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When a saturated brine layer is cooled from above, both a convective temperature front
as well as a front of sedimenting salt crystals can form. We employ direct numerical
simulations to investigate the evolution and interaction of these two density fronts.
Depending on the ratio of the temperature front velocity and the crystal settling velocity,
which is governed by a dimensionless parameter in the form of a Rayleigh number, we
find that either two separate fronts exist for all times, two initially separate fronts combine
into a single front after some time or a single front exists at all times. We furthermore
propose approximate scaling laws for the propagation of the thermal and crystal fronts in
each regime and compare them with the simulation data, with generally good agreement.
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1. Introduction

Hypersaline water bodies such as the Dead Sea, soda lakes or industrial salt ponds
frequently exist in a state where they are fully saturated with salt. If such a saturated
brine layer is cooled from above, its vertical density profile is modified via two separate
mechanisms. On one hand, the lower temperature will raise the fluid density near the
surface. The thickness of this cold fluid layer will grow diffusively until a critical
value of a suitably defined Rayleigh number is reached for thermal convection to begin
(Foster 1965; Horsch & Stefan 1988; Horsch, Stefan & Gavali 1994; Bednarz, Lei &
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Patterson 2009). Concurrently, the lower temperature reduces the solubility of salt in
the brine, so that dense halite crystals precipitate and subsequently settle under gravity,
thereby giving rise to a sedimenting particle front that can develop its own instabilities
(Burns & Meiburg 2012, 2015; Sutherland, Barrett & Gingras 2015). Hence, cooling the
brine triggers the formation of both a temperature density front as well as a density front
of settling crystals. The present study investigates the evolution and interaction of these
density fronts by means of numerical simulations to provide an understanding of the
mechanisms governing the sedimentation of the crystals. This, in turn, is important for
predicting the evolution of the salt deposits in the Dead Sea in time and space (Sirota,
Arnon & Lensky 2016; Sirota, Enzel & Lensky 2017).

2. Problem set-up and governing equations

Within the current investigation, we focus on the early, predominantly two-dimensional
stages of the frontal evolution, so that we limit ourselves to two-dimensional direct
numerical simulations in a rectangular region of height H and width W. Initially, the
domain contains saturated brine of constant temperature T0, salinity S0 and density ρ0,
with the halite crystal concentration C0 = 0 everywhere. At time t = 0, the fluid is at
rest, and cooling from the top initiates with a nominal temperature gradient ∂T/∂y|0 that
is a negative constant in time everywhere along the top boundary. Initially, this results
in a diffusively growing cold temperature boundary layer. Within this boundary layer,
the brine becomes oversaturated and halite crystals begin to precipitate out, forming a
front of sedimenting particles. After a critical value of a suitably defined Rayleigh number
is reached (Foster 1965), the diffusive temperature boundary layer becomes unstable to
convective perturbations. Thereafter, the flow is dominated by two fronts that develop in
space and time; the first of which is termed the ‘temperature front’ and the second is the
‘crystal front’. We terminate the simulations before the fronts reach the bottom wall.

2.1. Governing equations
We base our simulations on the incompressible Navier–Stokes equations for small density
changes, so that we can employ the Boussinesq approximation (Kundu, Cohen & Dowling
2012). Advection-diffusion equations are solved for the transport of T , S and C. Here, we
assume the crystals to be small and non-inertial, so that they settle with the Stokes settling
velocity vs relative to the surrounding fluid. The advection velocity of the crystals is thus
given by the superposition of the fluid velocity u and their settling velocity vs = −vsey.
We consider a dilute crystal concentration field, so that particle–particle interactions such
as collisions or hindered settling are negligible. We furthermore assume that the crystals
are monodisperse, so that the settling velocity vs has a constant value in space and time.
We remark that for larger crystals inertial effects may become important. Those can be
taken into account by calculating the particle dynamics, for example, via the Maxey–Riley
equation (Maxey & Riley 1983). The governing equations thus take the form

∇ · u = 0, (2.1a)

∂u
∂t

+ (u · ∇)u = − 1
ρ0

∇p − g
(

ρ − ρ0

ρ0

)
ey + ν∇2u. (2.1b)

Here, u represents the two-dimensional Cartesian fluid velocity vector, p denotes the
pressure of the fluid, g indicates the gravitational acceleration in scalar form and ν the
kinematic viscosity. The density ρ is assumed to be a linear function of the three scalar
fields T, S,C
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ρ = ρ0 [1 − α (T − T0) + βS (S − S0) + βCC] , (2.2)

where α, βS and βC are the respective dimensional expansion coefficients. Typical values
for α and βS are given, for example, by Ouillon et al. (2019) and Stern (1960), and for
simplicity, we assume βC = βS.
The transport equations for the three scalar fields T , S and C take the form

∂T
∂t

+ u · ∇T = κT∇2T, (2.3a)

∂S
∂t

+ u · ∇S = κS∇2S + FS (T, S,C) , (2.3b)

∂C
∂t

+ (u + vs) · ∇C = κC∇2C + FC (T, S,C) , (2.3c)

where κT , κS, κC denote the thermal, solute salt and salt crystal diffusivities, respectively.
The solubility of salt is assumed to vary linearly with temperature

Se = Se0 + σSe (T − T0) , (2.4)

where Se0 is the solubility at the reference temperature T0. Rather than explicitly
calculating the source/sink terms FS and FC in the equations for solute and crystal salt
from evolution equations, we instead assume thermodynamic equilibrium, so that upon
updating (2.3a), (2.3b) and (2.3c) without the source/sink terms, we obtain the new values
of S and C as S∗(T) = min(S + C, Se(T)) and C∗(T) = C + S − S∗(T) for every grid cell
and time step, following Ouillon et al. (2019). In this way, the source and sink terms do
not have to be evaluated explicitly.

2.2. Non-dimensionalization
To render the above equations dimensionless, we introduce a set of characteristic scales.
The only velocity scale in the system is the settling velocity vs, and hence we employ it
to define characteristic length and time scales as κT/vs and κT/v2s , respectively. Here we
choose κT rather than the diffusivities of solute or crystal salt, since the diffusive heat
flux across the top boundary drives the flow. At time t, a salt crystal formed at the top
at t = 0 will be located at vst. At the same time, a diffusive front initiated at the top
at t = 0 will have reached the location

√
κTt. At time t = κT/v2s , both of these will be

co-located at κT/vs. We note that we assume the domain height H to be sufficiently large
so that it does not affect the dynamics of the emerging fronts. A characteristic temperature
scale is provided by ΔT = ∣∣∂T/∂y|0

∣∣(κT/vs), and we employ ΔS = ΔC = σSeΔT as a
characteristic scale for both solute salt and crystal salt concentration. In addition to these
scales, a characteristic density scale is given as Δρ = ρ0αΔT , a saturation scale as ΔSe =
σSeΔT and a pressure scale as ρ0v

2
s . The dimensionless variables thus take the form

u′ = u
vs

, x′ = x
vs

κT
, t′ = t

v2s
κT

T ′ = T − T0
ΔT

, S′ = S − S0
ΔS

, C′ = C
ΔC

p′ = p
ρ0v2s

, Se′ = Se − Se0
ΔSe

, ρ′ = ρ − ρ0

Δρ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (2.5)
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This system gives rise to the dimensionless parameters

Pr = ν

κT
, Sc = ν

κS

τS = κS

κT
, τC = κC

κT

β ′
S,C = βS,C

σSe

α
, Ra = −g

α
∂T
∂y

∣∣∣∣
0

(
κT

vs

)4

κTν

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.6)

where Pr and Sc represent the Prandtl and Schmidt numbers, respectively, and τS and τC
are the inverse of the Lewis number for solute salt and salt crystals, respectively. Here,
Ra is the Rayleigh number defined using the characteristic length scale introduced above.
From here on, unless otherwise stated, we will discuss dimensionless quantities only, so
that we drop the primes. The system of governing dimensionless equations thus is

∇ · u = 0, (2.7a)

∂u
∂t

+ (u · ∇)u = −∇p − PrRaρey + Pr∇2u, (2.7b)

∂T
∂t

+ u · ∇T = ∇2T, (2.7c)

∂S
∂t

+ u · ∇S = τS∇2S + FS (T, S,C) , (2.7d)

∂C
∂t

+ (
u − ey

) · ∇C = τC∇2C + FC (T, S,C) , (2.7e)

ρ = −T + βSS + βCC, (2.7f )

Se = T. (2.7g)

We remark that βS and βC in (2.7f ) are in dimensionless form, as defined in (2.6).
In the horizontal direction, we assume periodic boundary conditions. At the bottom
wall, we impose ∂T/∂y = ∂S/∂y = ∂C/∂y = 0 and u = 0. At the top wall, we impose
∂S/∂y = ∂C/∂y = 0 along with a slip condition for the velocity field. For the temperature
field, we impose a slightly perturbed dimensionless heat flux at the top wall which is
constant in time in the form ∂T/∂y = −1 + ε × (random[0, 1] − 0.5), where ε denotes
the perturbation amplitude and random[0, 1] generates uniformly distributed random
numbers between 0 and 1 to allow for the convective instability to grow.

2.3. Potential scenarios
During the initial stage, the cold top layer will remain at rest and grow diffusively in width,
while the front of the precipitating crystals will settle with the Stokes settling velocity.
Once the cold layer has grown sufficiently thick to exceed a critical Ra-value based on the
layer thickness, convection commences and the thermal front propagates downwards more
rapidly. Subsequently, three different scenarios appear possible. For moderate cooling
rates, the convective propagation velocity of the thermal front may remain too small for
the thermal front to catch up to the crystal front. At higher cooling rates, however, the
propagation velocity of the thermal front can exceed the Stokes settling velocity, so that
the two fronts will eventually recombine. Finally, for very high cooling rates, the thermal
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front may become convectively unstable before the crystal front can outrun it, so that a
single front will be present at all times. In the following, we will discuss each of these
cases to estimate the Ra values at which these transitions take place.

2.4. Solution approach
We solve the above system of equations with the open-source OpenFOAM toolkit
(www.openfoam.org) for Boussinesq flows (buoyantBoussinesqPimpleFOAM). The code
employs an implicit Euler scheme in time, along with second-order accurate spatial
discretization. It furthermore uses a built-in simplified diagonal-based incomplete
lower-upper preconditioner for all fields except pressure, for which the diagonal-based
incomplete Cholesky preconditioner was used. Most of our simulations employ 600 ×
3000 grid points, and we continuously adjust the time step to maintain the CFL number
below 0.5, while also satisfying the stability condition imposed by the diffusive terms.

2.5. Validation
We validate the computational code by means of simulating a canonical double-diffusive
flow, for which we reproduce the most dominant fingering wavenumber and its growth
rate predicted by linear stability theory (Radko 2012). Towards this end, we consider a
two-dimensional rectangular domain, with no-slip and constant temperature and salinity
boundary conditions at the top and bottom, along with periodic boundary conditions in
the horizontal direction. The initial temperature and salinity profiles increase linearly in
the upwards direction. The non-dimensional quantities are those of Radko (2012). The
temperature and salinity profiles span the range of 0 to 1, and the domain length and
height are 600 and 60, respectively.
We take a diffusivity ratio κT/κS = 4 and αΔT/βΔS = 1.1264, for which linear

stability theory predicts a dominant dimensionless wavenumber of 0.55 and a
dimensionless growth rate of 0.45.
A representative snapshot of the flow is shown in figure 1(a). The dominant horizontal

wavenumber of the flow, obtained from an FFT of the temperature field, has a value of
0.52 ± 0.01. The growth rate can be evaluated from the rms fluctuations of the temperature
field. Figure 1(b) shows that for a substantial period of time, it is close to the predicted
value of 0.45. This comparison demonstrates that the computational approach is able to
reproduce the double-diffusive dynamics with good accuracy.

3. Results

3.1. Flow development
We begin with a qualitative description of the flow field for different imposed Ra values.
In all simulations, we set Pr = 7.1, which corresponds to the Dead Sea (Ouillon et al.
2019). Initially, we set τS = τC = 1 so that Sc = 7.1, although different values down to
τS = τC = 1/40 will be explored subsequently. We remark that we expect the instability
to be driven by a Rayleigh–Bénard-like mechanism, i.e. by dense fluid above lighter fluid,
while double-diffusive effects should be of minor importance (Radko 2012; Garaud 2018).
Along similar lines, the diffusivities of dissolved and crystallized salt will be different,
but this effect is expected to be small so that it is not being explored here. Nevertheless,
given that the diffusivities of heat and salt in water differ by O(100), we will also explore
the influence of this ratio. We furthermore employ βS = βC = 0.522 (Ouillon et al.
2019). The amplitude ε of the random perturbations primarily affects the time to onset
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Figure 1. (a) Two-dimensional profiles of the temperature, salinity and density fields for a double-diffusive
flow in the fingering regime. (b) Logarithm of the rms value of the difference between the initial and
instantaneous temperatures as function of time, calculated over the whole domain, and (c) fast Fourier transform
of the temperature at t = 20. The peak is located at k = 0.50.

of instability, and is set to 0.02 here. We note that the combined effects of cooling at the
top, particle precipitation and settling are captured by the single dimensionless parameter
Ra. The thermal front velocity evolves ∝ √

t during the diffusive stage, while the crystal
front propagates ∝ t. When the thermal boundary layer reaches a critical thickness
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Figure 2. Two-dimensional fields of the (a, f ) velocity magnitude ||u||, (b,g) temperature T , (c,h) solute
salt S, (d,i) crystal salt C and (e,j) density ρ, for Ra = 2.9 × 10−5. We observe the formation of a distinct
temperature front, indicated by the red arrow, and a separate front of settling crystals shown by a grey arrow, at
(a–e) t = 5000 and ( f–j) 40 000. The convective front propagates downwards more slowly than the settling
particles.

(as discussed in § 4), it will develop a convective instability that accelerates its propagation;
this instability will set in earlier for larger Ra values. The above mechanisms will govern
the flow field evolution for different Ra values, as will be discussed below.
Figure 2 depicts the flow evolution for the representative value of Ra = 2.9 × 10−5.

Figure 2(a–e) shows the early time t = 5000, with a diffusively growing cold temperature
boundary layer at the top whose thickness grows proportionally to

√
t (Bednarz et al.

2009). This boundary layer has not yet reached the critical thickness required for
convective instability to set in. The solubility in this cold boundary layer is reduced, so
that crystals precipitate out. The resulting crystal front propagates downwards in a stable
fashion, with the Stokes settling velocity of the individual crystals. We remark that we
identified the front locations as peaks in the vertical derivative of the horizontal average
of ρ.
Shortly after the time shown in figure 2(a–e), the temperature boundary layer becomes

convectively unstable. Consequently, due to the random perturbations added to the
temperature boundary condition, we observe the formation of downwards propagating
plumes, which can be seen in Figure 2( f–j) for time t = 40 000. We note that these plumes
do not catch up with the particle front, so that two distinct fronts continue to exist.

975 A5-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.809


R. Ezraty, S.M. Rubinstein, N. Lensky and E. Meiburg

(a) (b) (c) (d ) (e)
0

–4000
y

0

0 6000–18 × 103

y

x

0

–4000

0

0 6000–18 × 103

x

0

–4000

0

0 6000–18 × 103

x

0

–4000

0

0 6000–18 × 103

x

0

–4000

0

0 6000

0 6000 0 6000 0 6000 0 6000 0 6000

–18 × 103

x

( f ) (g) (h) (i) ( j )

||u||
0 0 0 0 0 2.94.3 –2.5 –2 2

T S C ρ

Figure 3. Two-dimensional fields of the (a, f ) velocity magnitude ||u||, (b,g) temperature T , (c,h) solute salt
S, (d,i) crystal salt C and (e,j) density ρ, for Ra = 5 × 10−4. At the early time (a–e) t = 1680, we observe
distinct temperature (red arrow) and crystal (grey arrow) fronts. However, by ( f–j) t = 13 400, the convectively
unstable temperature front has caught up with the crystal front, and the two fronts have combined into one.

Figure 3 shows the corresponding flow field for Ra = 5 × 10−4, corresponding to a
larger cooling rate. Early on, the diffusive propagation velocity of the temperature front
is still smaller than the crystal settling velocity, so that we again observe the formation of
two distinct fronts early on (t = 1680). As in figure 2, the diffusively growing cold layer
has not yet reached the thickness required for instability. However, for this larger Ra value,
the convective instability sets in earlier in time, after which the thermal front propagates
downwards more rapidly than the crystal front. Eventually, the temperature front catches
up to the crystal front, and the two fronts recombine into a single front by t = 13 400. The
propagation velocity of this single front is governed by the combined effects of the density
gradients due to temperature and crystal concentration (figure 5b). It propagates faster than
the two separate fronts individually, suggesting that the particles sediment faster than the
Stokes settling velocity of an individual particle, as expected for particles that are advected
by the fluid.
For an even larger value, Ra = 1.2 × 104, figure 4 shows that two distinct fronts never

form. The crystals cannot outrun the evolving temperature front even during the early
stages. As a result, even early on, only one unstable density front exists whose propagation
in time is governed by the combined effects of temperature, solute salt and crystal
concentration gradients. This combined front propagates downwards more rapidly than the
Stokes settling velocity of the crystals (figure 5c). Timelapse movies of the flows presented
in figures 2–4 are given in the supplementary material.
To explore the influence of the diffusivity ratios τS and τC on the overall evolution of

the flow, we conducted additional simulations with τS = τC = 0.5 and 0.25. Lower values
of τ imply that the diffusion of temperature is faster than that of salinity and crystals,
so that the steepness of the thermal density front declines more rapidly than that of the
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Figure 4. Two-dimensional fields of the (a, f ) velocity magnitude ||u||, (b,g) temperature T , (c,h) solute salt
S, (d,i) crystal salt C and (e,j) density ρ, for Ra = 1.2 × 104. We observe a single combined temperature and
crystal front both for the early time (a–e) t = 0.3 (stretched in the vertical direction by a factor of 3 to show the
instability at the top) and for the late time ( f–j) t = 3.

crystal front. However, the simulations did not show a substantial influence of this effect
on the interaction of the two fronts (figure 5d).
This finding is confirmed by two simulations that employ a much finer mesh with

4200 × 21 000 grid points. The first simulation has τS = τC = 1 (Sc = 7.1), while
the second one has τS = τC = 1

40 (Sc = 284). This corresponds to Lewis numbers of
1 and 40, respectively, for both soluble salt and crystals. All parameters but τS, τC and
Sc, including the boundary condition perturbations, were identical in both simulations;
Ra = 7.9 × 10−3, Pr = 7.1 and βS = βC = 0.522.
Figure 6 shows the thermal and crystal front locations as functions of time for both

simulations. We observe only minor differences between the front velocities of the two
simulations, which confirms our hypothesis that double diffusion does not play a major
role in the flowfield under consideration.

3.2. Phase diagram
Consistent with the above observations, we identify three distinct flow regimes, as shown
in figure 5. For large Rayleigh numbers, a single combined temperature and crystal
concentration front forms from the very beginning, whereas for small Rayleigh numbers,
the crystal front outruns the temperature front, and the two fronts remain separate at all
times. For intermediate Rayleigh numbers, the crystal front initially descends more rapidly
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Figure 5. Vertical location of the temperature and crystal concentration fronts as functions of time for:
(a) small Ra = 2.9 × 10−5, where the two fronts remain distinct for all times; (b) intermediate Ra = 5 × 10−4,
where the crystal front initially outruns the temperature front, but the latter catches up with the former after
some time and they recombine; (c) large Ra = 1.2 × 104, where one combined front is observed at all times.
The black lines represent the Stokes settling velocity of the crystals, whereas the coloured dots indicate the
location of the temperature/combined fronts, showing that in panel (a), the crystals sediment at their Stokes
settling velocity, and in panel (b,c), they effectively sediment faster than that. The grey line in panel (a) is a fit
over the propagation of the thermal convective front according to (4.8). (d) Phase diagram of the flow regimes
for different Ra and diffusivity ratios τ . The simulation presented in figure 6 corresponds to the single blue
dot at τ = 1/40 in the phase diagram. The colour scheme is consistent in all simulations, and dots denote
individual simulations.

than the temperature front, but after some time, the latter catches up with the former,
so that a combined front emerges. For the range of parameter values explored here, the
Rayleigh number at which each of these transitions occurs does not seem to depend on the
diffusivity ratio τ .
We remark that if the crystals did not have a settling velocity, their precipitation

would not affect the density distribution, since the crystals are assumed to have the
same expansion coefficient as the dissolved salt. Hence, under those conditions, the
density would vary with temperature only. However, if the crystals have a finite settling
velocity, they will sediment out of the colder surface boundary layer, thereby reducing its
excess density. Consequently, we expect that particle settling will cause the colder surface
boundary layer to go unstable later in time, and with a smaller growth rate. Hence, faster
settling of the crystals not only speeds up the crystal front propagation, but it also reduces
the velocity of the thermal front.
The vertical black lines in figure 5(d) indicate the approximate values at which the

transition between the different flow regimes occurs. The transition from two fronts that do
not recombine to two fronts that merge occurs at Ra ≈ 3 × 10−4. The second transition,
from two fronts that recombine to a single one at all times, takes place near Ra ≈ 6.5.
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Figure 6. Location of the (a) crystal and (b) thermal fronts in time, for τS = τC = 1/40 (green) and τS =
τC = 1 (blue). The other parameter values are kept constant at Ra = 7.9 × 10−3, Pr = 7.1. The front locations
remain close to each other, even after convection starts at approximately t = 400.

In the absence of an analytical expression for the propagation velocity of the convectively
unstable thermal front, it would be difficult to estimate these transition values.

4. Discussion

In the following, we make an attempt to develop simplified scaling arguments to estimate
the approximate Ra values at which the regime transitions identified in figure 5 occur. For
clarity, we denote dimensionless quantities by primes.

4.1. Diffusive behaviour of the thermal front
The transition from diffusive to convective behaviour of the thermal front occurs once the
local Rayleigh number Raloc, formed with the thickness and density difference of the cool
surface layer, exceeds a critical value. For the purpose of defining this local Rayleigh
number, let us consider the location y′ = −h′

T,diff where the diffusive temperature is
the average between the values at the surface and far below the surface, i.e. T ′( y′ =
−h′

T,diff ) = 0.5T ′( y′ = 0). From Bednarz et al. (2009), the dimensionless T-profile

is T ′( y′) = −2
√
t′/π exp(−(y′2/4t′)) + y′erfc(−y′/2

√
t′), which gives for the surface

temperature T ′( y′ = 0) = −2
√
t′/π. Hence, we numerically obtain for the dimensionless

thickness of the cool surface layer

h′
T,diff

(
t′
) ≈ 0.7

√
t′, (4.1)
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Figure 7. Time for the onset of convection t′c as a function of Ra in log-log scales, for all of the simulations
in figure 5. The data show that t′c ≈ 30Ra−1/2 as in (4.4). Error bars reflect the uncertainty in identifying the
precise time of onset.

which is valid as long as the thermal front propagates diffusively. The local Rayleigh
number Raloc, formed with the dimensional layer thickness h′

T,diff (κT/vs), is therefore

Raloc =
gΔρ

(
h′
T,diff

κT

vs

)3

2ρ0κTν
. (4.2)

By substituting Δρ = ρ0α(T( y = 0)/2) = ρ0α
∣∣∂T/∂y|0(κT/vs)

∣∣√t′/π in dimensional
form, and using Ra = −g(α(∂T/∂y)|0κ3

T/v4s ν), we obtain

Raloc = Ct′2Ra, (4.3)

where C is a constant of O(1). From analogy with classical Rayleigh–Bénard convection,
we estimate that the thermal front will become convectively unstable when Raloc ≈
O(103), which yields for the time t′c at which convection commences

t′c ≈ 30Ra−1/2, (4.4)

which is similar to the relation obtained by Lei & Patterson (2005). For the case
with Ra = 2.9 × 10−5 shown in figure 5(a), this yields t′c ≈ 6 × 103, which is in good
agreement with simulation data, as shown in figure 7.
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Figure 8. Horizontal averages of the temperature profile (black lines) for three different times of the simulation
shown in figure 2: (a) t′ = 15 000, (b) t′ = 27 000, (c) t′ = 71 000. Also shown are linear fits of T ′( y′) in dashed
blue. Black dots in panel (d) denote the slopes of the linear fits of the temperature profile as a function of time,
alongside a theoretical line C1 ∝ t′−(1/3), showing good agreement between the two. Red dots denote the times
presented in panel (a–c).

4.2. Convective behaviour of the thermal front
In the following, we explore the extent to which simple models of the temperature profile
in the convective region, and of the dependence of the convective front velocity on this
temperature profile, can reproduce the numerically observed dependence of the convective
front location on time. Based on the representative horizontally averaged temperature
profiles shown in figure 8(a–c), we approximate these profiles in the convective plume
region as being linear functions of depth, reaching T ′ = 0 at the convective front
y′ = −h′

T,conv ,

T ′ ( y′) ∝ −C1
(
t′
) (

y′ + h′
T,conv

)
, (4.5)

where C1 is a function of time only. Conservation of thermal energy implies that the
temporal integral of the surface heat flux equals the change in thermal energy across the
water column. Any diffusive heat flux below the convective layer is very small and can be
neglected, so that we obtain

∫ t

0
κT

∂T
∂y

∣∣∣∣
0
dt ∝

∫ 0

−hT,conv

T ( y) dy (4.6)

in dimensional form. In dimensionless form, this yields 1
2C1(t′)h′2

T,conv ∝ t′.

975 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.809


R. Ezraty, S.M. Rubinstein, N. Lensky and E. Meiburg

2 4 6 8 10 12 14

0

–5

–10

–15

–20

–25

–30

–35

–40

–45

–50

–55
0

t′

y′

Thermal front
Crystal front

Figure 9. Thermal (red) and crystal (grey) front locations as functions of time, for a simulation with Ra = 4.
The predicted time for the separation of the crystal front from the thermal one is t′ ≈ 0.12. The onset
of convection happens at t′ ≈ 10 and soon afterwards, the fronts merge, in reasonable agreement with the
predicted time of t′c ≈ 15.

By assuming that the convective front propagation velocity scales with the horizontally
averaged vertical temperature gradient in the convective region

dh′
T,conv

dt′
∝ C1

(
t′
)
, (4.7)

we obtain
h′
T,conv ∝ t′2/3. (4.8)

This functional dependence is indicated by the grey line in figure 5(a), and it agrees well
with the simulation data for the convective front location in the aforementioned simulation.
It follows that C1 ∝ t′−(1/3), which is consistent with this simulation data, as shown in
figure 8(d). We remark that we did not observe the above scaling relations for all of the
simulations we conducted, so that further work is needed to establish the degree to which
these scaling considerations have general applicability.

4.3. The fronts separate and merge
A cooling front is expected to diffuse downwards with a velocity that is proportional to
t′−(1/2) from the theory of diffusive processes and the boundary condition at the top, so the
front velocity theoretically diverges at very early times. Since the water is saturated with
salt, crystals will nucleate at the front due to the temperature drop, producing a single
combined density front. Once the propagation of the thermal front will slow down to
below the crystal settling velocity, i.e. dh′

T,diff /dt
′ = 1, the crystals will depart from the

thermal front and propagate ahead of it. From (4.1), this departure is expected to happen
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at time t′ = 0.12. The thermal front becomes convective at t′ = t′c and will merge with the
crystals afterwards, at sufficiently large Ra numbers. Figure 9 depicts the fronts in time for
a simulation with Ra = 4, for which t′c ≈ 15, showing a crystal front propagating ahead of
the thermal one during the predicted times 0.12 < t′ < t′c.

4.4. Application to the Dead Sea
The simulations in figure 5(d) investigate the Ra range from 1.2 × 10−5 to 1.2 × 104. In
the following, we explore the applicability of these results to the conditions of the Dead
Sea, which represents the largest hypersaline lake on Earth today (Arnon, Selker & Lensky
2016; Sirota et al. 2017; Ouillon et al. 2019). Recent heat flux measurements (Hamdani
et al. 2018; Lensky et al. 2018) show typical values near 400Wm−2 outwards during
winter that last over several hours around sunset. For a density ρ0 = 1240 kgm−3, thermal
conductivity 0.8WK−1 m−1 (Ben-Avraham, Hänel & Villinger 1978) and heat capacity
Cp = 3030 J kg−1 K−1, we obtain a surface temperature gradient ∂T/∂y|0 = −380Km−1,
assuming purely conductive heat flux. A representative halite crystal radius in the Dead
Sea is 10−4 m (Sirota et al. 2021), for which Lensky et al. (2013) measure a typical settling
velocity vs = 6.2 × 10−3 m s−1. This gives Ra = 3.1 × 10−6 over some 106 dimensionless
time units which, according to figure 5(d), corresponds to two distinct density fronts
that do not recombine, so that the crystals sediment with their settling velocity.
However, we need to keep in mind the various assumptions underlying our analysis, such
as thermodynamic equilibrium, monodisperse crystals and a limited range of τ -values.
Hence, it will be important to validate the above prediction by field measurements.

5. Summary and conclusions

When a saturated layer of brine is cooled from above, a top-heavy density profile forms
due to the cold boundary layer at the top. Initially, this boundary layer grows diffusively,
but upon reaching a critical thickness, it becomes unstable, giving rise to convection and a
downwards propagating cold front. In addition to modifying the fluid density near the top,
the surface cooling also reduces the solubility of salt, so that halite crystals precipitate out
and sediment, leaving behind less saline brine. This loss of salinity reduces the overall
density of the surface layer, but it results in a downwards propagating front of halite
crystals. Hence, there are two distinct mechanisms by which surface cooling can generate
top-heavy density fronts in saturated brine.
By rendering the governing equations dimensionless, we found that the dominant

dimensionless parameter can be cast in the form of a Rayleigh number. We then
employed two-dimensional simulations that reproduce the emergence and interaction of
the temperature and crystal concentration fronts, and depending on the value of the above
dimensionless parameter, we observed the existence of three distinct flow regimes: for
small Rayleigh numbers, the two fronts remain distinct at all times and the effective
sedimentation velocity of the crystals is their Stokes settling velocity; for intermediate
Rayleigh numbers, the crystal front initially outruns the temperature front, but the latter
catches up to the former after some time and they recombine; for large Rayleigh numbers,
one combined front is observed at all times. The effective sedimentation velocity of the
crystals after recombination is hence faster than the Stokes settling velocity.
Based on numerical observations and simple model assumptions about the temperature

profile in the convective region, and for the dependence of the convective front velocity
on this profile, we furthermore propose approximate scaling laws for the propagation of
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the thermal and crystal fronts in each regime. We compare these with the simulation data,
with generally good agreement.
We note that in the present investigation, we assumed monodisperse halite crystals with

a Stokes settling velocity that is constant in space and time. In real world applications,
we expect the crystal size distribution to be polydisperse and the crystals to grow in time,
so that their settling velocity will change (Lensky et al. 2013). Moreover, our assumption
of thermodynamic equilibrium does not account for supersaturation in the system, and
hence there is no delay in the formation of crystals. These effects may modify the above
simulation data to some extent, so that it will be useful to conduct field measurements for
comparison. Such experiments are currently being planned.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.809.
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