

1 **Microbial glycosylation of antitubercular agent chlorflavonin**

2

3 Jie Ren, Jixun Zhan*

4

5

6 *Department of Biological Engineering, Utah State University, 4105 Old Main Hill,*
7 *Logan, UT 84322-4105, USA*

8

9 Correspondence: jixun.zhan@usu.edu

10

11 Short title: Microbial glycosylation of chlorflavonin

12

13

14

15

16

17

18

19

20

21

22

23 **ABSTRACT**

24 Flavonoids have shown health-benefiting properties such as antioxidative and
25 anti-inflammatory activities and are commonly used as nutraceuticals and
26 pharmaceuticals. Although flavonoids are predominantly identified from plants, several
27 filamentous fungal species have also been reported to produce bioactive flavonoids,
28 such as chlorflavonin from *Aspergillus candidus*, a novel halogenated flavonoid with
29 potent antifungal and antitubercular (anti-TB) activities. Unfortunately, the low water-
30 solubility of this molecule may hinder its bioavailability. Glycosylation is an effective
31 method to enhance the polarity of natural products and alter their physicochemical
32 properties. This work focuses on the development of novel water-soluble chlorflavonin
33 derivatives to combat the threat of drug-resistant tuberculosis. In this study, we first
34 increased the production titer of chlorflavonin in *A. candidus* NRRL 5214 by
35 optimizing the fermentation and purification processes. Next, chlorflavonin-5-*O*- β -D-
36 glucuronopyranoside (**1**) and chlorflavonin-7-*O*-4"-*O*-methyl- β -D-glucopyranoside (**2**)
37 were produced from chlorflavonin using *Streptomyces chromofuscus* ATCC 49982 and
38 *Beauveria bassiana* ATCC 7159, respectively. Compared to chlorflavonin (4.38 ± 0.54
39 mg/L in water), the water solubility of the two new glycosides was determined to be
40 117.86 ± 4.81 mg/L (**1**) and 124.34 ± 9.13 mg/L (**2**), respectively. This study provides
41 a promising method to create water-soluble glycosides of chlorflavonin for the
42 development of novel anti-TB drugs.

43 **Key words:** Flavonoids; Chlorflavonin; Antifungal; Antitubercular; Glycosylation

44 Flavonoids represent an important class of plant secondary metabolites with a variety
45 of biological functions in the developmental processes of hosts (1), including protection
46 of plants against UV radiation and phytopathogens, auxin transport, signaling, and
47 coloration (2-4). Flavonoids also possess antioxidant, antiviral, antimicrobial,
48 anticancer, anti-proliferative, anti-diabetic, anti-inflammatory and hepatoprotective
49 properties (5, 6). Therefore, flavonoids are important agents to prevent and treat various
50 diseases such as cancers, oxidant stress, obesity, diabetes, pathogenic bacteria,
51 hypertension, hyperlipidemia, inflammations, cardiovascular diseases, neurological
52 disorders and osteoporosis (7, 8).

53 Flavonoids are predominantly identified from plants in stems, fruits, seeds, and
54 other organs, and more than 9,000 structural identities have been characterized to date
55 (9). However, several filamentous fungal species were also reported to produce
56 uncommon flavonoids, such as chlorflavonin (3'-chloro-2',5-dihydroxy-3,7,8-
57 trimethoxyflavone) from *Aspergillus candidus* and *Acanthostigmella* sp. (10, 11),
58 aspergivones A (5-*O*-methyl-chlorflavonin) and aspergivones B (5-*O*-methyl-
59 dechlorochlorflavonin) from *A. candidus* (8), 5'-hydroxychlorflavonin from
60 *Aspergillus* sp. AF119 (12), as well as dechlorochlorflavonin and a bromine-containing
61 analog CJ-19,784 (3'-bromine-2',5-dihydroxy-3,7,8-trimethoxyflavone) from
62 *Acanthostigmella* sp. (11). Among them, chlorflavonin has attracted many researchers'
63 attention due to its antifungal and antibacterial activities.

64 The World Health Organization reported that resistance of bacteria to antibiotics
65 is a major global health challenge and it is important to explore new antibacterial agents

66 (13). Chlorflavonin is a novel halogenated flavonoid with stronger antifungal activity
67 against *Candida albicans* and *Aspergillus fumigatus* than the well-known antifungal
68 agent amphotericin B (11). Meanwhile, chlorflavonin exhibited significant *in vitro*
69 inhibitory activity against *Mycobacterium tuberculosis* with an MIC₉₀ of 1.56 μM, but
70 without cytotoxicity to human cell lines MRC-5 and THP-1 up to 100 μM. More
71 interestingly, chlorflavonin showed synergistic effects with the first-line antibiotics
72 isoniazid and delamanid on intracellular activity against infected human macrophages.
73 Therefore, the development of novel chlorflavonin derivatives is promising to combat
74 the threat of drug-resistant tuberculosis (TB), which is considered to be the main
75 approach to end the global TB pandemic (14).

76 Creating structural analogs of bioactive products is critical for the development
77 of new drugs. For example, a recent study showed that the new chemically synthesized
78 chlorflavonin analog, namely bromflavonin, exhibited improved anti-TB activity with
79 an MIC₉₀ of 0.78 μM (15). On the other hand, chlorflavonin, as well as many natural
80 flavonoids, have low water-solubility, which hinders their bioavailability and health
81 benefits (16, 17). Glycosylation is an effective method to enhance their polarity and
82 then alter physicochemical properties and find their new application in human diseases
83 (18, 19). In this work, we demonstrate that microbial strains can be used as an effective
84 tool to attach various sugar moieties to chlorflavonin and generate more water-soluble
85 glycosides.

86

87

88

MATERIALS AND METHODS

89 **General experimental procedures** Agilent 1200 HPLC instrument with an Agilent
90 Eclipse Plus-C₁₈ column (5 μ m, 250 mm \times 4.6 mm) was used to analyze and purify the
91 products. The samples were eluted with methanol-water (65:35 to 95:5, v/v, over 15
92 min, containing 0.1% formic acid) at a flow rate of 1 mL/min. Low-resolution ESI-MS
93 spectra were obtained on an Agilent 6130 single quadrupole LC-MS to confirm the
94 molecular weights of chlorflavonin and its glycosides. Purified compounds were
95 dissolved in deuterated dimethyl sulfoxide or methanol (DMSO-*d*₆ or CD₃OD) to
96 collect the NMR spectra on a Bruker Avance III HD Ascend-500 NMR instrument (500
97 MHz for ¹H NMR and 125 MHz for ¹³C NMR) located in the Department of Chemistry
98 and Biochemistry, Utah State University. The chemical shift (δ) values are given in
99 parts per million (ppm). The coupling constants (*J* values) are reported in hertz (Hz).
100 Compounds were purified through chromatography using normal phase silica gel (40-
101 60 μ m, VWR[®] Agela Technologies, USA), SephadexTM LH-20 (Cytiva, USA), and
102 HPLC with the gradient elution of methanol-water (20:80 to 95:5, v/v, over 30 min).
103 All solvents were purchased from Fisher Scientific. Milli-Q water was used throughout
104 this study.

105 **Strains, media, and culture conditions** *Aspergillus candidus* NRRL 5214,
106 *Streptomyces coeruleorubidus* NRRL B-2569, and *Streptomyces* sp. NRRL S-1521
107 were kindly provided by the United States Department of Agriculture ARS Collection
108 (NRRL). *Streptomyces chromofuscus* ATCC 49982, *Actinomadura hibisca* P157-2
109 (ATCC 53557), and *Beauveria bassiana* ATCC 7159 were purchased from the

110 American Type Culture Collection (ATCC). Actinomycete strains were routinely
111 grown in Yeast-Malt (YM) medium consisting of yeast extract (4 g/L), malt extract (10
112 g/L), and glucose (4 g/L) at 28 °C. *A. candidus* NRRL 5214 and *B. bassiana* ATCC
113 7159 were grown in Potato Dextrose Broth (PDB) at 28 °C.

114 **Quantitative analysis and optimization of chlorflavonin production** Standard curves
115 of chlorflavonin and dechlorochlorflavonin were used to calculate their production
116 titers in fermentation broth (FB), cell extract supernatant (CS), and cell extract
117 precipitate (CP) fractions at 350 nm in the *A. candidus* NRRL 5214 culture.
118 Quantitative analysis experiments were conducted in 250-mL Erlenmeyer flasks,
119 containing 50 mL of PDB with or without the supplementation of NaCl. The
120 experimental processes for quantitative analysis were described in the flow chart (Fig.
121 1). Briefly, *A. candidus* was cultivated in PDB medium at 28 °C using a rotary shaker
122 operating at 250 rpm. Following cultivation, the culture was filtered through cotton to
123 yield two fractions, namely, the filtrate (fermentation broth fraction of FB fraction) and
124 the mycelial solids. The filtrate was dried *in vacuo* at 39 °C and the residue was
125 dissolved in methanol and dimethyl sulfoxide (1:1 v/v) for HPLC quantitative analysis.
126 The mycelial solids were soaked in methanol and sonicated for 1 h. After centrifugation
127 at 4,000 ×g for 10 min, the cell debris was discarded, and the cell extract was dried *in*
128 *vacuo* on a rotavapor at 39 °C. The residue was recovered in methanol at room
129 temperature, which was then centrifuged at 13,000 ×g for 10 min. The supernatant (cell
130 extract supernatant fraction or CS fraction) and precipitate (cell extract precipitate
131 fraction or CP fraction) were subjected to HPLC quantitative analysis. Specifically, the

132 supernatant was directly used for HPLC, and the precipitate was dissolved in a mixture
133 of methanol and dimethyl sulfoxide (1:1, v/v) for analysis.

134 To optimize the production titer of chlorflavonin in CP fraction, cultures with
135 different NaCl concentrations (0.5%, 1%, 1.5%, 2%, 3%, 4.5%, and 6%) were tested
136 after 10 days of fermentation. Furthermore, the effect of cultivation time (6, 8, 10, 12,
137 14, 16, 18, and 20 days) was also investigated, by calculating production titer of
138 chlorflavonin for each 3 days after 6 days of fermentation. HPLC analysis with a
139 gradient mobile phase of methanol-water from 65% to 95% over 15 min was used for
140 quantitative analysis. All crude extracts after drying *in vacuo* were redissolved in a
141 DMSO-methanol mixture (20:80, v/v) and directly measured by using standard curves
142 to calculate the titers. All samples were performed in three replicates.

143 **Screening of different microorganisms for the glycosylation of chlorflavonin** To test
144 the ability of microorganisms to glycosylate chlorflavonin, we screened five strains,
145 namely, *S. coeruleorubidus* NRRL B-2569, *Streptomyces* sp. NRRL S-1521, *A. hibisca*
146 P157-2, *S. chromofuscus* ATCC 49982, and *B. bassiana* ATCC 7159. These
147 microorganisms were grown in 50 mL of YM or PDB medium in a rotary shaker at 250
148 rpm and 28 °C for 3 days. In total 4 mg of chlorflavonin dissolved in 50 µL of DMSO
149 was added into each 50 mL of culture. The cultures were incubated under the same
150 conditions for an additional 3 days. Then the fermentation broth (1 mL) was sampled
151 and centrifuged at 15,000 ×g for 10 min. The supernatant was analyzed by HPLC at
152 350 nm.

153 **Isolation of chlorflavonin and its glycosylated products** To isolate sufficient
154 chlorflavonin for biotransformation, *A. candidus* NRRL 5214 was cultivated in six 2-L
155 Erlenmeyer flasks, each containing 500 mL of PDB + 2.5% NaCl medium. After 14
156 days of fermentation, cultures were treated by following the procedures described in
157 the flow chart (Fig. 1). All CP fractions were combined and dried for normal phase
158 silica gel column chromatography, eluted with chloroform-methanol (10:1, v/v).
159 Chlorflavonin-containing fractions were combined and subjected to reverse phase
160 HPLC with gradient elution of methanol-water (65-95%, v/v, 0-15 min) for purified
161 chlorflavonin. To isolate the biotransformation products of chlorflavonin for structure
162 elucidation, *S. chromofuscus* ATCC 49982 and *B. bassiana* ATCC 7159 were
163 cultivated in 1-L Erlenmeyer flasks, containing 250 mL of YM or PDB medium. In
164 total, 20 mg of chlorflavonin was added for each biotransformation. After 3 days, both
165 cultures were centrifuged at 4,000 ×g for 10 min to collect the supernatant. The
166 collected fermentation broths were dried under reduced pressure at 39 °C, and the
167 residue was dissolved in 15 mL of 50% methanol-water (v/v). The samples were
168 subjected to fractionation using a silica gel column, eluted with a gradient of
169 chloroform-methanol (1:0 to 0:1, v/v). The product-containing fractions were filtered
170 and subjected to fractionation using a Sephadex LH-20 column, eluted with methanol-
171 water (1:1, v/v). The target fractions were combined and further separated by reverse
172 phase HPLC, and eluted with methanol-water (65-95%, 0-15 min) containing 0.1%
173 formic acid (v/v) to yield product **1** (3.0 mg). For isolating compound **2**, procedures
174 were similar except isocratic elution methanol-water (53%, 0-15 min) was used to yield

175 product **2** (3.5 mg). Product **1** was dissolved in methanol-*d*₄ and product **2** was dissolved
176 in DMSO-*d*₆, and then subjected to NMR analysis. Their chemical structures were
177 characterized by NMR spectra and arranged in Table 1.

178 **Determination of the water-solubility of dechlorochlorflavonin, chlorflavonin and the**
179 **glycosides** The purified dechlorochlorflavonin, chlorflavonin and produced glycosides
180 were tested for their water solubility as previously described (18). Standard curves were
181 established by using purified dechlorochlorflavonin, chlorflavonin, chlorflavonin-5-*O*-
182 β -D-glucuronopyranoside (**1**), and chlorflavonin-7-*O*-4"-*O*-methyl- β -D-
183 glucopyranoside (**2**) to quantify the water solubility of each compound. Briefly, the
184 purified dechlorochlorflavonin, chlorflavonin and glycosides were each mixed with 300
185 μ L of distilled water in an Eppendorf tube at 25 °C. An ultrasonic cleaner was used to
186 facilitate the dissolution. After 30 min of sonication, the samples were centrifuged at
187 13,000 \times g for 10 min to separate the solution from the undissolved compounds. The
188 supernatant of each sample was analyzed by HPLC to determine the compound
189 concentrations in the solution. All tests were performed in triplicate and water solubility
190 of each sample are expressed as the mean \pm standard deviation (SD).

191 **RESULTS**

192 **Enhanced production of chlorflavonin in *A. candidus* NRRL 5214** *A. candidus*
193 NRRL 5214 produces both chlorflavonin and dechlorochlorflavonin in the PDB
194 medium (Fig. S1); however, researchers are more interested in chlorflavonin due to its
195 significant anti-TB activities (14, 15). Aside from the limited supply and high price of
196 commercially available chlorflavonin, its low production yield makes it difficult to

197 obtain sufficient amounts for structural modification. Our previous studies suggest that
198 exogenous chloride may facilitate the production of chlorflavonin (20, 21). To test this
199 assumption, we supplemented 1% NaCl in PDB during fermentation. We separated the
200 cultures into three fractions, including fermentation broth (FB), cell extract supernatant
201 (CS), and cell extract precipitate (CP), for quantitative analysis of
202 dechlorochlorflavonin and chlorflavonin (Fig. 1).

203 In the PDB medium, the production titer of dechlorochlorflavonin (1.59 ± 0.2
204 mg/L) is around eight times higher than chlorflavonin (0.18 ± 0.05 mg/L) in FB
205 fraction, probably due to the higher water solubility of dechlorochlorflavonin (Fig. 2A).
206 Furthermore, the overall production titer of dechlorochlorflavonin (4.42 ± 0.4 mg/L) is
207 nearly twice that of chlorflavonin (2.24 ± 0.28 mg/L) in PDB medium (Fig. 2B). By
208 adding 1% NaCl into the PDB medium, the overall production titer of chlorflavonin
209 doubled to 4.94 ± 0.26 mg/L, which is much higher than that of dechlorochlorflavonin
210 (0.32 ± 0.05 mg/L) (Fig. 2C). These results showed that the production titer of
211 chlorflavonin can be increased by supplementing 1% NaCl in PDB. Moreover, around
212 75% chlorflavonin production was in the CP fraction of PDB + 1% NaCl medium,
213 which was used as a basis of comparison for optimizing NaCl concentration and
214 fermentation time.

215 Then, the effect of different NaCl concentrations on chlorflavonin production
216 was investigated. As shown in Fig. 2D, the chlorflavonin production titer in the CP
217 fraction exhibited the highest value of 4.65 ± 0.05 mg/L at 2.5% NaCl. However, further
218 increase of NaCl resulted in a dramatic decrease in chlorflavonin production. This is

219 probably because high NaCl concentration has an inhibitory effect on the growth of *A.*
220 *candidus* NRRL 5214. Furthermore, the influence of fermentation time was also
221 investigated at the concentration of 2.5% NaCl. The titer of chlorflavonin in the CP
222 fraction reached 5.71 ± 0.06 mg/L after 14 days, representing a 4-fold increase
223 compared to 1.29 ± 0.05 mg/L at 6 days (Fig. 2E). However, further fermentation led
224 to a decrease on the production titer, probably due to degradation of chlorflavonin.
225 Thus, we isolated chlorflavonin from the CP fraction in PDB medium after 14 days of
226 fermentation supplemented with 2.5% NaCl for the following glycosylation work.

227 **Screening different microorganisms for glycosylating chlorflavonin**
228 Microorganisms, especially actinomycetes, are well-known for producing
229 structurally diverse bioactive natural products and contain various biosynthetic
230 enzymes. We speculated that some of these strains may have versatile
231 glycosyltransferases (GTs) that can introduce the sugar moiety to chlorflavonin. To this
232 end, chlorflavonin was incubated with five different strains, including four
233 actinomycetes (*S. coeruleorubidus* NRRL B-2569, *Streptomyces* sp. NRRL S-1521, *A.*
234 *hibisca* P157-2, *S. chromofuscus* ATCC 49982) and a fungal strain (*B. bassiana* ATCC
235 7159). HPLC analysis revealed that two more polar metabolites, at 8.2 min for product
236 **1** and 7.8 min for product **2**, were biosynthesized from chlorflavonin by *S.*
237 *chromofuscus* ATCC 49982 and *B. bassiana* ATCC 7159, respectively (Fig. 3A).
238 However, no products were detected from the other three strains. The UV absorption
239 patterns of the products were both similar to that of chlorflavonin, suggesting that these
240 two polar products are derivatives of the substrate (Figs. 3B and 3C).

Structural characterization of biotransformed products of chlorflavonin by *S. chromofuscus* ATCC 49982 and *B. bassiana* ATCC 7159 Compound 1 was isolated as a light yellow, amorphous powder. To elucidate the chemical structure, 1 was analyzed by NMR (Figs. S2-S6). The ^{13}C NMR analysis (Fig. S3) presented 24 peaks in the spectrum. In addition to the 18 signals belonging to the substrate, 6 additional carbon signals at δ_{C} 170.0, 105.3, 76.9, 76.7, 74.6, and 72.8 were found in the spectra, together with the additional proton signals at δ_{H} 3.57-5.00 in the ^1H NMR spectrum (Fig. S2), suggesting that a sugar moiety had been added to chlorflavonin. Unlike the common sugar glucose, this sugar moiety has a quaternary carbon signal at δ_{C} 170.0, indicating the presence of a carboxyl group in the sugar moiety. Both the ^1H and ^{13}C signals of this sugar moiety are consistent with a glucuronic acid moiety. Moreover, the ^1H NMR spectrum showed a doublet at δ_{H} 5.00, indicative of an anomeric proton with a coupling constant of 7.7 Hz, and the chemical shift along with the J -coupling value were consistent with that of β -D-glucuronic acid (17, 18). The correlation of the anomeric H-1" signal at δ_{H} 5.00 to C-5 signal at δ_{C} 154.6 in the HMBC spectrum (Fig. S6) revealed that the glucuronic acid moiety was located at C-5. The above data together with the detailed analysis of its 2D NMR spectra confirmed its structure as chlorflavonin-5-*O*- β -D-glucuronopyranoside (Fig. 4) and all signals were assigned accordingly (Table 1).

Compound **2** was obtained as a yellow, amorphous powder. The NMR analysis (Figs. S7- S11) was performed to further elucidate the chemical structure of **2**. Among the 24 carbon signals in the ^{13}C NMR spectrum (Fig. S8), 17 signals belonging to the skeleton of chlorflavonin were determined to be similar to those present in **1**. The seven

263 remaining carbon signals at δ_{C} 100.0, 73.3, 76.2, 78.9, 75.7, 60.1, and 59.6 in the ^{13}C
264 NMR spectrum, together with the proton signals in the range of δ_{H} 3.05-5.10 in the ^1H
265 NMR spectrum (Fig. S7), further suggested that a typical methyl glucose was added to
266 chlorflavonin. The methoxy carbon signal was observed at δ_{C} 59.6, and the HMBC
267 spectrum of **2** revealed the correlation of methoxy group at δ_{H} 3.46 to C-4" at δ_{C} 78.9
268 (Fig. S11). Therefore, both the ^1H and ^{13}C signals of this sugar moiety supported the
269 presence of a 4"-*O*-methyl-glucose moiety. Moreover, the ^1H NMR spectrum showed
270 a doublet at δ_{H} 5.10, corresponding to the anomeric proton of this sugar moiety with a
271 coupling constant of 7.8 Hz, which is consistent with that of 4"-*O*- β -D-methyl-glucose
272 (18). Compared to the skeleton of chlorflavonin, one less methoxy group was observed
273 in product **2** (Fig. S8). Moreover, the HMBC spectrum of **2** revealed the correlations of
274 5-OH at δ_{H} 12.3 to C-5, C-6, C-10 at δ_{C} 155.9, 98.5, and 106.3, respectively (Fig. S11),
275 as well as the correlations of 2'-OH at δ_{H} 10.09 to C-1', C-2', C-3' at δ_{C} 119.7, 150.9,
276 and 121.6, respectively, which further confirmed that 4"-*O*- β -D-methyl-glucose was not
277 attached to the 5-OH and 2'-OH positions. The HMBC spectrum of **2** revealed the
278 correlation of H-1" at δ_{H} 5.10 to C-7 at δ_{C} 156.0 (Fig. S11), which confirmed that **2** has
279 a 4"-*O*- β -D-methyl-glucose moiety at C-7. Based on the above spectral evidence, the
280 compound was identified to be a new compound, namely chlorflavonin-7-*O*-4"-*O*-
281 methyl- β -D-glucopyranoside with all assigned signals in Table 1. Moreover, the
282 proposed biosynthetic pathway of **2** from chlorflavonin is shown in Fig. 4.

283 **Water solubility test of dechlorochlorflavonin, chlorflavonin and its glycosides**
284 Water solubility may affect the bioavailability of bioactive natural products in the

285 human body (22). Thus, the water solubility of dechlorochlorflavonin, chlorflavonin,
286 as well as chlorflavonin glycosides **1** and **2** were determined by HPLC. The water
287 solubility of each compound was measured in triplicate ($n = 3$) and computed to be
288 53.61 ± 1.39 mg/L, 4.38 ± 0.54 mg/L, 117.86 ± 4.81 mg/L, and 124.34 ± 9.13 mg/L,
289 respectively. The water solubility of chlorflavonin glycosides **1** and **2** were both around
290 27 times higher than the substrate chlorflavonin (Fig. 5), indicating that microbes can
291 convert chlorflavonin into more water-soluble glycosides. The two microorganisms
292 identified in this study could be used to glycosylate other bioactive natural products to
293 create new analogs with enhanced water solubility.

294 **DISCUSSION**

295 In 2020, around 1.5 million people died from the bacterial pathogen *M.*
296 *tuberculosis* which causes tuberculosis (TB) (23). However, the normal first-line
297 (isoniazid and rifampicin) and second-line (capreomycin, streptomycin, and
298 cycloserine) therapies cannot tackle the emerging challenge of multi-drug resistance
299 (MDR) of *M. tuberculosis* (15). Although new anti-TB drugs, including bedaquiline,
300 delamanid, and pretomanid, have been clinically approved (24), their applications are
301 still limited due to potential side effects and long treatment periods (14, 25-27). Thus,
302 discovering new drugs for combating against drug-resistant TB is urgent to alleviate
303 the transition of *M. tuberculosis* strains from MDR into extensively drug resistant
304 (XDR), which further hinders the World Health Organization's goal to end the global
305 TB pandemic by the year 2035 (15, 28).

306 Chlorflavonin is a natural product that exhibits significant *in vitro* inhibitory
307 activity against *M. tuberculosis*. Furthermore, chlorflavonin showed synergistic effects
308 with other antibiotics (such as isoniazid and delamanid) against infected human
309 macrophages, with better intracellular activity than streptomycin. Therefore,
310 chlorflavonin could be a promising chemotherapy for TB patients with highly specific
311 and selective antitubercular activity (14). In this study, we optimized the production of
312 chlorflavonin from *A. candidus* NRRL 5214 by supplementing 2.5% NaCl into the PDB
313 medium after 14 days of fermentation. The results showed that the production titer of
314 unwanted dechlorochlorflavonin was significantly decreased, leading to the
315 development of an easier downstream process for obtaining chlorflavonin for future
316 studies. More importantly, through microbial glycosylation, we generated two more
317 water-soluble glycosides of chlorflavonin using a bacterial strain and a fungal strain,
318 respectively. These two glycosides contain different sugar moieties, one having a
319 glucuronic acid moiety attached to the 5-OH group and the other with a 4"-*O*-methyl-
320 β -D-glucose moiety linked to the 7-OH position, further demonstrating that
321 microorganisms are a useful resource of biocatalytic tools for natural product
322 derivatization. The significantly increased water solubility of the two glycosides
323 indicates that glycosylation is an effective tool to improve the water solubility of
324 bioactive molecules.

325 Unlike product **1**, the sugar moiety of product **2** is not attached onto one of the
326 original two hydroxyl groups of chlorflavonin, but at the 7-OH group, which was
327 originally occupied by a methyl group in the substrate. *B. bassiana* ATCC 7159 has

328 been reported to catalyze a variety of reactions, including *O*-demethylation (29). We
329 have recently also characterized a versatile *O*-glycosyltransferase from this strain,
330 which can transfer a β -D-glucose or 4"-*O*-methyl- β -D-glucose moiety to various
331 substrates (16). Therefore, we propose that chlorflavonin was first demethylated at the
332 7-OCH₃ group to give a free hydroxyl group, to which the 4"-*O*-methyl- β -D-glucose
333 moiety was attached by the dedicated glycosyltransferase BbGT in *B. bassiana* ATCC
334 7159.

335 In summary, this work demonstrates an approach for improved production of
336 chlorflavonin in *A. candidus* NRRL 5214. Direct supply of exogenous sodium chloride
337 at the concentration of 2.5% in the fermentation broth leads to the production of
338 chlorflavonin at 5.71 ± 0.06 mg/L under optimized conditions. Glycosylation is a useful
339 tool for structural modification of natural products for bioactive agents. These new
340 molecules provide promising candidates for *in vivo* testing of the bioavailability and
341 anti-TB activity in future studies. Additional chlorflavonin glycosides can be prepared
342 by other glycosylating strains. Therefore, this work provides effective biocatalytic tools
343 to facilitate the creation of new chlorflavonin analogs to combat the drug resistant *M.*
344 *tuberculosis* strains.

345 Supplementary data to this article can be found online at <https://doi.org/>

346

ACKNOWLEDGEMENTS

347 This work was supported by the National Science Foundation Award CBET-2044558.

348 The Bruker Avance III HD Ascend-500 NMR instrument used in this research was

349 funded by the National Science Foundation Award CHE-1429195.

350 References

351 1. **Fidan, O., Ren, J., and Zhan, J.:** Engineered production of bioactive natural
352 products from medicinal plants, *World J. Tradit. Chin. Med.*, **8**, 59 (2022).

353 2. **Sharma, B.:** An analyses of flavonoids present in the inflorescence of sunflower,
354 *Braz. J. Bot.*, **42**, 421–429 (2019).

355 3. **Mayol, M., Riba, M., Cavers, S., Grivet, D., Vincenot, L., Cattonaro, F.,
356 Vendramin, G. G., and González-Martínez, S. C.:** A multiscale approach to
357 detect selection in nonmodel tree species: Widespread adaptation despite
358 population decline in *Taxus baccata* L, *Evol. Appl.*, **13**, 143–160 (2020).

359 4. **Marone, D., Mastrangelo, A. M., Borrelli, G. M., Mores, A., Laidò, G., Russo,
360 M. A., and Ficco, D. B. M.:** Specialized metabolites: Physiological and
361 biochemical role in stress resistance, strategies to improve their accumulation, and
362 new applications in crop breeding and management, *Plant Physiol. Biochem.*, **172**,
363 48–55 (2022).

364 5. **Karak, P.:** Biological activities of flavonoids: an overview, *Int. J. Pharm. Sci. Res.*,
365 **10**, 1567–1574 (2019).

- 366 6. **Zhang, H., Li, Z., Zhou, S., Li, S.-M., Ran, H., Song, Z., Yu, T., and Yin, W.-**
367 **B.:** A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid
368 naringenin, *Nat. Commun.*, **13**, 1–11 (2022).
- 369 7. **Chen, L., Cao, H., Huang, Q., Xiao, J., and Teng, H.:** Absorption, metabolism
370 and bioavailability of flavonoids: A review, *Crit. Rev. Food Sci. Nutr.*, **62**,
371 7730–7742 (2022).
- 372 8. **Ma, J., Zhang, X.-L., Wang, Y., Zheng, J.-Y., Wang, C.-Y., and Shao, C.-L.:**
373 Aspergivones A and B, two new flavones isolated from a gorgonian-derived
374 *Aspergillus candidus* fungus, *Nat. Prod. Res.*, **31**, 32–36 (2017).
- 375 9. **Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O.,**
376 **Alshahrani, M. Y., Islam, S., and Islam, M.:** Flavonoids a bioactive compound
377 from medicinal plants and its therapeutic applications, *Biomed Res. Int.*, **2022**,
378 5445291 (2022).
- 379 10. **Munden, J., Butterworth, D., Hanscomb, G., and Verrall, M.:** Production of
380 chlorflavonin, an antifungal metabolite of *Aspergillus candidus*, *Appl. Microbiol.*,
381 **19**, 718–720 (1970).
- 382 11. **Watanabe, S., Hirai, H., Kato, Y., Nishida, H., Saito, T., Yoshikawa, N.,**
383 **Parkinson, T., and Kojima, Y.:** CJ-19, 784, a new antifungal agent from a fungus,
384 *Acanthostigmella* sp, *J. Antibiot.*, **54**, 1031–1035 (2001).
- 385 12. **Liu, S., Lu, C., Huang, J., and Shen, Y.:** Three new compounds from the marine
386 fungal strain *Aspergillus* sp. AF119, *Rec. Nat. Prod.*, **6**, 334 (2012).

- 387 13. **Farhadi, F., Khameneh, B., Iranshahi, M., and Iranshahy, M.**: Antibacterial
388 activity of flavonoids and their structure–activity relationship: An update review,
389 *Phytother. Res.*, **33**, 13–40 (2019).
- 390 14. **Rehberg, N., Akone, H. S., Ioerger, T. R., Erlenkamp, G., Daletos, G., Gohlke,
391 H., Proksch, P., and Kalscheuer, R.**: Chlorflavonin targets acetohydroxyacid
392 synthase catalytic subunit IlvB1 for synergistic killing of *Mycobacterium*
393 *tuberculosis*, *ACS Infect. Dis.*, **4**, 123–134 (2018).
- 394 15. **Berger, A., Knak, T., Kiffe-Delf, A.-L., Mudrovcic, K., Singh, V., Njoroge, M.,
395 Burckhardt, B. B., Gopalswamy, M., Lungerich, B., and Ackermann, L.**: Total
396 synthesis of the antimycobacterial natural product chlorflavonin and analogs via a
397 late-stage ruthenium(II)-catalyzed *ortho*-c(sp²)-H-hydroxylation,
398 *Pharmaceuticals*, **15**, 984 (2022).
- 399 16. **Ren, J., Tang, W., Barton, C. D., Price, O. M., Mortensen, M. W., Phillips, A.,
400 Wald, B., Hulme, S. E., Stanley, L. P., and Hevel, J.**: A highly versatile fungal
401 glucosyltransferase for specific production of quercetin-7-O- β -D-glucoside and
402 quercetin-3-O- β -D-glucoside in different hosts, *Appl. Microbiol. Biotechnol.*,
403 **106**, 227–245 (2022).
- 404 17. **Ren, J., Barton, C. D., Sorenson, K. E., and Zhan, J.**: Identification of a novel
405 glucuronyltransferase from *Streptomyces chromofuscus* ATCC 49982 for natural
406 product glucuronidation, *Appl. Microbiol. Biotechnol.*, **106**, 1165–1183 (2022).
- 407 18. **Ren, J., Barton, C. D., and Zhan, J.**: Creating diverse glycosides of 2'-
408 hydroxyflavone through microbial glycosylation, *Fitoterapia*, **161**, 105247 (2022).

- 409 19. **Ren, J., Barton, C. D., and Zhan, J.:** Engineered production of bioactive
410 polyphenolic O-glycosides, *Biotechnol. Adv.*, **65**, 108146 (2023).
- 411 20. **Zeng, J. and Zhan, J.:** A novel fungal flavin-dependent halogenase for natural
412 product biosynthesis, *ChemBioChem*, **11**, 2119–2123 (2010).
- 413 21. **Zeng, J. and Zhan, J.:** Characterization of a tryptophan 6-halogenase from
414 *Streptomyces toxytricini*, *Biotechnol. Lett.*, **33**, 1607–1613 (2011).
- 415 22. **Zhao, J., Yang, J., and Xie, Y.:** Improvement strategies for the oral
416 bioavailability of poorly water-soluble flavonoids: An overview, *Int. J. Pharm.*,
417 **570**, 118642 (2019).
- 418 23. **Pushkar, S., Varshney, V., Pushkar, P., and Sagar, H. K.:** Novel approaches
419 for the treatment of drug-resistant tuberculosis, *Pharmacognosy Res.*, **15**, 235–241
420 (2023).
- 421 24. **Bahuguna, A. and Rawat, D. S.:** An overview of new antitubercular drugs, drug
422 candidates, and their targets, *Med. Res. Rev.*, **40**, 263–292 (2020).
- 423 25. **Cohen, J.:** Approval of novel TB drug celebrated—with restraint, in. American
424 Association for the Advancement of Science (2013).
- 425 26. **Ryan, N. J. and Lo, J. H.:** Delamanid: first global approval, *Drugs*, **74**,
426 1041–1045 (2014).
- 427 27. **Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J.-M.,**
428 **Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., and Lee, E.:** A
429 diarylquinoline drug active on the ATP synthase of *Mycobacterium tuberculosis*,
430 *Science*, **307**, 223–227 (2005).

431 28. **Shenoi, S. and Friedland, G.**: Extensively drug-resistant tuberculosis: a new face
432 to an old pathogen, *Annu. Rev. Med.*, **60**, 307 (2009).

433 29. **Barth, T., Conti, R., Pupo, M. T., Okano, L. T., and Bonato, P. S.**: Chiral HPLC
434 analysis of donepezil, 5-*O*-desmethyl donepezil and 6-*O*-desmethyl donepezil in
435 culture medium: application to fungal biotransformation studies, *Anal. Bioanal.*
436 *Chem.*, **404**, 257–266 (2012).

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

Table 1. ^1H (500 MHz) and ^{13}C NMR (125 MHz) data for compounds **1** and **2**.

Position	1 (CD_3OD)		2 (DMSO- d_6)	
	δ_{C} , type	δ_{H} (J in Hz)	δ_{C} , type	δ_{H} (J in Hz)
2	156.1, C		155.7, C	
3	142.8, CH		139.6, CH	
4	176.3, C		178.6, C	
5	154.6, CH		155.9, CH	
6	102.4, CH	7.12 (1H, s)	98.5, CH	6.70 (1H, s)
7	158.1, CH		156.0, CH	
8	134.4, CH		129.1, CH	
9	152.2, C		149.0, C	
10	111.7, C		106.3, C	
1'	121.3, C		119.7, C	
2'	152.6, C		150.9, C	
3'	123.2, CH		121.6, CH	
4'	133.3, CH	7.52 (1H, dd, J =8.0, 1.5 Hz)	132.2, CH	7.60 (1H, dd, J =8.0, 1.1 Hz)
5'	121.4, CH	7.00 (1H, t, J =7.0 Hz)	120.2, CH	7.01 (1H, t, J =7.9 Hz)
6'	130.5, CH	7.41 (1H, dd, J =7.7, 1.5 Hz)	129.5, CH	7.42 (1H, dd, J =7.6, 1.1 Hz)
1"	105.3, CH	5.00 (1H, d, J =7.7 Hz)	100.0, CH	5.10 (1H, d, J =7.8 Hz)
2"	74.6, CH	3.68 (2H, m, overlapped)	73.3, CH	3.29 (1H, m)
3"	76.9, CH	3.57 (1H, t, J =9.0 Hz)	76.2, CH	3.43 (1H, m)
4"	72.8, CH	3.68 (2H, m, overlapped)	78.9, CH	3.05 (1H, t, J =9.2 Hz)
5"	76.7, CH	4.04 (1H, d, J =9.7 Hz)	75.7, CH	3.50 (2H, m, overlapped)
6"	170.0, C		60.1, CH ₂	3.64 (1H, m), 3.50 (2H, m, overlapped)
3-OCH ₃	61.1, CH ₃	3.73 (3H, s)	60.1, CH ₃	3.72 (3H, s)
7-OCH ₃	57.0, CH ₃	3.97 (3H, s)		
8-OCH ₃	62.0, CH ₃	3.84 (3H, s)	61.2, CH ₃	3.74 (3H, s)
4"-OCH ₃			59.6, CH ₃	3.46 (3H, s)

459 **Figure legends**

460 **FIG. 1.** Flow chart for obtaining dechlorochlorflavonin (dcfv) and chlorflavonin (cfv)
461 and glycosides preparation of cfv. Three fractions are fermentation broth (FB), cell
462 extract supernatant (CS), and cell extract precipitate (CP), which are outlined in the
463 green boxes. Two main fractions for the isolation of dcfv and/or cfv are outlined in the
464 dashed line boxes.

465 **FIG. 2.** Production of dechlorochlorflavonin (dcfv) and chlorflavonin (cfv) in *A.*
466 *candidus* NRRL 5214. Cultures were treated for product analysis after 10 days of
467 growth. Data are presented as the mean \pm SD from three independent experiments. (A)
468 Production titer of dechlorochlorflavonin and chlorflavonin in fermentation broth (FB),
469 cell extract supernatant (CS), and cell extract precipitate (CP) in PDB or PDB + 1%
470 NaCl. Statistical analysis was performed by using two-tailed *t* test, where ** indicates
471 *p*-value < 0.01 , * indicates *p*-value < 0.05 , n.s. indicates no significant difference (*p* $>$
472 0.05). (B) Overall production titer of dechlorochlorflavonin and chlorflavonin in PDB,
473 and their distribution in three fractions. (C) Overall production titer of
474 dechlorochlorflavonin and chlorflavonin in PDB + 1% NaCl, and their distribution in
475 the three fractions. (D) The effects of different NaCl concentrations on the titer of
476 chlorflavonin in the CP fraction. (E) The effects of fermentation time on the titer of
477 chlorflavonin in the CP fraction from PDB medium with 2.5% NaCl.

478 **FIG. 3.** Screening of microbes for the ability to biotransform chlorflavonin. (A) HPLC
479 analysis (350 nm) of biotransformation of chlorflavonin by five microorganisms. (i)
480 chlorflavonin + YM medium; (ii) chlorflavonin + *S. coeruleorubidus* NRRL B-2569;

481 (iii) chlorflavonin + *Streptomyces* sp. NRRL S-1521; (iv) chlorflavonin + *A. hibisca*
482 P157-2; (v) chlorflavonin + *S. chromofuscus* ATCC 49982; (vi) chlorflavonin + *B.*
483 *bassiana* ATCC 7159. (B) UV spectra comparison of chlorflavonin and product **1**. (C)
484 UV spectra comparison of chlorflavonin and product **2**.

485 **FIG. 4.** Chemical structures (with HMBC correlations) of the produced chlorflavonin
486 glycosides **1** and **2** and proposed biosynthetic pathway of compound **2**.

487 **FIG. 5.** Water solubility of dechlorochlorflavonin (dcfv), chlorflavonin (cfv),
488 chlorflavonin-5-*O*- β -D-glucuronopyranoside (**1**), and chlorflavonin-7-*O*-4"-*O*-methyl-
489 β -D-glucopyranoside (**2**). Data are presented as the mean \pm SD from three independent
490 experiments.

491

492

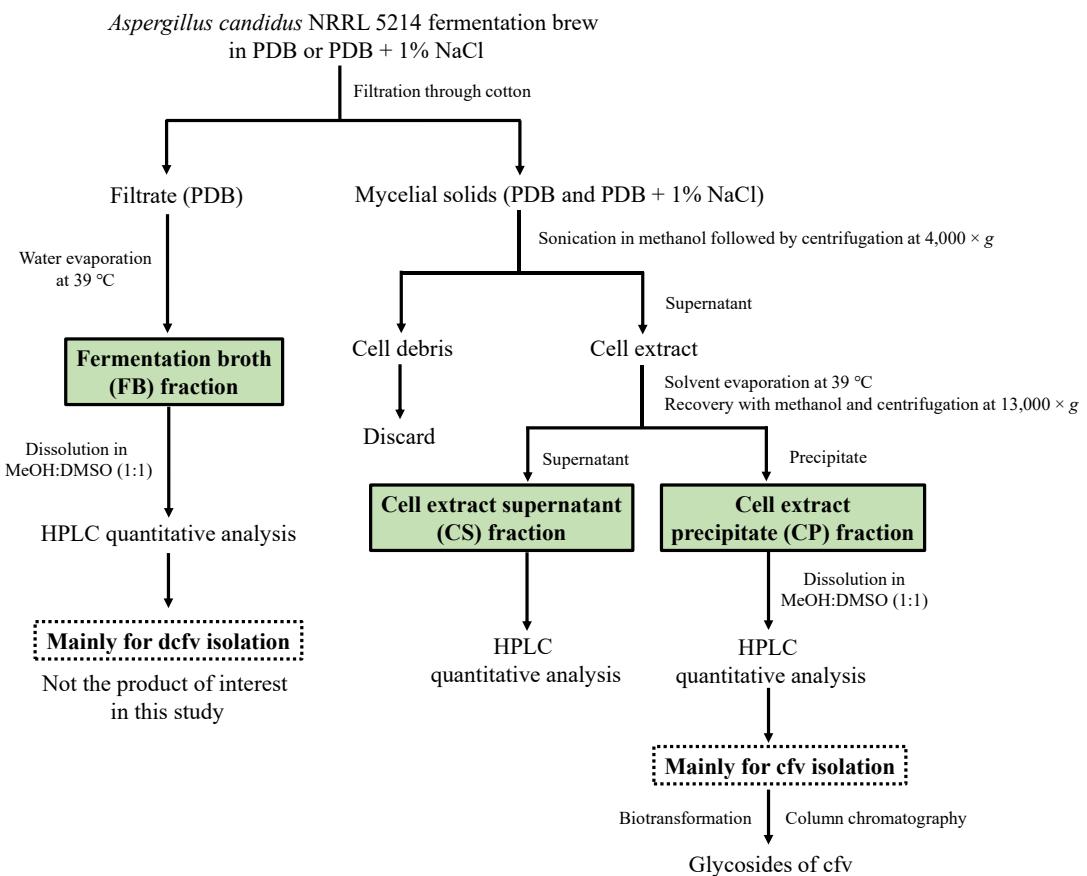
493

494

495

496

497

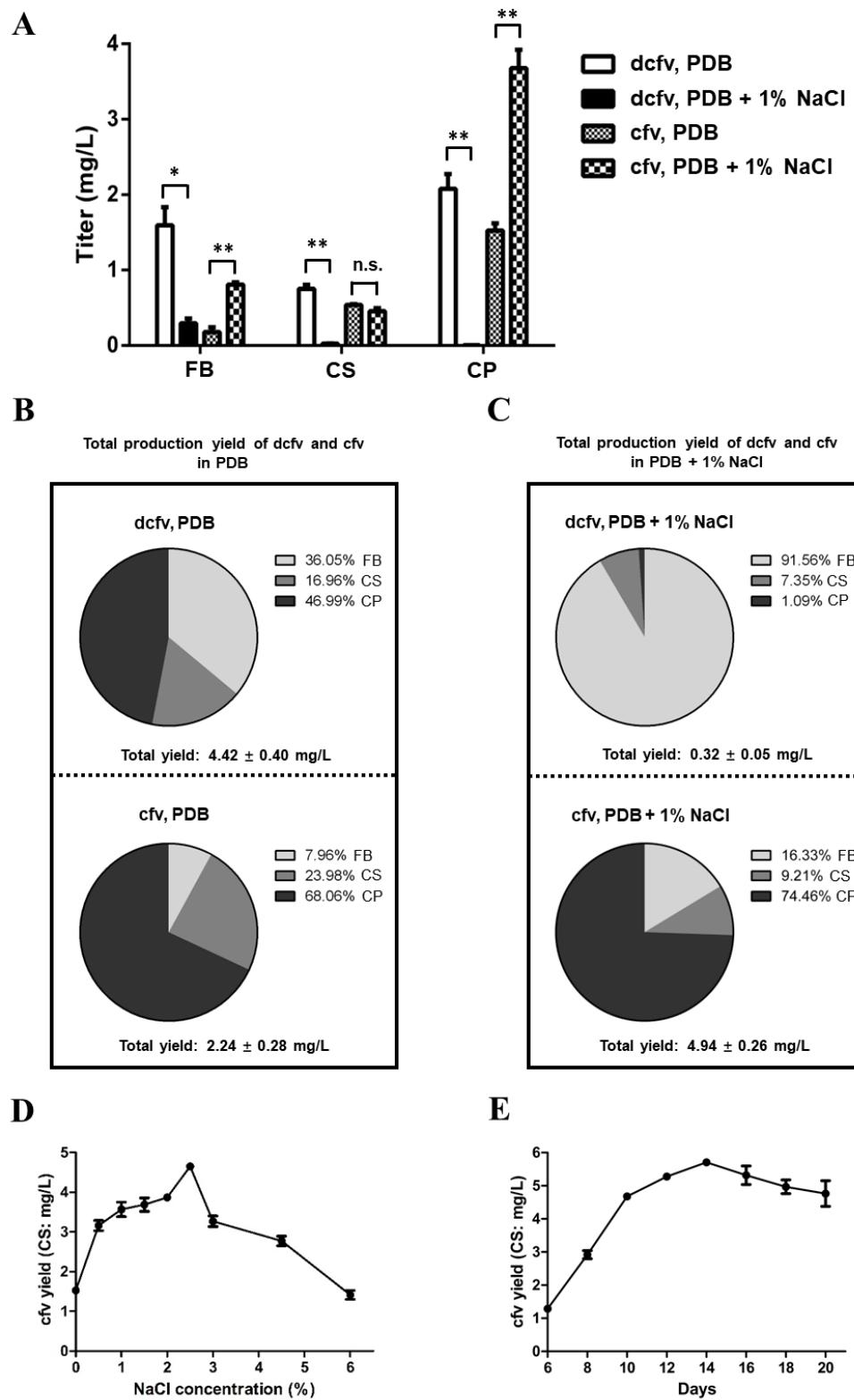

498

499

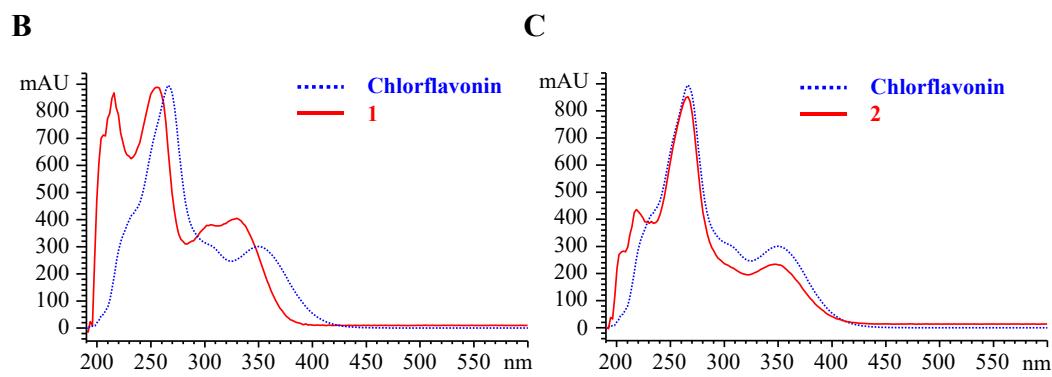
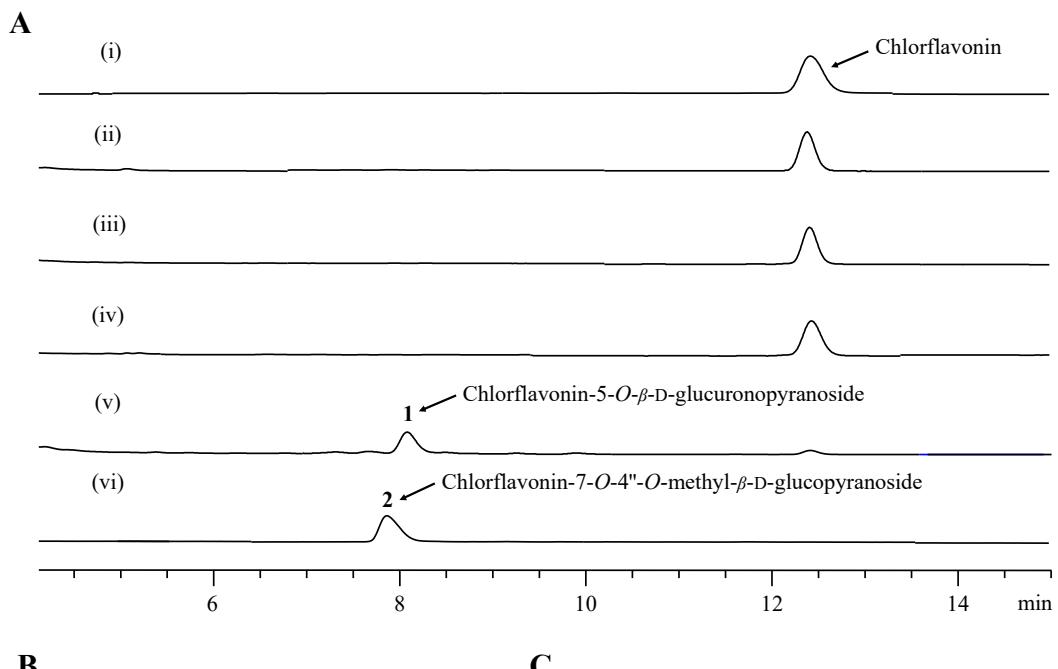
500

501

502


503

504



505 **FIG. 2.**

506

507

512

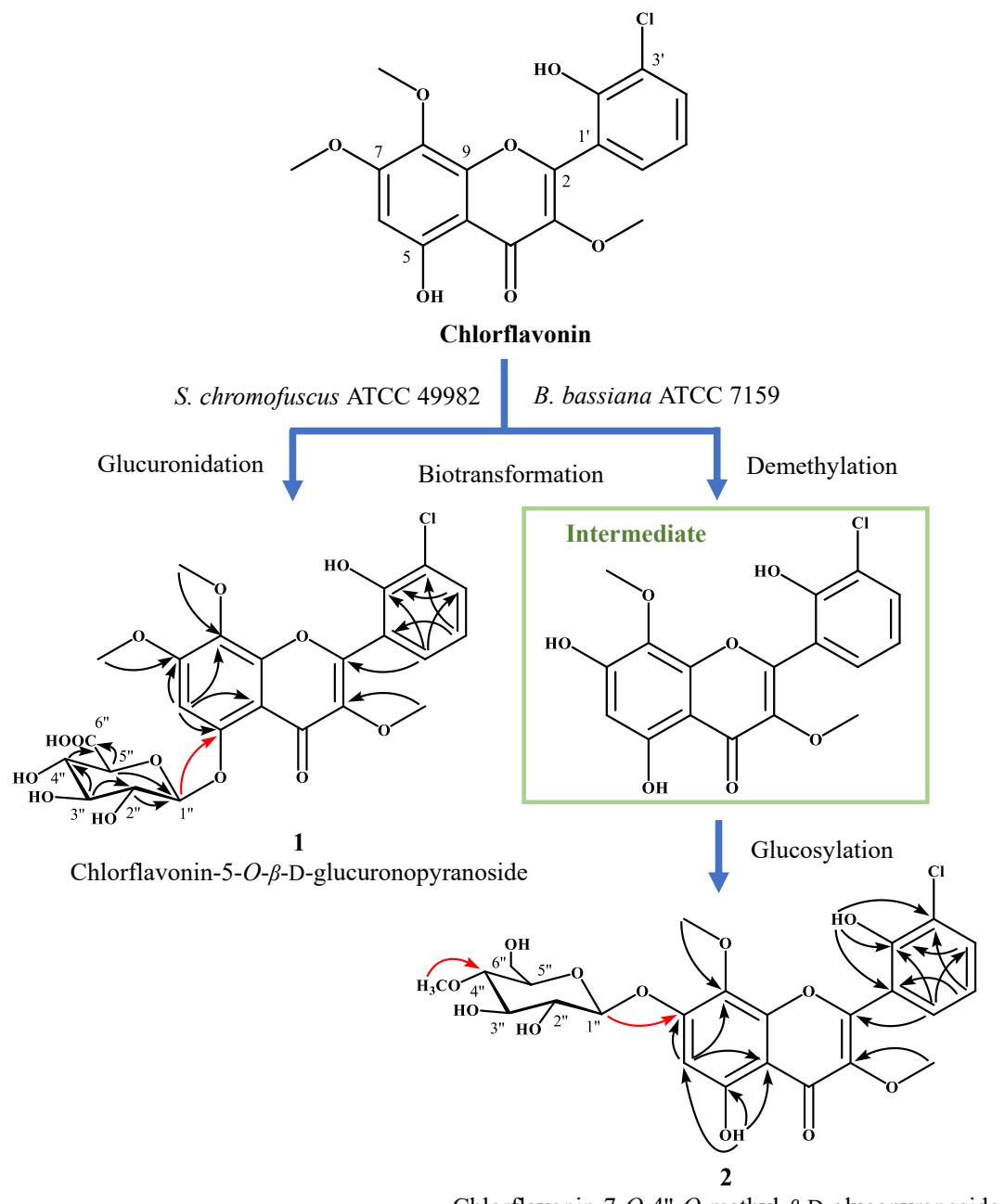
513

514 **FIG. 3.**

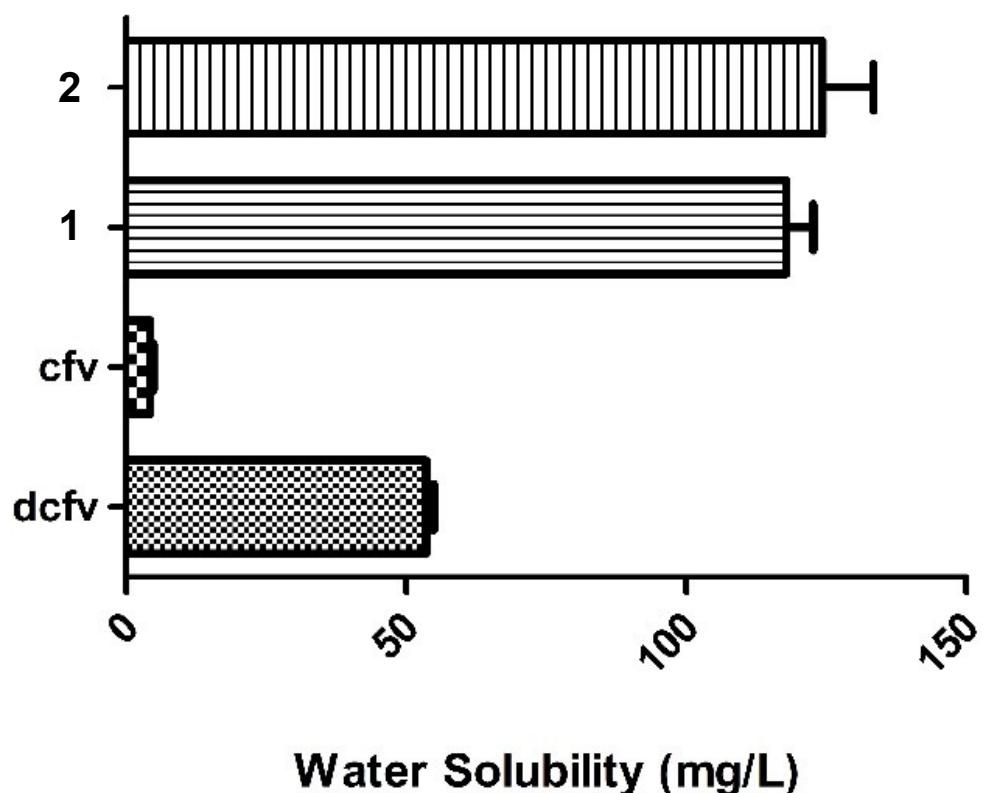
515

516

517


518

519


520

521

522

530

531

532 **FIG. 5.**

533

534

535

536

537

538

539

540

541

542 **Supplementary figure legends**

543 **Figure S1.** Flavonoids produced from *Aspergillus candidus* NRRL 5214.

544 **Figure S2.** ^1H NMR spectrum of product **1** (Methanol- d_4 , 500 MHz).

545 **Figure S3.** ^{13}C NMR spectrum of product **1** (Methanol- d_4 , 125 MHz).

546 **Figure S4.** ^1H - ^1H COSY spectrum of product **1** in Methanol- d_4 .

547 **Figure S5.** HSQC spectrum of product **1** in Methanol- d_4 .

548 **Figure S6.** HMBC spectrum of product **1** in Methanol- d_4 .

549 **Figure S7.** ^1H NMR spectrum of product **2** (DMSO- d_6 , 500 MHz).

550 **Figure S8.** ^{13}C NMR spectrum of product **2** (DMSO- d_6 , 125 MHz).

551 **Figure S9.** ^1H - ^1H COSY spectrum of product **2** in DMSO- d_6 .

552 **Figure S10.** HSQC spectrum of product **2** in DMSO- d_6 .

553 **Figure S11.** HMBC spectrum of product **2** in DMSO- d_6 .

554