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Abstract. Canonical polyadic decomposition (CPD) is prevalent in chemometrics, signal pro-
cessing, data mining, and many more fields. While many algorithms have been proposed to compute
the CPD, alternating least squares (ALS) remains one of the most widely used algorithms for comput-
ing the decomposition. Recent works have introduced the notion of eigenvalues and singular values
of a tensor and explored applications of eigenvectors and singular vectors in signal processing, data
analytics, and various other fields. We introduce a new formulation for deriving singular values and
vectors of a tensor by considering the critical points of a function differently from previous works.
Computing these critical points in an alternating manner motivates an alternating optimization al-
gorithm which corresponds to the ALS algorithm in the matrix case. However, for tensors with order
greater than or equal to 3, it minimizes an objective function which is different from the commonly
used least squares loss. Alternating optimization of this new objective leads to simple updates to the
factor matrices with the same asymptotic computational cost as ALS. We show that a subsweep of
this algorithm can achieve a superlinear convergence rate for exact CPD when the known rank is not
larger than the mode lengths of the input tensor. We verify our theoretical arguments experimen-
tally. We then view the algorithm as optimizing a Mahalanobis distance with respect to each factor
with the ground metric dependent on the other factors. This perspective allows us to generalize our
approach to interpolate between updates corresponding to the ALS and the new algorithm to man-
age the tradeoff between stability and fitness of the decomposition. Our experimental results show
that for approximating synthetic and real-world tensors, this algorithm and its variants converge to
a better conditioned decomposition with comparable and sometimes better fitness as compared to
the ALS algorithm.
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1. Introduction. The canonical polyadic oo CANDECOMP/PARAFAC (CP)
tensor decomposition [21, 24] is used for analysis and compression of multiparameter
datasets and is prevalent in tensor methods for scientific simulation [15, 40, 44, 54].
For an order 3 tensor 7T, indexed as t;;r, a rank-R CP decomposition with factor
matrices A, B, and C is defined as

R
T: [[AaB7C]]7 tijk :ZairbjTCkTv
r=1

where A is indexed as a;,, and similarly for B and C. Determining the CP rank and
finding an approximate CP decomposition of a tensor, so as to minimize

1 2
(1.1) f(A,B,C) = 5HT— [[A,B,C]]HF,

are NP-hard problems [23]. The CP decomposition of a tensor can be computed via
various optimization algorithms, such as alternating least squares (ALS) [6, 22, 26, 53]
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which aims to minimize the objective (1.1) in an alternating manner by considering
all except one factor matrix fixed. There have been several attempts to improve the
performance of the ALS algorithm [38, 42, 45, 50, 56]. Several methods which aim to
minimize (1.1) with respect to all the factor matrices use gradient-based information
[1, 46, 48, 57, 60, 63] to update all the factors simultaneously. Another set of methods
optimize for all the factors simultaneously by formulating (1.1) as a nonlinear least
squares problem by considering the entries of all the factors as variables. In addition to
gradient information, these iterative methods use second order information to compute
the next step which requires a system solve [46, 62] and can be achieved by an implicit
conjugate gradient algorithm [55, 57].

Tensor eigenvalue problems are relevant in the context of solving multilinear sys-
tems, simulating quantum systems, exponential data fitting, and many other applica-
tion areas [49]. However, the study of tensor eigenvalues and tensor singular values is
at a relatively nascent stage. [34, 37] provide a definition and introduction to eigen-
values and singular values of a tensor. Computing eigenvalues of a tensor is a hard
problem and can be solved via iterative methods for special cases such as computing
a subset of eigenvalues of a tensor [32] or computing the real eigenvalues pairs of a
real symmetric tensor [16]. The tensor eigenvalue problem is motivated by applica-
tions like blind source separation [8] and independent component analysis [25], which
also motivate the closely related problem of diagonalizing a tensor. The concept of
tensor diagonalization was introduced in [14], where approximate diagonalization of
the tensor is considered by minimizing the sum of squares of off-diagonal entries or
maximizing the sum of squares of diagonal entries of the tensor. There have been
many follow-up works [35, 36, 61, 65] which consider approximate diagonalization of
the tensor by invertible and orthogonal transformations.

In this work, we introduce a formulation for computing the singular values and
vectors of a tensor by considering a logarithmic penalty function instead of Lagrangian
variables [37] and computing the critical points of this function. This formulation,
when generalized to computing invariant subspaces of a matrix, leads to diagonaliza-
tion of the matrix and can be linked to the singular values and vectors of the matrix.
When extended to tensors with order greater than or equal to 3, this formulation
leads to another notion of diagonalization of the tensor which is different from the
one introduced in prior work. The critical points of this new function spectrally diag-
onalize the tensor; i.e., the transformed equidimensional tensor of mode length R has
R elementary eigenvectors with unit eigenvalues. Computing these stationary points
alternatively motivates an alternating optimization algorithm for computing the CP
decomposition of a tensor.

1.1. Motivation: Eigenvectors via Lagrangian optimization. In the case
of low-rank matrix approximation, the Eckart—Young—Mirsky theorem shows that the
best low-rank approximation may be obtained from the singular value decomposi-
tion. This connection relates low-rank factors to critical points of the bilinear form
far(z,y) = xT My with ||| #0, ||y|| # 0. For tensors of order 3 and higher, tensor
singular values have been similarly derived from critical points of multilinear forms.
In particular, Lim [37] derives singular vectors and singular values by imposing con-
straints ||z|| = ||ly|| = 1 and considering the critical points of the Lagrangian function.
The same results may be obtained by instead considering a logarithmic interior point
barrier function for the constraints, ||| #0, ||y|| #0, so

fv(z,y) =" My —log(||z|||y]]),
Vim(z,y)=0 = My=z/|z|* M z=y/|y|>
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Consequently, with o = 1/(||z||||y]]) and w = x/||z||, v = y/||y||, we have Mv = ou
and MTu = ov. The use of a coefficient for the barrier function only affects the
scaling of any critical point vectors, * and y. For tensors of order 3 and higher,
tensor singular values can be similarly derived from critical points of

N
1 N z : i
fT(ﬂ)(l),...,ﬂi‘(N)): E til--.iN‘Tz('l)”'xz('N)i ( 10g(|$())> ’
i1... 9N =1

(7)
Vir@®, z™)=0 = W: E: t“mxgpxﬁj)zﬁﬁ),
x
1105 0N

where i...j...k implies j is omitted from the sequence. The use of the 2-norm in
the above definitions leads to [? singular vectors [37], and with a symmetric tensor
and each () = () it yields Z-eigenvectors [34]. Choosing another vector norm in
{3,..., N} leads to other notions of singular vectors and eigenvectors [34].

In the previous literature, there have been several works that show correspondence
between CP decomposition and eigenvectors or singular vectors of a tensor. For
latent variable models, under certain assumptions, an orthogonal CP decomposition
is also an eigendecomposition of a symmetric tensor [3]. It has been shown that
orthogonally decomposable symmetric tensors have orthogonal eigenvectors and that
the CP decomposition of these tensors is given by orthogonal eigenvectors [51]. An
extension of this result to nonsymmetric tensors with orthogonal singular vectors
defining the CP decomposition has also been explored [52].

In this work, motivated by an efficient iterative scheme, we consider an extension
of the variational notion of one singular vector tuple to many.

1.2. Convergence results. The new alternating update scheme is highly ef-
fective at finding an exact CP decomposition, if one exists. In particular, we show
that the method achieves a superlinear rate of local convergence to exact CP decom-
positions if the CP rank is not greater than any mode length of the input tensor.
In section 4, we prove that the convergence order is o per subproblem or a®¥ per
sweep of alternating updates, where « is the unique real root of the polynomial
N1 — Zij\;_(f x'. For N =3, a = (1 ++/5)/2, while for higher N, « increases.
A superlinear convergence rate for CP decomposition is also achievable via general
optimization algorithms such as Gauss—Newton [55, 57] which does not involve any
restrictions on the CP rank. However, the alternating optimization scheme we pro-
pose has a much lower per-iteration cost (about the same as ALS, which achieves only
linear convergence).

For a given tensor and any choice of rank, the critical points are generally not
unique (as in the case of matrices). Theoretical characterization of the conditions
under which critical points of (3.3) exist in this scenario remains an open problem,
as it requires proving existence of roots of a system of nonlinear equations that have
the same number of variables and equations. Note that the problem of proving if the
best CP rank approximation exists also requires existence of a solution of system of
nonlinear equations. The best CP rank approximation may not exist, which has led to
the notion of border rank [31]. Consequently, establishing existence of critical points
for our scenario is likely also nontrivial. Therefore, with the assumption that a critical
point exists, we show in section 4.1 that the proposed iterative scheme achieves local
convergence to it (in this case, at a linear rate).
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We have performed numerical experiments to confirm the rate of convergence of
the algorithm for computing CP decomposition of different tensors with known rank.
The observed rate of convergence values agrees with the theoretical rate of convergence
with an error of about 0.2% for order 3 and an error of about 1% for order 4 tensors.
The numerical experiments in section 6 also confirm the convergence analysis of the
algorithm to stationary points for approximate decomposition of tensors as described
in Lemma 4.4.

1.3. Generalizations and experimental evaluation. The proposed algo-
rithm may also be used for approximate CP decomposition but does not minimize
the Frobenius norm of the residual directly. Instead, when optimizing for A, the
algorithm minimizes

|(I® Bt C")vee(T — [A,B.C])| .

where vec(T) is vectorization of the tensor T and ® is the Kronecker product opera-
tion on two matrices. For a fixed residual error in the decomposition, the magnitude
of this error metric will generally depend on the conditioning of A, B, and C. Hence,
this alternating minimization procedure tends to converge to well-conditioned factors
(and well-conditioned CP decompositions [10, 66]).

We generalize this method by considering a Mahalanobis distance between the
input and reconstructed tensors. The original motivation for Mahalanobis distance
minimization of tensors came from the work on minimization of Wasserstein distance
between tensors for nonnegative CP decomposition [2]. This generalization allows
us to reformulate each update to a factor of the above-introduced algorithm as a
minimizer of a Mahalanobis distance [19] with the ground metric dependent on the
other remaining factors. This reformulation helps extend the introduced algorithm to
any CP rank by using the same ground metric. Moreover, we are able to interpolate
between the introduced algorithm and ALS by interpolating the ground metric. Our
experiments in section 6 suggest that the interpolated updates help manage the trade-
off between fitness and conditioning of the decomposition. We measure conditioning of
the decomposition by computing the normalized CP decomposition condition number
[10]. The condition number can be computed in an efficient manner for decomposi-
tions with small CP rank by reducing the size of the matrix for which the smallest
singular value needs to be computed. The reduction in size is performed by removing
some components of the matrix which contribute to larger singular value components
and henceforth reducing the computational cost significantly. We present a proof of
this reduction in Appendix A which is specific to CP decomposition and is different
from the proof presented for structured block term decompositions [20]. By using this
efficient approach, we are able to track the condition number of the decomposition
at each iteration of the algorithms. For synthetic as well as real-world tensors, we
observe that by utilizing hybrid updates of the introduced algorithm, we can find de-
compositions with a condition number lower by a factor as large as 10* with a change
in relative residual of only about 0.01 when compared to ALS.

2. Background. We introduce the notation and definitions used in the subse-
quent sections here along with a brief introduction to the ALS algorithm for computing
CP decomposition [12, 21].

2.1. Notation and definitions. We use tensor algebra notation in both el-
ementwise form and specialized form for tensor operations [31]. For vectors, bold
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lowercase letters are used, e.g., . For matrices, bold uppercase letters are used, e.g.,
X. For tensors, bold calligraphic fonts are used, e.g., X. An order N tensor corre-
sponds to an N-dimensional array with dimensions s; X - -- X sy. Elements of vectors,
matrices, and tensors are denoted in subscript, e.g., x; for a vector x, z;; for a matrix
X and ;i for an order 4 tensor X. The ith column of a matrix X is denoted by x;.
The mode-n matrix product of a tensor X € R %X~ with a matrix A € R7**" is de-
noted by X x, A, with the result having dimensions s1 X+ X $p_1XJ X Sp41 X - XSN.
Matricization is the process of reshaping a tensor into a matrix. Given a tensor X', the
mode-n matricized version is denoted by X, € R*»*K  where K = HZZLm#n Sm.-
We use parenthesized superscripts as labels for different tensors and matrices; e.g.,
AW and A® are different matrices.

The Hadamard product of two matrices U,V € R'*/ resulting in matrix W €
RI* is denoted by W = U * V', where w;; = u;;v;;. The inner product of matrices
U,V is denoted by (U,V) = Zi,j u;50;5, and similarly for tensors. The outer product
of K vectors u™™, ..., u®) of corresponding sizes s1, ..., Sk is denoted by X =u® o
-ouM) | where X € R****5K is an order K tensor.

For matrices A € RI*K =[a1,....ax] and B € R7*K =[b,,...bx ], their Khatri-Rao
product results in a matrix of size (I.J)x K defined by A® B =[a; ®by,...,ax @ bk],
where a ® b denotes the Kronecker product of the two vectors. We define the Maha-
lanobis norm for a matrix A with ground metric M as || A%, = vec(A)T M vec(A),
and similarly for a tensor T,||T||3; = vec(T)T M vec(T). To ease the notation
for N Khatri-Rao products, we use @N:1 =AM o ... 0 AW, and similarly for
Kronecker products of N matrices, &), _; A — AN @ @ AW 4N A =
AN % AW We use Omin(P) to denote the minimum singular value of the
matrix P.

2.2. ALS for CP decomposition. The CP tensor decomposition [21, 24] for
an input tensor X € R *IN is denoted by
X~ [[A(l),~~~ ,A(N)]] , where A® = [agi),~~~ ,aV]

T

and serves to approximate a tensor by a sum of R tensor products of vectors,
R
Xz2a£1)0~--oa£N).
r=1

It is sometimes useful to normalize the factor matrices so that each column of the
factors has a unit 2-norm and the weights are absorbed into a vector d € RE, given as

T )

R R
x~>aMo.0a™ =% "d,aM o 0a®
r=1 r=1

where A™ are column normalized for all n and denoted by
K [D:a®,.,aM],

where D is a diagonal matrix with d on the diagonal. The CP-ALS method aims to
minimize the nonlinear least squares problem

2
| M
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by alternatively minimizing a sequence of least squares problems for each of the factor
matrices A" . This results in linear least squares problems for each row,
AL P =X,

where the matrix P € RP»*E where D,, = Hfil izn Lis 18 formed by Khatri-Rao
products of the other factor matrices,

N
(2.2) P () A,

m=1,m#n
These linear least squares problems are often solved via the normal equations [31],
AL T — X, P,

where ' € REX® can be computed via

N .
(2.3) rm= % g0

i=1,i%n

with each S = ADT AW The matricized tensor times Khatri-Rao product or MT-
TKRP computation M = X(n)P(") is the main computational bottleneck of CP-
ALS [5]. For a rank-R CP decomposition, this computation has the cost of O(IV R)
if I, =1 for all n € {1,...,N}. There have been various developments to optimize
computation of MTTKRP, like the dimension tree algorithm [4, 27, 28, 29, 47, 67] for
dense tensors and sparse MTTKRP [13] for sparse tensors.

3. Exact CP decomposition. In this section, we provide a motivation for the
derivation of the new alternating optimization scheme to compute exact CP decompo-
sition when the rank is known and is not greater than any of the mode lengths of the
input tensor. The method is derived by extending the notion of computing singular
vectors via Lagrangian optimization by considering more than one vector at a time
by computing the fixed points of a more general function. These fixed points lead
to a new alternating update scheme which solves a different least squares problem as
compared to ALS. This new scheme has a leading order cost which is the same as
ALS, depends on the MTTKRP operation, and therefore is efficient in computation.

3.1. Tensor spectral diagonalization via Lagrangian optimization. An
equidimensional tensor of order N with mode length s is said to be spectrally diago-
nalized if it has s unit eigenvalues with s corresponding eigenvectors that are columns
of identity. We may obtain a spectral diagonalization of the matrix A by considering
the critical points of a generalization of 7 Ay = (A, zy”) to the matrix case,

(X, Y)=(A,XY") st. det(XTX)#0,det(YTY) #0.
Transforming the inequality constraint into a logarithmic barrier function, we obtain

(3.1) Li(X,Y)=(A,XY")— - (log(det(X" X)) + log(det(Y"Y)))

1
2
(3.2) =tr(XTAY) — %tr (log(X"X) +10g(YTY)).
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The above equivalence is due to Jacobi’s formula, as det(X” X)) # O,det(YTY) # 0.
The critical points of L satisfy
AYX"=Tand A"XY" 21

The above least squares equations arise from the fact that derivative of 1 trlog(X x)

with respect to X is X7, These critical points diagonalize A in the sense that
XTAY =1. In the case of a tensor T, a critical point (X(l), .. .,X(N)) of

(3.3)

FXD XY = (7 [ XD, X)) sib. det(XMTXM) £0ovne{1,..., N},

R
1
LHXD XN Y g a0 L (Zlogx< >)>

r=1 leN

gives invariant subspaces of T in the sense that, for all i € {1,..., N},
Vv € span ®m§j),.. ®sc , )vapan{wg),...,ac%)},
J#i J#i

where T'(;) is the mode-i matricization (unfolding) of the tensor 7". Note that the
objective function in (3.3) is neither convex nor concave with respect to any of the
factors X, Y, unlike the least squares loss function minimized in ALS which is convex
with respect to the factor matrices.

The reconstructed tensor 7, where T = [[Y(l)7 . ..Y(N)]}7 y® = X(")TT for all
n € {1,..., N}, captures the action of T'(;y on an invariant subspace as described above;
the application of each matricization may be performed with bounded backward error.
In section 5.1.1, we show that the backward error is bounded by ||T;)z"||, where
z+ is the projection of z onto the orthogonal complement of the column span of
@;V:Lj#nX(j). We show that this bound also holds for ALS, and in general for a
family of algorithms based on alternating minimization of Mahalanobis distance [19]
between the input and reconstructed tensors.

Another observation regarding the critical points of (3.3) is that each matriciza-
tion of the tensor reconstructed from a critical point, X = [[X(l)7 .. X(N)]], is a right
inverse of the corresponding matricization of the input tensor 7~ when the CP rank
is equal to the mode length, and more generally,

T X =" Vie{l,... N},

where each II? is a projector onto the column space of X @, This X satisfies some
but not all of the properties of previously proposed generalizations of the Moore—
Penrose inverse to tensors [36, 58].

Further, the critical point gives a transformation that spectrally diagonalizes T,

L R €5 (N)
Zj1.gn = E ViginTiyjy " Tin i

so that Z has R eigenvectors that are elementary vectors with unit eigenvalues
(for any tensor eigenvector/eigenvalue definition, i.e., [P eigenvector for any choice
of p [34]), since

Zjkih-dpik--dk — 5]k]p Vp#ke{l,....,N}.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/01/23 to 12.184.218.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A2788 NAVJOT SINGH AND EDGAR SOLOMONIK

T T
Beyond these properties, we show that XMt ey X (N1 may be used to obtain an
exact CP decomposition or an effective low-rank approximate CP decomposition.

3.2. Alternating optimization method. The critical points defined above
may be computed efficiently by a method similar to ALS. For a CP decomposition
[A, B,C] of tensor T, ALS solves a set of overdetermined linear equations at each
step to minimize the Frobenius norm error relative to one factor; e.g., it solves for A in

(CoB)AT =T,

The update rule for each subproblem may be written as a product of the pseudoinverse
of the Khatri-Rao product of two factors and an unfolding of the tensor, i.e.,

A ZT(l)(CQ B)TT.

Some of the major advantages of the ALS algorithm are its guaranteed monotonic
decrease in residual, low per-iteration computational cost and its amenability to par-
allelization. It has been shown that ALS achieves linear local convergence to minima
of the CP residual norm under certain conditions [64].

To obtain a critical point in the high order tensor function (3.3), we propose a
different alternating update scheme, which finds the solution U to the linear least
squares problem,

(Ty(WoV)UT=I

With AT = UT, BT = VT, and CT = WT7 we observe that the update is similar to
that of ALS,

A=T(C" o B'T).

A stationary point of this alternating update scheme provides a critical point of (3.3).

We first provide a complete description of the alternating update scheme proposed
above. To compute the decomposition of a tensor X, the algorithm maintains a CP
decomposition given by

[a®,...,.a™]

and updates each A™ in an alternating manner,

N
(3.4) Av—x.,, [ @ ami

m=1,m#n

This update may be written in elementwise form in terms of the pseudoinverses
U™ = AT a9

N
(n) _ Z (m)
ainr - Liy..in H um-m.
i1ein. N m=1,m#n

Algorithm 3.1 details each sweep of such updates. As with the ALS, it is ad-
visable to recalibrate the norms of the columns of each factor before the subsweep
corresponding to the nth factor so that ||a$k)|| =1 for all k#n and r. With this re-
calibration, a valid convergence criterion is to check whether the magnitude of change
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Algorithm 3.1 Basic description of the new alternating update scheme.

1: Input: Tensor X € RN yank R<I,¥ne{l,...,N}
2: Initialize {AM, ..., A™M} s0 each A™ e R™*R is random
3: while not converged do

4: forne{l,...,N} do

6: end for

7: end while

8: return factor matrices {A™M, ..., AN}

in the factors exceeds a predefined threshold at each sweep. The method is invariant
to the rescaling in exact arithmetic, but this calibration helps reduce the effects of
round-off error as in [64]. This calibration is also cost efficient, since the pseudoinverse
of only one matrix changes per subweep. This makes the algorithm accessible to all
the optimizations involved in computing the MTTKRP in each subsweep of ALS such
as the dimension tree algorithm [4, 27, 28, 29, 47, 67].

3.3. Cost analysis. The cost of each sweep of Algorithm 3.1 corresponds to the
cost of computing the pseudoinverse of each factor, as well as a set of N MTTKRP
operations computed across different modes. For computing a set of MTTKRP opera-
tions for a sweep of the algorithm, a dimension tree [4, 28, 47] or multisweep dimension
tree [39] may be used as in the ALS algorithm. Dimension trees provide an efficient
way to compute the set of MTTKRP in one sweep by storing and reusing partial
computations performed in computing MTTKRP in each subsweep of the sweep. A
multisweep dimension tree improves the computation by reusing intermediates across
sweeps, reducing the cost per sweep even further. The overall per-sweep cost with a
multisweep dimension tree [39] is then given by

]\[2_N1<n:In>R+O ((éh) R2> .

The cost of an ALS sweep with a multisweep dimension tree [39] is

N
NL_Vl ( 11 In>R+ O(NRY),

n=1

which is less expensive, as solving an overdetermined system via normal equations is
cheaper than computing the pseudoinverse of a matrix. If X is sparse, the method can
benefit from existing work on efficiently performing MTTKRP with a sparse tensor
[13] and therefore has the same leading order cost per sweep as that of ALS for sparse
tensors as well.

4. Convergence rate for exact decomposition. In this section, we theoret-
ically analyze the asymptotic rate of local convergence of Algorithm 3.1 for when an
exact CP decomposition of rank R less than equal to the length of all modes of the
tensor exists. To derive the rate of convergence for an exact decomposition, we relate
the distance between the computed factor in each subproblem and the true factor,
to the error in the other factor matrices. The following lemma states the error in
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computing AW but can be trivially extended to any A for n e {1,...,n}. We
consider the error in the normalized factor and the error in the magnitude of CP

decomposition components modulo column scaling.
LEMMA 4.1. Suppose X = [[D;A(1)7...,A(N)]}, where each AW g RsixR it
s; > R is full rank and has normalized columns, i.e., Hag.l)||2 =1 for all i,j and

A" = A 4 A™ 4iso has normalized columns and satisfies ||A™||p = ¢, for
n=1,...,N —1. Then there exists € >0 such that if €, <e forn=1,...,N —1, then

A = X (AVIT 6 0 AN VI,

N _ AN D ensures that A are normalized and satisfies

N-1
jA% — AN =0 (H )

n=1

and | D - D|r=O0(e).

where A

Proof. Let e <1 and € < min,, (omin(A™)) for each n; therefore A™ is full rank
for each n =1,...,N — 1. Substituting the decomposition of X into the computed
solution, we obtain

A

T
A A(N)D<(A(1)T(A(1) o A(l))) ok (A(Nfl)f(A(Nfl) _ A(Nl))))

T
= A<N>D<(I ~AYDTADY (- A(Nl)TA(N—l)))

T
:A(N)D<S+(_1)N—1A(1)TA(1) *._.*A(N—I)TA(N—1)> ’

where S includes all cross terms of the Hadamard products, which must be diagonal
since any such term includes a Hadamard product with an identity matrix. Since

I = S|r = O(max(en)) = O(e),

S is full rank for sufficiently small €. Let
T
A — <(1)N1A(1)TA(1) *“.*A(Nl)TA(Nl)) .

Now, the norm calibration diagonal matrix is defined so that d;; = ||5,Z(~N) l2. Since
AV —AMD(S 1+ A)=AMD + AMD(S + A - T)
and ||S + A — Il =O(e), we have

= ~(N N
dii = 1@ [|2 < @™ ||odii + | AN D| ]S + A — I||2
= |a{™||2dii + O(e) = dii + O(e).

Consequently, ||D — D||s = O(¢). Further, we can obtain a tighter bound (in terms of
O(]|A||r) instead of O(e)) by considering AN = AMNDS(I+8571A), so

dii = @™ ||2 < @i ||adiisii + | AN DA p = digsii + | D)2 | A -
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This bound allows us to get the desired result for the error in the factor matrices,

(N)

HA“V) — AWM HF - HA<N> .y D*HF - HAUV) —~AMDS(I + S*A)D”HF

(4.1) =o(1-DS(I+57'A)D7"|r).
Since we have that |[D — DS||r = ||D|2||A| F,

HI _DS(I+ s—lA)D*IHF - HI ~DSD '+ DAD”HF

1 1

- HDD* _DSD '+ DAD”HF

=o(alr) + [DAD™Y|| =o(Alr).

Since ||AllFp = O(Hg;ll €n), this completes the proof. O

The above lemma states that in Algorithm 3.1, the error in the updated CP
decomposition factor relative to the true CP decomposition factor is bounded by the
product of errors in the previous N —1 factors. Using this error bound, we derive the
convergence rate for Algorithm 3.1.

LEMMA 4.2. For any algorithm where the error in the update is of the order of
the product of errors in the previous k updates, the rate of convergence is equal to the
positive Toot of the polynomial o — Zi:ol at.

Proof. Let the error at the nth iteration be given as e,,. The worst case error at
the nth iteration then satisfies the following due to Lemma 4.1:

k
(4.2) en = LHen_i, where L is a constant.
i=1

The above recurrence can be solved by assuming that the error satisfies the following
asymptotic relation:

(4.3) en=Cey,_y,

where C' is some constant and « is the rate of convergence. From (4.2) and (4.3),

k
Ce;,_1=1L H En—i,
i=1

2
by assumption in (4.3), Cc%pen_l_p =es”, Vpe{l,...k},
Skt L
Cxim0 o (—atshi 2

i=0 ot

L =€p_1

Since the left-hand side is constant for n — oo due to the assumed convergence rate,

k—1
ak — Zai =0. 0
i=0

Now, with all the pieces together we can show that for exact CP decomposition,
Algorithm 3.1 locally converges at a rate which is given in the following theorem.

THEOREM 4.3. Suppose X = [[D;A(l),...,A(N)]], where each AW € R¥ >R with
s; > R is full rank and has normalized columns. Algorithm 3.1 for computing the
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ea:act CP decomposition of X converges locally with a rate of convergence equal to
N-1 N— 7
o, where o is the unique real root of the polynomial — >y "

Proof. Consider the computation of the CP decomposition of the tensor X’ with
exact rank R and initial guess A" with normalized columns such that A" =
AD 4 AD with |A® ||, < € sufficiently small for i = 1,...,N — 1 (as described in
Lemma 4.1). Let the error in CP decomposition at the nth iteration be given as

= = (1 N
By =max{||D— D||p, |A” = AV ... | A — AN .}

Also, let the error in the kth subiteration of the nth iteration be given as €, *) From
Lemma 4.1, we know that the error in CP decomposition is bounded by the maximum
error in factor matrices. Since the error decreases at each subiteration, there exists n
such that E, = 0(553)).

From Lemma 4.1, we know that the error in a subsweep of the algorithm modulo
the column scaling is of the order of the product of errors in previous N —1 subsweeps;
therefore the error at the (n+ 1)th iteration is bounded by the error in the first factor

matrix, given by
Enp1= ( H €(k)>

By using Lemma 4.2, we know that the error in a subiteration is given by the following
recurrence, where « is the positive root of zV =1 Zivg zh:

(kD) :O((e,(f))a) Vk=1,...,N —1.

Therefore, the error at the (n 4 1)th iteration of Algorithm 3.1 can be expressed as

B=o(Tl4 ) -0 (F5).

The fact that « is a root of the polynomial zV 1 — ZN 0295 implies that o™ ~1 —
va 02 a’ =0; that is, Zf\;l a'=a". Therefore,

By = O(ESL“N). O

This completes the proof to show that Algorithm 3.1 locally converges superlinearly
for exact CP rank cases. We verify our theoretical results in the section 6.

4.1. Convergence to other stationary points. The result in Theorem 4.3
can be generalized to the case where a tensor X can be represented as the sum of two
tensors, 7 and £, where T has an underlying CP decomposition structure of rank
R and € has a CP decomposition that is mostly orthogonal to the decomposition of
T . For such an input tensor X, we show that Algorithm 3.1 with CP rank R locally
converges to the underlying CP factors, provided that a stationary point associated
with T exists. We analyze the convergence rate of the algorithm and show that this
is a generalization of the previous result, since we converge to a subset of the CP
factors with same convergence rate as in Theorem 4.3, if the factors of T are in the
orthogonal complement of the column space of corresponding CP factors of £. We
show that the error in the normalized factor matrix is a summation of two terms
which have separate upper bounds. We keep these separate since the upper bounds
are in a different parameter space for each term.
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LEMMA 4.4. For a given tensor X, assume there exists a stationary point of
Algorithm 3.1 yielding a positive diagonal matriz and factors (A( ) A(N))7 where
each AW e R5*R with s; > R is full rank and has normalized columns ie., ||a( )H =

1 for all i,7, and their pseudoinverse transposes (U(l), .. .,U(N)), s0 A(”)T = U(")T.
The stationary point conditions imply that for alln € {1,..., N}, we have

N
Ap=x( O u

m=1,m#n

Further, assume that X = [D;AYD ... AMN] + [[b'A(l) A(N}] with

||A(n)TU(”)||F <ey, and deﬁne k= ||D|2| D7 2 . Given approzimations A" =
A 4 A(n) and Tj(n) A( =y 4 A( ") with normalized columns, there exists
€>0 such that if |A n)||F, ||A(n lFr <en,<e forallne{l,.. — 1}, then

1)

W ex (0" 00T _1))

A
) 2 (V) =—1 (N) 3
satisfies |A" D~ — AN)||p = P+Q, where P=O([[," &), Q= O(kee, ), and D
normalizes A" , e, dig = ||al( )||2. Further, |D — D||r = O(e).
Proof. We expand the update as follows:

(N) _

A% = (149, 4D+ 47, AYD)) (00 0T ™Y)

—AMNp (A(l)T(j(l) *._.*A(N—l)Tf](N—l))
AN D (AT s AN T )

—AMDp ((I+ A<1>TA§})) - (I+ A<N*1>TA§]N—1)))
+AYD((AVTT0 £ AVTAD) « s (AN VT
_’_A(N—I)TAg]N—l)))'

By the stationary point condition, we have that

AYp (A(l)TU(l) Kook A(N*”TUUV*U) —o.

Consequently, the error reduces to the cross terms of the summations, i.e.,!

AN _A™Mp

[ N Nt k

_ AN) (n)T A (n) (m)T A (M)

=A"D | % AMTAY +Ix) > #ATTAY
L k=1 {mq,..., my yC{1,..., N}

) & | = ko (my) )

+A D Z * A my TU(ml) * A (wy TASle)
k=1 {m1,...mp}C{1,...,N}, =1 =1
L {wi,.;wn_g}={1,.... N}\{m1,....mp }

IFor N =3, the right-hand side of this formula is

APDD[AVTAR + AOTAR 1 [ (AVTAR + ADTAR)]

+A(3)ﬁ [A(l)TU(l) *A(z)TAg) +A(2>TU(2) *A(l)TAél)}_
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First, since each error term has Frobenius norm O(||A™]|) = O(e), the column norms
of A" win yield D with | D — D||r = O(e). Further, in order to get the error bound
on A(N), we consider the diagonal matrix,

N—-1

S=I+Ix) > *

k=1 \{m1,ome} {1, N}

He

m (ma)
AMOT AT

~ We define S as above in order to show that the column norms of of A(N), ie.,
D, are close to DS. Using the above definition of S, we have

N-1
N k
AND+ AND | % ANTAR 415 S s AmOT A
n=1 k=1 \ {m1,eeemi b {1 N T

n=1

— N n n
:A(N)DS+A(N)DS{S L AWTAM |

Therefore, we have

n=

AN _AMps—=AMDs [sl * AMTAD
1

+ A<N>D Z A(ml>TU(ml) NﬂzkA(wl)TAg””
k=1 {mi,..., mg}C{1,..., N1, =1
{wi,wn g }={1,...N}\{m1,....my }

k
*

=1

A (V) ; :
A — AN DS|[p = ||P||lr+ Q]

where | P|r = O(Hfi}l €;) and |Q||F = O(eey). The first term in the above equa-
tions is a Hadamard product of terms AOTA U” and therefore leads to an upper bound
of O(Hf\:l ei). The second term in the above equations is a summation of terms
with products (A(Z)TU(i))A(J)

The same bound follows for each column, so the column norms of A N), D satisfy

TA(Uj) which results in an upper bound of O(ee_ ).

|D—DS|r=|Pllr+[QlF

where [|P||r = O([I," &) and || Q|| = O(ee.).

Now that we have shown that A(N) is close to AN DS and that its column
norms (D) are close to DS, we obtain the final error bound after normalization,

AP AMpspT _A<N>D[ * A(">TA<U")}D_1
n=1

A (N) -~ = koo (m)T Nk AT o (wp) || 51

+A7D|Y > x ATUTUM T AT AR (|IDT
1=1 1=1
k=1 {m1,..., mp }C{1,..., N},
{wi,..., wy_k={1,..., NI\{m1,..., my}
) | N |
Since DSD =(D-P-Q)D =I-(P+Q)D

AMDSD™ =AM — AM(P 1+ Q)D .
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Therefore,

~(N) = —

N N n)T n ~—1
= A >D[ x A AE)]D

n=1

F

N-1

R . koo« N—k ~ (w _

n A(N)D Z *A(mL)TU(ml) % A(UZ)TAéwl) D!

k=1 {mi,...,ms}C{1,....N}, =1 =1
{wi,.,wn—k}={1,....N}\

{mi,..., my} F
+1A™(P+Q)D 7" r
:P+Q’
where PzO(Hﬁvz_llei) and Q = O(kee). |

This bound shows that Algorithm 3.1 achieves local convergence to fixed points
for which €, = O(1/k). In contrast to the exact case, our analysis suggests only a
linear convergence rate for approximation with the algorithm.

5. Approximate CP decomposition. In the above sections, we have provided
a motivation for Algorithm 3.1 to compute a CP decomposition of rank R with R being
less than or equal to the smallest mode length of the input tensor. We have shown
in Theorem 4.3 that this algorithm exhibits a superlinear local convergence rate for
exact CP decomposition problems and achieves a desirable approximation for special
input tensors as described in Lemma 4.4. We now focus on the case of finding a good
CP approximation for an arbitrary input tensor. We show that Algorithm 3.1 can be
viewed as performing coupled minimization of the residual error of the decomposition
in terms of a Mahalanobis distance metric [19]. Note that this perspective on the
algorithm is different from the one introduced in section 3.1; however, it allows us to
formulate an alternating minimization algorithm which generalizes Algorithm 3.1 to
any CP rank and to interpolate between the updates of ALS and Algorithm 3.1.

5.1. Mahalanobis distance minimization. Each update of Algorithm 3.1
may be viewed as minimizing a residual error with rescaled components. For an
order 3 tensor X in updating the first factor, it minimizes

(5-1) I(2 — [A, B,C])wy(C'" ® BT 3.

We can recast the above expression in a way such that the objective function is
transformed into a non-Euclidean distance metric with respect to the input tensor.
We can rewrite the above expression as

vec(X — ﬂA,B,Cﬂ)TMveC(X — [[A,B7C]]),

where M = (CTTC" @ BTB' @ I). This may be viewed as minimizing the Ma-
halanobis distance metric relative to each factor while keeping the distance metric
associated with that factor independent (and then updating it thereafter). This in-
terpretation then enables us to extend Algorithm 3.1 for any CP rank and introduce
methods that are a hybrid of Algorithm 3.1 and standard ALS.

5.1.1. Alternating Mahalanobis distance minimization. We consider a
variant of Mahalanobis distance [18], which computes the distance between vectors
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xz,y €R" as (d(z,y))? = (x — y)T M(z — y) for a given symmetric positive definite
matrix M € R"*™. The matrix M is called the ground metric matrix. The ground
metric generalizes the Euclidean distance to Mahalanobis distance by rotation and
scaling of the axes along which the distance is computed. While the underlying
ground metric may already be known, it may also be learned via various metric learn-
ing techniques [7, 33]. In optimal transport applications and other applications which
require computation of distance between probability distributions, a Wasserstein dis-
tance is considered instead. Wasserstein distance between tensors with a given ground
metric has been considered for nonnegative CP decomposition [2]. The ground met-
ric in Wasserstein distance may be learned via similar metric learning techniques as
in Mahalanobis distance [17]. Simultaneous optimization for a ground metric and
Wasserstein distance between matrices has been used for nonnegative matrix factor-
ization [68].

We consider minimization of the Mahalanobis distance between tensors with a
fixed ground metric which may be updated later. In particular, the objective function
minimized for an input tensor X € R X*IN factors AW ¢ RIXR and ground
metric M € Rl InxTiIn g

(5.2) FAW AWy = %VGC(X - y)TMvec(X -Y),
where Y = [[A(l),...,A(N)]].

We restrict the ground metric matrix M to be Kronecker structured defined as
al 1
M = ® ( M(k))* ’
k=1

where each (M(k))71 € R**Ix may be viewed as a ground metric for each mode of
the tensor. This restriction allows us to exploit the computational benefits of the
structure and enables us to formulate an efficient alternating minimization algorithm.
We consider the objective in (5.2) for a general (fixed) ground metric for alternating
optimization, which also allows us to formulate different algorithms for CP decom-
position by changing the ground metric. We derive an update for the alternating
minimization with respect to the nth factor matrix, given by

1
(5.3) A" =min || X, — AW POT2
A 2
N

where P = @ A

m=1,m#n

For succinct writing, let M (,,y = ®£[:1 k;én(M(k))_l. Since the objective function is
quadratic in A™ 3 minimizer of (5.3) can be found by obtaining obtaining a gradient
G™ with respect to the nth factor matrix and setting it to 0. The gradient is

G = (M(n))_1A(n)P(n)TM(n)P(n) _ (M("))_lX(n)M(n)P(n).

Setting the gradient above to be 0 and equating M™ (M(")) e I, we get an update
for the nth factor given as the solution of the following system:

(5.4) A (PO M P™) = X () M) P,
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Using the properties of Khatri-Rao products and Kronecker products, the update for
the nth factor matrix reduces to the system of equations

(5.5) Az =X, L™,

N
where L™ = @ (M(k))flA(k)
k=1,k#n

and 20V = % ABT(A®)7 40
k=1,k#n

The above update leads to the ALS algorithm if M®™ =T for all k. We can retrieve
Algorithm 3.1 by defining

(5.6) M® = AR APWT L (1 - ABW AT vpe{1,...,N}.

The matrix I — A® AR ig inconsequential when applied to the factor matrices
as it is an orthogonal projector that projects onto the null space of the kth factor
matrix. It is included to ensure that each M* is symmetric positive definite. Since
Algorithm 3.1 can be retrieved from the above update, we refer to Algorithm 3.1 as
alternating Mahalanobis distance minimization (AMDM).

Let us assume that the iteration involving the above-derived alternating updates
to each factor as in (5.4) converges to a critical point. We can then bound the
backward error in application of each matricization of the reconstructed tensor Y =
[AD ... AM] since from (5.4), for each n, we have

n n)T n n
Al >(P< T M) P >) ~ X (yM () P™ =0,
(Yo = X ) My P =0,
Therefore, we have that
1Y ()2 = X myzll = | X ()= |,

where 2z is the projection of z € RILi=1i%0 15 onto the orthogonal complement of the
column span of M(n)P(") or Q;'V:Lj;én MY AW For ALS, AMDM, and the hybrid
methods (introduced in section 5.3) that interpolate between them, it is sufficent
to consider the projection onto the orthogonal complement of the column span of
@;V:Lj 4n AY_ This is because for each 7, the ground metric matrices are chosen

such that the column span of AY) is an invariant subspace of M €28

5.1.2. Comparison of AMDM and ALS for approximate rank-2 CP
decomposition. We use the formulation introduced in the previous subsection to
generalize AMDM to the case when the CP rank R is greater than the mode lengths
and to derive hybrid methods that interpolate between AMDM and ALS. The residual
transformation tends to equalize the weight of contribution to the objective function
attributed to components of the error associated with different rank-1 parts of the
CP decomposition, [a;,b;,c;], without increasing the collinearity of the columns of
the factors. We provide an example as an intuition for this assertion.

Consider a tensor X = A\ X1 + A2 X5 + N, where X and X5 are normalized
rank-1 tensors and N is noise of small magnitude. Assume that A\; > X, and the
rank-1 tensors are highly correlated, i.e., the factors have collinear columns. Let the
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current CP decomposition approximation be Y = [[5\; A, B,C]| = V1 + X2Ys. The
least squares objective minimizes

X — V||% =vec(X — V) vec(X —Y)
=vec(E1 4+ Ex+N)Tvec(E1 4+ E2+ N)
= |E1l1F + 1E2]I% + 2vec(E1) T vec(Ea) + 2vec(N)T (€1 + E2 + N),

where £; = M1 X 1 — Y1 and £3 = Ao X5 — A2V, The ALS algorithm may reduce
I€1]|F and the component of €5 in the direction of &£, since it leads to reduction of
the terms with larger contribution in the error. This causes an increase in collinearity
of the approximated factors and a more ill-conditioned decomposition. On the other
hand, the objective in (5.1) can be expressed as

(X =) x1 I x3 BT x5 CT7||2, = vec(X — Y)T Mvec(X — )
=|€1]13s + | E2llar + 2vec(E1)" Mvec(€2)
+ 2vec(N)TM(E1 4+ E2 + N),

where M = C'TC' @ BITB' @ I. The matrix M rescales the components of the
error according to the inverse of square of singular values of the factors, since

IE1]|as = vec(E1)T Mvec(&,)
=vec(£1)T (25 @ 85 ®@ I)vec(€1),

where £, =& x1 I xo Up x3U¢ with Up and U being the left singular vectors
of B and C, respectively. Thus, the error is rotated by the left singular vectors of
B and C and then rescaled by the square of the inverse of the singular values of
B and C, i.e., ng, 252. Therefore, if the approximated factors are collinear, the
contribution in the direction of the singular vectors of B and C with largest singular
value is weighed proportionally less, and similarly the contribution of the error in
the direction of those with smaller singular value is weighed more. This reduces the
imbalance in error and leads to a better conditioned decomposition.

5.2. Generalizing AMDM to any CP rank. The AMDM algorithm as de-
scribed in Algorithm 3.1 imposes a constraint that CP rank should be less than or
equal to the smallest mode length of the tensor. As mentioned above, the update in
(5.5) with the ground metric as defined in (5.6) leads to the AMDM algorithm with
the rank constraint. We now describe how this definition of ground metric leads to
an AMDM update without any restrictions imposed on the rank. Note that for each
M™® as defined in (5.6),

(]\4%’))_1 = ARITT g(R)t +(I- A(k)A(k)T).

The above equivalence can be verified simply by looking at the singular value decom-
position of M (&) and A®). The first part simply inverts the nonunit singular values
of M (k), and the second part is a projector and orthogonal to the first part and is
therefore kept as is. The linear system for updating the nth factor matrix as in (5.5)
can then be simplified to get
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AP Zzn) _ X( )L(n)

N N
where L™ = @ (M(k Ak — @ A
k=1,k#n k=1,k#n
N N
and ZW = % AWT (M(k)) A(k) = x A®TAK
k=1,k%n k=1,k%n

Note that (M (k))_1 is not computed explicitly. The above update is equivalent to
Algorithm 3.1 when the CP rank R < I,,, for all m € {1,..., N}, since in that case
APTA®) = T for all k, and, consequently, Z™ =T for all n. For the case when the
CP rank R is larger than the mode lengths, ARTAF) g 5 projector onto the row
space of A(k), and therefore Z™ is symmetric positive semidefinite for each n. Since
the system is semidefinite, a pivoted Cholesky decomposition followed by a triangular
solve must be used for the solution to exist. Alternatively, as in ALS, a regularization
term may be introduced to make the system positive definite. The cost of forming
this system, Z™ s of the same leading order as ALS, i.e., O(IR?) per subsweep.
It requires obtaining a pseudoinverse of the factor in the (n — 1)th iteration, matrix
multiplication, and Hadamard products of the factors and their previously obtained
pseudoinverses. The system solve amounts to a computational cost of O(R3).

5.3. Interpolating between AMDM and ALS. Performing AMDM with an
identity ground metric is equivalent to performing ALS. To explore methods that
interpolate between AMDM and ALS, we can interpolate the ground metric between
the identity matrix and the one associated with AMDM given in (5.6). We can find
such ground metrics by decomposing each factor matrix into two low rank matrices
such that A% = Agk) + Aék), where Agk) is the best rank-t approximation of A®.
In other words, Agk) contains the largest ¢ singular values and the corresponding
singular vectors of A(k), and A® contains the rest. Consequently, Agk) and Aék) are
orthogonal to each other. The ground metric for each mode can then be defined using
only the first part as

(5.7) M® = A AP (I—Ag’”Ag’“)T) Vke{1,...,N}.

Defining a ground metric based on only the first part of the singular value decomposi-
tion of the factors leads to hybrid methods, since if the first part is all of the singular
value decomposition, then we get back the ground metric in AMDM, and if it is none
of the same, then we get back the identity matrix by convention as the orthogonal
complement of none is everything.

Note that for each k,

(M®) ™ = AWIT 4B (I_A@Agk)f)_

The update for the nth factor matrix also becomes a combination of AMDM and
ALS where the first part of the singular value decomposition of factors is treated as in
AMDM and the second one as in ALS. More precisely, the system of equations solved
for updating the nth factor matrix is

AP Zzn) _ X( )L(n)

N N
where L™ = @ (M(k @ ( ék)>
k=1,k#n k=1,k#n
N _ N
(5.8) and Z™W = % A(k)T(M(k)) A — % (Agk)TAgk)_FA(zk)TAék))'
k=1,k#n k=1,k#n
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As mentioned above, in the above update, L™ and Z™ can be split into two or-
thogonal parts as shown. The first part which involves Agk) can be characterized
as the AMDM part, and the one which involves Agk) can be characterized as the
ALS part. Note that computing these interpolating updates does not involve extra
computational cost asymptotically when compared to ALS. Using these interpolating
updates, we describe a hybrid algorithm in the subsection below. This algorithm is
shown to perform the best in terms of residual and conditioning in section 6.

5.4. Hybrid algorithm. In this section, we leverage the interpolating updates
to describe the hybrid algorithm which interpolates between AMDM and ALS. This
algorithm starts by computing AMDM updates and transitions into ALS by implicitly
reducing components used in the ground metric or reducing the size of Agk) in (5.7)
until the ground metric is I. The transition in the hybrid algorithm is chosen to be
from AMDM to ALS and not the other way around as ALS updates perturb the condi-
tion number less and make more progress when the updates are well-conditioned, and
AMDM keeps the condition number bounded but may compromise on the Frobenius
norm of the residual. The number of components of AR iy A(lk) is controlled by a
hyperparameter, t. Note that ¢ controls if the updates are more likely to behave as
ALS or AMDM,; for example, if Agk) has a larger column space, then the updates are
more likely to behave like AMDM. This hyperparameter may depend on the input
tensor and conditioning of the decomposition and therefore needs to be tuned accord-
ing to the problem. The details of the algorithm are described below and summarized
in Algorithm 5.1.

The hybrid algorithm starts by normalizing the columns of all the factors and
absorbing norms in the first factor as described in section 3 and then computing a re-
duced singular value decomposition of all the factors which costs
O(Zgzl I, Rmin(l,, R)). At the nth subiteration of the algorithm, the right- and
left-hand sides of the system, X(n)L(") and Z™ | are computed using (5.8). Let
Ugm), ng) be the left and right singular vectors of Agm), respectively, U gm),Vém)
be the left and right singular vectors of Agm), respectively, and ng),Sém) be the
singular values of Agm) and Aém), respectively. The computation of Z™ requires
O(R%*min(I,, R)) operations. This computation can be made efficient by first stor-
ing the singular value decomposition of each of the factors and then computing
Zp = ViMVImT Ly imglmh2y mT g0 each m. Then, Z™ can be computed
by taking Hadamard products of Z,, as shown in Algorithm 5.1. A further reduc-
tion in cost can be obtained by updating Z,, at each subiteration by only com-
puting the singular value decomposition of the previous factor. This amortization
is similar to the one used in ALS while computing the left-hand sides, leading to
a reduction in cost by a factor of N. The computation of X(n)L(”) can be sim-
ilarly performed by using L,, = Ugm)(ng))_lng)T + Uém)ng)V(Qm)T. Then
X ()L™ = X () Op_1 s Lm which is an MTTKRP computation and can be
performed efficiently and amortized as in ALS. The symmetric semidefinite system
solve requires O(R?). Computing the right-hand side, i.e., performing MTTKRP, is
the most computationally expensive operation with a cost of O(Hf;]=1 I, R) for each
subsweep. In addition to this, the factor matrix obtained after the solve is normalized,
and a reduced singular value decomposition is obtained to update the singular value
decomposition which costs O(I, Rmin(l,, R)). Therefore, the asymptotic computa-
tional cost of the algorithm is the same as ALS, being O(Hfj:1 I, R).

We summarize the above-described hybrid algorithm in Algorithm 5.1.
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Algorithm 5.1 General AMDM: AMDM with singular value thresholding.

1: Input: Tensor X € R1>*XIN threshold ¢, rank R
2: Initialize {AM ..., AM} s0 each A™ e R™* is random
3: forne{2,...,N} do
4:  A™ = normalize(A™)
5. U™ = min (I,,, R) left singular vectors of A™
6: V™ = min (I,, R) right singular vectors of A"
7: s(™ = min(I,, R) singular values of A™
8: end for
9: while Convergence do
10: forne{l,...,N} do
11: for me{1,...,N},m#n do
12: SEJT) = first ¢ values of s("™ inverted and others as it is
13: L., = U™ diag(s\™)v (™7
14: Z,, = V™ diag(s{z) « s(m)y 7T
15: end for
16: Compute Z™ = *ﬁzl,mﬂzm
17: Compute X(n)L(") where L™ = @ﬁizl’m#n L,,
18: Solve for A™ in Az = X(n)L(n) as in (5.8)
19: if n is N: Check Convergence, if converged: Break
20: A™ = normalize(A™)
21: Update U™ = min (I,,, R) left singular vectors of A™
22: Update V™ = min (I,,, R) right singular vectors of A™
23: Update s(™ = min (I,,, R) singular values of AM
24:  end for

25: end while
26: return factor matrices {A(l), . ,A(N)}

6. Numerical experiments. We perform numerical experiments to demon-
strate the convergence behavior of the AMDM algorithm compared to ALS for various
tensors which include synthetic examples and tensors arising in different applications.
Both algorithms are implemented in Python and are publicly available.? The ALS
implementation used in this work has been used in several previous works [38, 39, 55].
We use absolute residual and fitness of the decomposition in the Frobenius norm as
metrics to measure the closeness of the decomposition to the input tensor. For an
input tensor X, these are given as

X = Yr
r=||X-Y|rand f=1— ———,
X F,
respectively, where Y = [[A(l), AW )ﬂ is the approximated tensor. For measuring

the stability of the decomposition or the degree of overlap of CP components, we use
the normalized CP decomposition condition number [10] to measure the sensitivity
or degree of overlap of rank-1 components of the decomposition.

2https://github.com/cyclops-community /tensor_decomposition.
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The normalized CP condition number is given by the reciprocal of the smallest
singular value of Terracini’s matrix associated with the CP decomposition. For an
equidimensional tensor of order N with mode length s and CP rank R, the size of
Terracini’s matrix is sV x (N(s — 1) + 1)R. For CP rank lower than mode lengths
of the tensor, this matrix can be compressed to RN x (N(R — 1) + 1)R, and the CP
decomposition condition number can be efficiently computed with a cost of O(RN*+4).
The details of computation of the condition number are in Appendix A. A more general
result regarding computing the condition number of joint decompositions efficiently
is proved in [20]. Our experiments consider two types of synthetic tensors.

Tensor made by random matrices (random tensor). We create these tensors based
on known uniformly distributed randomly generated factor matrices A™ € (0,1)5*2,
x=[AW ... AWM.

Tensor made by collinear random matrices (collinearity tensor). We use a simi-
lar approach as used in [1] to generate factor matrices with a fixed value of collinearity,
say C. That means that these tensors are created with randomly generated factors
A e R#*F with the following property:

aMTalm) = ¢

st. [a™|=1Vr#£z€e{1,...,R}.

We then set dy; =i for all i € {1,..., R} to create a tensor, X = [D; AW, ..., AN],
We consider four tensors from various real-world applications.
Sleep-EDF tensor: This dataset has been used to identify sleeping patterns. It
comprises electroencephalogram (EEG) and electromyography (EMG) data in the
nonrapid eye movement stage of sleep [30].
MGH tensor: This dataset consists of data from Massachusetts General Hospital.
It includes combinations of EEG data, respiratory signals, and EMG signals. This
dataset was used to analyze sleep using deep neural networks [9].
SCF tensor. We consider the density fitting tensor (Cholesky factor of the two-
electron integral tensor) arising in quantum chemistry. This tensor has been used
previously in [55] to compare the efficacy of the Gauss—Newton and ALS algorithms.
We leverage the PySCF library [59] to generate the three-dimensional compressed den-
sity fitting tensor, representing the compressed restricted Hartree—Fock wave function
of water molecule chain systems with a STO-3G basis set. The number of molecules
in the system is set to three for this experiment.
Amino acid tensor. This dataset consists of five simple laboratory-made sam-
ples. Each sample contains different amounts of tyrosine, tryptophan, and phenylala-
nine dissolved in phosphate-buffered water. The samples were measured by fluores-
cence [11].
The experiments are divided broadly into two categories:
Exact decomposition. We create synthetic tensors with known CP rank R and
compare the convergence behavior of the AMDM algorithm with the ALS algorithm
for exact CP decomposition.
Approximate decomposition. We create synthetic tensors with known CP rank
and special structure such as with added noise or as described in Lemma 4.4. We
then approximate these tensors with CP rank R which is lower than the underlying
decomposition rank. We also consider real-world tensors from different applications
with unknown CP rank. For synthetic tensors, we create 10 different tensors and run
each with a random initialization for ALS and different variants of AMDM and plot
the mean of fitness and condition number at each iteration with confidence intervals
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as the minimum and maximum values. The random initialization are factor matrices
with entries sampled from a uniform distribution of real numbers between 0 and 1.
For real-world tensors, we plot the mean of 5 initializations for larger tensors, Sleep-
EDF, MGH, and SCF tensors and the mean of 10 iterations for amino acid tensors
with confidence intervals as minimum and maximum values.

6.1. Exact CP decomposition. We compare ALS and Algorithm 3.1 for com-
puting exact CP decomposition of synthetic tensors in Figures 1 and 2 and verify
our theoretical results. We create collinearity and random tensors of specified CP
rank to analyze the convergence of these algorithms. We claim that the algorithm
has converged for a CP decomposition with exact rank if the absolute residual is
below 1077,

In Figure 1, we create equidimensional synthetic tensors of order N with each
mode length s to follow s =100 for order 3, s = 53 for order 4, and s = 24 for order
5 with fixed CP rank R = 20. We initialize the factors with uniformly distributed
random matrices for both algorithms and plot the absolute residual for each iteration.
For the collinearity tensors, collinearity value, i.e., C, is set to be 0.9. We can observe
superlinear convergence of Algorithm 3.1 for both cases, while ALS appears to be
slowed down by the “swamp” phenomenon for the collinearity tensors.

In Figure 2, we create a random equidimensional tensor with mode length s =100
and CP rank R =200. We can observe that Algorithm 5.1 converges to an approximate
tensor which is e = 10719 close to the exact tensor while taking only a few iterations
to do so. Since R > s, there is a possibility that the synthetic tensor might have a
border rank lower than 200, and we may be finding the corresponding factor matrices.

Random tensors with exact rank R=20

Collinearity tensors with collinearity = 0.9 and exact rank R=20

order 3 ALS
order 4 ALS

1071 4 order 3 ALS

absolute residual
absolute residual

< —<— order 4 ALS

10744 —p— order 5 ALS 106 —p— order 5 ALS
107 —¥— order 3 AMDM 100 —¥— order 3 AMDM
—A— order 4 AMDM —A— order 4 AMDM
1010 | —*— order 5 AMDM 107 —#— order 5 AMDM
0 5 10 15 20 25 0 2 4 6 8 10 12 14

iteration iteration
(a) Random tensor residual (b) Collinearity tensor residual

Fra. 1. Superlinear convergence of the AMDM algorithm for exact CP decomposition.

Random tensor with s=100, R=200

104 4 t!

10-4

absolute residual

107° 4
1078 {- —e— ALS
10-10] —*— AMDM

] 5 10 15 20 25
iteration

Fic. 2. Linear rate of convergence of AMDM for large rank for exact CP decomposition.
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Therefore we cannot guarantee that we find the exact input tensor [43]. However, we
do observe a linear convergence rate to obtain this approximation. ALS makes slow
progress for this case. A reason for that might again be related to the collinearity of
the factors, since when R > s, collinearity is high and ALS is more likely to experience
the “swamp” phenomenon [41].

6.2. Approximate CP decomposition. We plot the probability of conver-
gence to the desired decomposition for synthetic tensors as described in Lemma 4.4
with respect to the €, to verify our theoretical results in Figure 3. We construct these
tensors by constructing the first R/2 columns of the factors with random matrices
and then constructing the other half by projecting it onto the orthogonal complement
of the column space of the first half and adding Gaussian noise of amplitude €, to
the same. We construct 100 such tensors, and for each tensor we consider 5 initial
guesses which are € away from the desired decomposition as described in 4.4. We
plot the probability of convergence over these 100 tensors by considering if at least 1
initial guess is within 1072 of the desired factors. We observe that the probability of
convergence to the desired decomposition is 1 when the €, is small, irrespective of the
size and €, thereby verifying that the first half of CP decomposition is a stationary
point. The probability decreases as we increase € ; i.e., the decomposition converges
to different stationary points for these tensors.

We compare ALS and different variants of AMDM for computing approximate
CP decomposition of synthetic tensors in Figure 4 and application tensors that admit
approximations with a low CP rank in Figure 5, Figure 6, Figure 7, and Figure 8. We
plot the fitness and the condition number of the CP decomposition to compare ALS
and variants of AMDM. The integer associated with AMDM ¢ = # corresponds to
the number of singular values inverted for each factor or best rank-t approximation
A in (5.7). The hybrid algorithm starts by using threshold ¢ = R in Algorithm 5.1;
i.e., it starts with Algorithm 3.1 and gradually decreases the threshold to 0 to recover
the ALS algorithm.

In Figure 4, we compute a rank-10 CP decomposition of the collinearity tensor
with collinearity C' = 0.9 and exact CP rank R = 10 with added Gaussian noise
tensor. Each entry of the noise tensor is distributed normally with mean p = 0
and standard deviation ¢ = 0.001. We create 10 such tensors randomly and, for
each tensor, initialize the algorithms with a random initial guess. We observe that

Probability of convergence for tensors w/ s=10, R=10, r=5 Probability of convergence for tensors w/ s=100, R=100, r=50
1.0 ! ! 10 T 7

—— =1 l _\ == ]
+ £=0.01 | o + £=0.01 |

\

0.8

=4
EY

o
o

Probability
Probability

o
S

o
ES

X
X

-5.0 -4.9 -4.8 -4.7 -4.6 -4.5 -4.50 —-4.49 —4.48 -4.47 -4.46 —4.45
log10€ 1 logao€ 1.

o
N
o
N

(a) Probability of convergence for equidimen- (b) Probability of convergence for equidimen-
sional tensors with mode length= 10, exact sional tensors with mode length= 100, exact
CP rank= 10 and approximate rank= 5 CP rank= 100 and approximate rank= 50

Fia. 3. Probability of convergence for 100 tensors with 5 initial guesses in the selting as de-
scribed in Lemma 4.4.
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Collinearity tensors with Gaussian noise w/ s=100, R=10

Collinearity tensors with Gaussian noise w/ s=100, R=10
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ﬁ 2103.
c
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0.92 10
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(a) Collinearity tensor with Gaussian noise
fitness

25 50 75 100 125 150 175 200
iterations

(b) Collinearity tensor with Gaussian noise
condition number

Fia. 4. Collinearity tensor of size 100 x 100 x 100 with exact CP rank R = 10 with added
Gaussian noise with each entry distributed with mean p=0 and standard deviation o = 0.001.

SLEEP-EDF tensor

0.9 =
0.8
0.7

5%° Hybrid

Eos —¥— AMDM t=8
04 ~p— AMDM
0.3
02 M»—-

0123456 7 8 910111213141516171819
iterations

(a) SLEEP tensor fitness

SLEEP-EDF tensor

condition number
-
B

0123456 7 8 91011121314151617 1819
iterations

(b) SLEEP tensor condition number

Fic. 5. Sleep-EDF tensor of dimensions 2048 X 14 x 129x 86 approzimated with CP rank R =10,
where t is the singular value threshold in Algorithm 5.1.

MGH tensor

fitness

0123456 7 8 91011121314151617 1819
iterations

(a) MGH tensor fitness

MGH tensor

103 4

condition number
=
3

-
A

100 4

6 i é é :l !I's é ; é é 1’01‘11’21‘31‘41‘51‘51’71‘519
iterations

(b) MGH tensor condition number

Fia. 6. MGH tensor of dimensions 2048 x 12 x 257 x 43 approzimated with CP rank R = 10,
where t is the singular value threshold in Algorithm 5.1.

the mean fitness of the AMDM algorithm is comparable to ALS with tight max-min
confidence intervals and a low condition number for all the tensors. On the other hand,
ALS maintains a higher fitness with 15 — 1500x the mean condition number. Note
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Amino acids tensor Amino acids tensor
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(a) Amino acids tensor fitness (b) Amino acids tensor condition number

Fic. 7. Amino acid tensor of dimensions 5 x 61 x 201 approzimated with CP rank R = 3,
where t is the singular value threshold in Algorithm 5.1.

SCF tensor
1.00

0.95 4

0.90 1

0.85 1

0.80 1

fitness

0.75

0.70 1 ALS

0651 —#~— AMDM hybrid
o503
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iterations

Fic. 8. SCF tensor of size 339 x 21 x 21 approximated with CP rank R = 200, where t is the
arg min; Omaz/0i < 100 threshold in Algorithm 5.1.

that in this approximate CP decomposition setting, the convergence of the AMDM
algorithm behaves similarly to ALS; i.e., the rate is linear, as shown in Lemma 4.4.
We can clearly see the advantage of the hybrid algorithm where we start with AMDM
and decrease the number of singular values inverted by 1 after every 10 iterations.
The hybrid algorithm has a mean fitness that is higher than ALS while maintaining
a condition number that is very close to AMDM. This suggests that for these types
of tensors a more stable decomposition with desirable accuracy can be found via the
hybrid algorithm.

In Figure 5 and Figure 6, we compute the CP decomposition of the Sleep-EDF
tensor and MGH tensor with CP rank R = 10. We consider several variants of the
hybrid Algorithm 5.1. For the hybrid algorithm, one less singular value is inverted
after every iteration. We clearly see a pattern in both tensors that if lesser singular
values are inverted, then the fitness is higher and the CP decomposition condition
number is larger. We also see that the hybrid algorithm is able to achieve a fitness as
high as ALS while maintaining a lower condition number. For the Sleep-EDF tensor
we see this effect being more pronounced as we get a mean condition number that is
around an order of magnitude smaller with small confidence intervals while the fitness
is the same. For the MGH tensor, we have that the mean condition number of the
hybrid algorithm is not very different from the condition number in ALS, and after
50 iterations this difference is also lesser.
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In Figure 7, we compute the CP decomposition of the amino acid tensor with
rank R = 3. We use 10 random initializations for this tensor because of its small
size. This tensor is different from Sleep-EDF and MGH as we have the a higher
mean fitness for AMDM variants as compared to ALS. The large confidence interval
of ALS suggests that it is sensitive to initializations, whereas AMDM and the hybrid
algorithm where we decrease the number of singular values inverted by 1 after every
10 iterations have a tighter max-min confidence interval suggesting that they are less
susceptible to initialization and maintain a higher fitness with a several orders of
magnitude lower condition number. Also, note that all the AMDM variants converge
to a similar fitness (the confidence intervals also collapse) with a similar condition
number which is close to unity for this case.

In Figure 8, we compute CP decomposition of the SCF tensor with rank R =200
(exceeding 2 of the 3 tensor dimensions). We use a relative tolerance criterion for
computing ¢t = argmini(”;“% < 100) in the hybrid algorithm; i.e., singular values o;
are inverted only if % < 100, where opax is the maximum singular value. The
number of initialization used here is 5, and the hybrid algorithm outperforms ALS in
terms of fitness, as the mean fitness reaches 0.992 fitness in 150 iterations, whereas
ALS reaches 0.95 in 200 iterations; the max-min confidence bounds suggests that the
hybrid algorithm is a clear winner here.

7. Conclusion. In this work, we have proposed an alternating optimization al-
gorithm, AMDM, to compute a CP decomposition of the tensor. This algorithm
achieves superlinear local convergence for exact CP rank problems when the CP rank
is smaller than or equal to all the mode lengths of the tensor with the same asymptotic
computational cost as that of ALS. For approximating a tensor via CP decomposition,
we theoretically show that the algorithm locally converges to the stationary points of
(3.3) for tensors with special CP structure. Although the existence of these station-
ary points for any tensor is an open problem, we empirically confirm that the AMDM
algorithm converges to these stationary points for various tensors. Viewing the al-
gorithm as minimizing a Mahalanobis distance helps in generalization of the method
for CP rank larger than the mode lengths and interpolation between the AMDM and
ALS algorithms. We also formulate an efficient way to compute the CP decomposition
condition number to track the condition of the decomposition throughout the algo-
rithm. Our numerical experiments confirm that interpolation of algorithms between
AMDM and ALS leads to a better conditioned decomposition without significant dif-
ference in fitness as compared to ALS for synthetic tensors as well as most of the
tested real-world tensors. We provide an intuitive reasoning of this phenomenon and
leave the detailed analysis as a future direction of research.

Appendix A. Computing the condition number of a CP decomposition.
It has been shown that the CP decomposition condition number is the reciprocal of
the smallest singular value of a matrix called Terracini’s matrix. This matrix consists
of the orthogonal basis for the tangent space of each of the rank-1 components of
the reconstructed tensor. We will refer to the normalized condition number as the
condition number of CP decomposition, and we refer the reader to [10, 66] for details
about how the notion of condition number of a CP decomposition is defined and
derived. Consider an equidimensional order 3 real tensor X with mode length s.
Let the CP decomposition approximation of rank R be given by [D; A, B, C]; then
Terracini’s matrix V is V =[V;...Vg], where for all i € {1,..., R},
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Vi=la;®b;®c¢; Q;@)bi@Ci ai®Qi®ci ai®bi®Qé],

and Q e R**(5=1) is an orthogonal basis of the orthogonal complement of a;,
and Qb , and Q ~ are defined similarly. Consequently, Terrracini’s matrix is of size
s3 x R(BS —2), and the computational cost of computing the smallest singular value
via a Krylov subspace method is O(s°R?). For an order N tensor, this cost is
O(N?2sN*2R?) and therefore expensive to compute for decompositions with mod-
erately large mode lengths.

The cost of computing the condition number can be decreased significantly for
when the rank of the CP decomposition is less than all the mode lengths of the input
tensor, i.e., if R <s. Assume that R < s; then since the condition number is invariant
to orthogonal transformations [10], for a CP decomposition of an order 3 tensor,

where Q4 € R*% = [QS)QZ)] and the columns of QS) € R**® are an orthogonal
basis of the column space of A, while the columns of Qg) € R**(=F) are an orthogonal
basis for the orthogonal complement of the column space of A. We define Qg =
[Qg) g)] and Q¢ = [Q(l) g)] similarly. The transformed Terracini’s matrix U =
[U;...Ug|, where for all i € {1,..., R},

=1
U:.= |Qha;, ® QEbi® Qéci Q. © QEb; ® Qe

(1) (2)
U, U;

=1 =1
Qha;i®Q, Qe Qha;®QhEbi®qQ,, |,

U53) UE4)

where Qi‘ = QiQi € R**(=1) is an orthogonal basis of the orthogonal complement
of QL a; and Qlfi, and Qi are defined similarly. Note that UYTU® =0 for j #Fk,
since Qi‘iTani = 0. Consequently,

n(U) = mi i 1) ) 1) @1
Omin (U) jel{gT?A}U <[U1 uy” ... Uy UR}

We analyze [U{” U] instead of UEJ) separately in order to have Kronecker
products with orthogonal (square) matrices instead of nonsquare matrices with or-
thonormal columns, thereby simplifying analysis. After the above transformation,
we can obtain a reduced form of smaller dimensions each of the four {I%atrlces to

compute the condition number more efficiently. Note that Q%4 a; = [Qa “1], and

similarly for Q Bbi and Qccz Further, we can choose the columns Q@ so that

— 4 3

Qii = QgQi = [QQ%)T ], where QQ(1>T € RE*(E=1) i5 an orthogonal basis of
M

the orthogonal complement of @Q,’" a;, and similarly for Q,J;i and Qé‘i . Consequently,
for j =2, '
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Tmin < [U§” v? ..Ul Ug?] )
Umin( [anl ®Q§bl ®QEC1 Qil ®Q£b1 ®Q£~Cl ] )
DT, s
— o A QQE;)TGI o ® {Q(Bl)Tln] ® {Qg)Tm]
0 0 I 0 0
_ Q Q%o QL Te . M7 ek
=min { omin Q(l)T C 1--- 5 Omin QB by ®QC Cy...

= Omin

QmT QYT ©QYTer ... Q_ )y ®Q§;>TbR®Qg>TcR]>
a Q' tar

:Umm< Q(I)Ta ®Q(1)Tb ®Q(1>T c1 QQ(I)T Q(B})Tbl®Q(cl<)Tcl:|>

= Omin U(l) UgQ) Ug) [_J(R?):l >1
where QQ(1>T [Q;)Taz QQ<1)T ] € REXE is an orthogonal (square) matrix. A
similar argument can also be shown for j=3,4 to show that
. - i ‘ (1) 75) 7O D) 5 (T
Umlll(U) - 361{121%1,4} Omin < |:U1 Ulj cee UR U}% :| > = Umlll(U)a

where

Ui=|aoboe Qifoboe aoQieée a;oboQs|,
N— —— i

(1 _ _ _
o @ g o

a; = QS)Ta“b- = Qg‘.)Tbi, and ¢; = Qg)Tci. The size of the above reduced Ter-
racini’s matrix is R® x R(3R — 2); hence a direct computation of the singular value
decomposition can be used to compute the condition number with a cost of O(R")
for R<s.

All the above arguments can be easily generalized to an order N nonequidimen-
sional tensor. Therefore, we showed that the condition number of CP decomposition
is invariant to the following transformation:

w(ID: A ... AND) =5 ([D: Q)T Ar..... QR AN]).

where for all ¢ € {1,...,N}, the columns of QS? are an orthonormal basis of the
column space of A;.
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