SCll SciPost Phys. Codebases 10 (2023)

Automatic transformation of irreducible representations
for efficient contraction of tensors with cyclic group symmetry

Yang Gao'*, Phillip Helms?', Garnet Kin-Lic Chan?* and Edgar Solomonik®®

1 Division of Engineering and Applied Science, California Institute of Technology
2 Division of Chemistry and Chemical Engineering, California Institute of Technology
3 Department of Computer Science, University of Illinois at Urbana-Champaign

* ygao@caltech.edu, 7 phelms@caltech.edu, % garnetc@caltech.edu, § solomonik@cs.illinois.edu

Abstract

Tensor contractions are ubiquitous in computational chemistry and physics, where ten-
sors generally represent states or operators and contractions express the algebra of these
quantities. In this context, the states and operators often preserve physical conservation
laws, which are manifested as group symmetries in the tensors. These group symme-
tries imply that each tensor has block sparsity and can be stored in a reduced form. For
nontrivial contractions, the memory footprint and cost are lowered, respectively, by a
linear and a quadratic factor in the number of symmetry sectors. State-of-the-art ten-
sor contraction software libraries exploit this opportunity by iterating over blocks or
using general block-sparse tensor representations. Both approaches entail overhead in
performance and code complexity. With intuition aided by tensor diagrams, we present
a technique, irreducible representation alignment, which enables efficient handling of
Abelian group symmetries via only dense tensors, by using contraction-specific reduced
forms. This technique yields a general algorithm for arbitrary group symmetric contrac-
tions, which we implement in Python and apply to a variety of representative contrac-
tions from quantum chemistry and tensor network methods. As a consequence of relying
on only dense tensor contractions, we can easily make use of efficient batched matrix
multiplication via Intel’s MKL and distributed tensor contraction via the Cyclops library,
achieving good efficiency and parallel scalability on up to 4096 Knights Landing cores
of a supercomputer.

Copyright Y. Gao et al. Received 01-07-2022)
This work is licensed under the Creative Commons Accepted 27-09-2022 et
Attribution 4.0 International License. Published 24-02-2023 updates
Published by the SciPost Foundation. doi:10.21468/SciPostPhysCodeb.10

This publication is part of a bundle: Please cite both the article and the release you used.

DOI Type
doi:10.21468/SciPostPhysCodeb.10 Article
doi:10.21468/SciPostPhysCodeb.10-r1.3 Codebase release

SCll SciPost Phys. Codebases 10 (2023)

Contents
1 Introduction 2
2 Irreducible Representation Alignment Algorithm 4
2.1 Example of the Algorithm 4
2.2 Generalization to Higher-Order Tensors 8
2.3 Algebraic Proof of Correctness 10
3 Library implementation 11
4 Example Applications 12
4.1 Periodic Coupled Cluster Contractions 12
4.2 Tensor Network Contractions 13
5 Performance Evaluation 14
5.1 Single-Node Performance Results 14
5.1.1 Sensitivity to Contraction Type 14
5.1.2 Sensitivity to Symmetry Group Size for Application-Specific Contractions 15
5.2 Multi-Node Performance Results 17
6 Conclusion 19
References 20

1 Introduction

Tensor contractions are computational primitives found in many areas of science, mathemat-
ics, and engineering. In this work, we describe how to accelerate tensor contractions involving
block sparse tensors whose structure is induced by a cyclic group symmetry or a product of
cyclic group symmetries. Tensors of this kind arise frequently in many applications, for ex-
ample, in quantum simulations of many-body systems. By introducing a remapping of the
tensor contraction, we show how such block sparse tensor operations can be expressed almost
fully in terms of dense tensor operations. This approach enables effective parallelization and
makes it easier to achieve peak performance by avoiding the complications of managing block
sparsity. We illustrate the performance and scalability of our approach by numerical examples
drawn from the contractions used in tensor network algorithms and coupled cluster theory,
two widely used methods of quantum simulation.

A tensor 7 is defined by a set of real or complex numbers indexed by tuples of integers
(indices) i, j, k,, ..., where the indices take integer valuesi € 1...D;,j € 1...D;,... etc,, and
a single tensor element is denoted ¢; ;... We refer to the number of indices of the tensor as its
order and the sizes of their ranges as its dimensions (D; X D; x ---). We call the set of indices
modes of the tensor. Tensor contractions are represented by a sum over indices of two tensors.
In the case of matrices and vectors, the only possible contractions correspond to matrix and
vector products. For higher order tensors, there are more possibilities, and an example of a

SCll SciPost Phys. Codebases 10 (2023)

contraction of two order 4 tensors is

Wapij = Zuabklvklij : (1)
ol

To illustrate the structure of the contraction, it is convenient to employ a graphical notation
where a tensor is a vertex with each incident line representing a mode, and contracted modes
are represented by lines joining vertices, as shown in Figure 1. Tensor contractions can be re-
duced to matrix multiplication (or a simpler matrix/vector operation) after appropriate trans-
position of the data to interchange the order of modes.

a i a k i
— e —_—] e
W p— U Vv

Figure 1: Representation of the contraction in Eq. (1). Each tensor is represented by
a vertex and each mode by a line; the lines joining the vertices are contracted over.

In many physics and chemistry applications, there is an underlying symmetry group which
constrains the relevant computations. This implies that under the operations of the group,
the computational objects (e.g. the tensors) are transformed by a matrix representation of
the group, which can be decomposed into irreducible representations (irreps) of the group.
Computationally, the elements of the tensors are thus constrained, and each tensor can be
stored in a compressed form, referred to as its reduced form. A special structure that often
appears is one that is associated with a cyclic group. If each index transforms as an irrep of
such a group and the overall tensor transforms as the symmetric representation, this constraint
can be satisfied by a sparsity structure defined on the indices, e.g.

tik. =0, if [i/G1]+1j/G2]+1k/G3]+---#0 (mod G), 2

where the offset G; denotes the size of the symmetry group for the index i.

For a matrix, such sparsity would lead to a blocked matrix where each block is the same
size, G; X G,. The blocks of an order 3 tensor would similarly all have the same dimen-
sions, G; x Gy X G3. We refer to such tensors as tensors with cyclic group symmetry, or cyclic
group tensors for short. In some applications, the block sizes are non-uniform, but this can
be accommodated in a cyclic group tensor by padding blocks with zeros to a fixed size during
initialization. With this assumption, the original tensor indices can be unfolded into symmetry
modes and the symmetry blocks, where the symmetry modes fully express the block sparse
structure,

til,jJ,kK...:O’ if I+J+K§é0 (mod G), (3)

where we use the convention that the uppercase indices are the symmetry modes and the
lowercase letters index into the symmetry blocks. The relationship between the symmetry
modes is referred to as a symmetry conservation rule.

Given a number of symmetry sectors G (as in (2)), cyclic group symmetry can reduce tensor
contraction cost by a factor of G for some simple contractions and G2 for most contractions of
interest (any contraction with a cost that is superlinear in input/output size). State-of-the-art
sequential and parallel libraries for handling cyclic group symmetry, both in specific physical
applications and in domain-agnostic settings, typically iterate over non-zero blocks within a
block-sparse tensor format [1,4, 13,17, 19-22, 29, 33,35,40]. The use of explicit looping

SCll SciPost Phys. Codebases 10 (2023)

(over possibly small blocks) makes it difficult to reach theoretical peak compute performance.
Parallelization of block-wise contractions can be done manually or via specialized software [13,
17,20-22,29,33,35]. However, such parallelization is challenging in the distributed-memory
setting, where block-wise multiplication might (depending on contraction and initial tensor
data distribution) require communication/redistribution of tensor data.

We introduce a general transformation of cyclic group symmetric tensors, irreducible rep-
resentation alignment, which allows all contractions between such tensors to be transformed
into a single large dense tensor contraction with optimal cost, in which the two input reduced
forms as well as the output are indexed by a new auxiliary index. This transformation provides
three advantages:

1. it avoids the need for data structures to handle block sparsity or scheduling over blocks,

2. it makes possible an efficient software abstraction to contract tensors with cyclic group
symmetry,

3. it enables effective use of parallel libraries for dense tensor contraction and batched
matrix multiplication.

The most closely related previous work to our approach that we are aware of is the direct
product decomposition (DPD) [25,44], which similarly seeks an aligned representation of the
two tensor operands. However, the unfolded structure of cyclic group tensors in Eq. (3) allows
for a much simpler conversion to an aligned representation, both conceptually and in terms of
implementation complexity. In particular, our approach can be implemented efficiently with
existing dense tensor contraction primitives.

We develop a software library, Symtensor, that implements the irrep alignment algorithm
and contraction. We study the efficacy of this new method for tensor contractions with cyclic
group symmetry arising in physics and chemistry applications. Specifically, we consider some
of the costly contractions arising in tensor network (TN) methods for quantum many-body sys-
tems and in coupled cluster (CC) theory for electronic structure calculations. We demonstrate
that across a variety of tensor contractions, the library achieves orders of magnitude improve-
ments in parallel performance and a matching sequential performance relative to the manual
loop-over-blocks approach. The resulting algorithm may also be easily and automatically par-
allelized for distributed-memory architectures. Using the Cyclops Tensor Framework (CTF)
library [41] as the contraction backend to Symtensor, we demonstrate good strong and weak
scalability with up to at least 4096 Knights Landing cores of the Stampede2 supercomputer.

2 Irreducible Representation Alignment Algorithm

We now describe our proposed approach. We first describe the algorithm on an example con-
traction and provide intuition for correctness based on conservation of flow in a tensor diagram
graph. These arguments are analogous to the conservation arguments used in computations
with Feynman diagrams (e.g. momentum and energy conservation) [9] or with quantum num-
bers in tensor networks [38], although the notation we use is slightly different. We then give
an algebraic derivation of all steps, which allows for a concrete proof of correctness and explicit
expression for the cost in the general case.

2.1 Example of the Algorithm

We consider a contraction of order 4 tensors ¢/ and V into a new order 4 tensor YV, where all
tensors have cyclic group symmetry. We can express this cyclic group symmetric contraction

SCll SciPost Phys. Codebases 10 (2023)

as a contraction of tensors of order 8, by separating indices into symmetry-block (lower-case)
indices and symmetry-mode (upper-case) indices, so

WaA bB,il,jJ = E UgA,bB kK, IL VKK IL,il,jJ *
k,K,L,L

Here and later we use commas to separate index groups for readability. The input and output
tensors are assumed to transform as symmetric irreps of a cyclic group, which implies the
following relationships between the symmetry modes and associated block structures,

WaA,bB’iI’jJ#OifA-I‘B—I—JEO (mod G),
uaA’bB,kK)lL#OifA-l-B—K—LEO (I‘IlOd G),
Vi iL,irjg 70 if K+L—I—J =0 (modG).

Ignoring the symmetry, this tensor contraction would have cost O(n*G*) for memory footprint
and 0(n®G®) for computation, where n is the dimension of each symmetry sector.

A I A | A 1

— o — e — N
J

B_ . B < B .
A | A I

— —_— T Sl

B L B L

Figure 2: Tensor diagrams of the standard reduced form. Arrows on each leg repre-
sent the corresponding symmetry indices that are explicitly stored. Symmetry indices
on legs without arrows are not stored but are implicitly represented with the sym-
metry conservation law at the vertex (A+B =1 +J (mod G)). Note the lower-case
indices for each symmetry blocks are always stored.

With the use of symmetry, the cost for memory and computation can be reduced to O(n*G>)
and 0(n®G*) respectively. We begin with a representation of the original tensor in a reduced
dense form indexed by just 3 symmetry modes.! In particular, we refer to the reduced form
indexed by 3 symmetry modes that are a subset of the symmetry modes of the original tensors,
as the standard reduced form. The equations below show the mapping from the original tensor
to one of its standard reduced form. The associated graphical notation is shown in Figure 2.
This follows the same notation as in Figure 1, but arrows are now used to indicate the sign
associated with the symmetry mode in the symmetry conservation rule for the tensor.

Waab,il,jJ = WaAb,I+J—Amod G,iL,jJ >
Ugab,kK 1L = UaA,b K+L—Amod G,kK,IL >

Vkk 1,il,jJ = VkK,I,]+J—K mod G,iI,jJ *

1As an explicit example, consider a rank-3 tensor 7 with elements tijx where the symmetry rule requires that
n(i) + n(j)"n(k) mod G = 0 (n(x) denotes the irrep for index x; an example would be where 7T is the tensor in an
MPS simulation (see Section 4.2), and n represents the parity index). Assuming each block has equal size, ty; can
be unfolded into ¢;; ;;, x. The elements are only non-zero when the symmetry rule I +J — K mod G = 0 holds.
The reduced form R can be obtained by iterating over such non-zero blocks to eliminate one degree of freedom,

(1) — ; : (T)

€8 Ty niy ik = Lin@),jnG)knG)+nG) mod G where the index n(k) is absent from R'"’. In general we can remove any
one of the n(x) indices.

SCll SciPost Phys. Codebases 10 (2023)

Algorithm 1 Loop nest to perform group symmetric contraction
WaAbB,il,jJ = Zk,K,z,L UaA,bB kK, ILVKK,IL,il,jJ using standard reduced forms WaA,bB,iI,j: UgA,bB KK, 1>
and Vig 11,1,
forA=1,...,Gdo
forB=1,...,Gdo
forI=1,...,Gdo
J=A+B—ImodG
forK=1,...,Gdo
L=A+B—KmodG
Va,b,i,j, Waapp,irj = Waabs,ir,j T Qa1 BadbB.kK,1 VKK ILil,j

end for
end for
end for
end for
A+B-L=K=I+J-L
2 = - A S L
X X o X *8(A+B.I+])

Ji \°

K+L-B K I=K+L-J
e —
(cannot contract
= to standard
B L J reduced form)
——] [——] [—

Figure 3: These two tensor diagram equations aim to illustrate why certain reduced
forms cannot be contracted directly. With the reduced forms chosen in the top case,
the implicitly represented symmetry mode K is not matched between the two input
tensors and the output thus violates the true symmetry conservation rule unless a
multiplication with a Kronecker delta tensor is performed. Even so, this contraction
comes with an unfavorable scaling of O(G®). In the second case, the reduced forms
cannot be contracted to produce a valid standard reduced form for the output (one
needs 3 of the uncontracted indices to be represented / marked with arrows).

The standard reduced form provides an implicit representation of the unstored symmetry
mode due to symmetry conservation and can be easily used to implement the block-wise con-
traction approach prevalent in many libraries. This is achieved via manual loop nest over the
appropriate symmetry modes of the input tensors, as shown in Algorithm 1. All elements of
W, U, and V in the standard reduced form can be accessed with 4 independent nested-loops
to perform the multiply and accumulate operation in Algorithm 1. The other two implicit sym-
metry modes can be obtained inside these loops using symmetry conservation, reducing the
computation cost to O(G*).

However, the indirection needed to compute L and J within the innermost loops prevents
expression of the contraction in terms of standard library operations for a single contraction of
dense tensors. Figure 3 illustrates that standard reduced forms cannot simply be contracted to
obtain a reduced form as a result. The need to parallelize general block-wise tensor contrac-
tion operations in the nested loop approach above, creates a significant software-engineering
challenge and computational overhead for tensor contraction libraries [17].

The main idea in the irreducible representation alignment algorithm is to first transform
(reindex) the tensors using an auxiliary symmetry mode which subsequently allows a dense
tensor contraction to be performed without the need for any indirection. In the above con-
traction, we define the auxiliary mode index asQ=I1+J =A+ B =K + L (mod G) and thus

SCll SciPost Phys. Codebases 10 (2023)

obtain a new reduced form for each tensor. The relations of this reduced form with the sparse
form are as follows:

Waab,i,jJ,Q = WaA,b,Q—Amod G,i,Q—J mod G,jJ »
UaA,b,k,1L,Q = UaAb,Q—Amod G,k,Q—L mod G,IL »

Vi,1L,i,j7,Q = Yk,Q—L mod G,IL,i,Q—J mod G,jJ *

This reduced form is displayed in Figure 4.

A I A I A I

— e —— e — S
Q Q

B R L B L

Figure 4: The symmetry aligned reduced form is defined by introducing the Q sym-
metry mode. Each of the two vertices defines a symmetry conservation relation:
A+ B =Q (mod G) and Q = I +J (mod G), allowing two of the arrows to be re-
moved in the 3rd diagram, i.e. to be represented implicitly as opposed to being part
of the reduced form.

The Q symmetry mode is chosen so that it can serve as part of the reduced forms of each
of U, V, and W. An intuition for why this alignment is possible is given via tensor diagrams
in Figure 5. The new auxiliary indices (P and Q) of the two contracted tensors satisfy a con-
servation law P = Q, and so can be reduced to a single index.

A K 1 A K 1

— — p— = o f—

[—

Figure 5: By defining conservation laws on the vertices, we see that P = K + L
(mod G) and K + L =Q (mod G). Consequently, the only non-zero contributions to
the contraction must have P = Q.

A K I A 1
— | — | —_ e
Q Q = Q

Figure 6: The reduced forms may be contracted efficiently to produce the output re-
duced form. Ignoring intra-block indices, the resulting contraction may be performed
with the einsum operation W=einsum("AQL,LQJ->AQJ",U,V).

As shown in Figure 6, given the aligned reduced forms of the two operands, we can contract
them directly to obtain a reduced form for the output that also has the additional symmetry
mode Q. Specifically, it suffices to perform the dense tensor contraction,

Waab,i,jJ,Q = Z Uaa,bk,ILQVK,IL,i,jJ,Q -
L,k

This contraction can be expressed as a single einsum operation (available via NumPy, CTE,
etc.) and can be done via a batched matrix multiplication (available in Intel’s MKL). Once W
is obtained in this reduced form, it can be remapped to any other desired reduced form.

SCll SciPost Phys. Codebases 10 (2023)

The remaining step is to define how to carry out the transformations between the aligned
reduced forms and the standard reduced form. These can be performed via contraction with
a Kronecker delta tensor defined on the symmetry modes, constructed from symmetry conser-

vation, e.g, Uaa p k11,0 = Dup laa bB k110 BQ, Where

Oapo=0, if A+B—Q#0 (modG). 4)

Using this approach, all steps in our algorithm can be expressed fully in terms of single
dense, or batched dense, tensor contractions.

2.2 Generalization to Higher-Order Tensors

We now describe how to generalize the algorithm to tensors of arbitrary order, including the
more general symmetry conservation rules. We represent an order N complex tensor with
cyclic group symmetry as in (2) as an order 2N tensor, 7 € C > *ivxHy gatisfying, mod-

ulus remainder Z € {1...G} for coefficients c; ...cy with ¢; = G/H; or ¢; = —G/H;,
(T) —
ro e+ +ceyly =Z (mod G),
tidyiyly = fly-ivly b) N () (5)
0 : otherwise,

where the order 2N —1 tensor R(" is the reduced form of the cyclic group tensor 7. For exam-
ple, the symmetry conservation rules in the previous section follow Eq. (5) with coefficients
that are either 1 or —1 (G = H;).
Any cyclic group symmetry may be more generally expressed using a generalized Kronecker
delta tensor with binary values, 6 e {0, 1} >Hy gg
¢ _ (D 5 6)

inlindy = T L iy Iy Olhdy

Specifically, the elements of the generalized Kronecker delta tensor are defined by

Ly 0 :otherwise.

(T) _{1 :C1[1+"'+CNINEZ (mOdG),

Using these generalized Kronecker delta tensors, we provide a specification of our approach
for arbitrary tensor contractions (Figure 7) in Algorithm 2. This algorithm performs any con-
traction of two tensors with cyclic group symmetry, written for some s, t,v € {0,1,...}, as

Wil il jyJyejede = Z Ui 1y i Lk Ky ok Ky Vi Ky ook Ky Ty e (7)
KKy koK,
=S - = jt 1=~ - = ky = - =t
W D — U % \Y :
.IS_— h_Jl .IS_— h_K_— ~_J1
ig i1 ig k i1

Figure 7: A contraction of a tensor of order s + v with a tensor of order v + ¢t into
a tensor of order s + t, where all tensors have cyclic group symmetry and are repre-
sented with tensors of twice the order. Note that unlike in the previous section, the
lines are not labelled by arrows (denoting coefficients 1 or —1), but are associated
with more general integer coefficients ¢; = £G/H;, to give symmetry conservation
rules of the form Eq. (5).

SCll SciPost Phys. Codebases 10 (2023)

Algorithm 2 The irrep alignment algorithm for contraction of cyclic group symmetric tensors,
for contraction defined as in (7).

1: Input two tensors U/ of order s +v and V of order v + t with symmetry conservation rules
described using coefficient vectors ¢(Y) and ¢ and remainders Z(Y) and Z() as in (5).

2: Assume that these vectors share coefficients for contracted modes of the tensors, so that if

- RO W W

& — |2

C = |:C(U):|, then ¢ = |:C(V):|.
2 2

3: Define new coefficient vectors, to decouple uncontracted modes of U and V, and the con-

L) L) V)
tracted modes, ¢ = 11 ,cB) = 21 ,and ¢(©) = 21)

4: Define generalized Kronecker deltas 0 M 6@ and 6® respectively based on the coeffi-
cient vectors ¢¥, ¢®), ¢(©) and remainders Z(Y), 0, Z(V),

5: Let R and R") be the given reduced forms for ¢/ and V' (based on the generalized
Kronecker deltas 6Y) and 6(")). Assume the reduced forms 7_2(U) and 7_2(‘/) forf and V do
not store the last symmetry mode (other cases are similar). Compute the following new
reduced forms R(Y) and R(V), via contractions:

) _ -(U) 1 2
rilll...is,lls,lislelmkv,lK‘,,lk,,Q_ZrilllN.iSISlel...k‘,,lKv,lkv L..1,Q0K,..K,Q >
ISKV
A —NiW @ @)
kiKy..ky_1Ky—1ky j1J1 - Je—1J1-1J:Q = k1Ky..kyKyjrJy.je—1de—1je -~ K1 Ky Q7000 Q
vt
> The above contractions can be done with constant work per element of R(V)
and RY), namely O(n**VG*+'~1) and O(n***G**~1), or with a factor of O(G) more if done

as dense tensor contractions that ignore the structure of 6 M 6@ and 6§®.

6: Compute

r . A o=
iyeds—1ls1i5J1J7 o Je—1de-1JeQ
£)
i1Iy.is—q Iy ik Ky ky—1 Ky ky Q" k1 Ky ke Kyt ky j1J1 e je—1Je-10:Q 7
KoKy ey 1 Ky Ky

> The above contraction has cost O(n* Tt GsTt+v=2)

7: If a standard output reduced form is desired, for example with the last mode of WV stored
implicitly, then compute

W) _ Z W) P
Iy il jy e e d i iy i g Ity i1 i3 QT 1 LQ T
Q

If we instead desire a reduced form with another implicit mode, it would not be implicit
in R™), so we would need to also contract with 653')" 7.0 and sum over the desired implicit
mode. o

> In either case, the above contraction can be done with constant work per element of RW),
namely O(n*TtGSTt™1), or with a factor of O(G) more if done as dense tensor contractions, if
ignoring the structure of & M gnd §®.

SCll SciPost Phys. Codebases 10 (2023)

The algorithm assumes the coefficients defining the symmetry of &/ and V match for the
indices K; ...K, (it is also easy to allow for the coefficients to differ by a sign, as is the case in
the contraction considered in Section 2.1).

Algorithm 2 also details the cost of each step. As opposed to the O((nG)****") cost of the
naive approach which does not use symmetry, Algorithm 2 achieves an overall arithmetic cost
of

O(((G)*” +(nG)"*t + (nGF*)/G + (nG)* " /G?).

Achieving this cost relies on obtaining the desired reduced forms by implicitly contracting with
generalized Kronecker deltas (reordering and rescaling tensor elements) as opposed to the cost
of treating the transformation as a general (dense) tensor contraction. The latter would entail
a cost that is greater overall by a factor of O(G) when s, t, or v is 0.

2.3 Algebraic Proof of Correctness

We now provide a proof of correctness for Algorithm 2, which also serves as an alternate
derivation of our method. Without loss of generality, we consider the case when s, t,v = 2,
and ignore intra-block (lowercase) indices. In Algorithm 2, only one mode from the groups
(I,..., 1), (Jy,...,d¢), (Kq,...,K,) is kept implicit at a time, so all other modes arising in the
general case (arbitrary s, t,v) may be easily carried through the below derivation.

We now show that the generalized Kronecker delta tensors 6 (1),) (2), and 6@ defined on
line 4 of Algorithm 2 and the new reduced forms on line 5, may be derived from algebraic
manipulation of the contraction expressed in a standard reduced form. Using the standard
reduced forms for the input tensors, we consider a refactorization of the generalized Kronecker
delta tensors in the contraction,

_ =(U) <U) <(V) =(V)
WABIJ_ZrABK S g0k Tk -

KL M) <@ @)
ZQ 5ABQ(SIJQ(SKLQ
We show that such a refactorization exists. We have that 5%& 62?1 ;=1 whenever both of

the following are satisfied,

cgU)A -+ cgU)B + cgu)K + cgU)L =7 mod G S
cgv)K + ch)L + cgv)I + ch)J =7") modG.

Since the coefficients for indices K and L, namely cgU), cgU) and c must match, the

above two statements are satisfied if and only if there exists a unique Q € {1,...,G}, with
which the following three statements are all satisfied,

vy (V)
15 6

c&U)A+ cgU)B +Q=2Y modG,
cgv)K + cgv)L —Q=0 mod G,
1+ +Q=2" modG.
We can thus define new generalized Kronecker delta tensors so that 523)(265(22(255% = 1 when-
ever the above statements hold. These definitions match those specified via coefficients on
line 3 of Algorithm 2.
With the Q index defined from the refactorization, we define the symmetry-aligned reduced

forms used in Algorithm 2. For U, this reduced form is given by r/gg)Q = uypx; Whenever

c%U)A + céU)B +Q= ZW mod G and cgv)K + cgv)L —Q =0 mod G. The new reduced form

then satisfies,
U) c(1) _ =(U) <(1)
"akq0aBq = TABKOABQ >

10

SCll SciPost Phys. Codebases 10 (2023)

import numpy as np
from symtensor import array, einsum

Define Z3 Symmetry

irreps = [0,1,2]

G = 3

total_irrep = 0

z3sym = ["++--", [irreps]*4, total_irrep, G]

Initialize two sparse tensors as input

N = 10
Aarray = np.random.random([G,G,G,N,N,N,N])
Barray = np.random.random([G,G,G,N,N,N,N])

Initialize symtensor with raw data and symmetry
u = array(Aarray, z3sym)
v = array(Barray, z3sym)

Compute output symtensor
= einsum(’abkl ,klij->abij’, u, v)

=

Figure 8: Symtensor library example for contraction of two group symmetric tensors.

and similarly for V. This equality allows us to perform the desired substitutions,
_ 1) <2) <) _(U) (V)
WaB1J = Z Z Sa802%k100 110" AkQTKIQ "
KL Q

After substituting the symmetry-aligned reduced forms, the two generalized Kronecker delta
tensors defining the symmetry of the output may be factored out, while the third (associated
with contracted modes) may be summed out,

_ 1) <3 w ..(v)
WABIJ_ZéABQéLIQ rAKQrKIQ .
K
Q —_——
r(W)
AIQ

A reduced form for the result (R(W)) is thus obtained from a contraction (line 6 of Algorithm 2)
with O(G*) cost complexity.

3 Library implementation

We implement the irrep alignment algorithm as a Python library, Symtensor.? The library im-
plements the algorithm described in Section 2, automatically selecting the appropriate reduced
form to align the irreps for the contraction, constructing the generalized Kronecker deltas to
convert input and output tensors to the target forms, and performing the batched dense tensor
contractions that implement the numerical computation. The dense tensor contraction is inter-
faced to different contraction backends. Besides the default NumPy einsum backend, we also
provide a backend that leverages MKL's batched matrix-multiplication routines [2] to obtain
good threaded performance, and employ an interface to Cyclops [41] for distributed-memory
execution.

In Figure 8, we provide an example of how the Symtensor library can be used to perform
the contraction of two cyclic group tensors with Zs (cyclic group with G = 3) symmetry for

2https:/ /github.com/yangcal /symtensor

11

SCll SciPost Phys. Codebases 10 (2023)

each index. In the code, the Symtensor library initializes the order 4 cyclic group symmetric
tensor using an underlying order 7 dense reduced representation. Once the tensors are initial-
ized, the subsequent einsum operation implements the contraction shown in Figure 5 without
referring to any symmetry information in its interface. While the example is based on a simple
cyclic group for an order 4 tensor, the library supports arbitrary orders, multiple independent
symmetric index groups, as well as products of cyclic groups. Infinite cyclic groups (e.g. U(1)
symmetries) can be emulated by using a cyclic group whose order is as large as the maximum
irrep label that would be encountered in the U(1) simulation.

As introduced in Section 2, the main operations in our irrep alignment algorithm consist of
transformation of the reduced form and the contraction of reduced forms. Symtensor chooses
the least costly version of the irrep alignment algorithm from a space of variants defined by
different choices of the implicitly represented modes of the three tensors in symmetry aligned
reduced form in Algorithm 2 (therein these are the symmetry modes I, J,, and K,). This
choice is made by enumerating all valid variants. After choosing the best reduced form, the
required generalized Kronecker deltas, 0 WD and 6V in Algorithm 2, are generated as dense
tensors. This permits both the transformations and the reduced form contraction to be done
as einsum operations of dense tensors with the desired backend.

4 Example Applications

As a testbed for this approach, we survey a few group symmetric tensor contractions that
arise in computational quantum chemistry and quantum many-body physics methods. The
emergence of cyclic group symmetric tensors in this context is attributable to symmetries such
as those associated with the conservation of particle number, spin, and invariance to spatial
transformations associated with point group and lattice symmetries [5,23,45]. Many numeri-
cal implementations in these fields leverage cyclic group symmetries [1,12,14,17,19,20,22,
26,29,31,33,35,37,39,44], often via block sparse tensor formats. As described in Section 2.1,
our proposed algorithm achieves the same computational improvement via transforming the
cyclic group tensor representation, while maintaining a global view of the problem as a dense
tensor contraction, as opposed to a series of block-wise operations or a contraction of block-
sparse tensors.

In this section, we introduce a few group symmetric tensor contractions that are costly
components of a common quantum chemistry method (coupled cluster theory) and a common
quantum many-body physics technique (tensor network simulations) and provide relevant
background. These contractions, summarized in Table 1, are evaluated as part of a benchmark
suite in Section 5 (we also consider a suite of synthetic contractions with different tensor order,
i.e. different choices of s, t,v).

4.1 Periodic Coupled Cluster Contractions

When computing the electronic structure of molecules and materials, coupled cluster theories
utilize tensor-based approximate representations of quantum wavefunctions [3,6,11,46,47],
where more accurate representations require higher order tensors [18,30,36,43]. Point group
symmetries of the molecular structure, such as those associated with a rotational group C,,
or a product group such as Do, usually provide the largest symmetry-related computational
cost reductions for molecular systems. In crystalline (periodic) materials, the invariance of the
atomic lattice to translation operations that are multiples of lattice vectors defines the crystal
translational symmetry group, which is a product of cyclic symmetry groups along each lattice
dimension. For a three-dimensional crystal, the size of the resulting symmetry group takes the
form G = G; x Gy X G3, and Gy, G, and G5 are usually called the number of k points along

12

SCll SciPost Phys. Codebases 10 (2023)

each dimension. These are typically taken to be as large as computationally feasible, thus the
savings arising from efficient use of crystal translational symmetry are particularly important
in materials simulation [10,15,16,26,28].

Within periodic coupled cluster theory, three common expensive tensor contractions can
be written as

Wir,jJ,mM,nN = E Ui1 jJ kK, ILYmM ,nN,kK,IL >
kK,IL

Wil jJj,mM kK = E Uo0,pBil,js VoO,pBkK,mM >
00,pP

Wil jJ,mM,nN = 2 Uo0,pPmM ,nNYoO0,pPil jJ *
00,pP

Each symmetry mode of the tensors is associated with the aforementioned crystal translational
symmetry group. Physically, the indices fall into two classes, with modes i, j, k,[and m,n,o,p
respectively called the virtual and occupied indices, each associated with a different dimen-
sion, however, we will for simplicity not distinguish between them and simply refer to their
dimension as N;, N [If we assume all dimensions are the same, then the cost of the above
contractions using cyclic group symmetry scales as G*N°®. These contractions are summarized
in Table 1.

4.2 Tensor Network Contractions

In the context of quantum many-body physics, tensor networks provide a compact represen-
tation of a quantum state or operator as a contraction of many tensors. For one-dimensional
and two-dimensional TN representations on a regular lattice, each lattice site is represented by
a tensor with one index corresponding to the local state of the system and additional indices
connecting it to nearest-neighbor tensors. These TNs are respectively called a matrix prod-
uct state (MPS) [8,32,49] and projected entangled pair state (PEPS) [48] and are associated
with many famous algorithms for computing quantum states such as the density matrix renor-
malization group [49,50]. In the presence of certain (Abelian) physical symmetries such as
parity symmetry, the tensors in the tensor network can be chosen to be cyclic group symmetric
tensors [4,27,37,50].

We consider two expensive TN contractions, each arising respectively from MPS or PEPS
algorithms which aim to find the ground state of quantum many-body systems. From the MPS
algorithm, we consider the contraction,

WiLjJ,lL,mM = Z Ui1,jJ kK VkK,IL,mM >
kK

which is encountered within an iterative eigensolver used to optimize a single MPS tensor. The
cost of this contraction using cyclic group symmetries scales as G>N;N iNiN;N; with each index
having the same number of symmetry blocks. In Table 1, we set N = N; = N; = Ny = N; = N,
for simplicity.

We consider the contraction with the highest scaling cost with respect to the dimension of
the PEPS tensors,

Wil jJ,mM,nN = E Uit jJ kK, ILVKK,IL,mM,nN >
kK,IL

where U is part of the MPS and V is a PEPS tensor. The PEPS contraction considered arises
during the computation of the normalization of the quantum state, done here using an implicit
version of the boundary contraction approach [34].

13

SCll SciPost Phys. Codebases 10 (2023)

In the above two contractions, indices i, j and k, [, m, n connect tensors within the
MPS and PEPS respectively. Each index has the same number of symmetry sectors G and
we set all indices connecting MPS and PEPS tensors to be equal, i.e. Ny,; = N; = N; and

L 2 4
Npeps = N = N; = N, = N,,. This gives an overall cost of G* (Nmps) (Npeps) . In Table 1, we
set N = Npps = Npeps for simplicity.

A subtle point for the following comparisons is that in some tensor network computations
with certain symmetry groups, it is common to consider blocks of different sizes. In the current
approach all symmetry blocks must be the same size, thus padding would be necessary to com-
pare to block-wise approaches where different block sizes can be accommodated. However,
the distribution of sizes is problem specific making it hard to choose a representative example.
To simplify matters, we assume that the block sizes are all the same, in all implementations of
the tensor network contractions.

5 Performance Evaluation

Performance experiments were carried out on the Stampede2 supercomputer. Each Stampede2
node is a Intel Knight’s Landing (KNL) processor, on which we use up to 64 of 68 cores by
employing up to 64 threads with single-node NumPy/MKL and 64 MPI processes per node
with 1 thread per process with Cyclops. We use the Symtensor library together with one of
three external contraction backends: Cyclops, default NumPy, or a batched BLAS backend for
NumPy arrays (this backend leverages HPTT [42] for fast tensor transposition and dispatches
to Intel’s MKL BLAS for batched matrix multiplication).> We also compare against the loop over
symmetry blocks algorithm as illustrated in Algorithm 1. This implementation performs each
block-wise contraction using MKL, matching state of the art libraries for tensor contractions
with cyclic group symmetry [7,24].

5.1 Single-Node Performance Results

We consider the performance of Symtensor on a single core and a single node of KNL relative
to manually-implemented looping over blocks as well as relative to naive contractions that
ignore symmetry. Our manual loop implementation of contractions stores a Python list of
NumPy arrays to represent the tensor blocks and invokes the NumPy einsum functions to
perform each block-wise contraction.

5.1.1 Sensitivity to Contraction Type

We first examine the performance of the irrep alignment algorithm for generic contractions
(Eq. 7) with equal dimensions N and G for each mode, but different (s, t, v). Figure 9 shows
the speed-up in execution time obtained by Symtensor relative to the manual loop implemen-
tation. The contractions are constructed by fixing G = 4 and modifying N to attain a fixed
total of 80 x 10? floating-point operations. All contractions are performed on both a single
thread and 64 threads of a single KNL node and timings are compared in those respective
configurations. The irrep alignment algorithm achieves better parallel scalability than block-
wise contraction and can also be faster sequentially. However, we also observe that in cases
when one tensor is larger than others (when s, t, v are unequal) the irrep alignment approach
can incur overhead relative to the manual loop implementation. Overhead can largely be at-
tributed to the cost of transformations between reduced representations, which are done as

3We use the default Intel compilers on Stampede2 with the following software versions: HPTT v1.0.0, CTF
v1.5.5 (compiled with optimization flags: -O2 -no-ipo), and MKL v2018.0.2.

14

SCll SciPost Phys. Codebases 10 (2023)

64 1
£ 16 1
2 4 E1 Proc
é) =64 Proc
1/41

NN B R NN N 9
DT B N QT N g
AU NN S N

Figure 9: Speed-up in execution time for various types of contraction of Symtensor
library with batched BLAS relative to using loops over blocks with NumPy as the
contraction backend. Results are shown for various combinations of (s, t, v) where
the number of modes shared between the first input and output is s, between the
second input and output is t, and between the two inputs (contracted) is v.

dense tensor contractions with the generalized Kronecker delta tensors. An alternative trans-
formation mechanism that utilizes the structure of the delta tensors would forgo this factor
of O(G) overhead, but the use of dense tensor contractions permits use of existing optimized
kernels and easy parallelizability.

5.1.2 Sensitivity to Symmetry Group Size for Application-Specific Contractions

The results are displayed in Figure 10 with the top, center, and bottom plots showing the
scaling for the contractions labeled MM, CC;, and PEPS in Table 1. We compare scaling relative
to two conventional approaches: a dense contraction without utilizing symmetry and loops
over symmetry blocks, both using NumPy’s einsum function. The dimensions of the tensors
considered are, for matrix multiplication, N = 500 and G € [4,12], for the CC contraction,
N; =N; =N, =N, =8, N, =N, =N, = Ny = 16, with G € [4,12], and for the PEPS
contraction, Npps = 16, Npeps = 4, with G € [2,10]. For all but the smallest contractions,
using the Symtensor implementation improves contraction performance. A comparison of
the slopes of the lines in each of the three plots indicates that the dense tensor contraction
scheme results in a higher order asymptotic scaling of cost in G than either of the symmetric

approaches.

Table 1: Summary of coupled cluster and tensor network contractions used to bench-
mark the symmetric tensor contraction scheme and their costs. G is the size of the
symmetry group and N is the dimension of each mode. We include matrix multiplica-
tion (MM) as a point of reference. The three CC contractions described in Section 4.1
are labeled CC,,CC, and CCs respectively.

| Label | Contraction | Symmetric Cost | Naive Cost |
MM Wi kk = ZjJ Uir jsVis kK O(GN?) O(G°N?)
CCy Wit jJ,mM,nN = ZkK 11 Wil jJ kK, ILYmM nN kK L O(G4N6) O(G6N6)
CCy | WirjsmMkK = 200,pp Yo0,pPil,jJ VoO,pPkK,mM O(G*N®) O(G°N®)
CCs | Wi jymman = Zoo,pp Uo0,ppmM,nN VoO,pPil, jJ O(G*N®) O(G°N®)
MPS Wir i inmM = ek Wit jg ik Vik L mM O(G°N>) O(G°N>)
PEPS | Wif iy mmn = Dk 1t Wi, ja ki 1L VKK 1L mM nN O(G*N®) O(G°N®)

15

SCll SciPost Phys. Codebases 10 (2023)
1024 A /
32 1

1/32

Time (s)

1024 A

32 4

Time (s)

1/32

1024 +

2 4 8 16

--Dense (NumPy)
-+ Loop Blocks (NumPy)
Symtensor (CTF)

Figure 10: Comparison of the execution times, in seconds, for contractions on a single
thread using three different algorithms, namely a dense, non-symmetric contraction,
loops over symmetry blocks, and our Symtensor library. From top to bottom, the
plots show the scaling for matrix multiplication (MM), a coupled cluster contraction
(CCy), and a tensor network contraction (PEPS). The dense and loop over blocks
calculations use NumPy as a contraction backend, while the Symtensor library here
uses Cyclops as the contraction backend.

Figure 11 provides absolute performance with 1 thread and 64 threads for all contractions
in Table 1. For each contraction, we consider one with a large number of symmetry sectors
(G) with small block size (N) (labeled with a subscript a) and another with fewer symmetry
sectors and larger block size (labeled with a subscript b). The specific dimensions of all tensors
studied are provided in Table 2. For each of these cases, we compare the execution time, in
seconds, using loops over blocks dispatching to NumPy contractions, the Symtensor library
with NumPy arrays and batched BLAS as the contraction backend, and the Symtensor library
using Cyclops as the array and contraction backend.

A clear advantage in parallelizability of Symtensor is evident in Figure 11. With 64 threads,
Symtensor outperforms manual looping by a factor of at least 1.4X for all contraction bench-
marks, and the largest speed-up, 69X, is obtained for the CC3, contraction. There is a signifi-
cant difference between the contractions labeled to be of type a (large G and small N) and type
b (large N and small G), with the geometric mean speedup for these two being 11X and 2.8X

16

SCll SciPost Phys. Codebases 10 (2023)

respectively on 64 threads; on a single thread, this difference is again observed, although less
drastically, with respective geometric mean speedups of 1.9X and 1.2X. Type b cases involve
more symmetry blocks, amplifying overhead of manual looping.

256

AT T T TG R RL DL UL UL LU
ATIIITITIITITIITILTITAT AU LT AL LD LU LU LUNO N N
IIITITIIII T TAT AT AT AT AT L L LR LN L N L N NN

R s
IIITITILILITITIATITITTILTA LTI LR UL UL AL UL UL UL LY
AT IIIIITALILILIL TR LT LR LU LN LN L L N NN

7
;
;
’
;
/
;
;
/
;
/
;
;
’
Z
/
Z
;
’
;
/
Z
;
’
;
/
;
;
’
G

ATTITTITITIITITLTIT TR TR UL ULUUUUUUUOUUOUUNNNN

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

AT IR
ATTLTTITITITITUT DT DT DDLU LU LU UL OO
ATTTLTLLTLTTITLTLTTT DDLU UL UL ULULUO OO
ATTILITITTITLTLTTTTLTLURU DL UL UL UL

NNy

oo

1/16 1

SIS AR (SRR SN Al CMIP Ao o
& ES NN L

B Loop Blocks (1 Proc, NumPy)ElLoop Blocks (64 Proc, NumPy)
A Symtensor (1 Proc, BLAS) [Symtensor (64 Proc, BLAS)
A Symtensor (1 Proc, CTF) [CJSymtensor (64 Proc, CTF)

Figure 11: Comparison of contraction times using the Symtensor library (using Cy-
clops for the array storage and contraction backend, or NumPy as the array storage
with batched BLAS contraction backend) and loops over blocks using NumPy as the
contraction backend. Results are shown for instances of the prototypical contrac-
tions introduced in Section 4, with details of tensor dimensions provided in Table 2.
The different bars indicate both the algorithm and backend used and the number of
threads used on a single node.

Table 2: Dimensions of the tensors used for contractions in Figure 11 and Figure 12.

| Label | Specifications |
CCh, | G=8,N,=N,=N,=N,=32,N, =N, =16
CCh, | G=8,N,=N,=N,=32,N, =N, =N, =16
CC, | G=8N,=N,=32,N, =N, =N, =N, =16
CC, | G=16,N,=N,=N,=N,=16,N, =N, =8

CC,, | G=16,N,=N,=N,=16,N, =N, =N, =8

P
CCy | G=16,N,=N,=16,N, =N, =N, =N, =8
MM, G =2, N = 10000
MM, G = 100, N = 2000

MPS, | G=2,N,=N,=N,, =3000, N, =10, N, = 1
MPS, | G=5N,=N.=N, =700, N,=10,N, = 1
PEPS, | G=2,N, =N, =400, N, =N, =N, =N, = 20
PEPS, | G=10,N,=N, =64, N,=N, =N, =N, =8

5.2 Multi-Node Performance Results

We now illustrate the parallelizability of the irrep alignment algorithm by studying scalability
across multiple nodes with distributed memory. All parallelization in Symtensor is handled

17

SCll SciPost Phys. Codebases 10 (2023)

via the Cyclops library in this case. The solid lines in Figure 12 show the strong scaling (fixed
problem size) behavior of the Symtensor implementation on up to eight nodes of Stampede2.
As a reference, we provide comparison to strong scaling on a single node for the loop over
blocks method using NumPy as the array and contraction backend. We again observe that the
Symtensor irrep alignment implementation provides a significant speedup over the loop over
blocks strategy, which is especially evident when there are many symmetry sectors in each
tensor. For example, using 64 threads on a single node, the speedup achieved by Symtensor
over the loop over blocks implementation is 41X for CC,,, 5.7X for CC;;, 4.1X for PEPS, and
27X for PEPS;,. We additionally see that the contraction times continue to scale with good
efficiency when the contraction is spread across multiple nodes.

Time (s)

Time (s)

NCOI'E

—Symtensor (CTF)

-+ Loop Blocks (NumPy)
o CC1,/PEPS,

A CC1b/PEPsb
_1/NCOFS

Figure 12: Strong scaling across up to 8 nodes for the CC contractions (top) labelled
CC,, (blue circles) and CC;;, (green triangles) and the PEPS contractions (bottom) la-
belled PEPS,, (blue circles) and PEPS,, (green triangles). The dashed lines correspond
to calculations done using a loop over blocks algorithm with a NumPy contraction
backend while the solid lines correspond to Symtensor calculations using the irrep
alignment algorithm, with a Cyclops contraction backend.

Finally, in Figure 13 we display weak scaling performance, where the dimensions of each
tensor are scaled with the number of nodes (starting with the problem size reported in Table 2
on 1 node) used so as to fix the tensor size per node. Thus, in this experiment, we utilize all
available memory and seek to maximize performance rate. Figure 13 displays the performance
rate per node, which varies somewhat across contractions and node counts, but generally does
not fall off with increasing node count, demonstrating good weak scalability. When using
4096 cores, the overall performance rate approaches 4 Teraflops/s for some contractions, but
is lower in other contractions that have less arithmetic intensity.

18

SCll SciPost Phys. Codebases 10 (2023)

4096

1024 A

256 1

64

GFlops/(# Nodes)

16
4096

1024 A

256 1

64

GFlops/(# Nodes)

16 == T T T
64 256 1024 4096
Neore

-=-CCy /MM - Few Sym Sectors (a)
--CCy/MPS —Many Sym Sectors (b)
~+CC3/PEPS

Figure 13: Weak scaling (see text for details) across up to 64 nodes for CC (top)
and TN (bottom) contractions, showing the performance, in GFlops per node, as a
function of the number of used nodes. The dashed lines correspond to contractions
with a small symmetry group (small G), previously labelled (a), while solid lines
correspond to contractions with a large symmetry group (large G), labelled (b). The
blue squares correspond to the CC; and matrix multiplication performance, the dark
green circles correspond to the CC, and MPS performance, and the light green trian-
gles correspond to the CC5; and PEPS performance.

6 Conclusion

The irrep alignment algorithm leverages symmetry conservation rules implicit in cyclic group
symmetry to provide a contraction method that is efficient across a wide range of tensor con-
tractions. This technique is applicable to many numerical methods for quantum-level mod-
elling of physical systems that involve tensor contractions. The automatic handling of group
symmetry with dense tensor contractions provided via the Symtensor library provides benefits
in productivity, portability, and parallel scalability for such applications. Many future exten-
sions, for example to handle more general symmetry groups, can be envisioned.

Acknowledgements

We thank Linjian Ma for providing the batched BLAS backend used in our calculations. ES
was supported by the US NSF OAC SSI program, via awards No. 1931258 and No. 1931328.
YG, PH, GKC were supported by the US NSF OAC SSI program, award No. 1931258. PH was
also supported by a NSF Graduate Research Fellowship via grant DGE-1745301 and an ARCS
Foundation Award. The work made use of the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by US National Science Foundation grant number
ACI-1548562. We use XSEDE to employ Stampede?2 at the Texas Advanced Computing Center
(TACC) through allocation TG-CCR180006.

19

SCll SciPost Phys. Codebases 10 (2023)

References

[1] M. Fishman, S. R. White, E. M. Stoudenmire, The ITensor software library for tensor net-
work calculations, SciPost Phys. Codebases 4 (2020), doi:10.21468/SciPostPhysCodeb.4,
doi:10.21468/SciPostPhysCodeb.4-10.3.

[2] A. Abdelfattah, A. Haidar, S. Tomov and J. Dongarra, Performance, design, and au-
totuning of batched GEMM for GPUs, Springer International Publishing, Cham, ISBN
9783319413204 (2016), doi:10.1007/978-3-319-41321-1 2.

[3] R.J.Bartlett and M. Musiat, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys.
79, 291 (2007), doi:10.1103/RevModPhys.79.291.

[4] G.K.-L. Chan and M. Head-Gordon, Highly correlated calculations with a polynomial cost
algorithm: A study of the density matrix renormalization group, J. Chem. Phys. 116, 4462
(2002), doi:10.1063/1.1449459.

[5] E A. Cotton, TIChemical applications of group theory, John Wiley & Sons, Hoboken, New
Jersey, US, ISBN 9780471510949 (1990).

[6] T. D. Crawford and H. E Schaefer, An introduction to coupled cluster theory for compu-
tational chemists, John Wiley & Sons, Hoboken, New Jersey, US, ISBN 9780470125915
(2007), d0i:10.1002/9780470125915.ch2.

[7] E. Epifanovsky et al., New implementation of high-level correlated methods using a gen-
eral block tensor library for high-performance electronic structure calculations, J. Comput.
Chem. 34, 2293 (2013), doi:10.1002/jcc.23377.

[8] M. Fannes, B. Nachtergaele and R. E Werner, Finitely correlated states on quantum spin
chains, Commun. Math. Phys. 144, 443 (1992), doi:10.1007/BF02099178.

[9] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems, Dover Publica-
tions, Mineola, New York, US, ISBN 9780486428277 (2012).

[10] N. Flocke and R. J. Bartlett, Correlation energy estimates in periodic extended systems using
the localized natural bond orbital coupled cluster approach, J. Chem. Phys. 118, 5326
(2003), d0i:10.1063/1.1555123.

[11] J. Gauss, Coupled-cluster theory, John Wiley & Sons, Hoboken, New Jersey, US, ISBN
9780470845011 (2002), doi:10.1002/0470845015.cca058.

[12] J. Hauschild and E Pollmann, Efficient numerical simulations with tensor net-
works: Tensor Network Python (TeNPy), SciPost Phys. Lect. Notes 5 (2018),
doi:10.21468/SciPostPhysLectNotes.5.

[13] S. Hirata, Tensor contraction engine: Abstraction and automated parallel implementation
of configuration-interaction, coupled-cluster, and many-body perturbation theories, J. Phys.
Chem. A 107, 9887 (2003), d0i:10.1021/jp034596z.

[14] S. Hirata, Tensor contraction engine: Abstraction and automated parallel implementation
of configuration-interaction, coupled-cluster, and many-body perturbation theories, J. Phys.
Chem. A 107, 9887 (2003), do0i:10.1021/jp034596z.

[15] S. Hirata, R. Podeszwa, M. Tobita and R. J. Bartlett, Coupled-cluster singles and doubles
for extended systems, J. Chem. Phys. 120, 2581 (2004), doi:10.1063/1.1637577.

20

SCll SciPost Phys. Codebases 10 (2023)

[16] E Hummel, T. Tsatsoulis and A. Griineis, Low rank factorization of the Coulomb
integrals for periodic coupled cluster theory, J. Chem. Phys 146, 124105 (2017),
doi:10.1063/1.4977994.

[17] K. Z. Ibrahim, S. W. Williams, E. Epifanovsky and A. I. Krylov, Analysis and tun-
ing of libtensor framework on multicore architectures, in 2I1st international con-
ference on high performance computing (HiPC), 1 (2014), IEEE, New York, USA
doi:10.1109/HiPC.2014.7116881.

[18] M. Kallay and P R. Surjdn, Higher excitations in coupled-cluster theory, J. Chem. Phys 115,
2945 (2001), doi:10.1063/1.1383290.

[19] Y.-J. Kao, Y.-D. Hsieh and P Chen, Unil0: An open-source library for tensor net-
work algorithms, J. Phys.: Conf. Ser. 640, 012040 (2015), doi:10.1088/1742-
6596/640/1/012040.

[20] R. A. Kendall et al., High performance computational chemistry: An overview of
NWChem a distributed parallel application, Comput. Phys. Commun. 128, 260 (2000),
doi:10.1016/S0010-4655(00)00065-5.

[21] Y. Kurashige and T. Yanai, High-performance ab initio density matrix renormalization group
method: Applicability to large-scale multireference problems for metal compounds, J. Chem.
Phys 130, 234114 (2009), doi:10.1063/1.3152576.

[22] P-W. Lai, K. Stock, S. Rajbhandari, S. Krishnamoorthy and P Sadayappan, A framework for
load balancing of tensor contraction expressions via dynamic task partitioning, in Proceed-

ings of the international conference on high performance computing, networking, storage
and analysis, ACM, New York, USA (2013), doi:10.1145/2503210.2503290.

[23] B C. Schmidt, Symmetry principles in solid state and molecular physics, Dover Publications,
Mineola, New York, US, ISBN 9780486420011 (2012).

[24] R. Levy, E. Solomonik, and B. Clark, Distributed-memory dmrg via sparse and
dense parallel tensor contractions, in SC20: International conference for high perfor-
mance computing, networking, storage and analysis, IEEE, New York, USA (2020),
doi:10.1109/SC41405.2020.00028.

[25] D. A. Matthews, On extending and optimising the direct product decomposition, Mol. Phys.
117, 1325 (2018), doi:10.1080/00268976.2018.1543903.

[26] J. McClain, Q. Sun, G. K.-L. Chan and T. C. Berkelbach, Gaussian-based coupled-cluster
theory for the ground-state and band structure of solids, J. Chem. Theory Comput. 13,
1209 (2017), doi:10.1021/acs.jctc.7b00049.

[27] 1. P McCulloch and M. Gulécsi, The non-Abelian density matrix renormalization group
algorithm, Europhys. Lett. 57, 852 (2002), doi:10.1209/epl/i2002-00393-0.

[28] M. Motta, S. Zhang and G. K.-L. Chan, Hamiltonian symmetries in auxiliary-field quan-
tum Monte Carlo calculations for electronic structure, Phys. Rev. B 100, 045127 (2019),
doi:10.1103/PhysRevB.100.045127.

[29] J. Nieplocha, R. J. Harrison and R. J. Littlefield, Global arrays: A nonuniform mem-
ory access programming model for high-performance computers, J. Supercomput. 10, 169
(1996), doi:10.1007/BF00130708.

21

SCll SciPost Phys. Codebases 10 (2023)

[30] J. Noga and R. J. Bartlett, The full CCSDT model for molecular electronic structure, J.
Chem. Phys. 86, 7041 (1987), doi:10.1063/1.452353.

[31] R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang and G. K.-L. Chan, The
ab-initio density matrix renormalization group in practice, J. Chem. Phys. 142, 034102
(2015), doi:10.1063/1.4905329.

[32] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295 (2011),
doi:10.1137/090752286.

[33] D. Ozog, J. R. Hammond, J. Dinan, P Balaji, S. Shende and A. Malony, Inspector-executor
load balancing algorithms for block-sparse tensor contractions, in 42nd International Con-
ference on Parallel Processing, IEEE, New York, USA (2013), doi:10.1109/ICPP2013.12.

[34] Y. Pang, T. Hao, A. Dugad, Y. Zhou and E. Solomonik, Efficient 2D tensor network
simulation of quantum systems, in SC20: International conference for high perfor-
mance computing, networking, storage and analysis, IEEE, New York, USA (2020),
doi:10.1109/SC41405.2020.00018.

[35] C.Peng,J. A. Calvin, E Pavosevi¢, J. Zhang and E. E Valeev, Massively parallel implementa-
tion of explicitly correlated coupled-cluster singles and doubles using TiledArray framework,
J. Phys. Chem. A 120, 10231 (2016), doi:10.1021/acs.jpca.6b10150.

[36] G.D. Purvis and R. J. Bartlett, A full coupled-cluster singles and doubles model: The inclu-
sion of disconnected triples, J. Chem. Phys. 76, 1910 (1982), doi:10.1063/1.443164.

[37] B Schmoll and R. Orus, Benchmarking global SU(2) symmetry in two-
dimensional tensor network algorithms, Phys. Rev. B 102, 241101 (2020),
doi:10.1103/PhysRevB.102.241101.

[38] U. Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[39] G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice and H. E Schaefer, The closed-shell
coupled cluster single and double excitation (CCSD) model for the description of electron

correlation. A comparison with configuration interaction (CISD) results, J. Chem. Phys.
86, 2881 (1987), d0i:10.1063/1.452039.

[40] S. Sharma and G. K.-L. Chan, Spin-adapted density matrix renormalization
group algorithms for quantum chemistry, J. Chem. Phys. 136, 124121 (2012),
doi:10.1063/1.3695642.

[41] E. Solomonik, D. Matthews, J. R. Hammond, J. E Stanton and J. Demmel, A massively
parallel tensor contraction framework for coupled-cluster computations, J. Parallel Distrib.
Comput. 74, 3176 (2014), doi:10.1016/j.jpdc.2014.06.002.

[42] P Springer, T. Su and P Bientinesi, HPTT: A high-performance tensor transposition
C++ library, in Proceedings of the 4th ACM SIGPLAN international workshop on li-
braries, languages, and compilers for array programming, ACM, New York, USA (2017),
doi:10.1145/3091966.3091968.

[43] J. E Stanton, Why CCSD(T) works: A different perspective, Chem. Phys. Lett. 281, 130
(1997), doi:10.1016/S0009-2614(97)01144-5.

22

SCll SciPost Phys. Codebases 10 (2023)

[44] J. E Stanton, J. Gauss, J. D. Watts and R. J. Bartlett, A direct product decomposition ap-
proach for symmetry exploitation in many-body methods. I. Energy calculations, J. Chem.
Phys. 94, 4334 (1991), doi:10.1063/1.460620.

[45] S. Sternberg, Group theory and physics, Cambridge University Press, Cambridge, US, ISBN
9780521558853 (1995).

[46] J. Cizek, On the correlation problem in atomic and molecular systems. Calculation of wave-
function components in Ursell-type expansion using quantum-field theoretical methods, J.
Chem. Phys. 45, 4256 (1966), doi:10.1063/1.1727484.

[47] J. Cizek and J. Paldus, Correlation problems in atomic and molecular systems III. Red-
erivation of the coupled-pair many-electron theory using the traditional quantum chemical
methodst, Int. J. Quantum Chem. 5, 359 (1971), doi:10.1002/qua.560050402.

[48] E Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0407066.

[49] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[50] S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B
48, 10345 (1993), do0i:10.1103/PhysRevB.48.10345.

23

	Introduction
	Irreducible Representation Alignment Algorithm
	Example of the Algorithm
	Generalization to Higher-Order Tensors
	Algebraic Proof of Correctness

	Library implementation
	Example Applications
	Periodic Coupled Cluster Contractions
	Tensor Network Contractions

	Performance Evaluation
	Single-Node Performance Results
	Sensitivity to Contraction Type
	Sensitivity to Symmetry Group Size for Application-Specific Contractions

	Multi-Node Performance Results

	Conclusion
	References

