydroxylation pattern and variations in the oxygenated heterocyclic ring C, flavonoids
can be further divided into nine different sub-groups, including flavonols, flavones,

flavanones, flavononols, flavanols, isoflavones, anthocyanidins, chalcones, and
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neoflavones. Flavanols can be further condensed into its corresponding polymers,
namely procyanidins. Non-flavonoids contain phenolic acids (including
hydroxybenzoic acids and hydroxycinnamic acids), stilbenes, curcuminoids, lignans
(including neolignans), polyphenolic amides and others (Fig. 1) (Rasouli et al., 2017).
Fig. 1

Despite the diverse chemical reservoir of polyphenolic compounds, low
bioavailability hampers their health benefits to humans. Glycosylation of polyphenolic
compounds is a promising approach to increase their water solubility and further
modulate their biological effects (Bashir et al., 2020). The glycosylation process of
small molecules is catalyzed by carbohydrate-active enzymes which are generally
divided into four types for in vitro glycosylation of polyphenolic compounds (Fig. 2a):
(1) transglycosidases (TGs) transfer the sugar moiety from non-activated sugar (such
as sucrose) to small molecules (L1, X. et al., 2021); (2) glycoside hydrolases (GHs) are
hydrolytic enzymes for biosynthesizing polyphenolic glycosides (De Winter et al.,
2013); (3) glycoside phosphorylases (GPs) require glycosyl phosphates (such as
glucose-1-phosphate) as donors (Kwon et al., 2007); (4) glycosyltransferases (GTs)
transfer sugar from a donor (such as lipid phosphate sugar, phosphate sugars, and
nucleotide-activated sugars) to an acceptor molecule for glycosylation (Breton et al.,
2012; Moremen and Haltiwanger, 2019). Most of GTs are Leloir-type GTs which use
nucleotide-activated sugars (such as UDP-glucose) as donors (Xu et al., 2022).

Considering conversion efficiency, affinity to various substrates, concentration

requirement of aglycons, and theirs diversity, the GT family is the most practical of
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these four for the in vivo engineered production of polyphenolic glycosides (De Winter
et al.,, 2014; Desmet et al., 2012). Glycosylation reactions are mainly catalyzed by
nucleotide sugar-dependent family 1 GTs (Vogt and Jones, 2000), which can transfer
the sugar moiety from an activated sugar donor (such as UDP- or dTDP-sugars) to the
acceptors. One common type of sugar acceptors are small molecules, such as the
polyphenolic compounds detailed in this review (Fig. 2b) (De Bruyn et al., 2015b).
Since the first GT from Zea mays was found in 1984 (Fedoroff et al., 1984), many
researchers have devoted time to searching various GTs from plants or microorganisms.
GTs can be classified as O-, C-, N-, or S-GTs, with O-GTs being the most abundant in
nature (Ati et al., 2017, Putkaradze et al., 2021).

Glycosylation of polyphenolic compounds can decrease their toxicity as well as
alter their bioavailability, bioactivity, stability, and/or other properties (Xiao, 2017).
Remarkable examples are the glycosylation of quercetin for improved stability
(Buchner et al., 2006), rhamnosylation of kaempferol for unique activities such as
diuretic and renal protective effects (Cechinel-Zanchett et al., 2020), glucosylation of
resveratrol as well as glucuronylation and rhamnosylation of 2'-hydroxyflavone for
higher antioxidant activity (Ren et al., 2022b; Su et al., 2013), glucosylation of vanillin
and hydroquinone for decreased toxicity (Chandorkar et al., 2021; Hansen et al., 2009),
and glucosylation and rhamnosylation of quercetin for improved bioavailability (Fig.
2¢) (Valentova et al., 2014; Wagner et al., 2006).

Glycosylation is a promising approach to develop new therapeutic agents by

improving bioavailability of polyphenolic compounds which may further modulate
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their biological activities (Costa et al., 2020; Navarro-Orcajada et al., 2022; Zhao et al.,
2019). Polyphenolic glycosides normally keep higher plasma levels and have a longer
mean residence time than those of aglycones (Jiang et al., 2008; Zhang et al., 2013).
Therefore, glycosides could be considered and used as pro-drugs with improved water
solubility (Walle et al., 2005). Polyphenolic glycosides cannot diffuse across the
cellular membrane due to high water solubility, low permeability, and larger molecular
weight (Zhang et al., 2005), but their hydrophobic aglycones after hydrolyzation can be
easily absorbed by the epithelial cells through passive diffusion (Chen et al., 2011).
Human small intestine and large intestinal colonic microflora are important for
hydrolyzation, with various enzymes such as f-glucosidase, f-glucuronidase, and a-
rhamnosidase (Arts et al., 2004; Hur et al., 2000; Lee et al., 2011). It was shown that
incubation of flavonoid glycosides with feces can generate corresponding aglycones
(Hanske et al., 2009). After absorption in small intestine, flavonoids will be metabolized
into their glucuronide or sulfate conjugates by phase II enzymes and then be bound to
albumin and transported to the liver via the portal vein (Murakami et al., 2008; Xiao
and Kai, 2012). Flavonoids undergo hydroxylation, methylation, reduction, sulfation
and glucuronidation to form various flavonoid metabolites in the liver (Fig. 2d) (Xiao
and Hogger, 2013).
Fig. 2

Due to their wide-reaching importance, different methods have been exploited to
acquire polyphenolic glycosides. However, many production methods of plant

polyphenol glycosides are not environmentally friendly and difficult to apply in
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industry for scale-up. Extraction suffers from low production yield, and the plant
extraction processes is not only tedious and time-consuming, but harmful to the
environment and human health (Sordon et al., 2016). Chemical synthesis is complicated
with many protection, activation, and deprotection steps required (Yang and Yu, 2017).
Moreover, extreme temperatures, high pressure, and the use of organic solvents and
various uncommon solid chemicals (Yang et al., 2015) render this approach neither
sustainable nor economically friendly (Orsini et al., 1997). Enzymatic synthesis needs
expensive cofactors and additional substrates to perform the in vitro enzymatic
reactions (Zheng et al., 2022), and nucleoside diphosphate sugar donors have limited
availability with high costs (Gantt et al., 2011). Because tedious purification processes
are required to obtain pure enzymes and final product yield tends to be very low, large-
scale production is almost unachievable through this route (Marié et al., 2018).
Compared with these methods, engineered biosynthesis is more applicable for
industrial production of medicinally important polyphenolic glycosides (Fig. 3).
Fig. 3

The engineered biosynthesis approach has many advantages over the
aforementioned methods, including high yield, low cost, high efficiency, easy operation
and environmentally-friendly processing (Fig. 3) (Yang et al., 2018). Moreover, this
method can also synthesize uncommon NDP-sugars that are not commercially available
for generating novel products (Thibodeaux et al., 2007). Finally, uridine diphosphate
glycosyltransferases (UGTs) from plants normally show both sugar-donor and sugar-

acceptor selectivity, so regioselectivity is an important advantage of engineered
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biosynthesis using UGT-expressing bacteria. Since metabolic engineering of plants is
controversial and not fully developed (Verpoorte and Memelink, 2002), biosynthesis of
valuable glycosides is mainly focused on the use of engineered microorganisms, such
as Escherichia coli and Saccharomyces cerevisiae. Due to the attractive properties of
polyphenolic O-glycosides and their diversity in nature, engineered production of
bioactive polyphenolic O-glycosides is summarized in this review.
3. Microbial production of bioactive polyphenolic O-glycosides

Polyphenolic glycosides have diverse biological activities, and remarkable
examples include quercetin glycosides with antioxidant (Nile et al., 2017),
antiasthmatic (Zhu et al., 2019), and wound-healing activities (Ozbilgin et al., 2018).
Moreover, quercetin glycosides also exert a protective effect on dexamethasone-
induced muscle atrophy (Otsuka et al., 2019) and obesity (Jiang et al., 2020). However,
the low concentration of most polyphenolic glycosides in plants despite their
widespread distribution in nature presents a challenge for their production. Microbial
biosynthesis is a promising approach to produce glycosides, but the production
efficiency can be low due to insufficient availability of UDP-sugars (Feng et al., 2020).
By applying metabolic engineering, protein engineering, fermentation engineering, and
synthetic biology approaches, both natural and unnatural polyphenolic glycosides can
be produced successfully in microbes with improved production titers. Polyphenolic
glycosides are versatile resources for investigating biological activities, and those with
significant bioactivities can be developed into medicines, functional foods, and even

cosmetics. Glycosyltransferases (GTs) found in plants and microorganisms are

12
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commonly used to glycosylate polyphenolic compounds. The types, numbers, and
positions of the sugar moieties on the aglycones contribute to the diversity of
polyphenolic glycosides. As a result, numerous examples of successful production of
O-glycosides have been achieved through engineering.

3.1. Engineered production of flavonol glycosides

3.1.1. Quercetin-3-O-glucoside (isoquercetin)

Flavonols (such as quercetin, kaempferol, myricitrin, and fisetin) have a double
bond between C-2 and C-3, and a hydroxy group attached at C-3. Flavonols are
frequently glycosylated with various sugar moieties, such as glucose, glucuronic acid,
rhamnose, galactose, xylose, and so on (Zhang et al., 2006). Quercetin-3-O-glucoside
(isoquercetin) is a well-known plant secondary product with strong antioxidant (Razavi
et al., 2009) and neuroprotective effects (Yang et al., 2021). Isoquercetin is the main
component of Annona squamosa leaves for its antidiabetic and antioxidative effects
(Panda and Kar, 2007). To achieve the engineered production of isoquercetin, Xia
engineered a single gene deletion strain E. coli MEC367/Apgi expressing UGT73B3
from A. thaliana, and production titer was improved in 1-L controlled bioreactors by
providing a higher oxygen transfer rate. Finally, the production titer of isoquercetin
reached 3.9 g/L in 56 h with 30 g/L glucose as the sole carbon source and 5 g/L quercetin
as the substrate (Xia and Eiteman, 2017). This study indicates that compared to shaker
flasks, bioreactors are an effective method for improving the production titer because
of the improvement in culture oxygenation. Some researchers have worked on

glucosyltransferases from other resources. Ren et al. achieved the engineered
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production of isoquercetin at 99 mg/L from 125 mg/L quercetin with 20 g/L glucose by
introducing a glucosyltransferase from Beauveria bassiana ATCC 7159 into S.
cerevisiae and optimizing the fermentation factors (Ren et al., 2022c), demonstrating
that yeast can also be used as the host for engineered production of isoquercetin, in
addition to E. coli.

3.1.2. Quercetin-3-O-glucuronide (miquelianin)

Quercetin-3-O-glucuronide (miquelianin) has a variety of health benefits,
including anti-inflammatory effects (Derlindati et al., 2012), protective effects against
neurotoxicity (Pariyar et al., 2019), and anti-breast cancer properties (Yamazaki et al.,
2014). It also possesses antioxidant (Wu et al., 2019), antidepressant (Juergenliemk et
al., 2003), antimelanogenesis (Ha et al., 2021), antidiabetic (Ahmed et al., 2019), and
anti-Alzheimer activities (Ho et al., 2013). However, engineered production of
miquelianin is hindered by insufficient production of UDP-glucuronic acid in the hosts.
To address this issue, Kim et al. deleted the arad gene in E. coli which encodes both
UDP-4-deoxy-4-formamido-L-arabinose formyltransferase and UDP-glucuronic acid
C-4" decarboxylase, and overexpressed UDP-glucose dehydrogenase gene (ugd) that
converts UDP-glucose into UDP-glucuronic acid. They selected the ugd gene from E.
coli instead of those from A. thaliana and Glycine max because of its high efficiency.
In the final glycosylation step of miquelianin synthesis from quercetin in E. coli, Kim
et al. utilized VVUGT from Vitis vinifera, resulting in a final production of 687 mg/L
(Kim et al., 2015). This work demonstrates the importance of testing enzymes from

different origins to select the most efficient one for enhancing the final production titer
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of target glycosides. In a similar study, Pandey et al. employed VvVGTS5 from V. vinifera
in a single vector system with co-expressed UDP-glucuronic acid biosynthetic genes
and a glucokinase gene in E. coli BL21(DE3). This approach resulted in a production
titer of 30 mg/L miquelianin (Pandey et al., 2019)., representing a 31% conversion of
quercetin. This study highlights the feasibility of assembling nucleotide sugar
biosynthetic genes in a single vector for sufficient production of NDP-sugars.
3.1.3. Quercetin-3-0O-galactoside (Hyperoside)

Quercetin-3-0-galactoside (hyperoside) can be isolated from various plants (Raza
et al., 2017). Hyperoside has anti-inflammatory (Kim et al., 2011; Ku et al., 2015),
antiviral (Wu et al., 2007), and antioxidant activities (Piao et al., 2008). One recent
study showed that hyperoside has a protective effect on liver injury (Hu et al., 2020).
Engineered production of hyperoside has been successfully achieved. Bruyn et al.
developed an in vivo glycosylation platform in E. coli W with the record high
production of 0.94 g/L hyperoside from two inexpensive substrates, namely sucrose and
quercetin. To provide enough UDP-sugars, the engineered strain E. coli
W/ApgiAagpAushAAgal ETKM (galactose operon) was constructed. By overexpressing
the uridylyltransferase (ugpA) from Bifidobacterium bifidum, D-glucose-1-phosphate
can be efficiently channeled towards UDP-D-glucose. Then, the UDP-glucose
epimerase (galE) from E. coli was introduced into the route to convert UDP-glucose
into UDP-galactose. Lastly, the final E. coli W mutant was engineered by
overexpressing the flavonol-3-O-galactosyltransferase (F3GT) from Petunia hybrida

(De Bruyn et al., 2015c¢). This study demonstrates that by deleting competing pathways
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responsible for synthesizing UDP-D-glucose and introducing heterologous plant GT in
E. coli, large-scale preparation of flavonoid glycosides can be achieved to meet the
increasing market demand. Similarly, in a study by Kim et al. (2015), 280 mg/L
hyperoside was successfully synthesized in engineered E. coli by overexpressing UDP-
glucose epimerase UGE from Oryza sativa and a GT called PhUGT from Petunia
hybrid (Kim et al., 2015). Thus, it is apparent that the supply of the target nucleotide
sugar through overexpression of specific NDP-sugar biosynthetic genes is crucial for
producing relative glycosides.
3.1.4. Quercetin-3-O-xyloside

Research has shown that quercetin-3-O-xyloside has immune-stimulating
properties (Lee et al., 2016), and can also ameliorate acute pancreatitis (Seo et al., 2019).
Some studies have focused on manipulating xylose biosynthetic genes to produce
quercetin xyloside. Pandey et al. overexpressed four genes in E. coli BL21(DE3) to
generate a cytoplasmic pool of UDP-xylose, including phosphoglucomutase (nfa44530)
from Nocardia farcinica, glucose-1-phosphate uridylyltransferase (ga/U) from E. coli
K12, as well as UDP-glucose dehydrogenase (calS8) and UDP-glucuronic acid
decarboxylase (calS9) from Micromonospora echinospora sp. calichenesis. To produce
quercetin-3-O-xyloside, the researchers constructed an engineered strain E. coli
BL21(DE3)/ApgidzwfAushA with the UDP-xylose biosynthetic cassette and a GT gene
(arGt-3) from A. thaliana. The maximum product concentration reached 23.78 mg/L in
5-mL culture tubes with 100 uM quercetin. When the reaction was scaled up to a 3-L

fermentor, the titer reached up to 127.6 mg/L in 36 hours (Pandey et al., 2013). This
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study shows the feasibility of glycosylating quercetin into its xyloside in E. coli, and
emphasizes the importance of fermentation engineering in enhancing production titer.
Deleting the competing pathway is also important for accumulating the pool of UDP-
xylose. Han et al. deleted the UDP-L-Ara4N formyltransferase/UDPGIcA C-4-
decarboxylase gene (arnA) that competes with UXS (UDP-xylose synthase) for UDP-
glucuronic acid, and overexpressed UXS from A. thaliana and ugd (UDP-glucose
dehydrogenase) from E. coli. With the aid of a GT named AtUGT78D3, they obtained
approximately 160 mg/L of quercetin-3-O-xyloside in the engineered E. coli strain (Han
et al.,, 2014). This study highlights that E. coli can synthesize not only common
nucleotide sugars like UDP-glucose and dTDP-rhamnose, but also uncommon ones not
synthesized in most plants, such as UDP-L-Ara4FN. Hence, flux rewiring by deleting
the genes responsible for competing pathways in E. coli is an effective approach for
increasing the production of target glycosides.

3.1.5. Quercetin-3-O-rhamnoside (Quercitrin)

Quercetin-3-O-rhamnoside (quercetrin) is a plant natural product with antiviral
(Choi, H.J. et al., 2009), anti-hyperlipidemic (Herni et al., 2021), anticancer (Kim, D.-
K. et al.,, 2012), anti-inflammatory, anti-oxidative (Indriyanti et al., 2018), and
antileishmanial effects (Muzitano et al., 2006). Engineered production of quercetrin in
microbes provides an efficient approach for its large-scale preparation. Simkhada et al.
inserted two recombinant plasmids in E. coli BL21(DE3)/Apgi for rhamnoside
production, including pCDTGSDH carrying tgs from Thermus caldophilus GK24 and

dh from Salmonella thyphimurium LT2 and pAC-EPKR carrying epi and kr genes from
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Streptomyces antibioticus Tii99. These genes directed the flux from glucose-1-
phosphate to dTDP-L-rhamnose and led to the production of 24 mg/L quercitrin
(Simkhada et al., 2010). Besides manipulating the genes in E. coli for supplying
sufficient endogenous dTDP-L-rhamnose for glycosylation, some researchers used the
plant rhamnose synthase gene to convert UDP-glucose directly into UDP-rhamnose in
E. coli for rthamnoside biosynthesis. To prevent the production of dTDP-L-rhamnose
from dTDP-4-dehydro-6-deoxy-L-mannose in E. coli, Kim et al. deleted the dTDP-4-
dehydrorhamnose reductase (7fbD) to construct the mutant strain E. coli BrfbD. Next,
they introduced rhamnose synthase (ram) to generate UDP-rhamnose directly from
endogenous UDP-glucose and rhamnose flavonol glycosyltransferase (AtUGT78D1)
from A. thaliana into E. coli BrfbD. The resulting strain E. coli B204 produced 150
mg/L quercitrin in 48 hours (Kim, B.-G. et al., 2012a). This study provides an effective
method to biosynthesize bioactive rhamnosides with fewer gene manipulation steps. To
further improve the production titer of quercitrin, Bruyn et al. used the E. coli
W/ApgAagpAushAAgal ETKM glycosylation platform with the overexpression of ugpA,
to create a pool of UDP-glucose. To convert UDP-glucose into UDP-rhamnose, they
introduced the UDP-rhamnose synthase (MUM4) from A. thaliana and the flavonol-3-
O-rhamnosyltransferase from A. thaliana (RhaGT) in the metabolically engineered E.
coli W mutant. Eventually, 1.12 g/L. quercitrin was biosynthesized from 1.5 g/L of
quercetin in 16 hours (De Bruyn et al., 2015¢). This study demonstrates the potential
for selecting specific E. coli strains to produce certain glycosides. For instance, E. coli

BL21(DE3) is capable of producing endogenous dTDP-rhamnose, while E. coli W
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lacks the /b gene cluster necessary for synthesizing dTDP-rhamnose, making it unable
to provide this rhamnose donor for rhamnosylation. Therefore, a thorough
understanding of endogenous pathways in the host strains is important for engineered
production of quercetrin. It should be noted that endogenous dTDP-rhamnose is not the
only sugar donor for the biosynthesis of rhamnosides; UDP-rhamnose, produced by
plant UDP-rhamnose synthase, can also serve as an efficient sugar donor.
3.1.6. Quercetin-3,7-0O-bisrhamnoside and quercetin 3-O-glucoside-7-O-rhamnoside
Recent research has shown that quercetin bisrhamnosides possess antiviral
properties, leading to a surge of interest in exploring other quercetin bisglycosides
(Choi et al., 2018; Choi, et al., 2009). Isolation of quercetin bisthamnoside and similar
products from plants is challenging due to their presence in intricate mixtures
(Scognamiglio et al., 2016). Given the presence of different hydroxyl groups in
flavonoids, researchers managed to biosynthesize bisglycosides by expressing two
regio-specific GTs sequentially. To synthesize quercetin-3,7-O-bisrhamnoside, Kim et
al. first used AtUGT78D1 to attach a rhamnose moiety to the 3-OH group of quercetin,
and then AtUGT89C1 was employed to attach rhamnose at the 7-OH. Both GTs were
from A. thaliana. Furthermore, the RHM?2 gene from A. thaliana was expressed to
create sufficient UDP-rhamnose from UDP-glucose. In this work, 67.4 mg/L of
quercetin-3,7-0-bisthamnoside was produced by engineered E. coli (Kim et al., 2013).
Similarly, by using a flavonol-3-O-glucosyltransferase AtUGT78D2 and a flavonol-7-
O-rhamnosyltransferase AtUGT89C1 from A. thaliana, 67 mg/L of quercetin-3-O-

glucoside-7-O-rhamnoside was produced from quercetin (Kim et al., 2013). These
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studies illustrate that E. coli can also be used as a platform strain to synthesize flavonoid
diglycosides by expressing two GTs sequentially. The regioselectivity of the second GT
is crucial for forming diglycosides from monoglycosides by attaching a sugar moiety
to a different hydroxy group of phenolic compounds.
3.1.7. Quercetin-3-0-alloside

The biosynthetic pathway of quercetin alloside is relatively longer compared to
many other quercetin glycosides. To synthesize dTDP-6-deoxy-D-allose, which serves
as a donor of allose, Simkhada et al. constructed two recombinant plasmids. The first
plasmid is pPCDTGSDH which contains tgs from Thermus caldophilus GK24 and dh
from Salmonella thyphimurium LT2, diverting D-glucose-1-phosphate into thymidine
diphosphate 4-keto 4,6-dideoxy-D-glucose (dTKDG). The second plasmid is pAC-
GerFK harboring a bifunctional-gene GerFK from Streptomyces sp. KCTC 0041BP
which encodes both dTDP-hexose-3-epimerase and dTDP-4-keto-6-deoxyglucose
reductase, directing the pathway from dTKDG towards dTDP-6-deoxy-D-allose. These
two plasmids were transferred into E. coli BL21 (DE3)/Apgi to yield E. coli BL21
(DE3)/Apgi/pCDTGSDH/pAC-GerFK. The resulting strain was able to produce dTDP-
6-deoxy-D-allose, which was further used as a sugar donor for flavonoid glycosylation.
The GT gene (arGt-3) from A. thaliana was simultaneously overexpressed to form
quercetin-3-O-alloside (Simkhada et al., 2010). This study clearly reveals that
engineering nucleotide sugar pathways is effective in producing quercetin alloside.
3.1.8.  Quercetin-3-O-taloside

Another notable example of an engineered flavonoid glycoside is quercetin-3-O-
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taloside, which has been successfully produced in E. coli. Yoon et al. introduced gene
tll from Actinobacillus actinomycetemcomitans that encodes dTDP-6-deoxy-L-lyxo-4-
hexulose reductase, converting the endogenous nucleotide sugar dTDP-4-dehydro-6-
deoxy-L-mannose to dTDP-6-deoxy-L-talose. To increase the production of dTDP-6-
deoxy-L-talose in E. coli, they constructed the mutant strain E. coli/ AgalUArffAArfbD.
After conducting molecular modeling analysis, the researchers selected AtUGT78D1
from A. thaliana to use dTDP-6-deoxy-L-talose. Ultimately, the engineered E. coli
strain produced approximately 98 mg/L of quercetin-3-O-taloside (Yoon et al., 2012).
This study demonstrates that unwanted by-products, such as quercetin-3-O-glucose and
quercetin-3-O-rhamnose, can be reduced by blocking their relative pathways, even
though it is nearly impossible to quantify each nucleotide sugar in the cells. Additionally,
the researchers found that molecular docking analysis of GT using both uncommon
nucleotide sugar (dTDP-6-deoxy-L-talose) and common nucleotide sugar (dTDP-L-
rhamnose) is useful for predicting the glycosylation products. Overall, this study
highlights that the intracellular concentration of different nucleotide sugars can be
manipulated by regulating the nucleotide sugar biosynthetic pathways, thus reducing
the supply of unwanted nucleotide sugars and increasing the production of target
glycosides.
3.1.9.  Quercetin-3-0-4-deoxy-4-formamido-L-arabinoside

Naturally occurring flavonoid sugar conjugates include glucoside, galactoside,
glucuronide, rhamnoside, xyloside, and arabinoside as mentioned above. Flavonoid

deoxyaminosugar conjugates have not been found in nature. Kim et al. synthesized the
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unusual deoxyaminosugar, UDP-4-deoxy-4-formamido-L-arabinose (UDP-L-Ara4FN)

by overexpressing three genes. First, UDP-glucose was converted into UDP-glucuronic

acid by ugd, and then arnA encoding both UDP-L-Ara4N formyltransferase/UDP-GIcA

C-4"-decarboxylase converts UDP-glucuronic acid into UDP-4"-ketopentose. Next,
arnB encoding UDP-L-Ara4O C-4" transaminase transfers an amino group to form
UDP-4-amino-4-deoxy-L-arabinose (UDP-Ara4N). Finally, Arnd further converts
UDP-Ara4N to UDP-4-deoxy-4-formamido-L-arabinose (UDP-L-Ara4FN) which
serves as the sugar donor for the synthesis of quercetin-3-O-Ara4FN by AtUGT78D3
from A. thaliana with the final yield of around 70 mg/L (Kim et al., 2010). This study
provides a promising way to biosynthesize uncommon or unnatural flavonoid
glycosides by rationally engineering unusual nucleotide sugar biosynthetic pathways
into E. coli.
3.1.10.  Quercetin deoxyaminosides

Many bioactive natural products from microbes contain deoxyaminosugar
moieties (Elshahawi et al., 2015), including doxorubicin, amphotericin B, erythromycin
vancomycin, and staurosporine. Deoxyaminosugars play important roles in the
biological activities of these compounds (Kien and Rezanka, 2008). In addition to
improving water solubility, they can alter the basicity of the compounds, which can then
change their mechanism of action, such as ionic interactions (Pedersen et al., 2011).
Thus, conjugation of deoxyaminosugars is useful for improving pharmacological
properties of natural products.

To date, quercetin deoxyaminosides have been successfully biosynthesized using
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engineered E. coli. Pandey et al. first developed a background strain E. coli
BL21(DE3)/ApgiAzwfAgalU to direct the flux from glucose to glucose-1-phosphate.
They then converted glucose-1-phosphate to dTKDG by overexpressing tgs and dh.
Four sugar aminotransferase genes, including gerB from Streptomyces sp. GERI-155,
wecE from E. coli K-12, together with fdt4 and fdtB both from Aneurinibacillus
thermoaerophilus 1.420-91T, were overexpressed separately to generate dTDP-D-
viosamine, dTDP-4-amino-4,6-dideoxy-D-galactose, dTDP-6-deoxy-xylohex-3-ulose,
and dTDP-3-amino-3,6-dideoxy-D-galactose, respectively. ~When a plant
glycosyltransferase (arGT3) from A. thaliana was introduced into the system,
quercetin-4-amino-4,6-dideoxy-D-galactose and quercetin-3-amino-3,6-dideoxy-D-
galactose were synthesized (Pandey et al., 2015). Interestingly, when a flexible GT
named YjiC from Bacillus licheniformis DSM13 was overexpressed and 3-
hydroxyflavone was used as the substrate, the strain could only use dTDP-L-rhamnose
as the sugar donor to biosynthesize the corresponding rhamnoside (Pandey et al.,
2016b). These studies indicated that GTs from different sources may have their own
specificities on both nucleotide sugar donors and acceptors. Therefore, sequence and
phylogenetic analysis of different GTs are critical to select corresponding tools to
generate desired glycosides.
3.1.11. Quercetin-3-O-N-acetylglucosamine

Another deoxyaminougar, glucosamine or 2-amino-2-deoxy-D-glucose, is the
precursor to its N-acetylated derivative, N-acetylglucosamine. Both glucosamine and

N-acetylglucosamine can be found in plants, animals, and microbes including bacteria,
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yeast, and filamentous fungi (Deng et al., 2005). Saponin glycosaminosides are
promising candidates as antifungal and antibacterial drugs. Moreover, the toxicity of
saponins can be reduced in the forms of glycosaminosides (Grzywacz et al., 2020). A
recent study showed that quercetin-3-O-N-acetylgalactosamine has the potential to be
used as an antioxidant supplement (Xu et al., 2022). Because of these benefits, some
researchers have focused on the biosynthesis of quercetin-3-O-N-acetylglucosamine
and its derivatives, including quercetin-3-O-N-acetylquinovosamine and quercetin-3-
O-N-acetylxylosamine.

Rational engineering of nucleotide sugar metabolic pathways in the hosts can lead
to the production of various glycosides through a flexible GT. While the 4. thaliana
enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor, Kim et al. found that
AtUGT78D2 could also take UDP-N-acetylglucosamine as a substrate in vitro. Two E.
coli mutant strains E. coli/Apgm (Bpgm) and E. coli/AgalU (BgalU) were created to
reduce the production of UDP-glucose. Due to the relatively higher abundance of UDP-
N-acetylglucosamine in E. coli strains Bpgm and BgalU than the wild type,
AtUGT78D2 was able to take UDP-N-acetylglucosamine as the sugar donor in the cells.
The production titer of quercetin-3-O-N-acetylglucosamine reached 380.7 mg/L after
24 hours by in strain BgalU, and only 10.4 mg/L of “byproduct” was formed, namely
quercetin-3-O-glucose which is the main product in wild type E. coli (Kim et al., 2012b).
This study clearly shows that for flexible GTs, altering the supply of corresponding
sugar donors in the host enables the production of desired glycosides.

3.1.12. Quercetin-3-O-N-acetylquinovosamine
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To engineer the E. coli nucleotide sugar biosynthetic pathway for enhanced supply
of target nucleotide sugars, Cho et al. deleted two genes, namely gal/U and pgm, from
E. coli. They then cloned two genes, Pdeg (UDP-N-acetylglucosamine 4,6-dehydratase)
and Preq (UDP-4-reductase) from the genomic DNA of Bacillus cereus ATCC 14579
for synthesizing UDP-quinovosamine into E. coli. Finally, the AtUGT78D2 gene from
A. thaliana was introduced to catalyze the glycosylation. By comparison, quercetin-3-
O-N-acetylquinovosamine was produced with a higher level using the gal/U-deleted
strain. The final production titer of quercetin-3-O-N-acetylquinovosamine reached
158.3 mg/L (Cho et al., 2016b). This work demonstrates that it is possible to discover
unique nucleotide biosynthetic pathways from other hosts, such as B. cereus ATCC
14579, and incorporate them into common workhorse strains to create new glycosides.
3.1.13. Quercetin-3-O-N-acetylxylosamine

Another example 1s the engineered production of quercetin-3-O-N-
acetylxylosamine. To achieve this goal, UDP-N-Acetylxylosamine synthase (UXNAcS)
from B. cereus was introduced into E. coli to transform UDP-N-acetyl-D-
glucosaminuronate into UDP-N-acetyl-D-xylosamine. With the help of AtUGT78D2,
160.8 mg/L of quercetin-3-O-N-acetylxylosamine was produced in the pgm-deleted E.
coli strain (Cho et al., 2016b). In addition, the authors found that increasing the copy
number of the expression plasmid is an effective approach for enhancing the product
titer. When the cell density reached ODeoo 8.0, the production reached the maximum
level, suggesting that fermentation engineering is an important factor for polishing the

production process to maximize system efficacy.
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3.1.14. Kaempferol-3-O-glucoside (astragalin)

In addition to quercetin glycosides, kaempferol glycosides also have various
bioactivities. Kaempferol-3-O-glucoside (astragalin) is a common plant metabolite
present in many plants such as Annona muricata (Taiwo et al., 2019), Cressa cretica
(Fawzi et al., 2019), Chenopodium album (Mehdi et al., 2018), and Cuscuta chinensis
(Karna et al., 2019; Tao et al., 2021). Astragalin exhibits antimicrobial activities (Taiwo
et al., 2019), antitumor activity (Wang et al., 2021), and many other bioactivities (Riaz
et al., 2018). To enable microbial production of this bioactive natural product, Malla et
al. deleted three genes, namely pgi, zwf, and ushA4 in E. coli BL21(DE3) strain and
overexpressed two genes, namely phosphoglucomutase (nfa44530) from Nocardia
farcinia and glucose-1-phosphate uridylyltransferase (ga/U) from E. coli K12 that are
involved in the synthesis of UDP-glucose from glucose-6-phosphate, to provide
sufficient UDP-glucose to produce astragalin from naringenin. Two genes encoding
flavanone-3-hydroxylase (f34) and flavonone synthase (fls/) were introduced from A.
thaliana into the engineered strain, which convert naringenin into dihydrokaempferol
and subsequently kaempferol. Using endogenous UDP-glucose, the GT UGT78K1
from Glycine max catalyzes the 3-O-glucosylation of kaempferol. Glycerol and
mannitol were used as the carbon sources for cell growth, leading to the production of
astragalin at 109.3 mg/L from 500 mM of naringenin in 60 hours (Malla et al., 2013).
Similarly, Pei et al. constructed an engineered E. coli strain by introducing favanone-3-
hydroxylase (F3H) and favonol synthase (FLS) and obtained kaempferol production at

1.18 £0.02 g/L from naringenin after optimizing the fed-batch fermentation conditions.
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Finally, with the employment of AtUGT78D2 and introduction of an efficient UDP-
glucose biosynthetic pathway, astragalin was produced at 1.74 £ 0.02 g/L in the
resulting strain (Pei et al., 2019).

3.1.15. Kaempferol-3-O-rhamnoside (afzelin)

Kaempferol-3-O-rhamnoside (afzelin) is known for its antioxidant (Akter et al.,
2022a), anti-inflammatory (Zhao et al., 2021), anti-tumor activities (Akter et al., 2022b).
Afzelin can also protect against f-amyloid-induced cell death, which could serve as a
potential treatment of Alzheimer's disease (Yang et al., 2014). Yang et al. biosynthesized
the flavonoid glycoside from glucose in E. coli instead of feeding substrate such as
flavonoids directly into fermentation broth. They initially engineered a tyrosine
biosynthetic pathway into E. coli to produce tyrosine, the precursor of flavonoids, from
glucose. Subsequently, they introduced four flavonoid biosynthetic genes into E. coli
to synthesize kaempferol from tyrosine, including tyrosine ammonia lyase (TAL), 4-
coumaroyl CoA ligase (4CL), chalcone synthase (CHS), and flavonol synthase (FLS).
Meanwhile, to increase the supply of tyrosine, four genes including ppSA, tktA, aroG
and #nrA were overexpressed. Finally, the flavonol-3-O-rhamnosyltransferase
(UGT78D1) that is specific for U(T)DP-rhamnose from A. thaliana was introduced,
leading to the production of kaempferol-3-O-rhamnoside at 57 mg/L after 30 hours
(Yang et al., 2014). This approach for direct biosynthesis of flavonoid glycosides from
glucose is promising, especially when the aglycons are expensive or not commercially
available. In this work, in situ synthesis of the sugar-acceptor kaempferol could be

further improved to enhance the production titer of kaempferol-3-O-rhamnoside.
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Therefore, the balance between sugar donor and sugar acceptor is essential for efficient
production of flavonoid glycosides. Though most bacteria or fungi cannot naturally
synthesize flavonoids, this work demonstrates the possibility of engineering the plant
flavonoid biosynthetic pathway into microbes to generate the desired aglycons. This
breakthrough makes it feasible to produce valuable flavonoid glycosides using glucose
as the sole starting substrate.
3.1.16. Fisetin-3-O-glucoside

Fisetin exhibits antioxidant activity that may promote health conditions (Khan et
al., 2013). However, the clinical application of fisetin is limited due to its low water
solubility (Lorthongpanich et al., 2022). To deal with this problem, researchers have
used enzymatic approaches to prepare fisetin glucosides while preserving its
antioxidant activity (Lorthongpanich et al., 2022). The approach of assembling multiple
genes in a single vector was applied for engineered production of fisetin-3-O-glucoside.
Instead of co-expressing various plasmids harboring different genes in the same host
strain, a single vector system can decrease the metabolic burden created by different
antibiotics supplemented into the fermentation broth. For example, Parajuli et al.
assembled glf, glk, pgm, and galU into the same vector pIBR181 together with the
regiospecific flavonol-3-O-glycosyltransferase (UGT78K1) into E. coli BL21(DE3).
The engineered strain produced 1.178 g of fisetin-3-O-glucoside after 48 hours in a 3-
L fermentor when 0.9 g of fisetin was supplemented (Parajuli et al., 2015). Assembling
various biosynthetic pathway genes into a single vector under distinct promoters

presents a promising approach for fine-tuning gene expression. Such an approach can
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mitigate the metabolic burden resulting from multiple antibiotic selection markers
needed in a multi-vector system.
3.1.17. Fisetin-3-O-rhamnoside

Knocking out unnecessary genes in E. coli represents an effective and widely used
approach for producing appreciable quantities of NDP-sugars. In addition, some
researchers proposed the transfer of extracellular glucose into the cells in a more
efficient way to increase the pool of UDP-glucose. To achieve this goal, Parajuli et al.
introduced the glucose facilitator diffusion protein (g/f) in the dTDP-L-rhamnose
biosynthetic cassette. Specifically, they first introduced the glf, glk, pgm, and tgs genes
to synthesize dTDP-D-glucose from extracellular glucose. They next completed the
dTDP-D-rhamnose biosynthetic system by adding three genes dh, epi, and kr into the
same vector pIBR181. Finally, a regiospecific flavonol-3-O-rhamnosyltransferase
(ArGt-3) gene was cloned separately into pET32(a)+ to generate pET32(a)+/ArGt-3.
The dTDP-rhamnose cassette along with pET32(a)+/ArGt-3 were transferred into E.
coli BL21(DE3) for rhamnoside production. As a result, 1.026 g of fisetin-3-O-
rhamnoside was produced from 0.9 g fisetin after 48 hours of incubation in a 3-L
fermentor (Parajuli et al., 2015). Thus, internalizing extracellular glucose from the
medium into cells represents a useful method for increasing the intercellular pool of
UDP-glucose.
3.1.18. Myricetin-3-O-rhamnoside (myricitrin)

Mpyricetin-3-O-rhamnoside (myricitrin) exhibits higher antioxidant activity than
other flavonol rhamnosides (Wu et al., 2008). It also has antinociceptive (Meotti et al.,
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2006), anti-inflammatory (Shimosaki et al., 2011), hepatoprotective, and antifibrotic
activities (Domitrovi¢ et al., 2015). To synthesize this valuable natural product in an
environmentally-friendly =~ fashion, Thuan et al. constructed E. coli
BL21(DE3)/ApgiAzwf for enhancing the intracellular production of dTDP-o-L-
rhamnose pool in the cell cytoplasm. Realizing that E. coli does not naturally synthesize
UDP-rhamnose, the authors focused on using endogenous dTDP-rhamnose. The dTDP-
a-L-rhamnose gene cassette consisted of two recombinant plasmids, including
pTGSDH expressing the tgs and dh genes, and pAC-EPKR harboring the epi and &r
genes. The GT from A. thaliana (ArGT-3) was used for rhamnosylation of myricetin,
and methylated cyclodextrin was used as a molecular carrier for myricetin. Finally, the
maximum titer of myricetin-3-O-rhamnoside reached 55.6 uM from 100 uM myricetin
under optimized conditions (Thuan et al., 2013b). This work shows that sufficient
supply of nucleotide sugars as sugar donors is pivotal for glycoside prouduction in E.
coli.

3.2. Engineered production of flavone glycosides

3.2.1. Apigenin-7-O-glucoside (apigetrin)

Flavones, such as apigenin, scutellarein, baicalein, and luteolin, possess a core
structure that closely resembles that of flavonols, except for the absence of the 3-OH
group. While flavones are relatively less abundant than flavonols, they can be readily
obtained from fruit peels (Abbas et al., 2017). Apigenin-7-O-glucoside (apigetrin) is a
potent anti-cancer (Kim et al., 2020; Liu et al., 2020) and anti-inflammatory drug (Wang

et al., 2020). Studies have shown that apigetrin offers protection against Toxoplasma gondii
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(Abugri and Witola, 2020) and can be used to treat anxiety (Kumar and Bhat, 2014),
making it an exciting prospect for human health. Unfortunately, this compound is costly
and not widely available in plants (Wang et al., 2018). As a result, biosynthetic methods
for engineered apigetrin production are being developed to harness its promising health
benefits.

Thuan et al. engineered an E. coli co-culture system for the de novo synthesis of
apigetrin. Upstream of the co-culture system were four enzymes that enable the
production of apigenin from p-coumaric acid, including 4-coumarate: CoA ligase (4CL),
chalcone synthase (CHS), chalcone favanone isomerase (CHI), and flavone synthase I
(FNSI). The downstream of the co-culture system was constructed to enhance the
production of UDP-glucose and express the GT (PaGT3) from Phytolacca americana
to transform apigenin into apigetrin. By optimizing temperature and media components,
the production titer of apigetrin reached 16.6 mg/L, twice that achieved using
monoculture (6.7 mg/L) (Thuan et al., 2018a). This study demonstrates that co-culture
systems are a viable approach for addressing the limitations of monoculture and
improving production by enabling the independent optimization of two engineered
pathways, thereby reducing metabolic burden in a single strain.

3.2.2. Scutellarein-7-O-glucoside

Scutellarein-7-O-glucuronide, also known as scutellarin, possesses antioxidant,
anti-inflammatory, vascular relaxation, anti-platelet, and anti-coagulation properties, as
well as myocardial protective effects. It has been employed in the treatment of stroke,

myocardial infarction, and diabetic complications (Wang and Ma, 2018). To improve
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the bioavailability, efficacy, and safety of scutellarein, its glycosides were
biosynthesized, thereby expanding the potential applications of this compound. Wang et al.
used S. cerevisiae as a biocatalyst to produce scutellarein-7-O-glucoside. The flavonoid
glucosyltransferases (SbGT34) from Scutellaria baicalensis Georgi was selected to
construct the engineered yeast. By using homologous integration, three glucosidase
genes were knocked out, including SPRI, YIRO0O7W, and EXG1 that is the key gene to
hydrolyze flavonoid glucosides in S. cerevisiae. Furthermore, two genes encoding
phosphoglucomutase and UTP-glucose-1-phosphate  uridylyltransferase = were
overexpressed in S. cerevisiae, which are involved in the biosynthesis of UDP-glucose.
The production titer of scutellarein-7-O-glucoside reached 1.2 g/L after 54 hours of
incubation from 3.5 g scutellare in a 10-L fermentor (Wang et al., 2016). This research
suggests that although endogenous glucosidases present in yeast platforms can
somewhat impede the biosynthesis of glycosides, deleting the glucosidase genes can
still render yeast an appealing host for this purpose.

3.2.3. Baicalein-7-O-glucuronide (baicalin)

Baicalin, also known as baicalein-7-O-glucuronide, is a compound extracted from
the root of S. baicalensis Georgi that exhibits a wide range of biological effects (Gupta
et al., 2022; Yang et al., 2016), such as antitumor, antimicrobial, and antioxidant
activities (Huang et al., 2019). Moreover, baicalin is used as a reference compound for
the quality control of Scutellaria radix (Zhao et al., 2016). However, the low
bioavailability of baicalin has impeded its clinical use. To address this issue, researchers

have attempted to glycosylate baicalein to make more water-soluble derivatives (Kim
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etal., 2014).

To produce baicalein in microbes, Yang et al. constructed an engineered E. coli
BL21(DE3) strain to produce flavonoid glucuronides using a module-based approach.
The first module is an endogenous upstream biosynthetic pathway to produce the sugar
donor UDP-glucuronic acid. To strengthen the UDP-glucuronic acid synthetic pathway,
they modified three genes, namely, pgm, galU and ugd to increase the endogenous level
of UDP-glucuronic acid. After identifying Ugd as the rate-determining step in
glucuronide production, they introduced this gene into a high-copy plasmid pEG12
under the T7 promoter to maintain the uniform expression. The second module is a
heterologous downstream pathway to glucuronidate flavonoids by using a UDP-
glucuronosyltransferase (SbUGT) from S. baicalensis Georgi. Ultimately, the
production yield of baicalin reached 797 mg/L (Yang et al., 2016). This study highlights
the significance of identifying and enhancing the rate-limiting step or bottleneck for
achieving higher production of glucuronides in engineered E. coli strains, as
demonstrated by the upregulation of the ugd gene in this research.

3.2.4. Luteolin-7-O-N-acetylglucosaminuronate

Luteolin-7-O-N-acetylglucosaminuronate was produced using the similar E. coli
strains for quercetin-3-O-N-acetylquinovosamine production. To achieve efficient
production, Apgm mutant strain of E. coli was used as the starting host. Cho et al.
engineered the UDP-N-acetylglucosamine 6-dehydrogenase gene (UDP-GlcNAc 6-DH)
from B. cereus NVH 391-98 with codon optimization into E. coli. AmUGTI10 from

Antirrhinum majus was then introduced to achieve the production of luteolin-O-N-
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acetylglucosaminuronate at 172.5 mg/L (Cho et al., 2016b). The GT AmUGTI10
originally uses UDP-glucuronic acid as a sugar donor and transfers glucuronic acid onto
the 7-hydroxy group of luteolin. Interestingly, it also takes UDP-N-
acetylglucosaminuronate. Moreover, the author found that E. coli/Apgm mutant is more
effective (approximately two-fold) than E. coli/AgalU mutant for the production of
luteolin-7-O-N-acetylglucosaminuronate. This may be due to a higher level of the
precursor UDP-N-acetylglucosamine in the former strain. Hence, it is essential to
compare and evaluate different mutant strains during the production optimization
process. This study also demonstrated that some GTs are versatile toward different
nucleotide sugars, which can be utilized to synthesize various flavonoid glycosides.
3.3. Engineered production of flavanone, flavononol, and anthocyanidin glycosides
3.3.1. Naringenin-7-O-xyloside

Flavanones lack a double bond between C-2 and C-3 and a hydroxyl group at C-
3. They are primarily present in citrus fruits and can also be found in aromatic plants.
(Leuzzi et al., 2000). Naringenin has many beneficial effects on human health
(Venkateswara Rao et al., 2017). Unfortunately, this compound is difficult to absorb
after oral administration, limiting its efficacy (Manach and Donovan, 2004). Naringin,
a glycosylated form of naringenin, has been found to prevent obesity, heart disease,
diabetes, bone disorders, and metabolic syndrome. It also has potential as an anti-
inflammatory drug with reduced side effects (Lavrador et al., 2018; Zhao and Liu, 2021).
Therefore, there is interest in generating naringenin glycosides to leverage their

therapeutic advantages (Joshi et al., 2018; Simkhada et al., 2009a). However, due to the
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long synthetic pathway of UDP-D-xylose involving various enzymes, it is relatively
difficult to achieve a high production titer of naringenin-7-O-xyloside. Simkhada et al.
integrated and expressed three genes in E. coli BL21(DE3)/Apgi for the synthesis of
UDP-D-xylose, including galU from E. coli K12, together with calS§ and calS9 from
Micromonospora echinospora spp. calichensis. They then introduced the 7-O-GT arGt-
4 from A. thaliana to yield E. coli strain US89Gt-4 to produce naringenin-7-O-xyloside
(Simkhada et al., 2009a). Further optimization of the culture conditions and gene
expression levels could be helpful for enhanced production of naringenin-7-O-xyloside.
3.3.2. Taxifolin-3-O-rhamnoside (astilbin)

Flavononols lack a double bond between C-2 and C-3, and there is a hydroxy
group at C-3. Taxifolin-3-O-rhamnoside (astilbin) is a flavononol glycoside mainly
isolated from Smilax glabra Roxb (Zhang and Cheung, 2010). Besides its antimicrobial,
insecticidal, and antioxidant activities, astilbin also has effects on central nervous
system (Alzheimer's disease and Parkinson disease) and cardiovascular system
(myocardial ischemia and reperfusion injury and lipolysis) (Sharma et al., 2020). As
the main method of acquiring astilbin, plant extraction is still unable to meet the demand
of industrial-scale production (Prawat et al., 2012), despite extensive studies on
optimizing extraction conditions (Lu et al., 2015). Therefore, researchers have
developed novel methods to biosynthesize astilbin via microorganisms.

Thuan et al. used the engineered E. coli BL21(DE3)/ApgiAzwfto enhance the pool
of D-glucose-6-phosphate. To improve the intracellular TDP-L-rhamnose pool, four

genes were overexpressed under the control of the strong T7 promoter, including tgs
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from Thermus caldophilus GK24, dh from Salmonella thyphimurium LT2, together
with epi and kr from Streptomyces antibioticus T199. The engineered strain named E.
coli M3G3 was constructed by introducing an exogenous UDP-glycosyltransferase
(ArGT3) from A. thaliana. The final production titer of astilbin reached around 15 mg/L
from 100 uM taxifolin after 48 hours (Thuan et al., 2017a). This successful example
indicates that promoter optimization could facilitate the production of polyphenolic
glycosides.

3.3.3. Cyanidin-3-O-glucoside (chrysanthemin)

The glycosylated forms of anthocyanidin are called anthocyanins, which are red,
purple, or blue plant water-soluble pigments with anti-oxidative, anti-inflammatory,
anticancer, anti-obesity, anti-diabetic, and cardioprotective properties (Yan et al., 2008).
One example of an anthocyanin is cyanidin-3-O-glucoside, also known as
chrysanthemin, which has been found to have gastro-protective and anti-inflammatory
properties (Olivas-Aguirre et al., 2016). To biosynthesize this valuable natural product,
Yan et al. constructed a metabolic pathway in E. coli with four plant genes from
different origins, including flavanone 3'-hydroxylase (F3'H) from Malus domestica,
dihydroflavonol-4-reductase (DFR) from Anthurium andraeanum, anthocyanidin
synthase (ANS) also from M. domestica, and flavonoid-3-O-glucosyltransferase (3-GT)
from Petunia hybrida. Through this strain, naringenin was converted into the colored
and stable chrysanthemin (Yan et al., 2005). Even though the production titer only
reached microgram scale, this work for the first time synthesized plant-specific

anthocyanin via microbial fermentation. To increase the production titer of
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chrysanthemin, Yan et. a/ manipulated the metabolic network of E. coli to enhance the
intracellular UDP-glucose pool, which was considered the key metabolic limitation in
this study. They also optimized the pH of culture medium and created the fusion
proteins of 3GT and ANS. Eventually, the production titer of chrysanthemin was
increased to 70.7 mg/L (Yan et al., 2008). The authors noted that anthocyanidins are
unstable compounds that could degrade before glycosylation, potentially hindering
chrysanthemin production. Therefore, this study highlights the potential of multi-
protein complexes to increase precursor concentrations and prevent the degradation of
unstable intermediates.

To further increase the production titer of chrysanthemin, Lim et al. successfully
achieved a final titer of 350 mg/L through a combination of three approaches:
enhancing substrate availability, balancing gene expression, and optimizing cultivation
and induction conditions. They first constructed a bicistronic expression cassette to
improve the expression of anthocyanidin synthase (ANS) and 3-O-glycosyltransferase
(3GT). Then, intracellular UDP-glucose was increased by overexpressing another E.
coli endogenous phosphoglucomutase (ycjU) instead of the original pgm, which
allowed higher production of UDP-glucose than coexpressing Pgm and GalU. More
interestingly, they identified several E. coli transporter proteins that play an important
role in substrate uptake and product secretion, including four efflux pumps
(AcrAB, TolC, AaeB, and YadH), one uptake pump (TnaB), as well as one regulator
(MarA). Further optimization of culture and induction conditions was also performed

(Lim et al., 2015). The work provides a promising approach to develop an inexpensive
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process for large-scale production of plant-specific anthocyanins from engineered
microorganisms, which supports the industrial production of natural food colorants to
meet their increased market demand.
3.3.4. Anthocyanidin-3-O-glucoside

Some researchers managed the complete biosynthesis of anthocyanidin-3-O-
glucosides in E. coli. Jones et al. engineered a complex E. coli co-culture system to
biosynthesize anthocyanidin-3-O-glucosides directly from the carbon source. In total
fifteen exogenous or modified genes from different sources, including plants and
microbes, were distributed into the polyculture system containing four engineered E.
coli strains, including (1) E. coli strain rpoA14(DE3) expressing tyrosine ammonia
lyase (TAL) produces phenylpropanoic acids from glucose; (2) BL21star ™(DE3)
AsucCAfumC with 4-coumarate: CoA ligase (4CL), chalcone synthase (CHS), and
chalcone isomerase (CHI) generates flavanones from phenylpropanoic acids; (3)
BL21star™(DE3) harboring flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-
reductase (DFR), and leucoanthocyanidin reductase (LAR) synthesizes flavan-3-ols
from flavanones; (4) BL21star M(DE3) with anthocyanadin synthase (ANS) and 3-O-
glycosyltransferase (3GT) transforms flavan-3-ols into anthocyanins. By using the
polyculture strategy, the authors achieved milligram-per-liter production titer of
anthocyanidin-3-O-glucosides (Jones et al., 2017). This study is a great example of
relieving metabolic burden using a polyculture system, which provides a new method
for the rearrangement of complex metabolic pathways in E. coli for glycoside

production.
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3.4. Engineered production of stilbene and curcuminoid glycosides
34.1. Resveratrol-3-O-glucoside (piceid), resveratrol-4'-O-glucoside
(resveratroloside), and resveratrol glucuronides

Stilbenoids (such as resveratrol) are 1,2-diphenylethene polyphenols that are
derivatives of stilbene and have a 14-carbon skeleton with C¢-C>-Cs backbone.
Specifically, C> represents the ethylene bridge that links two differently substituted
aromatic rings together. Plants synthesize stilbenoids to protect themselves from
pathogens, and they are promising natural products for the development of
antimicrobial agents (Mattio et al., 2020). Glycosylation is a prodrug approach that aims
to address the low bioavailability issue of resveratrol (Intagliata et al., 2019). Studies
have shown that resveratrol-3-O-glucoside (piceid) exhibits similar or even improved
bioactivities compared to resveratrol. For example, the tyrosinase inhibitory activity of
resveratrol-3-O-glucoside was reported to be higher than that of resveratrol (Uesugi et
al., 2017; Walle, 2011). To achieve the biosynthesis of resveratrol glycosides, Choi et
al. first used the resveratrol-producing construct pET-opTLS to synthesize resveratrol
from tyrosine, containing the codon-optimized tyrosine ammonia lyase (¢a/) gene from
Saccharothrix espanaensis, 4-coumarate-CoA ligase (4cl) gene from Streptomyces
coelicolor, and codon-optimized stilbene synthase (sts) gene from Arachis hypogaea.
Next, a UDP-glycosyltransferase gene (yjiC) was introduced to create construct pET-
opTLYS for synthesizing resveratrol glycosides. Each gene in the system has its own
T7 promoter, ribosome-binding site (RBS), and terminator sequence. Finally,

recombinant E. coli C41(DE3) strain harboring pET-opTLY'S produced 2.5 mg/L piceid
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and 7.5 mg/L resveratroloside from glucose in modified M9 minimal medium (Choi et
al., 2014). Although the final production titers are low, this strategy demonstrates the
first de novo synthesis of resveratrol glucoside derivatives in E. coli from a simple
medium.

Thuan et al. used a coculture approach for the synthesis of resveratrol glucosides.
They constructed the aglycone-forming pathway and sugar-related pathway in two
different cell systems, leading to the E. coli RES and E. coli RGL strains, respectively.
The aglycone biosynthetic pathway contained 4CL and STS to convert p-coumaric acid
into resveratrol. The UDP-sugar forming and transferring pathway included UDP-
glucose pyrophosphorylase (hasC) and glucosyltransferase (PaGT3) to convert the
resveratrol into its glucosides, namely, piceid and resveratroloside. Under the optimized
conditions, the production of resveratrol glucosides reached 92 mg /L (236 uM) from
280 uM of p-coumaric acid after 60 hours in a 3-L fed batch fermentor (Thuan et al.,
2018b). Moreover, engineered production of resveratrol glucuronides was also
achieved in E. coli recently. Ren et al. identified a new glucuronyltransferase (GcaC)
from Streptomyces chromofuscus ATCC 49982. After optimizing the pH, temperature,
cell density, substrate concentration, and incubation time, around 78 mg/L of
resveratrol-4'-O-glucuroside and 15 mg/L of resveratrol-3-O-glucuroside were
produced in engineered E. coli BL21(DE3) (Ren et al., 2022a). These studies
demonstrate that engineered microbial production is an effective tool for the generation
of resveratrol glycosides.

3.4.2. Curcumin glucoside
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Curcuminoids, represented by curcumin, are phenolic compounds that are widely
utilized as a spice, pigment, food additive, and therapeutic agent. They are the primary
constituents in Curcuma species and possess a common unsaturated alkyl-linked
biphenyl structural feature that accounts for their major pharmacological effects
(Amalraj et al., 2017). Curcumin glycosides have diverse and even improved
bioactivities. For example, curcumin glucoside has been shown to inhibit a-synuclein
oligomer formation, which is relevant to Parkinson's disease (Shrikanth Gadad et al.,
2012), while curcumin 4'-O-f-glucooligosaccharides exhibit anti-allergic activity
(Shimoda and Hamada, 2010a). Moreover, curcumin-4'-O-f-glucoside and curcumin-
4'-0-f-2-deoxyglucoside have been found to possess enhanced anticancer activities
compared to curcumin (Gurung et al., 2017). Additionally, the antioxidant property of
curcumin-f-diglucoside is stronger than curcumin, and it also exhibits higher
antibacterial properties against Staphylococcus aureus and E. coli than curcumin
(Parvathy et al., 2009). Notably, Singh et al. reported the first curcumin glucoside
biosynthesis in Atropa belladonna hairy roots. By heterologous expression of key
curcumin biosynthetic pathway genes such as Diketide-CoA synthase (DCS) and
curcumin synthase (CURS3) from Curcuma amada, together with a glucosyltransferase
gene (CaUGT2) from Catharanthus roseus in A. belladonna, the highest content of
curcumin monoglucoside reached 32.63 +2.27 ug/g DW in shaker flasks (Singh et al.,
2021). Therefore, 4. belladonna hairy roots provide an option for the production of
high-value polyphenolic glycosides in the future.

3.5. Engineered production of other phenolic glycosides
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3.5.1. Vanillin-4-O-glucoside

Vanillin is a significant flavoring agent that was initially isolated from Vanilla
planifolia. It has a global market value of 180 million US dollars, with an annual
worldwide demand of approximately 16,000 tons (Pandey et al., 2018). Vanillin also
possesses antioxidant, antifungal and antidepressant activities (Fitzgerald et al., 2005;
Shoeb et al., 2013; Tai et al., 2011). Interestingly, vanillin glycosides are also naturally
present in the producer organism Vanilla planifolia (Ramachandra Rao and Ravishankar,
2000). Rather than relying on common chemical synthesis to produce vanillin from
fossil hydrocarbons and lignin (Pandey et al., 2018), a more sustainable approach such
as microbial production of vanillin is desirable.

Brochado et al. constructed a de novo biosynthetic pathway in the cell factory of
S. cerevisiae for improved production of vanillin glycosides from glucose. To convert
3-dehrydroshikimate into wvanillin, four genes were introduced, including 3-
dehydroshikimate dehydratase (3DSD), aryl carboxylic acid reductase (ACAR),
phosphopantetheine transferase (PPlase), and O-methyltransferase (AsOMT) from
Podospora pausiceta, Nocardia sp., Escherichia coli and Homo sapiens, respectively.
A plant family 1 GT from Arabidopsis thaliana (UGT72E2) was next introduced for
biosynthesizing vanillin-4-O-glucoside. By using an in silico algorithmic method,
namely, minimization of metabolic adjustment (MOMA) as biological objective
function, the S. cerevisiae genome-scale stoichiometric model was applied to identify
and select target reactions via OptGene. The final production titer of vanillin-4-O-

glucoside reached 500 mg/L (Brochado et al., 2010). This study demonstrates the
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applicability of in silico modelling tools for overproduction of a product from a
multistep heterologous pathway in a eukaryotic system. It suggests that the genetic
background of a cell factory is important for efficient production of a given product.
Hansen et al. used a similar method to achieve the de novo biosynthesis of vanillin from
glucose in fission yeast Schizosaccharomyces pombe, with the exception of deleting the
alcohol dehydrogenase gene (ADHG6) to prevent the reduction of vanillin to vanillyl
alcohol. Their efforts led to a final production titer of 119 mg/L of vanillin-4-O-
glucoside (Hansen et al., 2009). These studies collectively demonstrate the potential of
yeasts as organisms for the production of vanillin and its glucosides.

3.5.2. Tyrosol-8-O-glucoside (salidroside)

Salidroside is the glucoside of tyrosol and is considered the primary bioactive
compound found in Tibetan Ginseng Rhodiola (Xu et al., 1998). It has been shown to
have significant adaptogenic effects, including the treatment of anoxia, microwave
radiation, and fatigue, as well as the ability to slow down the aging process (Gen-Xiang
etal., 2010; Li, M. et al., 2008) Additionally, it can prevent cardiovascular diseases and
cancer (Xie et al., 2020; Zhao, C.C. et al., 2021). However, the conventional extraction
method currently employed for obtaining salidroside cannot keep up with the growing
demand due to the slow growth of wild Rhodiola and the limited amount of salidroside
that can be produced (Stepanova et al., 2021). To address these challenges, Xue et al.
developed a new method for salidroside production by expressing the GT from
Rhodiola sachalinensis UGT72B14 in E. coli. In order to optimize the expression of

UGT72B14 in E. coli without altering the amino acid sequence, they performed codon
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optimization of this gene, which involved changing a total of 278 nucleotides and
decreasing the G+C content to 51.05%. As a result, the final salidroside production
reached 6.7 mg/L in both batch and fed-batch cultivation, which was 3.2 times higher
than the production levels achieved using the wild-type UGT72B14 (Xue et al., 2016).
This study demonstrate that the codon-optimized approach can tackle the issue of poor
expression of plant UGTs in microorganisms for glycoside production.

Bai et al. first used the pyruvate decarboxylase (4R0O10) and endogenous alcohol
dehydrogenases (ADH) to convert 4-hydroxyphenylpyruvate into tyrosol in E. coli.
Then, by overexpressing the L-tyrosine biosynthetic genes in E. coli and eliminating
competing pathway genes such as #yrR, pykA, pykF, and pheA, the metabolic flux
towards the intermediate 4-hydroxyphenylpyruvate was enhanced and tyrosol
production was improved. Finally, the GT UGT73B6 from R. sachalinensis was
introduced into the recombinant strain, yielding 56.9 mg/L of salidroside (Bai et al.,
2014). This study represents the first unique artificial biosynthetic pathway in E. coli
for the production of salidroside from glucose. Sun et al. designed a syntrophic E. coli
coculture system to produce salidroside. The coculture system included the aglycone
strain for biosynthesis of tyrosol and the glycoside strain for production of salidroside.
The aglycone strain harbored the decarboxylase gene (synkdc4) from Pichia pastoris
GS115 for biosynthesis of tyrosol and the glycoside strain contained the GT gene
(synugt85al) from A. thaliana for the biosynthesis of salidroside. Through the
syntrophic coculture approach, salidroside was produced at 6.03 g/L after balancing the

metabolic pathway strength (Liu et al., 2018). This study represents the first instance of
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de novo production of salidroside using the E. coli coculture system, and it holds
potential for the production of other essential natural product glycosides.
3.5.3. Hydroquinone glucoside (arbutin)

Arbutin exhibits a strong inhibitory effect on tyrosinase activity, which supports
its use as a skin depigmenting agent (Boo, 2021; Draelos et al., 2020; Hori et al., 2004).
Moreover, arbutin has anti-inflammatory (Lee and Kim, 2012), antibacterial (Ma et al.,
2019), and antitumor properties (Li et al., 2011). It is also effective in treating urinary
tract infections, kidney stones, and cystitis (Schindler et al., 2002), along with asthma
and coughs (Wang et al., 1994). Engineered production of arbutin has been achieved in
microbes. Arend et al. characterized a novel glucosyltransferase (AS) with relatively
low substrate specificity from plant cell suspension cultures of Rauvolfia serpentina,
and it was expressed in E. coli with high plant-specific glucosylation efficiencies,
resulting in a yield of 250 mg/L arbutin after 36 hours of growth (Arend et al., 2001).
Shang et al. modified the biosynthetic pathways in Yarrowia lipolytica to produce
arbutin. They codon-optimized three genes and heterologously expressed them in Y.
lipolytica, including chorismate pyruvate-lyase (UbiC), 4-hydroxybenzoate 1-
hydroxylase (MNX1), and hydroquinone glucosyltransferase (4S). Furthermore, seven
arbutin-biosynthetic genes were overexpressed to maximize arbutin production, and the
maximum arbutin titer of 8.6 + 0.7 g/L was achieved in the final engineered strain polf-
At09 (Shang et al., 2020). This research shows the potential of the shikimate pathway

in Y. lipolytica for the production of hydroquinone glycosides from glucose.
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1000  Table 1. Engineered production of various polyphenolic glycosides.

Genetic modification
) GT o Sugar donor Sugar acceptor or Titer Metho
Glycosides GT origin ] ) Host (Knockout or Ref.
starting material ) (mg/L) | d
overexpression)
Flavonols---Quercetin, Kaempferol, Fisetin, Myricitrin
(Xia and
UGT73B3 A. thaliana UDP-Glu Quercetin E. coli Apgi 3,900 | 1,4 Eiteman,
Quercetin-3-0-
2017)
glucoside (Isoquercetin)
S. (Renetal.,
BbGT B. bassiana UDP-Glu Quercetin / 99 1
cerevisiae 2022c¢)
) (Kim et
VvUGT V. vinifera UDP-GIuA Quercetin E. coli AaraA /ugd 1 (E. coli) 687 1,4,5 L 2015)
al.,
Quercetin-3-0- glk 1 (Z. mobilisi) /
glucuronide pgm?2 i
) o ] (Pandey et
(Miquelianin) VvGTS5 V. vinifera UDP-GluA Quercetin E. coli (B.licheniformis) / galU | 30 1,5 1..2019)
al.,
1 (E. coli) / ugd 1 (E.
coli)
Apgi / dagp / AushA /
(De Bruyn
Quercetin-3-0- ) AgalETKM / ugpA 1 (B.
F3GT P. hybrida UDP-Gal Quercetin E. coli 940 1,4,5 et al.,
galactoside bifidum) |/ galE 1 (E.
2015¢)
(Hyperoside) coli)
) (Kim et
PhUGT P. hybrida UDP-Gal Quercetin E. coli UGE 1 (O. sativa) 280 1,5
al., 2015)
) ) ) Apgi | Azwf' | AushA | (Pandey et
Quercetin-3-O-xyloside | ArGT-3 A. thaliana UDP-Xyl Quercetin E. coli 23.78 1,4,5
nfa44530 0 (N al., 2013)
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farcinica) / galU 1 (E.
coli) / calS8 1 and calS9
1 (M. echinospora)

darnd | UXS 1 (A

(Han et
AtUGT78D3 . thaliana UDP-Xyl Quercetin . coli thaliana) / ugd 1 (E. | 160 1,4,5 L 2014)
al.,
coli)
Apgi/  tgs 1t (T
(Simkhad
) caldophilus) / dh 1 (S.
ArGT-3 . thaliana UDP-Rha Quercetin . coli 24 1,4,5 a et al,
thyphimurium) /| epi 1
2010)
and kr 1 (S. antibioticus)
Quercetin-3-0-
) o ) ArfbD | rhm 1 (A (Kim et
rhamnoside (Quercitrin) | AtUGT78D1 . thaliana UDP-Rha Quercetin . coli 150 1,4,5
thaliana) al., 2012a)
Apgi | dagp | AushA |
(De Bruyn
) AgalETKM / ugpA 1 (B.
RhaGT . thaliana UDP-Rha Quercetin . coli 1,120 1,4,5 et al.,
bifidum)
2015c¢)
/ MUM4 1 (A. thaliana)
AtUGT78D1
Quercetin-3,7-0- (3-OH) (Kim et
) ] . thaliana UDP-Rha Quercetin . coli RHM?2 1 (A. thaliana) 67.4 1,5
bisrhamnoside AtUGTS89CI1(7 al., 2013)
-OH)
) AtUGT78D2
Quercetin-3-O-
) (3-OH) ) (Kim et
glucoside-7-0- . thaliana UDP-Glu and UDP-Rha | Quercetin . coli / 67 1
AtUGTS89C1 al., 2013)
rhamnoside
(7-OH)
) ) ) Adpgi / tgs 1 (T | NA (Simkhad
Quercetin-3-0-alloside ArGT-3 . thaliana UDP-AIl Quercetin . coli 1,4,5
caldophilus) / dh 1 (S. | (able a et al,
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thyphimurium) / GerFK | to 2010)
1 (Streptomyces sp.) isolate
)
AgalU / ArffA / ArfbD /
) ) ) tl i (4. (Yoon et
Quercetin-3-O-taloside AtUGT78D1 A. thaliana UDP-Tal Quercetin E. coli 98 1,4,5
actinomycetemcomitans al., 2012)
)
Quercetin-3-0-4-deoxy- .
) ) (Kim et
4-formamido-L- AtUGT78D3 A. thaliana UDP-Ara4FN Quercetin E. coli ugd 1 /arnd 1 /arnB 1 70 1,5 L. 2010)
al.,
arabinoside
Apgi / Azwf/ AgalU
tgs 1 (T caldophilus
GK2)/dh 1 (S.
) typhimurium LT2)
Quercetin
o dTDP- ) gerB 1 / (Streptomyces (Pandey et
deoxyaminosides ArGT-3 A. thaliana ) Quercetin E. coli NA 1,4,5
deoxyaminosugars sp. GERI-155) / wecE 1 al., 2015)
(E. coli K-12) / fdt4 1
and fdtB 1 (4.
thermoaerophilus 1420-
91T)
Quercetin-3-O-N- ) (Kim et
) AtUGT78D2 A. thaliana UDP-GIuNAc Quercetin E. coli Apgm / AgalU 380.7 1,4
acetylglucosamine al., 2012b)
Apgm / AgalU / Pdeg 1
Quercetin-3-O-N- ) ] ] (Cho et
) ) AtUGT78D2 A. thaliana UDP-quinovosamine Quercetin E. coli and Preq 1 (B. cereus | 158.3 1,4,5
acetylquinovosamine al., 2016b)
ATCC 14579)
Quercetin-3-O-N- AtUGT78D2 A. thaliana UDP-N-acetyl-D- Quercetin E. coli Apgm / UXNAcS 1 (B. | 160.8 1,4,5 (Cho et
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acetylxylosamine glucosaminuronate cereus ATCC 14579) al., 2016b)
Apgi / Azwf/ AushA
/ nfa44530 1 (N.
Kaempferol-3-O- UGT78K1 G. max UDP-Glu Naringenin _coli farcinia) / galU 1 (E. | 109.3 24| (Malla et
glucoside (Astragalin) coli K12) /f3h 1 / fls] 1 > al, 2013)
(4. thaliana)
AtUGT78D2 | A. thaliana | UDP-Glu Naringenin _coli S3h 7 (C. sinensis) / 17385 | 1,2 (Pei et al.,
fls1 1 (C. unshiu) 2019)
TAL 1t (S. espanaensis
ATCC 51144) / 4CL 1
Kaempferol-3-O- (Oryza sativa) / FLS 1 (Yang et
hamnoside (Afzelin) UGT78D1 A. thaliana UDP-Rha Glucose . coli and CHS 1 (P |57 1,2 al. 2014)
euramericana) /
PPSA 1, thtd 1, aroG 1,
and tyrd 1 (E. coli K12)
Gif 1 and gk t (Z
mobilis) / (Parajuli
Fisetin-3-O-glucoside UGT78K1 G. max UDP-Glu Fisetin . coli pgm 1 (B. licheniformis | 1178 1,5 et al.,
DSM 13) / and galU 1 2015)
(E. coli K-12)
Glif 1 and gk t (Z
mobilis) / (Parajuli
Fisetin-3-O-rhamnoside | ArGT-3 A. thaliana dTDP-Rha Fisetin . coli pgm 1 (B. licheniformis | 1026 1,5 et al.,
DSM 13) /and #gs 1 (E. 2015)

coli K-12) / dh 1 (5.
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enterica LT2)/epi 1 and

kr 1 (S. antibioticus
Tu99)
Myricetin-3-0O- Apgi / Azwf/ tgs 1/ dh Thuan et
Y ArGT-3 A. thaliana dTDP-Rha Myricetin E. coli ve /7185 1 ! 25.8 1,4,5 (
rhamnoside (Myricitrin) /epit/kr 1 (NA) al., 2013a)
Flavones-Apigenin, Scutellarein, Baicalein, Luteolin
4CL-2 1 (N. tabacum) /
Apigenin-7-O-glucoside o CHS 1 and CHI 1 (P, (Thuan et
o PaGT3 P. americana | UDP-Glu p-coumaric acid E. coli 16.6 1,3
(Apigetrin) hybrida) 1 / FNSI (P, al., 2018a)
crispum)
AEXGI / ASPRI /
Scutellarein-7-O-
) S. AYIROO7TW / (Wang et
glucoside SbGT34 S. baicalensis | UDP-Glu Scutellare 1,200 1,4,5
cerevisiae | PGM2 1 and UGPI1 al., 2016)
(S. cerevisiae)
Baicalein-7-O-
. L o pgm 1, galU 1 and ugd 1 (Yang et
glucuronide (Baicalin) SbUGT S. baicalensis | UDP-GluA Baicalein E. coli 797 1,5
(E. coli) al., 2016)
Luteolin-7-O-N- UDP-N-
) ) ] Apgm / UDP-GIcNAc 6- (Cho et
acetylglucosaminuronat | AmUGT10 A. majus acetylglucosaminuronat | Luteolin E. coli 172.5 1,4,5
DH 1 (B. cereus) al., 2016a)
e e
Flavanones, flavononols and anthocyanidins -Naringenin, Taxifolin, Cyanidin
Apgi / galU 1 (E. coli) / (Simkhad
Naringenin-7-O-
osid ArGT-4 A. thaliana UDP-Xyl Naringenin E. coli calS8 1 and calS9 T (M. | NA 1,4,5 a et al,
xyloside
echinospora) 2009b)
Taxifolin-3-O- Apgi / Azwf (Thuan et
. o ArGT-3 A. thaliana dTDP-Rha Taxifolin E. coli 15 1,4,5
rhamnoside (Astilbin) tgs 1 (T caldophilus) / al., 2017b)
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dh 1 (S. typhimurium) /
epi T and kr 1T (S

antibioticus)
Pgm 1 and galU 1 (E.
(Yan etal.,
coliy / F3'H 1 (M.
) ) 2005; Yan
3GT P. hybrida UDP-Glu Naringenin . coli domestica) / DFR 1 (4. | 70.7 1,2,5 |
et al.,
andraeanum) / ANS 1
2008)
Cyanidin-3-O-glucoside (M. domestica)
(Chrysanthemin) ygjU 1 (E. coli)/
AcrAB 1, TolC 1, AaeB )
) (Lim et
3GT A. thaliana UDP-Glu Catechin . coli 1, YadH 1, TnaB 1, and | 350 1,2 L 2015)
al.,
MarA 1 (E. coli) /ANS 1t
(P. hybrida)
Anthocyanidin-3-O- TAL 1 /4CL 1t/ CHS 1/
] (Jones et
glucoside 3GT A. thaliana UDP-Glu Glucose . coli CHI1/F3'H1/DFR 1 | NA 1,2,3 L. 2017)
al.,
/LAR 1 /ANS 1
Stilbenes and curcuminoids-Resveratrol, Curcumin
Resveratrol-3-O- tal 1 (S. espanaensis) /
B. (Choi et
glucoside (Piceid/ | YjiC UDP-Glu Tyrosine . coli 4cl 1 (S. coelicolor) / sts | 2.5 1,2
) licheniformis al., 2014)
Polydatin) 1 (4. hypogaea)
Resveratrol-4'-O- tal 1 (S. espanaensis) /
B. (Choi et
glucoside YjiC UDP-Glu Tyrosine . coli 4cl 1 (S. coelicolor) / sts | 1.5 1,2
) licheniformis al., 2014)
(Resveratroloside) 1 (4. hypogaea)
Resveratrol-glucosides Apgi / Azwt / 4CL 1 (N.
g Pg T 1, 2, 3, | (Thuan et
(Piceid/Polydatin  and | PaGT3 P. americana | UDP-Glu p-coumaric acid . coli tabacum) / STS 1 (V. | 92 45 1., 20180)
, al., c

Resveratroloside)

vinefera) |/ hasC 1 (S.
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zooepidemicus)

S.
Resveratrol-3-O- (Renetal.,
GeaC chromofuscu | UDP-GIuA Resveratrol E. coli / 15 1
glucuronide 2022a)
s
S.
Resveratrol-4'-O- (Renetal.,
) GceaC chromofuscu | UDP-GIuA Resveratrol E. coli / 78 1
glucuronide 2022a)
s
A. )
) ) DCS 1 and CURS3 1 (C. (Singh et
Curcumin-glucoside CaUGT2 C. roseus UDP-Glu Feruloyl-CoA belladonn 32.6 1,2
amada) al., 2021)
a
Other phenolic glycosides-Vanillin, Tyrosol, Hydroquinone
3DSD 1 (P. pausiceta)
(Brochado
S. /ACAR 1t (Nocardia sp.)
UGT72E2 A. thaliana UDP-Glu Glucose 500 1,2 et al.,
cerevisiae | / PPTase 1 (E. coli) /
2010)
hsOMT 1 (H. sapiens)
Vanillin-4-O-glucoside
AADHG6 / 3DSD 1 (P,
pausiceta) / ACAR 1
(Hansen et
UGT72E2 A. thaliana UDP-Glu Glucose S. pombe (Nocardia sp.) / PPTase | 119 1,2 1., 2009)
al.,
1t (C. glutamicum) /
hsOMT 1 (H. sapiens)
R. Xue et
UGT72B14 UDP-Glu Tyrosol E. coli / 6.7 1
sachalinensis al., 2016)
Tyrosol-8-O-glucoside 4 AtyrR / ApykA / ApykF /
(salidroside) R. ApheA /ARO10 (Bai et al.,
UGT73B6 UDP-Glu hydroxyphenylpyruvat | E. coli 56.9 1,2,4
sachalinensis 1 (S. cerevisiae) / ADH 1 2014)
e

(E. coli)
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AushA/pgm 1/ galU 1/ 1, 2, 3, | (Liuetal.,
UGTS85A1 A. thaliana UDP-Glu Xylose E. coli 6,030
kdc4 1 (P, pastoris) 4,5 2018)
(Arend et
AS R. serpentina | UDP-Glu Hydroquinone E. coli / 250 1 L., 2001)
al.,
Hydroquinone glucoside
) UbiC 1 (E. coli)
(Arbutin) Y (Shang et
AS R. serpentina | UDP-Glu Glucose / MNXI T (C | 8,600 1,2
lipolytica al., 2020)
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3.6. Biosynthetic approaches for the production of bioactive polyphenolic O-glycosides
Although wild type strains are frequently used to generate novel polyphenolic
glycosides (Ren et al., 2022b), achieving efficient production can be challenging due to
limited NDP-sugars and low expression levels of endogenous glycosyltransferase in
these strains (Pandey et al., 2018). To overcome these challenges, five main strategies
have been employed to engineer the metabolic pathway in microorganisms for
biosynthesizing bioactive polyphenolic glycosides (Fig. 4a). Each method presents
opportunities and challenges related to NDP-sugar supply, metabolic burden,
expression levels, and cell growth. In this review, we summarize the advantages,
challenges, and efforts associated with each approach, providing insights for
researchers seeking to produce health-beneficial polyphenolic glycosides (Fig. 4b).

To begin with, introducing a heterologous GT into microbes (Method 1) is
commonly used approach to biosynthesize polyphenolic glycosides. Using a microbial
strain overexpressing a GT, the engineered production of polyphenolic glycosides is
easier to achieve due to the elevated enzyme levels. For instance, quercetin glucosides
and resveratrol glucuronides have been successfully produced by overexpressing a
glucosyltransferase and a glucuronyltransferase from B. bassiana ATCC 7159 and S.
chromofuscus ATCC 49982 in E. coli, respectively (Ren et al., 2022a; Ren et al., 2022¢).

However, some exogenous polyphenolic compounds are costly, which hinders the
industrial production of their corresponding glycosides. To solve this problem,
researchers successfully performed the de novo or semi-biosynthesis of polyphenolic

glycosides by co-expressing the aglycon biosynthetic gene cassette together with the
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dedicated GT in microorganisms (Method 2). An example is the engineered production
of kaempferol-3-O-rhamnoside from glucose by overexpressing a kaempferol
biosynthetic gene cassette and a rhamnosyltransferase from A. thaliana in E. coli (Yang
et al.,, 2014). This approach offers the advantage of reducing costs for expensive
substrates, but it also poses a disadvantage of increasing metabolic burden to the cells.
The use of multi-plasmid systems may further exacerbate this burden, as it requires
different antibiotics for fermentation to select the correct transformants, and the
expression of multiple enzymes demands large amounts of building blocks, reducing
power, and ATP. As an alternative, all genes can be cloned into a single vector to
minimize the use of antibiotics, but the cells still need to manage the additional
metabolic burden (Parajuli et al., 2015).

Complex biosynthetic engineering and the expression of several heterologous
genes can impose a significant burden on host cells, leading to low production titers of
target compounds. To mitigate the burden caused by multiple enzyme expressions in a
single engineered strain, synthetic microbial co-culture or polyculture techniques are
emerging strategies for producing polyphenolic glycosides (Method 3). Co-culture or
polyculture systems can distribute various biosynthetic genes into different strains.
Therefore, these individually manipulated strains can work together to balance the
building blocks and many other cofactors, thus achieving the effective production of
glycosides. It is a general approach to use a strain or multiple strains to biosynthesize
the sugar acceptor substrate that can be excreted to the culture medium, which is then

taken up by another engineered strain that contains the nucleotide sugar (intercellular)
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biosynthetic enzymes and the dedicated GT. Examples include the coculture system for
the production of apigenin-7-O-glucoside (Thuan et al., 2018a) and the polyculture
system for the production of anthocyanidin-3-O-glucoside (Jones et al., 2017).

To further increase the production titer of polyphenolic glycosides, researchers
have attempted to increase the pool of NDP-sugars. Flux rewiring of the sugar
biosynthetic pathway by deletion of genes in the competing pathways (Method 4) or
overexpressing endogenous and exogenous NDP-sugar biosynthetic genes in the host
(Method 5) are two common ways to increase the NDP-sugar supply. Representative
examples are the engineered production of quercetin-3-O-glucoside (Xia and Eiteman,
2017) and fisetin-3-O-glucoside (Parajuli et al., 2015), respectively. In Method 5,
various non-natural NDP-sugars can also be generated in the engineered strain for
producing unnatural flavonoid glycosides (Pandey et al., 2015). In some cases, codon
optimization of the introduced genes and upregulation of the copy number of the
expression plasmid are necessary for the efficient production of NDP-sugars (Cho et
al., 2016b).

All of the methods described above ultimately undergo scale-up using a bioreactor
or enlarged flask fermentation to achieve engineered production of target glycosides
(Fig. 4a). Fermentation engineering is a critical step to improve production titer, which
includes optimizing culture media, carbon and nitrogen sources, cultivation time, molar
concentration of substrates, agitation, dissolved oxygen, pH, temperature, and many
other factors. As the platform strain for producing diverse polyphenolic glycosides, E.

coli has a well exploited central carbon metabolic pathway and can produce various

56



1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

nucleotide sugars. Moreover, by introducing non-natural nucleotide sugar biosynthetic
pathways into E. coli, an increasing number of unnatural polyphenolic glycosides have
been synthesized to provide bioactive candidates for drug discovery. Therefore, we
summarize the biosynthetic pathways of common NDP-sugars in the following section.
In addition, enzyme engineering or direct evolution of GTs to increase the production
titer or expand the chemical reservoir of polyphenolic O-glycosides will also be
discussed.
Fig. 4
4. Biosynthetic pathways of diverse nucleotide sugar donors and enzyme
engineering of GTs for the production of various polyphenolic glycosides
4.1. Biosynthetic pathways of diverse nucleotide sugar donors

Nucleotide sugars commonly serve as sugar donors for glycosylation. The
phosphonucleotidyl moiety in the nucleotide sugars not only works as the leaving group
during glycosylation but also functions as the recognition target for GTs. Although
nucleotide monophosphate (NMP) sugars such as cytidine monophosphate (CMP)
sugar can be used as an activated monosaccharide, nucleotide diphosphate (NDP) sugar
is the most well-researched activated monosaccharide that can be used by GTs in the
cells, including uridine diphosphate (UDP) sugar, deoxythymidine diphosphate (TDP
or dTDP) sugar, adenosine diphosphate (ADP) sugar, cytidine diphosphate (CDP) sugar,
and guanosine diphosphate (GDP) sugar. Among them, UDP sugars are the most
common sugar donors (Thibodeaux et al., 2008).

The diversity of nucleotide sugars is limited in plants because they only contain
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common nucleotide sugars, such as UDP-glucose, UDP-glucuronic acid, UDP-
rhamnose, UDP-xylose, and UDP-arabinose (Bowles et al., 2006). Therefore, it is of
great interest to expand the pool of NDP-sugars, including generating unnatural sugar
donors, to create structural diversity in polyphenolic glycosides products (Blanchard
and Thorson, 2006; Thibodeaux et al., 2007; Thibodeaux et al., 2008; Zheng et al.,
2022). On the other hand, insufficient formation of NDP-sugars can result in low
production titer of desired glycosides. Hence, engineering strategies have been applied
to introduce active NDP-sugar formation routes into microbial hosts.

Currently, there are three main pathways to generate common natural nucleotide
sugar donors, namely, the synthase pathway, phosphorylase pathway, and kinase
pathway (Fig. 5). (1) the synthase pathway directly forms nucleotide sugar from a
disaccharide. For example, UDP-glucose can be condensed from UDP and sucrose
under the catalysis of sucrose synthase (SUS). UDP is biosynthesized from 6-
phosphogluconolactone through the pentose phosphate pathway, and 6-
phosphogluconolactone is generated from glucose 6-phosphate (G-6-P) via G-6-P
dehydrogenase (Zwf) (Fig. 6). Another example is trehalose synthase, which can
generate UDP-glucose directly from trehalose (Masada et al., 2007; Ryu et al., 2011);
(2) the phosphorylase pathway uses inorganic phosphate to cleave disaccharides for
producing activated sugar 1-phosphate without the consumption of ATP. Then, sugar 1-
phosphate can be subsequently coupled with a nucleotidylyltransferase to yield the
corresponding NDP-sugar (Desmet and Soetaert, 2012). Glucose 1-phosphate (G-1-P)

and its corresponding monosaccharide can be formed by sucrose phosphorylase
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(Sprogee et al., 2004), cellobiose phosphorylase (de Groeve et al., 2011), or
maltodextrin phosphorylase (Nahalka, 2008). Specifically, glucose and G-1-P can be
generated from cellobiose via cellobiose phosphorylase (CBP). Similarly, fructose and
G-1-P can be formed from sucrose via sucrose phosphorylase (BaSP) (Fig. 6). (3) The
kinase pathway uses both kinase and nucleotidylyltransferase to form NDP-sugars.
Kinases are normally ATP-dependent and use monosaccharides to generate sugar 1-
phosphate. Phosphosugar mutases are often needed to convert sugar 6-phosphate into
sugar 1-phosphate.

Each of these three pathways provides advantages and drawbacks with respect to
the generation of NDP-sugars. UDP is considered to be a product inhibitor of UDP-
glucosyltransferase (Masada et al., 2007; Michlmayr et al., 2015). All three pathways
can recycle the UDP released from the glycosylation process. The difference is that the
synthase pathway can recycle UDP directly to generate UDP-glucose, which can further
increase the glycosylation reaction rate (Masada et al., 2007). However, equilibrium
constants of many synthases, such as cellulose synthase or lactose synthase, are
unfavorable, which restricted the synthesis of NDP-sugars (Field, 2011). Low affinity
of these synthases to corresponding disaccharide further impede the generation of NDP-
sugar. For example, the K,, value (for trehalose) of the trehalose synthase from
Pyrococcus horikoshii is 25 mM (Ryu et al., 2011). Similarly, the K, value (for sucrose)
of the sucrose synthase from Solanum tuberosum L. is 92 mM (Romer et al., 2004).
Compared to sucrose synthase, sucrose phosphorylase has much higher affinity to

sucrose with a K, value of around 1 mM (Aerts et al., 2011), making it more efficient
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to produce NDP-sugars. Monosaccharides such as fructose produced from sucrose by
sucrose phosphorylase can make the strains more tolerable to acidic conditions and
osmotic stress (De Bruyn et al., 2015a). The synthase and phosphorylase routes can
generate monosaccharide (such as glucose and fructose) that could be used as carbon
source to maintain cell growth while producing NDP-sugars. Nevertheless, the kinase
pathway is still the most widely used route in both in vitro and in vivo systems to
generate NDP-sugars, not only because many promiscuous kinases are discovered, such
as galactokinase (Zou et al., 2012) and N-acetylhexosamine kinase (Nishimoto and
Kitaoka, 2007), but also many NDP-sugars are produced from this pathway, such as
dTDP-D-glucose and UDP-N-acetylglucosamine, which can be used as the
intermediates to further generate other NDP-sugars (Kim et al., 2012b). Therefore, in
the following section, our primary focus is on the kinase pathway, which plays a crucial
role in synthesizing various NDP-sugars.
Fig. 5

The ability of microorganisms such as E. coli to naturally synthesize diverse
endogenous nucleotide sugars provides a significant advantage for the biosynthesis of
various glycosides in engineered microbes. This eliminates the need to purchase
expensive nucleotide sugars for glycoside production. Extracellular glucose is
transported into cells via glucose facilitator diffusion protein (GIf) and subsequently
phosphorylated to G-6-P by hexokinase (Glk), an important precursor for various NDP-
sugars. G-6-P is converted into G-1-P by phosphoglucomutase (Pgm). Moreover, G-1-

P can be produced directly from glucose by anomeric hexose kinase (Ahk). Then, G-1-
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P and uridine triphosphate (UTP) are condensed to form UDP-glucose with the help of
G-1-P uridylyltransferase (GalU or UgpA). Most NDP-sugars are synthesized from
three biosynthetic pathways: (1) formation of UDP-sugars through the UDP-glucose
pathway, which starts from G-1-P via G-1-P uridylyltransferase (GalU), including
UDP-D-glucose, UDP-D-galactose, UDP-D-glucuronic acid, UDP-D-galacturonate,
UDP-D-xylose, UDP-D-arabinose, UDP-L-rhamnose, and UDP-4-deoxy-4-
formamido-L-arabinose; (2) synthesis of dTDP-sugars through the dTDP-glucose
pathway, which are also biosynthesized from G-1-P but by the function of G-1-P
thymidylyltransferase (Tgs), including dTDP-L-rhamnose, dTDP-6-deoxy-L-talose,
dTDP-6-deoxy-D-allose, dTDP-4-amino 4,6-dideoxy-D-galactose, and dTDP-3-amino
3,6-dideoxy-D-galactose; (3) formation of amino UDP-sugars via the fructose-6-
phosphate pathway. This starts from G-6-P by G-6-P isomerase (Pgi), and G-6-P can be
converted into UDP-N-acetyl-glucosamine and its many derivatives (Fig. 6).
Fig. 6

The UDP-glucose pathway is the most extensively investigated route for the
biosynthesis of various common UDP-hexoses and UDP-pentoses. This pathway
begins with UDP-glucose that is further modified to produce UDP-galactose, UDP-
glucuronic acid, UDP-arabinose, and UDP-xylose through various biosynthetic steps.
The conjugation between UDP-sugar and the aglycon leads to the formation of various
glycosides. Additionally, UDP-glucose can be epimerized to UDP-galactose by the
catalysis of UDP-glucose 4-epimerase (GalE). UDP-Glucose can also be oxidized to

UDP-glucuronic acid by UDP-glucose dehydrogenase (Ugd), which can be further
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converted to UDP-xylose and UDP-arabinose by UDP-glucuronic acid decarboxylase
(CalS9) and UDP-xylose 4-epimerase (Uxe), respectively. Moreover, UDP-glucuronic
acid can also be converted to UDP-galacturonate by UDP-glucuronic acid 4-epimerase
(Gla) and even amino sugars like UDP-4-deoxy-4-formamido-L-arabinose (UDP-L-
Ara4FN) with the help of UDP-L-Ara4N formyltransferase/UDP-GIcA C-4"-
decarboxylase (ArnA) and UDP-1-Ara40O C-4" transaminase (ArnB). By the action of
UDP-rhamnose synthase (Rhm), UDP-rhamnose is generated from UDP-glucose;
however, this pathway only exists in plants, not bacteria (Fig. 7).
Fig. 7

dTDP-Glucose is synthesized from G-1-P by G-1-P thymidylyltransferase (Tgs)
for the synthesis of other dTDP-sugars, including dTDP-rhamnose, dTDP-talose,
dTDP-allose, and dTDP-deoxyaminose, which are all biosynthesized from the
intermediate dTKDG. Rhamnosides, with the thamnose moiety from dTDP-rhamnose
attached on various aglycones, are the most well-studied due to their diversity in nature.
First, dTDP-glucose can be converted into dTDP-rhamnose by dTDP-glucose 4,6-
dehydratase (Dh), dTDP-4-keto-6-deoxyglucose 3,5-epimerase (Epi), and dTDP-
glucose 4-ketoreductase (Kr). When Kr is replaced by TIl, which encodes dTDP-6-
deoxy-L-lyxo-4-hexulose reductase, dTDP-6-deoxy-L-talose is formed. dTDP-Glucose
can also be transformed into dTDP-6-deoxy-allose by the action of GerFK, encoding
both dTDP-hexose 3-epimerase and dTDP-4-keto-6-deoxyglucose reductase. In
addition, dTDP-glucose can be used as the precursor for the biosynthesis of various

dTDP-deoxyamino sugars such as dTDP-fucosamine by relative enzymes, including
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dTDP-4-dehydro-6-deoxy-D-glucose-4-aminotransferase (GerB, WecE, and RffA),
dTDP-6-deoxy-D-hex-4-ulose isomerase (FdtA), and dTDP-6-deoxy-D-xylohex-3-
ulose aminase (FdtB) (Fig. 8).
Fig. 8

The fructose-6-phosphate pathway can synthesize the nucleotide amino sugar
UDP-N-acetyl-glucosamine by the consecutive actions of fructose-6-phosphate
transaminase (GlmS), phosphoglucosamine mutase (GlImM), glucosamine-1-phosphate
N-acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase (GlmU).
UDP-N-Acetyl-glucosamine  can  be  transformed into = UDP-N-acetyl-
glucosaminuronate by UDP-N-acetyl-glucosamine dehydrogenase (WbpA) or UDP-N-
acetyl-galactosaminuronate by UDP-N-acetylglucosamine 4-epimerase (GalE2) and
UDP-N-acetyl-galactosamine dehydrogenase (WbpO). UDP-N-Acetyl-
glucosaminuronate can be further converted into UDP-N-acetyl-xylosamine by UDP-
N-acetylxylosamine synthase (UXNACcS). Moreover, the intermediate UDP-N-acetyl-
glucosamine can also be converted into UDP-quinovosamine by UDP-N-
acetylglucosamine 4,6-dehydratase (Pdeg) and UDP-4-reductase (Preq). Fructose-6-
phosphate can also be converted into fructose 1,6-diphosphate by fructose-6-phosphate-
I-phosphotransferase (PfkA) to be further metabolized in the Embden-Meyerhof-
Parnas pathway (Fig. 9).
Fig. 9

E. coli contains various nucleotide diphosphate (NDP)-sugars that play a critical

role in the biosynthesis of cell wall components and other structural elements. However,
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physiological concentrations of natural NDP-sugars in the cells are generally low and
they are mainly for cell growth and maintenance, such as cell wall peptidoglycan
synthesis (Zha and Koffas, 2017). To address this limitation, microbial cells are often
modified to increase the pool of NDP-sugars, which promotes the production of
polyphenolic glycosides. In engineered strains, an expanded NDP-sugar pool is
necessary to balance cell growth and physiology while simultaneously producing the
desired glycosides. Overexpressing NDP-sugar biosynthetic genes in the engineered
strain is an effective approach to producing polyphenolic glycosides as described above.
Another important approach involves preventing precursors from being converted into
biomass or flowing into other irrelevant pathways, instead diverting the flow of flux
towards the target NDP-sugars. some representative examples include deleting the
genes for G-6-P dehydrogenase (zwf), which diverts G-6-P to 6-phosphogluconolactone
for further processing in the pentose phosphate pathway; UDP-glucose hydrolase
(ushA), which hydrolyzes UDP-glucose into glucose and UDP; and glucose-1-
phosphatase (agp), which redirects glucose-1-phosphate back into glucose.
4.2 Enzyme engineering of GTs

GTs can be classified into three types based on their 3D structures: GT-A, GT-B,
and GT-C (Liang et al., 2015). Both GT-A and GT-B types contain a Rossmann-like
(B/a/B) folded domain that binds nucleotides. However, GT-A GTs have only one
Rossmann-like fold and typically require divalent cations for activity. The NDP-sugar
binding region of GT-A GTs features a conserved DxD motif that binds divalent metal

ions (Mg?" or Mn?"), which are essential for activating catalysis and stabilizing the
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negative charge on the leaving group (phosphate group). On the other hand, GT-B GTs
have two Rossmann-like folds and typically lack relevant conserved domains like the
DxD motif. They are metal-ion-independent proteins that do not require divalent
cations for activity. However, divalent cations can facilitate the product release for few
GT-B type GTs (Chen et al., 2012; Lariviere et al., 2003). GT-C type GTs have complex
folds with multiple transmembrane a-helices and use lipid-linked sugar donors. GT-C
type GTs (such as oligosaccharyltransferases) are less studied compared to the other
two types (Liang et al., 2015; Moremen and Haltiwanger, 2019).

Plant UGTs belong to the GT1 family based on their amino acid sequences and are
further classified as GT-B GTs (GUO et al., 2021; Yang et al., 2023). The N- and C-
terminal domains of GT-B GTs bind sugar acceptor and sugar donor, respectively. These
binding sites are located in the cleft region between the two domains, each of which
features a central B-sheet flanked by a-helices on both sides (Wang, 2009). The C-
terminal domain of GT-B GTs has a highly conserved plant secondary product
glycosyltransferase (PSPG) motif which is involved in the recognition of the UDP-
sugar (Chen et al., 2021). The N-terminal domain of GT-B GTs is located in a
hydrophobic pocket and is imperative for structural diversity because of the loose
binding with the aglycone (Yao et al., 2022). Contrary to retaining GTs, plant UGTs are
inverting GTs (McGraphery and Schwab, 2020) which invert the configuration of the
anomeric (C1) linkage of the NDP-sugar donor during the sugar transfer process (for
example, from NDP-a-sugar to p-glycoside) by catalyzing an Sn2-like single
displacement reaction (Liang et al., 2015).
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The mechanisms of O-GTs differ from those of C-, N-, and S- GTs in terms of
nucleophile behavior in the catalytic site (Yao et al., 2022). To form new O-glycosidic
bonds, GTs initially bind the sugar-acceptor substrate and orient a specific hydroxyl
group from the polyphenolic compound. A catalytic base deprotonates the nucleophile
hydroxyl group of the sugar-acceptor substrate, typically using a histidine residue
located in the N-terminal domain of most UGT structures. To stabilize the histidine and
balance its charge after deprotonation of the sugar-acceptor, the adjacent aspartate
residue forms a hydrogen bond with the histidine residue. Next, the nucleophile, which
is the sugar-acceptor substrate with a deprotonated hydroxyl group, attacks the
anomeric (C1) carbon of the sugar-donor substrate and displaces the nucleotide moiety
of the leaving group from the opposite face. This process leads to an inversion of the
anomeric configuration of the product (Breton et al., 2012) (Fig. 10a).

In heterologous biosynthetic pathways, wild type GTs can sometimes exhibit low
catalytic activity, produce a mixture of glycosides, and have strict substrate specificity
(Li et al., 2020). Additionally, many GTs are prone to poor stability and functional loss
due to their high free energy state. Surface residue mutations have been shown to reduce
enzyme lability and extend the enzyme's catalytic lifetime, thereby improving catalytic
efficiency without altering the ability to bind substrates (Choi et al., 2021). Therefore,
considering the structures and mechanism of plant UGTs, different approaches of
protein engineering have been developed to facilitate UGT-mediated glycosylation (Fig.
10b), including improved catalytic activity, product regioselectivity, and expanded

substrate specificity.
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Fig. 10
4.2.1. Improved catalytic activity

It is commonly accepted that factors such as the size of the binding pocket are
crucial for enhancing catalytic efficiency in flavonoid glycosylation. To this end, Singh
et al. performed enzyme engineering on WsUGT73A16 from Withania somnifera. The
A337C mutant exhibited around 2.6-fold improved catalytic efficiency toward the
sugar-acceptor (baicalein) by increasing the stability of the PSPG motif through the
formation of a disulfide bridge with C355. Similarly, the Q339A mutant showed
approximately 6.8-fold increased catalytic efficiency toward sugar-donor (UDP-
glucuronic acid) by enlarging the binding pocket of WsUGT73A16 (Singh et al., 2018).
In another work, the quadruple VFAH mutant of MiCGT from Mangifera indica
displayed 120-fold enhanced catalytic activity to quercetin than the wild type.
Mutations at W93, F191 and R282 expanded the binding pocket, while a mutation at
R282 also facilitated the deprotonation of the required substrate. The whole complex
structure was stabilized by mutating V124 (Wen et al., 2021). These examples serve as
valuable case studies for improving the glycosylation efficiency of native substrates,
with broad implications for enhancing industrial processes that require GTs as
enzymatic catalysts. Improved binding interactions between enzymes and substrates
can also lead to enhanced catalytic activity. A notable example of this principle is the
QI19A mutation in PaUGT1 from Plagiochasma appendiculatum, which exhibited a
3.4-fold increase in catalytic efficiency towards quercetin and a 0.8-fold increase

towards apigenin compared to the wild type enzyme. As a result, this mutant was able
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to produce flavonol 7-O-glucosides in E. coli with an over 70% substrate conversion
rate. The docking analysis revealed that the deeper position of the binding pocket
facilitated the bonding of the two ligands (sugar-donor and acceptor), leading to a more
favorable orientation for enhanced activities (Zhu et al., 2020). The point mutation
V200E of UGT85H2 from Medicago truncatula resulted in a significant improvement
in catalytic efficiency for kaempferol (15-fold) and biochanin A (54-fold). Further
studies through molecular modeling and docking demonstrated that this improvement
was due to stronger interactions, specifically the formation of a hydrogen bond between
residue E200 in the mutant V200E and 4'-OH of kaempferol and 7-OH of biochanin A
(Modolo et al., 2009). Therefore, expanding the binding pocket and strengthening
interactions between the enzyme and substrate are two main mechanisms for improving
catalytic activity. Additionally, the orientation of substrates also plays a vital role in
facilitating glycosides production. For example, in a crude enzyme experiment of
PhUGT from Petunia hybrida, the F368T variant showed an enhanced conversion rate
towards both quercetin (6.5-fold) and UDP-N-acetyl-D-galactosamine (6.5-fold).
Further molecular docking studies revealed that the mutation of F368 may have
influenced the orientation of UDP-N-acetyl-D-galactosamine and quercetin residue,
thereby regulating the generation of the glycosylated product (Xu et al., 2022).
4.2.2. Product regioselectivity

By manipulating the entrance size and hydrophobicity of the catalytic regions, as
well as strengthening interactions between the substrate and enzyme, it is possible to

achieve regioselectivity in glycosylating target substrates. Li et al. successfully
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generated three mutants of UGT74AC2 from Siraitia grosvenorii by using Focused
Rational Iterative Site-specific Mutagenesis (FRISM). The three mutants, namely 3,7G-
M3, 3G-M2, and 3,7G-M1, were able to control the regioselectivity of silybin A O-
glycosylation. In comparison to the wild type that produced an almost equal distribution
of three glycosides, these mutants produced specific glycosides with high selectivity:
3-O-glycoside (3G, 94%), 7-O-glycoside (7G, >99%), and 3,7-O-diglycoside
(3,7G, >99%). By utilizing protein-ligand docking based on the crystal structure of
UGT74AC2, the computational analysis has revealed that the reaction regioselectivity
can be influenced by several factors, including the size of the binding pocket, steric
hindrance, and hydrophobicity. In the 3G-WT model, the steric hindrance between
residue Y392 and silybin was observed. To address this issue and expand the binding
pocket, the Y392 residue was substituted with a smaller threonine residue.
Regioselective production of silybin 3-O-glycoside was improved through hydrophobic
interaction with the A ring of silybin by introducing a T149V mutation in the 3G-M3
model. Regioselective production of silybin 7-O-glycoside was achieved in the 3G-M2
model. By enlarging residue 200 in UGT74AC2, we were able to decrease the size of
the active pocket, thereby preventing silybin from reorienting within the binding site.
the proximity of the phenol group in residue Y11 to the D ring of silybin 7-O-glycoside
compensated for m-m interactions, thus promoting the production of silybin 3,7-O-
diglycoside (L1, J. et al., 2021). Besides the size of the binding pocket, steric hindrance
can also affect the regioselectivity of glycoside production. Li et al. achieved the

production of flavonoid disaccharides by introducing mutations to GTI1 from
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Cyclocarya paliurus. They removed the extra f-sheet that functions as a cap to prevent
the substrate from entering the binding pocket by deleting the V309-320 residues (Li et
al., 2019). These findings demonstrate that enzyme engineering of UGTs is an effective
means of producing specific polyphenolic glycosides, rather than a mixture of related
products. Additionally, reducing steric hindrance at the entrance of the catalytic domain
is a promising technique for producing relevant glycosides.

4.2.3. Expanded substrate specificity

Broadening both acceptor and donor substrate specificity is an effective enzymatic
tool for producing a wide range of polyphenolic glycosides. Recent examples of
successful enzyme engineering have provided a blueprint for the development of this
technique. For instance, a benchmark study involved the point mutation of Cys142 in
PaGT?2 from Phytolacca americana, which expanded its substrate specificity from its
native substrate piceatannol to include resveratrol. Specifically, two structure-guided
point mutations, namely, C142A and CI142F, guided the regioselectivity for the
production of resveratrol 4'-O-B-glucoside or resveratrol 3-O-B-glucoside, respectively
(Maharjan et al., 2020). This study demonstrates that crystal structure and molecular
docking of GTs could facilitate mutagenesis studies.

Interestingly, shrinking the binding pocket may switch target sugar acceptor types
of GTs. For instance, three mutants G87F, 1199F, and L204F of SrtUGT76G1 from
Stevia rebaudiana change the sugar acceptor substrate from diterpene to flavonoid (Liu
et al., 2020). Broadening the substrate specificity of donor molecules can be an effective

strategy for reducing costs, as some sugar donor species may be rare or expensive.
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In addition to broadening acceptor substrate specificity, various enzyme
engineering approaches have been used to widen the substrate specificity of donor
molecules. Structural and mutational analysis of UGT89C1 from A. thaliana indicated
that His357 is one of four main residues involved in the recognition of sugar donor
UDP-B-L-rhamnose. The site-directed mutagenesis of the histidine residue (H357Q) in
the donor binding site of UGT89C1 enabled the enzyme to utilize UDP-glucose instead
of UDP-B-L-rhamnose as the sugar donor (Zong et al., 2019). Amino acid exchanges
between two GTs may also expand the range of sugar donors. For example,
AtUGT78D2 and AtUGT78D3 from A. thaliana use UDP-glucose and UDP-arabinose,
respectively. Through amino acid exchanges between AtUGT78D2 (76, 228, and 336)
and AtUGT78D3 (73, 225, and 335), AtUGT78D2 acquired the ability to utilize UDP-
arabinose. Further molecular modeling studies have shown that mutating methionine to
alanine at position 288 is responsible for the observed effect (Kim et al., 2013).
Therefore, endogenous donor sugars in the host cell are important materials for whole
cell biocatalysts, and mutants of GTs with expanded sugar donor substrate specificity
can facilitate the production of bioactive glycosides.

4.2.4 Other properties

In some cases, GT engineering strategies have yielded enzymes with entirely
modified glycosylation properties, providing a distinct range of functionalities. He et
al. elucidated the crystal structure of TcCGT1 from Trollius chinensis that has broad
substrate specificity. Site-directed mutagenesis conducted at two residues (I94E and

G284K) in the acceptor site changed the glycosylation pattern from C-glycosylation to
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O-glycosylation of flavonoids (He et al., 2019). It is interesting that point mutations
may swithch enzyme's activity from glycosyltransferase to glucosidase. The single
mutation V200E of UGT85H2 from Medicago truncatula converted kaempferol 3-O-
glucoside into kaempferol. The molecular docking study showed that the acidic residue
Glu200 initiates the reverse reaction, and its side chain plays a role in extending it to
the deglycosylation region of the enzyme (Modolo et al., 2009). Further theoretical
work is required to fully comprehend the correlation between specific residues and their
functions on GTs, as well as to investigate how engineering strategies can be used to
manipulate glycobiology processes. The examples discussed above demonstrate the
wide range of glycosylation property changes that can be achieved through enzyme
engineering strategies.

While structural studies are crucial in explaining the catalytic and property changes
of engineered GTs, obtaining the crystal structure of GTs to understand the key residues
remains a time-consuming and challenging process. The emerging tools such as
AlphaFold could provide some help in predicting enzyme structures for rational
engineering of GTs. Homology modeling and molecular docking between GTs and
substrates, along with structure-guided directed evolution methods such as FRISM and
iterative saturation mutagenesis (ISM), offer promising approaches to achieving precise
mutations at critical amino acid residues for desirable enzyme properties (Akere et al.,
2020). While pertinent engineering studies have shown similar trends in enhancing GT
properties, it is worth noting that mutating specific residues outside of the active sites,

such as the binding pocket or PSPG motif, can also improve GT activities (L1, J. et al.,
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2020). Moreover, it was found that catalytic bases during glycosylation are not always
histidine or aspartate residues (Noguchi et al., 2007). As a result, new techniques are
required to track the dynamic changes of GT structure during glycosylation, allowing a
more thorough exploration of the unique mechanisms of GTs. This, in turn, will
facilitate protein engineering for the creation of new GTs with more customized
functions. With the help of diverse and highly efficient GTs, it is expected that large-
scale industrial applications of bioactive polyphenolic glycosides can be achieved in
the foreseeable future.

5. Conclusions and Perspectives

Phytochemicals, including polyphenolic compounds, are important secondary
metabolites, and their biological activities can be modulated by sugar moieties (De
Bruyn et al., 2015b). When engineering the biosynthesis of plant-derived glycosides in
microbes, it is noteworthy that the biosynthetic mechanisms and types of NDP-sugars
can vary between plants and bacteria. For example, plants and bacteria can form
different nucleotide-rhamnoses. Specifically, UDP-glucose can be directly transformed
into UDP-rhamnose by rhamnose synthase (RHM) in plants. By contrast, three
enzymes are needed to convert dTDP-glucose into dTDP-rhamnose in bacteria (Reiter,
2008). What's more, both plants and bacteria possess unique NDP-sugar biosynthetic
pathways. For instance, bacteria have a distinctive nucleotide sugar biosynthetic
pathway that begins with glucosamine-1-phosphate, which is a precursor to UDP-N-
acetylglucosamine, whereas plants do not have this pathway (Samuel and Reeves,
2003). Enzymes required for biosynthesizing bacterial nucleotide sugar derivatives are
also exclusive to bacteria (De Bruyn et al., 2015b). Nevertheless, UDP-apiose synthase,
which converts UDP-glucuronate into UDP-apiose, is only present in plants (De Bruyn
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et al., 2015b). Therefore, to further expand the repertoire of health-benefiting and novel
polyphenolic glycosides, it is critical to combine biosynthetic tools from various
sources including plants, microbes, and even animals. For example, we are presently
investigating the generation of mono- and di-glycosides of the anti-tuberculosis agent
chlorflavonin for improved bioavailability by sequentially overexpressing two different
GTs from both plant and microbial sources (Rehberg et al., 2018). To achieve this goal,
we will utilize two recently characterized microbial GTs that exhibit broad substrate
specificity in combination with versatile plant glycosyltransferases from A. thaliana
(Ren et al., 2022a; Ren et al., 2022c).

Biological glycosylation produces less complex mixtures compared to chemical
synthesis and allows for improved control of the regioselectivity and stereoselectivity
of target glycosides (Gantt et al., 2011). However, the diversity of NDP-sugar
biosynthetic pathways in microbes is a double-edged sword, as certain GTs may exhibit
promiscuity and produce unwanted byproducts. For example, two byproducts,
quercetin-3-O-glucose and quercetin-3-O-N-acetylglucosamine were produced when
Cho et al. attempted the biosynthesis of quercetin-3-O-N-acetylxylosamine (Cho et al.,
2016b). The concentration of endogenous NDP-sugars plays a crucial role in the final
production titer of target glycosides. To minimize undesired byproducts, two possible
approaches can be pursued. Firstly, researchers can manipulate the nucleotide sugar
biosynthetic pathways to enhance the supply of the desired NDP-sugar by deleting the
genes in the competing pathways. Alternatively, directed evolution of GTs can be
performed to enhance their catalytic efficiency on different substrates and improve their
specificity on both sugar donors and acceptors (Osmani et al., 2008). Reducing the
metabolic burden in engineered strains due to de novo biosynthesis of target

polyphenolic glycosides is another long-term issue to address. An effective approach is

74


https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.7b00055

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

to insert heterologous genes into the host genome, as demonstrated in the production of
cyanogenic glycoside dhurrin in yeast (Kotopka and Smolke, 2019). CRISPR/Cas9
genome editing can also be used for gene deletion or insertion to facilitate the
production of polyphenolic glycosides in microbes (Moon et al., 2020).

Many GTs, including those from A. thaliana, have been characterized for
biosynthesizing glycosides. However, future work should aim to explore novel GTs
from new sources, especially microbes, to expand the enzyme toolbox for glycosylation.
Microbial GTs often possess broad substrate specificity, offering a more convenient
method for producing diverse glycosides for drug candidate and pro-drug development.
Further understanding of microorganisms' biosynthetic machinery will allow rational
engineering for the efficient production of corresponding glycosides. For example,
while E. coli is commonly used for producing polyphenolic glycosides, S. cerevisiae
has also been successfully engineered as a platform strain for glycoside production by
deleting endogenous glucosidases and rewiring the metabolic flux to desired products
(Wang et al., 2016). Research has shown that different quercetin glycosides are
produced when expressing the same GT in E. coli and S. cerevisiae (Ren et al., 2022c¢).
Thus, exploring different microbial hosts to express GTs is also useful for generating

diverse glycosides.

Various methods have been developed to produce polyphenolic glycosides in
microbes and even plants, including manipulation of endogenous metabolic pathways,
overexpression of heterologous genes, and site-directed mutagenesis of dedicated GTs.
However, most of the studies discussed in this review were performed at the laboratory
scale, often in flasks or benchtop bioreactors. Although some polyphenolic glycosides
have been produced at gram scale, most of the current examples are still at milligram
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or sub-milligram scale, which is not practical for industrial processes. Therefore, future
industrial production of these compounds will depend heavily on continued research to
improve growth and production efficiency, including the development of efficient
substrate influx and product efflux in engineered strains, identification of transporters
for intermediates in polyculture systems, enzyme evolution, and fermentation
optimization. While some common phenolic glycosides such as glucosides and
rhamnosides have been studied for their bioactivities, there is still much to be explored
regarding the health benefits of less common glycosides such as allosides, talosides,
deoxyaminosides, and glucosaminosides, which will help understand how
glycosylation affects their biological activities. Additionally, the glycosylation of
lignans and uncommon flavonoids such as chalcones and neoflavones is an interesting
area for future research. It is important to note that the antioxidant activity of
polyphenolic glycosides has mainly been determined through in vitro studies (Williams
et al., 2004), and further in vivo studies are necessary to fully understand their potential
health benefits.

In summary, polyphenolic glycosides represent a large group of bioactive
molecules with a diversity of health benefits and medicinal properties. Engineered
production of polyphenolic glycosides in microbes represents a promising way to
manufacture these valuable compounds in a cost-effective and sustainable way.
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Figure Captions

Fig. 1. Classification of plant polyphenolic compounds and representative structures.
The compounds in the parentheses are the typical examples of each subgroup. The
compounds in green boxes are included and described in the engineered production

section of this review.

Fig. 2. The effects of glycosylation on polyphenolic compounds. (a) Carbohydrate-
active enzymes for in vitro glycosylation; (b) General engineering strategy to generate
polyphenolic glycosides in vivo; (c) Biological properties of polyphenolic compounds
mediated by glycosylation; (d) Absorption and metabolism of dietary polyphenolic
glycosides.

Fig. 3. Methods of obtaining polyphenolic glycosides.

Fig. 4. Biosynthetic approaches to producing bioactive polyphenolic glycosides. (a)
Five main strategies to engineer the metabolic pathway in microorganisms for
biosynthesizing bioactive polyphenolic glycosides. (b) Key advantages and
disadvantages of five methods for producing polyphenolic glycosides in microbes.
Fig. 5. Three main pathways for common NDP-sugars. NTP: Nucleotide triphosphate;
NDP: Nucleotide diphosphate.

Fig. 6. Nucleotide sugar pathways for the biosynthesis of different glycosylated
polyphenols. The sugars present in the green rectangular boxes are the starter substrates.
Three blue ovals indicate three important branches. Three pathways present in the
yellow rectangular boxes are common routes for generating NDP-sugars with typical

examples. The sugar present in the pink box is a common intermediate for various NDP-
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sugars. Representative gene deletions are marked with “x.” Glf: Glucose facilitator
diffusion protein; Ahk: Anomeric hexose kinase; Glk: Hexokinase; Zwf: G-6-P
dehydrogenase; Pgi: G-6-P isomerase; Pgm or Nfa44530: Phosphoglucomutase; Agp:
Glucose  l-phosphatase;  UshA:  UDP-glucose  hydrolase; Tgs: G-1-P
thymidylyltransferase  (nucleotidylyltransferase); GalU or UgpA: G-1-P
uridylyltransferase (nucleotidylyltransferase); SUS: Sucrose synthase; BaSP: Sucrose
phosphorylase; CBP: Cellobiose phosphorylase; PyrE: Orotate
phosphoribosyltransferase; PyrF: Orotidine-5'-phosphate decarboxylase; PyrH:
Uridylate kinase; NDK: Nucleoside diphosphate kinase.

Fig. 7. Biosynthetic pathways of various UDP-sugars from UDP-glucose. The sugar in
the blue oval is the starting precursor. The sugar present in the pink box is the important
intermediate for various UDP-sugars. Green arrows indicate the last step to
biosynthesize glycosides by various GTs from different sources. The dashed arrow
indicates the pathway only existing in plants and is not present in the bacteria. Rhm or
MUM4: UDP-Rhamnose synthase; GalE or UGE: UDP-glucose 4-epimerase; Ugd or
CalS8: UDP-glucose dehydrogenase; Gla: UDP-glucuronic acid 4-epimerase; CalS9:
UDP-glucuronic acid decarboxylase; UXS: UDP-xylose synthase; Uxe: UDP-xylose 4-
epimerase; ArnA: UDP-L-Ara4N formyltransferase/UDP-GIcA C-4"-decarboxylase;
ArmB: UDP-L-Ara40 C-4" transaminase.

Fig. 8. Biosynthetic pathways of various dTDP-sugars from dTDP-glucose. The
sugar in the blue oval is the starting precursor. The sugar present in the pink box is a

common intermediate for various TDP-sugars. Green arrows are the last step to
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biosynthesize glycosides by various GTs. Dh: dTDP-glucose 4,6-dehydratase; Epi:
dTDP-4-keto-6-deoxyglucose 3,5-epimerase; Kr: dTDP-glucose 4-ketoreductase;
RfbD: dTDP-4-dehydrorhamnose reductase; Tll: dTDP-6-deoxy-L-lyxo-4-hexulose
reductase; GerB, WecE, and RffA: dTDP-4-dehydro-6-deoxy-D-glucose-4-
aminotransferase; FdtA: dTDP-6-deoxy-D-hex-4-ulose isomerase; FdtB: dTDP-6-
deoxy-D-xylohex-3-ulose aminase; GerFK: dTDP-hexose 3-epimerase and dTDP-4-
keto-6-deoxyglucose reductase.

Fig. 9. Biosynthetic pathways of UDP-sugars from D-fructose-6-phosphate. The
sugar in the blue oval is the starting precursor. The sugar present in the pink box is the
intermediate for various UDP-sugars. Green arrows are the last step to biosynthesize
glycosides by various GTs. PfkA: Fructose-6-phosphate 1-phosphotransferase; GImS:
Fructose-6-phosphate transaminase; GImM: Phosphoglucosamine mutase; GlmU:
Glucosamine-1-phosphate N-acetyltransferase and N-acetylglucosamine-1-phosphate
uridyltransferase; GalE2: UDP-N-acetylglucosamine 4-epimerase; WbpO: UDP-N-
acetyl-D-galactosamine  dehydrogenase; WbpA: UDP-N-acetyl-D-glucosamine
dehydrogenase; UXNAcS: UDP-N-acetylxylosamine synthase; Pdeg: UDP-N-
acetylglucosamine 4,6-dehydratase; Preq: UDP-4-reductase.

Fig. 10. Enzyme engineering of GTs for production of polyphenolic glycosides. (a)

Catalytic mechanism of O-GTs. (b) Common strategies for GT engineering.
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