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Abstract. The North Atlantic Oscillation (NAO) is the most recognized and leading mode of 30 

atmospheric variability observed over the Atlantic sector of the Northern Hemisphere, and its 31 

impacts on weather and climate over the North Atlantic and Eurasia via large-scale teleconnections 32 

have been extensively studied. Here we use a multidata synthesis approach to analyze surface and 33 

tropospheric variables from multiple long-term observational and reanalysis datasets to identify 34 

the NAO’s footprint on interannual temperature variability over the vast but least-studied Sahara 35 

Desert during December–January–February–March for the satellite era (1979-2022) and century-36 

long periods. Our results present evidence for a solid teleconnection pattern in surface and 37 

tropospheric temperatures associated with the NAO over the Sahara and document some major 38 

spatial–temporal and vertical characteristics of this pattern. It is found that the Saharan temperature 39 

anomalies are negatively correlated with the NAO index and this correlation is very strong, 40 

consistent, and statistically significant between different periods and across different datasets. The 41 

teleconnection is closely linked to large-scale circulation anomalies throughout the troposphere 42 

over the North Atlantic–Sahara sector, where the anomalous horizontal wind components and 43 

geopotential height exhibit opposite changes in sign with altitude from the lower to upper 44 

troposphere. During the negative NAO− (positive NAO+) phase, above-normal (below-normal) 45 

temperatures over the Sahara could be mainly explained by three major processes: (1) advection 46 

of climatological warm and moist (cold and dry) air over the North Atlantic (northern higher 47 

latitudes) by the anomalous southwesterly (northeasterly) flow in the lower troposphere; (2) 48 

advection of anomalous North Atlantic warm (cold) air by the climatological strong westerlies in 49 

the middle and upper troposphere; and (3) strengthened (weakened) vertical mixing in the 50 

atmospheric boundary layer. These results suggest that the NAO plays an important role in 51 

modulating the interannual temperature variability over the Sahara, and that this NAO footprint is 52 

mostly realized through horizontal temperature advection and vertical heat transfer by turbulent 53 

mixing.  54 

 55 

Key words: North Atlantic Oscillation (NAO), teleconnection, Sahara Desert, interannual 56 

temperature variability  57 
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1. Introduction 58 

 59 

The harsh and hyper-arid Sahara Desert (shortly referred to as the Sahara hereafter) in northern 60 

Africa is the largest hot desert on Earth due to the combination of regional continental geography 61 

and large-scale atmospheric circulation patterns (Wu et al., 2009; Zhang et al., 2014; Pausata et 62 

al., 2020). Paleoclimate proxies indicate that the Sahara has undergone major hydrological 63 

fluctuations between wet conditions with lush trees, grasses, and permanent lakes, and dry 64 

conditions with limited vegetation in the deep past (Castañeda et al., 2009; Menviel et al., 2021). 65 

On geological time scales, these fluctuations are believed to have been initially triggered by 66 

changes in radiative forcing due to gradual variations in Earth’s orbital parameters and atmospheric 67 

concentrations in greenhouse gases (GHGs) and sustained and enhanced by a host of remote and 68 

local nonlinear feedback processes involving changes in local vegetation and remote sea surface 69 

temperatures (SSTs) (Wright, 2016; Pausata et al., 2020).   70 

 71 

On interannual and decadal time scales, recent studies of instrumental records, reanalysis data, and 72 

climate model simulations have documented amplified surface warming over the vast Sahara and 73 

Arabian deserts in recent decades (Collins, 2011; Cook and Vizy, 2015; Zhou et al., 2015; 2016; 74 

2021; Zhou, 2016; 2021; Vizy and Cook, 2017; Evan et al., 2017; Wei et al., 2017). This large-75 

scale warming pattern, termed “desert amplification”, is attributed possibly to a stronger 76 

greenhouse effect over drier ecoregions in response to a warmer and moister atmosphere with 77 

increasing GHGs. Interestingly, these studies also show strong interannual variability in 78 

temperatures over the Sahara and Arabian deserts. With suppressed convection and extreme dry 79 

and mostly cloudless weather conditions, the subtropical deserts have relatively stable surface 80 

conditions in terms of surface albedo, vegetation, and soil moisture. On interannual time scales, 81 

small variations in solar insolation and anthropogenic GHGs cannot explain substantial year-to-82 

year temperature variations over the deserts. Possibly, remote forcing, such as changes in SSTs 83 

and large-scale circulations, could be the dominant contributors to the Saharan interannual 84 

temperature variability. 85 

 86 

One such contributor is the North Atlantic Oscillation (NAO), which has long been recognized as 87 

the dominant mode of winter atmospheric variability in the Northern Hemisphere (NH) (van Loon 88 
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and Rogers, 1978; Rogers and van Loon, 1979; Barnston and Livezey, 1987; Wallace and Gutzler, 89 

1981). The NAO is often defined by the NAO index (NAOI), which describes changes in the 90 

strength of two recurring sea level pressure (SLP) patterns over the North Atlantic involving the 91 

polar Icelandic Low and the subtropical Azores High (e.g., Hurrell, 1995; 1996; Visbeck et al., 92 

2001). Positive NAOI values (i.e., positive NAO phases) correspond to above-normal SLP and 93 

geopotential height (GPH) over the central North Atlantic and western Europe, and below-normal 94 

SLP and GPH across the high-latitude North Atlantic. In contrast, negative NAOI values (i.e., 95 

negative NAO phases) exhibit the opposite patterns over these regions. Both positive and negative 96 

NAO phases are associated with basin-wide changes in the intensity and location of jet streams 97 

and storm tracks, and in large-scale modulations of the normal patterns of zonal and meridional 98 

heat and moisture transport (Hurrell, 1995; 1996). These changes and modulations result in 99 

considerable anomalies in temperature, moisture, and precipitation on a wide range of time scales 100 

from days to centuries in Europe, Greenland, North America, and northern Asia (e.g., Hurrell, 101 

1995; 1996; Visbeck et al., 2001; Hurrell and Deser, 2009; Moulin et al., 2017; Ma and Zhang, 102 

2018; Nie et al., 2020). 103 

 104 

Fluctuating atmospheric and oceanic conditions associated with the NAO in the North Atlantic 105 

region have strong impacts on surrounding regions and weather and climate in downstream and 106 

remote regions across the NH (Visbeck et al., 2001; Li and Ruan, 2018). The NAO exerts dominant 107 

impacts on wintertime temperatures across much of the NH, and its variability is significantly 108 

correlated with surface air temperature and SSTs across wide regions of the North Atlantic Ocean, 109 

North America, the Arctic, Eurasia, and the Mediterranean (Hurrell, 1995; 1996; Hurrell et al., 110 

2003; Pinto and Raible, 2012). Considering its proximity to the North Atlantic Ocean and direct 111 

exposure to the North Atlantic atmospheric circulation, the Sahara is likely to be subject to the 112 

influences of the NAO. 113 

 114 

Among many published papers related to the NAO, only several have examined the NAO’s 115 

impacts over Africa. In terms of precipitation, Meehl and van Loon (1979) first demonstrated an 116 

association between the NAO and the position of the intertropical convergence zone during 117 

December–February over Africa; Lamb and Peppler (1987) noted a significant inverse relationship 118 

in the interannual variations between the NAOI and Moroccan boreal winter precipitation, driven 119 
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by the southward displacement of the North Atlantic storm track and precipitation-bearing storms 120 

when the North Atlantic westerlies are weak; and McHugh and Rogers (2001) described negative 121 

and highly significant correlations between the NAOI and December–February rainfall variability 122 

over southeastern Africa (0–16S and 25–40E), due to anomalous moisture and circulation 123 

fields associated with the positive/negative NAO phases. In terms of temperature, Hurrell et al. 124 

(2003) briefly mentioned the cooling of North Africa and the Middle East when the NAOI is 125 

positive in explaining their Fig. 13; Nigam and Baxter (2015) showed in their Fig. 4 that the 126 

strongest impacts of the NAO on surface temperature emerge over Europe and northern Africa, 127 

and the positive NAO results in above-normal temperatures over nearly all of Europe, while below-128 

normal temperatures prevail from Saharan Africa east-northeastward to the eastern Mediterranean, 129 

Middle East, and the Arabian Peninsula; and Clark and Feldstein (2020a) illustrated in their Fig. 1 130 

the composite surface temperature anomaly patterns for the positive and negative NAO phases in 131 

the NH including North Africa from the ERA-Interim reanalysis. However, the focus of these three 132 

papers is on the NH and particularly, only one sentence is mentioned when referring to one plot 133 

showing the Saharan temperature anomalies associated with the NAO phases in each paper. 134 

 135 

Although the structure of the prominent teleconnection patterns such as the NAO has been known 136 

for several decades, the physical mechanisms that govern the NAO and its variability and how the 137 

NAO responds to external forcing are not yet well understood and still under debate (e.g., Visbeck 138 

et al., 2001; Nigam, 2003; Hurrell et al., 2003). To date, the NAO’s impacts on weather and climate 139 

anomalies have been often attributed to NAO-induced large-scale circulation anomalies and 140 

associated zonal and meridional heat and moisture transport (Hurrell, 1995; 1996; Hurrell et al., 141 

2003; Nigam and Baxter, 2015). The physical mechanisms in explaining the NAO impacts on 142 

surface air temperature (SAT) are summarized in Clark and Feldstein (2020a). According to Clark 143 

and Feldstein (2020a), past studies have concluded that SAT anomaly patterns for both positive 144 

and negative NAO phases are mainly driven by horizontal temperature advection (e.g., van Loon 145 

and Rogers, 1978; Rogers and van Loon, 1979; Wallace and Gutzler, 1981; Watanabe, 2004; 146 

Woollings et al., 2008; Hurrell et al., 2003; Nigam and Baxter, 2015). This viewpoint is consistent 147 

with maps of anomalous SLP, from which the implied direction of the anomalous winds relative 148 

to the climatological temperature gradient suggests the observed SAT anomaly pattern. In addition, 149 
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the spatial pattern of horizontal temperature advection associated with the NAO resembles the 150 

NAO’s SAT anomaly pattern, further confirming this viewpoint (e.g., Clark and Feldstein, 2020b). 151 

 152 

To attribute the NAO impacts on both surface and atmospheric temperature anomalies, Clark and 153 

Feldstein (2020a; 2020b) conducted a comprehensive composite analysis of the thermodynamic 154 

energy equation over the NH using ERA-Interim reanalysis. They found that the advection of the 155 

climatological temperature field by the anomalous wind makes the largest contribution to the 156 

NAO-driven temperature anomaly patterns throughout the troposphere, while the advection of 157 

anomalous temperature by the climatological wind is the most important contributor to 158 

temperature changes in the upper troposphere. In addition, they included a detailed analysis of all 159 

major heating processes over four selected regions, including northern Africa where the diabatic 160 

heating term of vertical mixing mainly opposes the horizontal temperature advection in the 161 

boundary layer, while latent heating plays a minor role. Clark and Feldstein (2020b) also showed 162 

that anomalous adiabatic warming/cooling largely opposes NAO-related temperature anomaly 163 

growth over the Sahara (their Fig. 3), a finding they note to be consistent with the quasigeostrophic 164 

omega equation. In other words, when the NAO is active, suppressed (enhanced) subsidence 165 

coincides with warm (cold) air advection over the Sahara.  166 

 167 

Despite its importance to Earth’s weather and climate, the Sahara has a significant data gap which 168 

fundamentally inhibits our understanding of the Saharan meteorology because of inadequate 169 

observations available for data collection, assimilation, or model validation (Washington et al., 170 

2013; Zhou, 2021). Consequently, our understanding of the Saharan climate and our modeling 171 

capacities are very limited with large uncertainties, and there is a critical need to overcome this 172 

limitation and fill in our knowledge gap using more independent datasets and methods over the 173 

data-scarce Sahara. The recent availability of several observational and reanalysis datasets with 174 

improved quality and longer periods provides a great opportunity to validate and further 175 

understand the NAO impacts on Saharan temperature variability.  176 

 177 

As the center of the subtropical Azores High spans the central North Atlantic and much of North 178 

Africa, we expect to see the NAO footprint in key weather variables such as SLP and surface 179 

temperature over the Sahara. The aforementioned studies, however, have not completely addressed 180 
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how the NAO impacts the Saharan interannual temperature variability. Furthermore, previous 181 

studies of NAO impacts have mostly focused on temperature and precipitation in the northern 182 

middle and high latitudes; among the few studies related to Africa the emphasis has been on 183 

rainfall. In order to elaborate on the NAO’s impacts on temperature over northern Africa as 184 

touched upon previously by several studies, here we present the very first comprehensive and 185 

detailed regional study of the NAO teleconnection patterns over the vast Sahara.  186 

 187 

The motivation for this study is threefold. The first goal is to use a multidata synthesis approach 188 

from an ensemble of different observational and reanalysis datasets with improved quality to 189 

corroborate previous findings of the NAO’s impacts on surface temperatures. By considering both 190 

the sign and statistical significance of the NAO-induced anomalies, we look for the NAO signal 191 

that is robust and consistent to increase our confidence in the obtained results. The second goal is 192 

to investigate the robustness and persistence of the NAO’s impact on Sahara temperatures and 193 

assess the uncertainty using different datasets with much longer records. In particular, we will 194 

compare the results from the satellite era to those from several century-long observational datasets 195 

and account for errors in the forecast model and uncertainties in observations and differences in 196 

construction methods using two century-long ensemble reanalyses. The third goal is to examine 197 

both surface and tropospheric variables to understand the vertical structure of tropospheric air 198 

temperature changes associated with the NAO over the Sahara. Previous studies have focused 199 

mostly on surface temperatures, but temperature changes are not limited to the Earth surface and 200 

can be extended into the free atmosphere (Zhou, 2021). The vertical structure of temperature 201 

changes can tell a whole story of the NAO’s impacts. Our primary focus is to document the NAO 202 

teleconnection patterns over the vast Sahara and establish their spatiotemporal and vertical features 203 

on interannual time scales, while the possible physical mechanisms are developed mostly by 204 

synthesizing our results with previous research.  205 

 206 

2.  Data and Methods 207 

 208 

2.1. Study region and periods 209 

 210 
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The emphasis of this study is on: (1) the Sahara Desert, but hemispheric analyses are also 211 

performed to identify the large-scale features of NAO teleconnections, which can be validated with 212 

previous findings; (2) the four winter months, December–January–February–March (DJFM), 213 

when the NAO signal is strongest (e.g., Hurrell, 1995; 1996; Hurrell et al., 2003; Visbeck et al., 214 

2001; Pinto and Raible, 2012). The study is focused on two periods. The first one covers the 215 

modern satellite era from 1979 to 2022, to maximize the data coverage of various measurements 216 

used in observational and reanalysis products over the data-scarce desert regions (Zhou, 2021). 217 

The second period extends the satellite-era study back as early as 1864 to maximize the temporal 218 

coverage of in-situ measurements to a much longer time scale. As the NAO’s impacts are not 219 

limited only to the surface, the atmospheric variables in the troposphere will also be analyzed. 220 

 221 

2.2. Observational and reanalysis datasets 222 

 223 

We examine two widely used and independently derived monthly NAOI datasets from 224 

observations. The first one is station-based using the difference of normalized SLP between 225 

Lisbon, Portugal, and Stykkisholmur/Reykjavik, Iceland, for the period 1864-2022, provided by 226 

the National Center for Atmospheric Research (NCAR) 227 

(https://climatedataguide.ucar.edu/climate-data/). The second one is obtained by projecting the 228 

NAO loading pattern onto monthly mean 500 hPa GPH anomalies for the period 1950-2022 over 229 

the NH based on a Rotated Empirical Orthogonal Function analysis and standardized by the 1950–230 

2000 base period monthly means and standard deviations (Barnston and Livezey, 1987; van den 231 

Dool et al., 2000; Chen and van den Dool, 2003), provided by the National Oceanic and 232 

Atmospheric Administration (NOAA) (https://www.ncdc.noaa.gov/teleconnections/nao/). These 233 

two standardized NAOI datasets are hereafter referred to as the NCAR and NOAA NAOI, 234 

respectively.  235 

 236 

The latest versions of two well-documented global gridded monthly mean surface temperature 237 

datasets are analyzed. The first one is NASA’s Goddard Institute for Space Studies (GISS) Surface 238 

Temperature Analysis version 4 (GISTEMP v4) on a 2º latitude by 2º longitude grid for the period 239 

1880-2022 (https://data.giss.nasa.gov/gistemp/). It is produced by combining satellite 240 

observations, SST records from the Extended Reconstructed Sea Surface Temperature version 5 241 

https://climatedataguide.ucar.edu/climate-data/
https://www.ncdc.noaa.gov/teleconnections/nao/
https://data.giss.nasa.gov/gistemp/
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(ERSSTv5) dataset, and meteorological station measurements from the NOAA’s Global Historical 242 

Climatology Network (GHCNv4) (GISTEMP Team, 2021; Lenssen et al., 2019). The second 243 

dataset is the Berkeley Earth Surface Temperatures (BEST) on a 1º latitude by 1º longitude grid 244 

for the period 1850-2022 (https://berkeleyearth.org/data/). It is created by combining the Berkeley 245 

Earth monthly land temperature field with the spatially kriged version of the Met Office Hadley 246 

Centre’s SST dataset (HadSST3) (Rohde and Hausfather, 2020). The BEST is intended to provide 247 

an alternative, independent assessment of global surface temperature, separate from the analyses 248 

of NOAA and NASA. Note that both datasets are developed by combining 2 m surface air 249 

temperature over land with SSTs over ocean. These two observational surface temperature datasets 250 

are hereafter referred to as the GISS and Berkeley temperatures, respectively.  251 

 252 

The Global Historical Climatology Network Monthly Version 4 (GHCNMv4) contains monthly 253 

mean temperatures for over 26,000 stations across the globe for the period 1880-2022 254 

(https://www.ncei.noaa.gov/pub/data/ghcn/v4/). The GHCNMv4 is the NOAA’s latest station-255 

based dataset that uses the same quality control and bias correction algorithms as version 3 but has 256 

included a greatly expanded set of stations (Menne et al., 2018). It is updated periodically using 257 

comprehensive data collections of increased global area coverage over both land and ocean 258 

surfaces to provide the most accurate depiction of environmental conditions and has been 259 

frequently used in global gridded datasets, and NOAA's monthly climate reports as well as other 260 

national and international climate assessments. This study uses 2m air temperatures of 53 weather 261 

stations over the Sahara from the GHCNMv4 and the regional averaged monthly temperature 262 

anomalies from these stations are calculated to study the long-term Saharan temperature variability 263 

(1880-2022). Note that this regional mean temperature anomaly time series may be subject to 264 

inhomogeneities because these weather stations are concentrated in limited areas and differ in 265 

temporal coverage (e.g., Cook and Vizy, 2015; Zhou, 2021). As stated previously, it has been 266 

challenging to study climate change in data-sparse regions such as the Sahara due to the lack of 267 

high-density and temporally consistent long-term in situ measurements.  Nevertheless, this dataset, 268 

together with the others introduced in this section, are used here as sources of information about 269 

surface temperature variability over the Sahara. This station-based dataset is hereafter referred to 270 

as the GHCNMv4 temperatures. 271 

 272 

https://berkeleyearth.org/data/
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We use the 5th generation European Centre for Medium-Range Weather Forecasts (ECMWF) 273 

Reanalysis (ERA5; Hersbach et al., 2020), a state-of-the-art global atmospheric reanalysis dataset 274 

spanning the period 1979–2022. The ERA5 is produced by combining vast amounts of historical 275 

observations into global estimates using advanced modeling and data assimilation systems (C3S, 276 

2017). The ERA5 monthly mean meteorological fields analyzed consist of (1) three-dimensional 277 

data on pressure levels: temperature (ºC), specific humidity (g kg−1), horizontal wind (u and v, m 278 

s−1), vertical velocity (, Pa s−1), and GPH (m); and (2) two-dimensional data  on single levels: 279 

mean SLP (hPa), 2 m air temperature (°C), 2 m specific humidity (g kg−1), 10 m horizontal wind 280 

(m s−1), and SST (ºC), on a 1° longitude × 1° latitude grid. To be consistent with the GISS and 281 

Berkeley temperatures, the corresponding ERA5 surface temperatures are developed by combining 282 

the ERA5 2 m air temperatures over land with SSTs over oceans. The ERA5 offers data on 37 283 

pressure levels and here we only consider the following 12 mandatory pressure levels: 1000, 925, 284 

850, 700, 600, 500, 400, 300, 250, 200, 150, and 100 hPa. Note that 100 hPa is below the 285 

tropopause over the Sahara and so all these levels are confined to the troposphere. For subsequent 286 

reference, we broadly divide the troposphere into three layers (e.g., Lau and Kim, 2015): the lower 287 

troposphere (below 700 hPa), the middle troposphere (from 700 hPa to 400 hPa), and the upper 288 

troposphere (above 400 hPa).  289 

 290 

We also considered utilizing the second Modern-Era Retrospective Analysis for Research and 291 

Applications (MERRA-2) for the period 1980-2022, a NASA atmospheric reanalysis making 292 

enhanced use of satellite observations (Gelaro et al., 2017). However, the results are very similar 293 

to those in the ERA5 and thus are not included here to avoid redundancy.  294 

 295 

In addition, this study analyzes two widely-used century-long climate reanalyses to examine the 296 

robustness and persistence of the teleconnection patterns identified from the modern-era 297 

reanalyses: (1) the NOAA–CIRES–DOE Twentieth Century Reanalysis version 3 (20CRv3) 298 

provided by the NOAA/Physics Science Laboratory (PSL) (Slivinski et al., 2019); (2) the Coupled 299 

Reanalysis for the 20th Century (CERA-20C) provided by the ECMWF (Laloyaux et al., 2018). 300 

The 20CRv3 is produced by assimilating only surface pressure observations and prescribing sea 301 

surface temperature, sea ice concentration, and radiative forcings into NOAA’s Global Forecast 302 

System to estimate the most likely state of the global atmosphere from 1806 to 2015. It contains 303 
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objectively analyzed 4-dimensional weather maps and their uncertainty from a set of 80-member 304 

ensemble analyses. The 20CRv3 dataset consists of the ensemble mean and standard deviation (or 305 

ensemble spread) for each variable on a 1° longitude × 1° latitude grid 306 

(http://apdrc.soest.hawaii.edu/datadoc/20century_reanalysisV3.php). The CERA-20C is produced 307 

by ECMWF’s coupled ocean–atmosphere assimilation system that assimilates only surface 308 

pressure, ocean surface winds, and ocean temperature and salinity measurements with the fifth 309 

phase of the Coupled Model Intercomparison Project (CMIP5) atmospheric forcing to reconstruct 310 

the past weather and climate of the Earth system covering the period 1901–2010. The CERA-20C 311 

reanalysis and its 10 ensemble members at a horizontal resolution of 1° are available at   312 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/cera-20c. The two reanalyses 313 

with multiple ensemble members can provide an assessment of both model and observation 314 

uncertainty. It is worth noting that these two century-long reanalyses rely on a consistent (but 315 

restricted) set of long-term observations and do not assimilate upper-air (i.e., radiosonde) and 316 

modern-era satellite observations (post-1979) to avoid possible spurious artificial trends due to 317 

changes in the underlying observational network (Thorne and Vose, 2010). Therefore, they differ 318 

substantially and independently from modern-era reanalyses (e.g., ERA5 and MERRA-2) 319 

constrained by a full suite of observational datasets (Wohland et al., 2020; Agrawal et al., 2021). 320 

Here monthly mean 2m surface air temperatures from both reanalyses are examined as the 321 

reanalyses are constrained by surface observations and the NAO has the strongest impact on 322 

surface variables (section 3).  323 

 324 

2.3. Data processing and methods 325 

 326 

Among the above five global gridded datasets (i.e., Berkeley, GISS, ERA5, 20CRv3, and CERA-327 

20C), GISS has a coarser spatial resolution and so is re-projected onto the common 1 by 1 grid 328 

boxes of the other four datasets using bilinear interpolation. For a given variable, the monthly 329 

mean anomaly from January to December in each year is first calculated by subtracting its monthly 330 

climatology from the monthly mean; the monthly mean anomalies are then averaged for the four 331 

winter months December–January–February–March (DJFM) ), i.e., December of previous year 332 

and January to March of current year,  to obtain the yearly DJFM mean anomaly time series for 333 

the study periods.  334 

http://apdrc.soest.hawaii.edu/datadoc/20century_reanalysisV3.php
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/cera-20c
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 335 

This study is concerned with interannual temperature variability and so the long-term warming 336 

trend during the study periods should be excluded. The least squares linear trend is estimated and 337 

removed from the satellite-era time series of DJFM anomalies whose warming trends are close to 338 

a straight line. A high-pass filter could be used to remove the decadal variability (e.g., for a 339 

frequency longer than 7 years) for the century-long time series of data, but this filtering has a very 340 

limited impact on the results presented and so is not considered.  341 

 342 

To identify the teleconnection patterns associated with the NAO, we primarily use correlation 343 

analysis to quantify the relationship between two variables (e.g., Wallace and Gutzler, 1981; Lamb 344 

and Peppler, 1987; McHugh and Rogers, 2001; Pinto and Raible, 2012; Nigam and Baxter, 2015; 345 

Li and Ruan, 2018). For example, the NAOI can be correlated with the GPH and wind anomalies 346 

to establish the NAO teleconnection patterns with large-scale circulation anomalies. A Student’s-347 

t test is used to assess the statistical significance (p value) of the correlation coefficient (R). 348 

 349 

Composite analysis is often used to identify the teleconnection patterns associated with positive 350 

and negative NAO phases (e.g., Wallace and Gutzler, 1981; Hurrell 1995; 1996; Visbeck et al., 351 

2001; Pinto and Raible, 2012; Martineau et al., 2020). Figure 1a shows interannual variations in 352 

the standardized DJFM NAOI for the period 1979–2022 from the NCAR and NOAA datasets, 353 

indicating strong year-to-year variations between positive and negative NAO phases and a record-354 

breaking negative NAOI in 2010 (e.g., Osborn, 2011) during the 44-year period. Here we define 355 

the representative positive NAO (i.e., NAO+) and negative NAO (i.e., NAO−) phases as the years 356 

with the standardized NAOI > +1 STD and < −1 STD, respectively, from both the NCAR and 357 

NOAA datasets. There are six NAO+ years: 1983, 1989, 1995, 2012, 2015, and 2020, and six 358 

NAO− years: 1979, 1996, 2001, 2010, 2011, and 2013, chosen for composite analysis. Evidently, 359 

the two NAOI datasets are highly correlated (R=0.92, p < 0.001) and so their average standardized 360 

NAOI is hereafter used to represent the observed NAOI during the satellite era.  361 

 362 

The statistical significance of the composite anomalies is estimated based on Monte Carlo 363 

simulation (Qin et al., 2020). For a given time series of 44 years of data (e.g., temperature) from 364 

1979 to 2022, the difference between the composite mean from the 6 years of NAO+ (NAO−) 365 
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phases and the mean of any randomly chosen 6 years is tested for statistical significance, as 366 

follows, First, we randomly choose 6 years from the 44 years of anomaly data and calculate the 6-367 

year mean of anomalies. We repeat this process 1000 times and obtain an empirical distribution of 368 

the 1000 6-year means. Second, we calculate the actual composite mean from the 6 years of NAO+ 369 

(or NAO−) phases, respectively. If the actual composite mean exceeds the 95th percentile or is less 370 

than the 5th percentile of the empirical distribution, the composite anomalies from NAO+ and 371 

NAO- phases are considered statistically significant at the 10% level (p<0.10). Here the level of 372 

statistical significance is chosen as 10% for the composite analysis, rather than 5% for the 373 

correlation analysis, due to the small sample size of our composite.  374 

 375 

 376 

Fig. 1. Interannual variations in standardized NAOI during DJFM for the period (a) 1979–2022 377 

and (b) 1864-2022 from the NCAR and NOAA datasets. The one standard deviation (±1 STD) lines 378 

(in gray) are drawn for reference. The correlation coefficient (R) and its significance level (p 379 

value) between the two indices are shown. 380 
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 381 

Regional mean quantities for the Sahara are calculated using area-weighted averaging over the 382 

inner domain of the desert, which corresponds to the green rectangle (20N–30N, 15W–35E) 383 

depicted in Fig. 3c, following previous studies (e.g., Cook and Vizy, 2015; Vizy and Cook, 2017; 384 

Evan et al., 2017). The regional mean temperature anomaly time series is termed the Saharan 385 

temperature index (STI). 386 

 387 

It is reasonable to believe that the modern-era reanalyses are of high quality in describing the past 388 

atmospheric conditions by combining vast amounts of historical observations into global estimates 389 

using advanced modelling and data assimilation systems. Hence, our regionally focused analyses 390 

of atmospheric variables over the Sahara are only done with the ERA5. Note that the NAO 391 

footprint on the Saharan temperatures is most evident in the troposphere and so our discussion is 392 

concerned with this layer of the atmosphere. In addition, every variable analyzed in this study is a 393 

4-monthly mean quantity during DJFM, and for brevity, the term ‘‘DJFM’’ is often omitted for 394 

the remainder of this paper. 395 

 396 

3. Results and discussion 397 

 398 

3.1. Large-scale teleconnection patterns during the satellite era 399 

 400 

In this subsection we analyze the large-scale teleconnection patterns on hemispheric scales for the 401 

period 1979–2022 to gain some background knowledge before focusing on our regional study 402 

domain. It is essential that ERA5 can capture the major observed features in interannual 403 

temperature variability before being used for further diagnostic analysis. Note that the standardized 404 

averaged NAOI from the two NAOI datasets is used to represent the observed NAOI (Fig. 2) here. 405 

 406 
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 407 
 408 

Fig. 2. Interannual variations in standardized NAOI (Fig. 1) and Saharan temperature index (STI) 409 

for the period 1979–2022 from the GISS, Berkeley, and ERA5. The STI is calculated as the regional 410 

mean temperature anomalies averaged over the inner domain of the Sahara Desert (20ºN–30ºN, 411 

15ºW–35ºE, depicted in Fig. 3c). The one standard deviation (±1 STD) lines (in gray) are drawn 412 

for reference. The correlation (R) and its significance level (p value) between the NAOI and 413 

temperature anomalies are shown. The NAOI is the average standardized NAOI from the NCAR 414 

and NOAA NAOI (Fig. 1a). 415 

 416 

Figure 2 displays interannual variations in STI and NAOI for the period 1979-2022. Despite strong 417 

interannual variations, the NAOI is significantly correlated negatively with the temperatures from 418 

GISS (R=−0.78, p < 0.001), Berkeley (R=−0.79, p < 0.001), and ERA5 (R=−0.80, p < 0.001), 419 

indicating above-normal (below-normal) temperature anomalies during the NAO− (NAO+) 420 

phases. Clearly, the three surface temperature datasets show almost identical variability, so that 421 

the average STI from the two observational datasets (Berkeley and GISS) is hereafter used to 422 

represent the observed STI during the satellite era unless otherwise specified. 423 

 424 

Figures 3a-c show the spatial pattern of correlation (R) between NAOI and gridded surface 425 

temperatures in the NH from the GISS (Fig. 3a), Berkeley (Fig. 3b), and ERA5 (Fig. 3c) datasets. 426 

Evidently, all three datasets exhibit similar large-scale spatial features across the NH, characterized 427 

predominantly by bipolar teleconnection patterns over land (e.g., Stephenson et al., 2003). 428 
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Statistically significant positive correlations are seen over much of the U.S., Europe, and northern 429 

Asia, while statistically significant negative correlations are observed over northern Canada, 430 

Greenland, northern Africa, the Middle East, and southwestern Asia. Regionally, the NAO 431 

footprint on SSTs reveals a characteristic tripolar pattern over the North Atlantic Ocean, with 432 

negative correlations in the subpolar region, positive correlations in the subtropics, and again 433 

negative correlations in the tropics. The large-scale coherence in negative correlations over 434 

northern Africa and the Middle East is compelling. In contrast, the correlations of the NAOI with 435 

the Southern Hemispheric temperatures are very weak and statistically insignificant (not shown 436 

for brevity), consistent with previous findings that the NAO is primarily confined to the NH (e.g., 437 

Visbeck et al., 2001; Hurrell et al., 2003; Pinto and Raible, 2012; Nigam and Baxter, 2015).  438 

 439 

 440 

Fig. 3. Spatial patterns of correlation between NAOI (Fig. 2) and surface temperature in the 441 

Northern Hemisphere (NH) for the period 1979–2022 from the three temperature datasets: (a) 442 

GISS, (b) Berkeley, and (c) ERA5. Stippling indicates that the correlation coefficient is statistically 443 
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significant at the 5% level (p < 0.05). The green rectangle (20N–30N, 15W–35E) depicted in 444 

Fig. 3c represents the inner domain of the Sahara Desert where regional mean quantities are 445 

calculated. The surface temperatures in the three datasets are created by combining 2 m surface 446 

air temperature over land with SSTs over ocean. (d)-(f) are the same as (a)-(c) except for the 447 

correlation with the observed STI, which is the average STI from the two observational datasets 448 

(Berkeley and GISS) (Fig. 2). 449 

 450 

One alternative way to test whether the NAO is the dominant factor in controlling the Saharan 451 

interannual temperatures is to do a similar correlation analysis as in Figs. 3a-c but replacing the 452 

NAOI by the STI. The spatial patterns of this correlation (Figs. 3d-f) are almost identical to those 453 

in Figs. 3a-c except with opposite signs, which is expected given the strong negative correlation 454 

between the NAOI and STI (Fig. 2). The nearly perfect spatial correspondence with opposite 455 

correlations over almost every grid between Figs. 3a-c and Figs. 3d-f highlights the dominant role 456 

of the NAO in influencing the Saharan interannual temperatures.   457 

 458 

Figures 4a-d show the spatial patterns of correlations of the NAOI with SLP and GPH at three 459 

tropospheric levels in the NH between 90ºW−90ºE from the ERA5. Strong and significant negative 460 

correlations in SLP and 850 hPa GPH with the NAOI are seen throughout the Arctic, while strong 461 

and significant positive correlations are observed across the subtropical and tropical Atlantic. The 462 

largest correlation centers are associated with the Icelandic Low and the Azores High. The NAO 463 

signal is consistent with its historical characterization as a north–south dipole in SLP that 464 

represents out-of-phase fluctuations of the Icelandic Low and Azores High. These dipolar patterns 465 

in SLP/GPH are predominantly equivalent barotropic with a high degree of vertical coherence over 466 

the North Atlantic–European sector (e.g., Pinto and Raible, 2012; Nigam and Baxter, 2015). Over 467 

the North Atlantic–Sahara sector, positive correlations cover almost the entire Sahara at the surface 468 

and in the lower troposphere, but these positive correlations transition into negative correlations 469 

in the middle and upper troposphere over much of the Sahara.  470 

 471 

Figures 4e-h are the same as Figs. 4a-d except for the correlations with the STI. As expected, the 472 

correlation patterns resemble those in Figs. 4a-d except with opposite signs given the strong 473 

negative correlation between the NAOI and STI (Fig. 2).   474 

 475 
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The results in this subsection reaffirm previous studies on the hemispheric-scale teleconnection 476 

patterns between the NAO and surface temperature in the NH (e.g., Hurrell et al., 2003; Nigam 477 

and Baxter, 2015; Clark and Feldstein, 2020a) and reveal that the ERA5 surface temperature has 478 

reproduced the observed teleconnection patterns from the Berkley and GISS temperatures (Figs. 479 

2-3). At regional scales, two major features stand out over our study domain. One is the strong and 480 

significant negative NAOI–STI correlations (Fig. 2), indicating warmer (colder) surface 481 

temperatures than climatology over the Sahara during the NAO− (NAO+). The other is the large-482 

scale coherent and zonally oriented patterns of statistically significant correlations that extend 483 

eastward from the tropical and subtropical North Atlantic to the Sahara (Figs. 3-4), suggesting a 484 

strong link between the Saharan temperatures and the North Atlantic SSTs via the NAO 485 

teleconnections. 486 
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 487 

Fig. 4. Spatial patterns of correlation (shading in color) between NAOI (Fig. 2) and (a) SLP (hPa), 488 

and (b)–(d) GPH (m) at 850, 500, and 300 hPa for the period 1979–2022 from the ERA5. Stippling 489 

indicates that the correlation coefficient is statistically significant at the 5% level (p < 0.05). The 490 

contour lines in black indicate the climatological values of SLP in (a) and GPH in (b)–(d). (e)-(h) 491 

are the same as (a)-(d) except for the correlation with the observed STI (Fig. 3). 492 

 493 
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3.2. Large-scale teleconnection patterns on much longer time scales 494 

 495 

For comparison and validation, in this subsection we will perform similar analyses as done above 496 

but on much longer time scales. For the observational temperatures, our analysis goes back to 497 

1880, before which there are not adequate observations to make accurate temperature estimation. 498 

For the reanalysis data, our analysis goes back as far as 1864 when the UCAR NAOI becomes first 499 

available. We compare the results from the satellite era to those from several century-long datasets 500 

and account for uncertainties in observations and differences in construction methods (Dalelane et 501 

al., 2023). It is essential that similar teleconnection patterns in section 3.1 can be reproduced by 502 

the century-long datasets if the NAO is the dominant contributor to the Saharan temperature 503 

interannual variability.  504 

 505 

Figure 5 shows interannual variations in STI averaged from 53 weather stations over the Sahara 506 

from the GHCNMv4, together with the NOAA and NCAR NAOI (Fig. 1b). Despite strong 507 

interannual and decadal variations, the temperatures is significantly correlated negatively with the 508 

NCAR NAOI for the period 1880-2022 (R=−0.71, p < 0.001) and the NOAA NAOI for the period 509 

1950-2022 (R=−0.82, p < 0.001). Evidently, these correlations are similar in sign and comparable 510 

in magnitude to those in the satellite era (Fig. 2).  511 

 512 

 513 
 514 

Fig. 5. Interannual variations in standardized NAOI and STI for the period 1880–2022 from the 515 

GHCNMv4, where there are 53 weather stations over the inner domain of the Sahara Desert 516 
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(20ºN–30ºN, 15ºW–35ºE) used to calculate the STI. The correlation (R) and its significance level 517 

(p value) between the two NAOI and STI are shown.  518 

 519 

Note that there is a strong and significant correlation (R=0.97, p < 0.001) between the two NAOI 520 

for the overlapping period 1950-2022 (Fig. 1b), which is slightly larger than that in the satellite 521 

era (R=0.92, p < 0.001; Fig. 1a), indicating great similarity and consistency between these two 522 

NAOI datasets. The NCAR NAOI (Fig. 1b) is mainly used next to represent the observed NAOI 523 

due to its long data record.  524 

 525 

 526 

Fig 6. (a) Interannual variations in standardized NCAR NAOI and STI for the period 1880–2022 527 

from the GISS and Berkeley. The correlation (R) and its significance level (p value) between NAOI 528 

and STI are shown. (b, d) Spatial patterns of correlation between the NCAR NAOI and surface 529 

temperature for the period 1880–2022 from (b) GISS and (d) Berkeley. (c, e) are the same as (b, 530 
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d) except for the correlation with the STI. Stippling indicates that the correlation coefficient is 531 

statistically significant at the 5% level (p < 0.05). 532 

 533 

Figure 6a illustrates interannual variations in STI from the GISS and Berkeley, together with the 534 

NCAR NAOI for the period 1880-2022. Like Fig. 5, the NAOI correlates strongly and significantly 535 

with the temperatures from the GISS (R=−0.63, p < 0.001) and Berkeley (R=−0.71, p < 0.001). 536 

The spatial patterns of correlation between NCAR NAOI and surface temperatures from the GISS 537 

(Fig. 6b) and Berkeley (Fig. 6d) exhibit large-scale teleconnection patterns similar to those during 538 

the satellite era (Figs.3a-c), except small regional differences. For example, the tripolar pattern in 539 

the NAOI-SST correlations over the North Atlantic (Figs 6b and 6d) are similar to that in Figs. 3a-540 

c but the correlations in the subtropics are much weaker in magnitude and smaller in spatial extent; 541 

the widespread negative correlations over northern Africa, the Middle East, and southwestern Asia 542 

are comparable to those in Figs. 3a-c. As expected, the spatial patterns of correlation between STI 543 

and surface temperatures from the GISS (Fig. 6c) and Berkeley (Fig. 6e) are almost identical to 544 

those in Figs. 6b and 6d except with opposite signs. Again, the nearly perfect spatial 545 

correspondence with opposite correlations between Figs. 6b and 6d and Figs. 6c and 6e reaffirm 546 

the dominant role of the NAO in influencing the Saharan interannual temperature variability on 547 

much longer time scales.   548 

 549 

Figure 7a shows interannual variations in STI from the 20CRv3 and NCAR NAOI for the period 550 

1864-2015. Despite strong interannual and decadal variations, the NAOI is significantly correlated 551 

negatively with the ensemble mean STI (R=−0.76, p < 0.001). As the 20CRv3 only provides the 552 

ensemble mean and spread, individual ensemble member reanalyses cannot be examined. 553 

However, the time-varying ensemble spread is very small in comparison to the ensemble mean 554 

and so will not modify the overall strong negative correlation. The spatial patterns of correlation 555 

of ensemble mean surface temperatures with the NCAR NAOI (Fig. 7b) and STI (Fig. 7c) exhibit 556 

similar large-scale teleconnection patterns as observed (Figs 6b-e).  557 

 558 
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 559 

Fig 7. (a) Interannual variations in standardized NCAR NAOI and STI for the period 1864–2015 560 

from the 20CTv3 80-member ensemble mean and its one standard deviation (STD). The 561 

correlation (R) and its significance level (p value) between NAOI and STI are shown. (b) Spatial 562 

patterns of correlation between the NCAR NAOI and surface temperature during DJFM for the 563 

period 1864–2022 from the 20CTv3 ensemble mean. (c) is the same as (b) except for the 564 

correlation with the STI. Stippling in (b) and (c) indicates that the correlation coefficient is 565 

statistically significant at the 5% level (p < 0.05). 566 

 567 

Figure 8a displays interannual variations in STI from the CERA-20C and the NCAR NAOI for the 568 

period 1901-2010. Like Fig. 7a, despite strong interannual and decadal variations, the NAOI 569 

corelates significantly with the ensemble mean STI (R=−0.76, p < 0.001). The 10 ensemble 570 

member analyses can be used to assess the ensemble spread for this correlation to better account 571 

for errors in the forecast model and uncertainties in the observational data assimilation. The 572 

ensemble spread in the CERA-20C gradually decreases over time, indicating increased confidence 573 

in the reanalysis state as the quantity and quality of assimilated observations improve with time 574 
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(Dai and Wright, 2021). Overall, the time-varying ensemble spread is relatively small in 575 

comparison with the ensemble mean and so the correlations of NAOI with the individual members 576 

and the ensemble mean range between -0.77 and -0.79, with all being statistically significant 577 

(p<0.001). The small ensemble spread indicates that uncertainties in observations and differences 578 

in construction methods have a minor role in affecting the Saharan temperature variability. Again, 579 

the spatial patterns of correlation of ensemble mean surface temperatures with the NCAR NAOI 580 

(Fig. 8b) and STI (Fig. 8c) exhibit similar large-scale teleconnection patterns as observed (Figs. 581 

6b-e).  582 

 583 

 584 

Fig. 8. Same as Fig.7 except for the 10-member ensemble reanalyses and their ensemble mean 585 

from the CERA-20C.  586 



 

 

 

25 

 587 

In this subsection, we have compared the time evolution of teleconnection patterns of the NAO 588 

with temperatures from three observational datasets (GISS, Berkely and GHCNMv4) and two 589 

century-long reanalyses (20CRv3 and ERA20C) on much longer time scales. All datasets contain 590 

strong interannual and decadal (and multi-decadal) variability and show the maximum temperature 591 

anomalies along with the minimum NAOI in 2010 during the entire study periods. Despite some 592 

small discrepancies at regional scales, the large-scale teleconnection patterns, particularly over the 593 

North Atlantic–Sahara sector, are similar and consistent among different datasets and between the 594 

satellite era and century-long periods. The broadly similar teleconnection patterns across different 595 

datasets and the small ensemble spread among individual ensemble members affirm that data 596 

uncertainties play a much smaller role than the NAO in controlling the Saharan temperature 597 

interannual variability.  598 

 599 

3.3. Regional-scale teleconnection patterns during the satellite era 600 

 601 

In this subsection we use the ERA5 reanalysis dataset for the period 1979–2022 to examine the 602 

three‑dimensional structure of the NAO teleconnection over the Sahara and surrounding areas by 603 

focusing on six key variables in the troposphere: GPH, specific humidity (q), temperature (T), and 604 

the three wind components (u, v, and ). Note that the average standardized NAOI from the two 605 

indices (NCAR and NOAA) is used to represent the observed NAOI here. 606 

 607 

First, we analyze the spatial patterns of circulation anomalies, as well as T and q anomalies, 608 

associated with the NAO phases. The SLP and the GPH at 850 hPa (GPH at 500 hPa and 300 hPa) 609 

exhibit similar correlation patterns (Fig. 4), so that SLP (GPH at 300 hPa) will be used to illustrate 610 

the spatial features at the surface (in the upper troposphere) in the remainder of this paper.  611 

 612 

Figures 9a and 9b illustrate the spatial patterns of climatological circulation patterns at the surface 613 

and 300 hPa, respectively, over the Sahara and surrounding areas, so that the composite anomalies 614 

shown hereafter over this region may be placed in proper context. At the surface (Fig. 9a), the 615 

subtropical Azores High is centered at 35ºN, 28ºW and extends over much of the Sahara, with 616 

clockwise flow around the subtropical anticyclone. Correspondingly, the northeast trade winds 617 
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dominate much of northern Africa. The Azores High is replaced by a ridge over the subtropical 618 

North Atlantic at 300 hPa (Fig. 9b), where strong westerlies dominate latitudes spanning 10ºN–619 

60ºN.  620 

 621 

Figures 9c and 9d show the spatial patterns of composite anomalies in wind at the surface and SLP, 622 

and in wind and GPH at 300 hPa, respectively, for the NAO−. Evidently, a cyclonic wind anomaly 623 

field accompanied by a negative SLP/GPH anomaly field weakens the anticyclonic flow centered 624 

over the Azores High in the climatology plot at the surface and in the upper troposphere. Negative 625 

anomalies in SLP in Fig. 9c create southwesterly wind anomalies over the entire Sahara at the 626 

surface, while positive anomalies in GPH in Fig. 9d create northeasterly wind anomalies over the 627 

southern and eastern portions of the Sahara in the upper troposphere.  628 

 629 

Figures 9e-f show the spatial patterns of composite anomalies in wind at the surface and SLP, and 630 

in wind and GPH at 300 hPa, respectively, for the NAO+. In contrast to Figs. 9c-d, an anticyclonic 631 

wind anomaly field accompanied by a positive SLP/GPH anomaly field strengthens the 632 

anticyclonic flow centered over the Azores High in the climatology at the surface and in the upper 633 

troposphere. Positive anomalies in SLP in Fig. 9e create northeasterly wind anomalies over the 634 

entire Sahara at the surface, while negative anomalies in GPH in Fig. 9f create southwesterly wind 635 

anomalies over the southern and eastern portions of the desert in the upper troposphere.   636 

 637 

The composite anomalies in SLP are statistically significant (p < 0.10) based on Monte Carlo 638 

simulation over almost the entire domain including the Sahara for both NAO phases (Figs 9c and 639 

9e). Interestingly, the composite anomalies in GPH are statistically significant (p<0.10) over much 640 

of the study domain including the Sahara for the NAO− (Figs 9d), but only over the northern 641 

Atlantic Ocean, Europe and the northwestern Sahara for the NAO+ (Figs 9f). This spatial 642 

asymmetry in the composite anomalies between the two NAO phases is only evident at 300 hPa, 643 

not at the surface. 644 

 645 
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 646 
 647 

Fig. 9. Spatial patterns of (a) climatological wind (vector, m s−1) at the surface and SLP (shading, 648 

hPa) and (b) climatological wind (vector, m s−1) and GPH (shading, m) at 300 hPa for the period 649 

1979–2022 over the Sahara and surrounding regions from the ERA5. Panels (c) and (d) are the 650 

same as (a) and (b) except for the composite anomalies during the NAO−. Panels (e) and (f) are 651 

the same as (c) and (d) except for the composite anomalies during the NAO+. Stippling (with green 652 

cross symbol) indicates that the composite anomaly in SLP/GPH is statistically significant 653 

(p<0.10) based on Monte Carlo simulation. The green rectangle (20N–30N, 15W–35E) 654 

depicted in Fig. 9b represents the inner domain of the Sahara Desert where regional mean 655 

quantities are calculated. 656 
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 657 

Figure 10 displays the spatial patterns of climatology and composite anomalies of q and T at the 658 

surface and 300 hPa for the NAO− and NAO+ over the Sahara and surrounding areas. Note that, 659 

as expected, the climatology and composite anomalies of q at 300 hPa are very small, but are 660 

shown to be consistent with corresponding surface plots and not considered in the following 661 

discussion of Fig. 10. For the surface climatology (Fig. 10a), north–south and land–sea thermal 662 

contrasts are evident, particularly in middle latitudes, with the Sahara bordering warmer and 663 

moister air over the North Atlantic Ocean to the west and colder and drier air over higher latitudes 664 

to the north. For the NAO− (Fig. 10c), cold and dry anomalies are seen over southern Europe and 665 

the subtropical North Atlantic where the Azores High is centered, while warm and moist anomalies 666 

are seen over the tropical North Atlantic, northern Africa, and the Middle East. In general, most of 667 

the surface T anomalies > 0.35ºC or < -0.35ºC, which cover the entire Sahara and Europe for both 668 

NAO phases, and the tropical and subtropical northern Atlantic (tropical and subpolar northern 669 

Atlantic) for the NAO− (NAO+), are statistically significant (p < 0.10). For the climatology at 300 670 

hPa (Fig. 10b), the land–sea thermal contrast is much weaker but the north–south temperature 671 

gradient is more visible than in the climatology at the surface (Fig. 10a). For the NAO− at 300 hPa 672 

(Fig. 10d), cold anomalies are seen over much of the middle latitudes extending to the subtropical 673 

North Atlantic where the Azores High is centered, but to the south of the Azores High warm 674 

anomalies are seen from the North Atlantic between 15ºN and 30ºN to the northwestern Sahara. 675 

Cold anomalies also are seen at 300 hPa from the eastern Sahara to the Middle East between 20ºN 676 

and 35ºN and between 15ºE and 50ºE. As expected, the NAO− (Figs. 10c and 10d) exhibits 677 

opposite-signed anomaly patterns from the NAO+ (Figs. 10e and 10f) for T and q at the surface 678 

and T at 300 hPa. At the surface, the large positive and negative anomalies in T and q exhibit a 679 

southwest–northeast-oriented configuration and are confined to much of the Sahara (Figs. 10c and 680 

10e). At 300 hPa, the large positive and negative anomalies in T also exhibit a southwest–681 

northeast-oriented configuration but are confined to the northwestern Sahara (Figs. 10d and 10f). 682 

In general, most of the 300 hPa T anomalies > 0.45ºC or < -0.45ºC, which cover much of middle 683 

latitudes (40ºN-60ºN), the northwestern Sahara, and the subtropical Northern Atlantic for both 684 

NAO phases, are statistically significant (p < 0.10).  685 
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 686 
 687 

Fig. 10. Spatial patterns of climatology (top two panels) and composite anomalies (lower four 688 

panels) of specific humidity (q, contour in green, g kg−1) and temperature (T, shading, ºC) at (a), 689 

(c), and (e) the surface and (b), (d), and (f) 300 hPa for the NAO− (c) and (d) and NAO+ (e) and 690 

(f) over the Sahara and surrounding regions from the ERA5. Stippling (with yellow cross symbol) 691 

indicates that the composite anomaly in T is statistically significant (p<0.10) based on Monte 692 

Carlo simulation. Note that the climatology and composite anomalies of q at 300 hPa are very 693 

small but are shown for visual comparison with the corresponding surface plots. The black 694 

rectangle (20N–30N, 15W–35E) depicted in Fig. 10b represents the inner domain of the 695 

Sahara Desert where regional mean quantities are calculated. 696 
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Next, we examine the vertical structure of several key variables associated with the NAO averaged 697 

over the inner domain of the Sahara Desert (20ºN–30ºN, 15ºW–35ºE) to highlight the regional 698 

mean features.  699 

 700 

Figure 11 shows vertical profiles of correlations for the NAOI and STI with the regional mean 701 

anomalies in GPH, q, T, u, v, and  averaged over the inner domain of the Sahara. The NAOI–702 

GPH correlation changes sign with pressure from the lower to upper troposphere, with statistically 703 

significant positive (negative) correlations from 1000 to 850 hPa (500 to 200 hPa) (Fig. 11a), while 704 

the NAOI correlates negatively with q through the troposphere (Fig. 11b) and with T throughout 705 

most of the troposphere (Fig. 11c). The NAOI correlations with q (T) decrease in magnitude with 706 

decreasing pressure and are mostly statistically insignificant (significant). Like GPH, u and v show 707 

opposite-signed correlations from the lower to upper troposphere. The NAOI is associated with 708 

negative (positive) correlations below (above) 450 hPa in u (Fig. 11d) and below (above) 600 hPa 709 

in v (Fig. 11e), and most of the correlations are large and statistically significant only in the lower 710 

and upper troposphere. Like q, the NAOI correlation with  is relatively small and mostly 711 

statistically insignificant (Fig. 11f). As expected, the NAOI and STI exhibit opposite-signed 712 

correlations with these six variables, although the vertical distributions of statistical significance 713 

of the correlations differ to some extent.  714 

 715 

Figure 12 shows vertical profiles of regional mean composite anomalies in GPH, q, T, u, v, and  716 

averaged over the inner domain of the Sahara for the NAO− and NAO+. The NAO− is associated 717 

with negative (positive) GPH anomalies below (above) 700 hPa (Fig. 12a), positive (negative) q 718 

anomalies below (above) 600 hPa (Fig. 10b), and positive (negative) T anomalies below (above) 719 

300 hPa (Fig. 12c). The anomalies in GPH have a bottom-heavy vertical profile with two maxima 720 

at 1000 hPa and 200 hPa, and the anomalies in q and T exhibit a bottom-heavy vertical structure, 721 

with the largest anomalies at 1000 hPa. Like GPH, u and v show opposite-signed anomalies from 722 

the lower to upper troposphere. The NAO− is associated with positive (negative) anomalies below 723 

(above) 550 hPa in u (Fig. 12d) and below (above) 700 hPa in v (Fig. 12e), corresponding to 724 

southwesterly (northeasterly) wind anomalies below 700 hPa (above 550 hPa). In contrast, the 725 

NAO+ exhibits opposite-signed anomalies in GPH, q, T, u, and v from the NAO−. The  726 

anomalies are negative (positive) below 550 hPa (between 550 hPa and 200 hPa) for the NAO− 727 
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and positive throughout the troposphere for the NAO+ (Fig. 12f), with the largest  anomalies in 728 

the lower-to-middle troposphere. In general, despite some small differences, the vertical 729 

distributions of statistical significance (p<0.10) of the composite anomalies for each variable are 730 

broadly similar to the vertical distributions of statistical significance (p<0.05) of correlations in 731 

Fig. 11. 732 

 733 

 734 
 735 

Fig. 11. Vertical profiles of correlation for the NAOI (in red) and observed STI (in green; Fig 3) 736 

with the regional mean anomalies in (a) GPH, (b) q, (c) T, (d) u, (e) v, and (f) , averaged over 737 

the inner domain of the Sahara Desert (20ºN–30ºN, 15ºW–35ºE) for the period 1979–2020 from 738 

the ERA5. The correlations (in circle) are statistically significant (p < 0.05).  739 

 740 
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 741 
 742 

Fig. 12. Vertical profiles of regional mean composite anomalies in (a) GPH, (b) q, (c) T, (d) u, (e) 743 

v, and (f) , averaged over the inner domain of the Sahara Desert (20ºN–30ºN, 15ºW–35ºE) for 744 

the NAO− (in green) and NAO+ (in red) from the ERA5. The composite anomaly (in circle) is 745 

statistically significant (p<0.10) based on Monte Carlo simulation. 746 

 747 

Figure 13 shows vertical profiles of regional mean absolute values for the three wind components 748 

(u, v, and ) averaged over the inner domain of the Sahara for the climatology and the composites 749 

of the NAO− and NAO+. It aims to provide the magnitude of wind anomalies relative to the 750 

climatological wind values. The climatological mean flow consists of weak northeasterlies near 751 

the surface and transitions into strong westerlies with a weak southerly flow in the upper 752 

troposphere (Figs. 13a and 13b). As expected, the climatological large-scale subsidence is 753 

widespread across the Sahara (Fig. 13c). A major feature in the upper atmosphere is the subtropical 754 
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jet stream for the zonal mean wind with the maximum speed of 40.9 m s-1 centered around 200 755 

hPa (Fig. 13a) and the southerly wind for the meridional mean wind with the maximum speed of 756 

4.4 m s-1 at 200 hPa (Fig. 13b). In contrast, the wind speed is much weaker in the lower troposphere 757 

and near the surface. Relative to the climatology, the u composites indicate weaker easterly 758 

(westerly) wind in the lower (upper) troposphere for the NAO− and stronger easterly (westerly) 759 

wind in the lower (upper) troposphere for the NAO+ (Fig. 13a), with the composite anomalies 760 

below 800 hPa for both NAO phases and between 300 and 200 hPa for the NAO− being 761 

statistically significant (p<0.10); the v composites show weaker northerly (southerly) wind in the 762 

lower (upper) troposphere for the NAO− and stronger northerly (southerly) wind in the lower 763 

(upper) troposphere for the NAO+ (Fig. 13b), with almost all of these composite anomalies being 764 

statistically significant (p<0.10). For the  composites, relative to the climatology, subsidence is 765 

slightly enhanced through the troposphere for the NAO+, while it is slightly weakened between 766 

550 hPa and 925 hPa and enhanced between 550 hPa and 200 hPa (Fig. 13c). The  anomalies 767 

below 500 hPa and above 200 hPa for the NAO+ are statistically significant (p<0.10), while the  768 

anomalies for the NAO− are insignificant (p>0.10) for all layers except 100 hPa. 769 

 770 

 771 
 772 

Fig. 13. Vertical profiles of regional mean absolute values for the wind component in (a) u, (b) v, 773 

and (c) , averaged over the inner domain of the Sahara Desert (20ºN–30ºN, 15ºW–35ºE) for the 774 

long-term climatology (in black) and the composites of NAO− (in green) and NAO+ (in red) from 775 

the ERA5. The composite value (in circle) is statistically significant (p<0.10) from the climatology 776 

based on Monte Carlo simulation. 777 

 778 
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It is worth noting that the upper-tropospheric anomalies (Figs. 11-13) may have stratospheric links 779 

as there is a strong dynamic coupling between the stratospheric and tropospheric circulations (e.g., 780 

Hurrell et al., 2003; Thompson et al., 2003; Pinto and Raible, 2012; Nigam and Baxter, 2015). As 781 

the focus of this study is on the troposphere and so this connection will not be explored here. 782 

 783 

The results in this subsection indicate that the NAO teleconnection is significantly linked with the 784 

large-scale circulation anomalies in the troposphere over the Sahara and its surrounding areas. The 785 

composite analysis reveals clearly opposite-signed changes in GPH, u, and v from the lower to 786 

upper troposphere over the Sahara (Figs. 11-13). The NAO− (NAO+) exhibits warmer and moister 787 

(colder and drier) air than normal in the lower troposphere, southwesterly (northeasterly) wind 788 

anomalies in the lower troposphere and northeasterly (southwesterly) wind anomalies in the upper 789 

troposphere (Figs. 9-10), and slightly weaker (stronger) subsidence anomaly between 925 hPa and 790 

550 hPa (Figs. 11-13). In particular, during the NAO− (NAO+) the southwesterly (northeasterly) 791 

wind anomalies in the lower troposphere over the Sahara help to advect warmer and moister 792 

(colder and drier) air over the North Atlantic (northern higher latitudes) to the Sahara, which may 793 

mainly explain the above-normal (below-normal) Saharan temperatures (see more discussion in 794 

next section). 795 

 796 

3.4. Possible mechanisms of NAO impacts on the Saharan temperatures 797 

 798 

Past studies have concluded that SAT anomaly patterns for both positive and negative NAO phases 799 

are mainly driven by horizontal temperature advection (e.g., van Loon and Rogers, 1978; Rogers 800 

and van Loon, 1979; Wallace and Gutzler, 1981; Watanabe, 2004; Woollings et al., 2008; Hurrell 801 

et al., 2003; Nigam and Baxter, 2015). To attribute the NAO impacts on both surface and 802 

atmospheric temperature anomalies, Clark and Feldstein (2020a; 2020b) conducted a 803 

comprehensive composite analysis of the thermodynamic energy equation over the NH using 804 

ERA-Interim reanalysis, and included a detailed analysis of all major heating processes over four 805 

selected regions, including northern Africa. By combining their analyses with our results presented 806 

in previous sections, the major physical mechanisms in explaining the NAO impacts on the 807 

Saharan surface and tropospheric temperatures are synthesized as follows. In the lower troposphere 808 

and near the surface where climatological wind speeds are small, but the anomaly winds are 809 
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relatively large in magnitude (Figs. 9, 12-13), advection of climatological warm and moist (cold 810 

and dry) air over the North Atlantic (northern higher latitudes) by the anomalous southwesterly 811 

(northeasterly) wind result in above-normal (below-normal) temperatures over the Sahara during 812 

the NAO− (NAO+) (Figs. 10, 12-13). In the upper troposphere where climatological wind speeds 813 

are large but anomalous northeasterly (southwesterly) winds are relatively small in magnitude 814 

(Figs. 9, 12-13), the anomalous North Atlantic warm (cold) air advected by climatological strong 815 

westerlies explain well the warming (cooling) over the Sahara during the NAO− (NAO+) (Figs. 816 

10, 12-13). Such advection mechanisms are illustrated in the schematic of Fig. 14.  817 

 818 

Fig. 14. Schematic of mechanisms of NAO impacts on the Saharan interannual temperature 819 

anomalies at (a), (b) 300 hPa and (c), (d) the surface for (a), (c) NAO− and (b), (d) NAO+. Shading 820 

represents (a), (b) composite air temperature anomalies (ºC) and (c), (d) climatological SSTs (ºC) 821 

over the North Atlantic. 822 

  823 

Beside the aforementioned advection mechanisms, the diabatic heating term associated with 824 

turbulence is expected to impact the Saharan interannual temperature variability as well. Over the 825 

arid subtropic deserts, the vertical turbulent mixing in the atmospheric boundary layer (PBL) is 826 

typically much stronger than other regions because more surface sensible heat flux is available to 827 

drive vertical mixing due to less surface moisture and higher Bowen ratio (Zhou, 2021; Zhou et 828 

al., 2021). At the surface where the NAO’s footprint on temperature maximizes, above-normal 829 
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(below-normal) temperatures during the NAO- (NAO+) will enhance (weaken) turbulent mixing 830 

and modify vertical turbulent heat transfer over the Sahara where the strength of vertical mixing 831 

is significantly positively correlated with the magnitude of surface heating (Zhou et al., 2021; 832 

Zhou, 2021). As quantified by Clark and Feldstein (2020a; 2020b), this diabatic heating term 833 

mainly opposes the horizontal temperature advection in the lower troposphere over the Sahara.  834 

 835 

The Sahara is formed in the subtropical subsiding branch of the Hadley cells and so generally 836 

associated with large-scale subsidence with dry and cloudless weather conditions (Zhou, 2021). 837 

Enhanced (weakened) subsidence will result in above-normal (below-normal) adiabatic warming 838 

over the Sahara. Possibly, the adiabatic heating term associated with subsidence might influence 839 

the Saharan interannual temperature variability. The subsidence over the Sahara is weakened 840 

(enhanced) slightly in the lower-to-middle troposphere during the NAO− (NAO+) but the changes 841 

in  are small in magnitude and mostly statistically insignificant, particularly in the lowest 842 

troposphere and near the surface where the NAO-induced temperature changes are largest (Figs. 843 

11-13). These changes in  would result in a weak anomalous adiabatic warming/cooling term 844 

opposite in sign with the observed temperature anomaly, consistent with the conclusions in Clark 845 

and Feldstein (2020b; their Fig. 3). This implies that the adiabatic term has a limited impact on 846 

interannual variability of Saharan temperatures. 847 

 848 

Recent studies have documented amplified warming on SAT due to enhanced downward longwave 849 

radiation associated with increased moisture content in a warming climate over the Sahara, where 850 

the air is very dry and thus extremely sensitive to changes of water vapor (Cook and Vizy 2015; 851 

Zhou et al., 2015; 2016; Zhou, 2016; Vizy and Cook, 2017; Evan et al., 2017; Wei et al., 2017). 852 

Similarly, interannual variations in atmospheric water vapor could modify the lower tropospheric 853 

temperatures via the greenhouse effects of water vapor. Figure 15 shows the spatial patterns of 854 

composite anomalies in the vertically integrated moisture flux and divergence for the NAO− (Fig. 855 

15a) and NAO+ (Fig. 15b). The NAO-induced changes in atmospheric moisture content are very 856 

small and statistically insignificant (p<0.10) across the entire Sahara, except for a small portion of 857 

the northwestern Sahara, consistent with the insignificant correlation between NAOI and q for 858 

most pressure layers in Fig. 11b. These results suggest that water vapor changes associated with 859 

the NAO do not contribute significantly to downward longwave radiation anomalies over Sahara 860 
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and thus the Saharan interannual temperature variations, consistent with partial radiative 861 

perturbation calculations conducted over northern Africa for days when the NAO is active (Clark 862 

and Feldstein 2020b).  863 

 864 

 865 

Fig. 15. Spatial patterns of composite anomalies in the vertically integrated (from 1000 hPa to 866 

300 hPa) moisture flux (vector, kg m−1 s−1) and moisture flux divergence (shading, 10−5 kg m−2 867 

s−1) for the NAO− (a) and NAO+ (b) from the ERA5. Stippling (with green cross symbol) indicates 868 

that the composite anomaly in moisture flux divergence is statistically significant (p<0.10) based 869 

on Monte Carlo simulation. 870 

 871 

In summary, the NAO-induced changes in circulation and associated horizontal temperature 872 

advection are the dominant contributors to the interannual temperature variability over the Sahara. 873 

Because the Sahara is extremely arid and the vertical turbulent mixing in the PBL depends strongly 874 

on surface heating (Zhou et al., 2021), the diabatic heating term of vertical mixing is the second 875 

major modulator to this temperature variability by opposing the horizontal temperature advection 876 
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in the lower troposphere, where  the enhanced (weakened) vertical mixing cools (warms) the lower 877 

PBL and warms (cools) the upper PBL during the NAO- (NAO+).  Overall, the small changes in 878 

atmospheric moisture content and subsidence have a much smaller role in modifying the Saharan 879 

temperatures than the dominant effects of horizontal temperature advection and vertical mixing 880 

(Clark and Feldstein, 2020a; 2020b).   881 

 882 

4. Conclusions 883 

 884 

This paper uses a multidata synthesis approach to examine the NAO’s influences on the Saharan 885 

temperature variability on interannual time scales based on correlation and composite analyses of 886 

multiple long-term observational and reanalysis datasets during boreal winter (DJFM) for the 887 

satellite era (1979-2022) and much longer periods. It compares the findings from the satellite era 888 

to those from several century-long observational datasets and account for errors in the forecast 889 

model and uncertainties in observations and differences in construction methods using two 890 

century-long ensemble reanalyses. It presents evidence for a solid teleconnection pattern over the 891 

Sahara associated with the NAO in surface and tropospheric temperatures and documents some 892 

major spatial-temporal and vertical characteristics of this pattern for both positive and negative 893 

NAO phases. 894 

 895 

We find that the Saharan temperature anomalies are negatively correlated with the NAOI in all 896 

datasets and this correlation is very strong, consistent, and statistically significant, indicating an 897 

interannual teleconnection between the Saharan temperature and the NAOI. The broadly similar 898 

teleconnection patterns between different periods and across different datasets and the small 899 

ensemble spread among individual ensemble members affirm that data uncertainties play a much 900 

smaller role than the NAO in controlling the Saharan temperature variability. Our results indicate 901 

that the NAO teleconnection is significantly linked with large-scale circulation anomalies 902 

throughout the troposphere over the North Atlantic−Sahara sector, where anomalous u and v wind 903 

components and GPH fields exhibit opposite-signed changes with altitude from the lower to upper 904 

troposphere. During the NAO− (NAO+), above-normal (below-normal) temperatures over the 905 

Sahara can be mainly explained by three major processes: (1) advection of climatological warm 906 

and moist (cold and dry) air over the North Atlantic (northern higher latitudes) by the anomalous 907 
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southwesterly (northeasterly) flow in the lower troposphere; (2) advection of anomalous North 908 

Atlantic warm (cold) air by the climatological strong westerlies in the middle and upper 909 

troposphere, and (3) strengthened (weakened) turbulent mixing and thus vertical heat transfer in 910 

the lower troposphere via cooling (warming) the lower PBL and warming (cooling) the upper PBL. 911 

Overall, the NAO-induced anomalies in circulation and associated horizontal temperature 912 

advection and vertical heat transfer via turbulent mixing mainly explain the strong surface and 913 

tropospheric temperature anomalies during the NAO- and NAO+ over the Sahara.  914 

 915 

These results suggest the NAO plays an important role in modulating the Saharan interannual 916 

temperature variability. This work represents the very first comprehensive study of the NAO 917 

teleconnection patterns over the largest hot desert in the world and establish their spatiotemporal 918 

and vertical features. It allows for a better understanding of links between climate variations in the 919 

North Atlantic Ocean and the interannual temperature variability over the Sahara in a statistical 920 

framework. The focus of this study is the documentation of the NAO impacts on the Saharan 921 

climate variability, not the establishment of the detailed physical mechanisms of cause and effect 922 

for such impacts in a fully coupled land-ocean-atmosphere system. Identifying possible influences 923 

of other climate modes such as the Arctic Oscillation (AO) (e.g., Watanabe, 2004), El Niño–924 

Southern Oscillation (ENSO) (e.g., Li and Ruan, 2018; Pausata et al., 2020), Atlantic multidecadal 925 

oscillation (AMO) and Pacific decadal oscillation (PDO) (e.g., Thomas and Nigam, 2018), and 926 

Indian Ocean Dipole (IOD) (e.g., Yamagata et al., 2004) will be explored in future work.  927 

 928 

Various teleconnection patterns have been used to explain regional anomalous weather and 929 

climate. As one of the most prominent and recurrent patterns of atmospheric circulation variability, 930 

the NAO dictates climate variability over much of the NH, especially during boreal winter, and its 931 

associated climate variations have profound environmental, societal, economic, and ecological 932 

impacts (Hurrell et al., 2003). It has been increasingly recognized recently that the Sahara has 933 

played an important role in the climate system from changes in regional atmospheric circulation 934 

(e.g., the West African monsoon) to remote impacts on far-afield regions, such as the equatorial 935 

Pacific or the Arctic (Knippertz and Todd, 2012; Vizy and Cook, 2017; Thomas and Nigam, 2018; 936 

Pausata et al., 2020; Zhou et al., 2021; Zhou, 2021). In particular, the Sahara is currently the largest 937 

source of airborne mineral dust on Earth, and the NAO has a strong control on atmospheric export 938 
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of dust from northern Africa (Moulin et al., 1997). The changes in dust load and transport in the 939 

atmosphere can contribute significantly to regional to global climate variability by altering 940 

radiation, cloud properties, atmospheric and ocean circulations (Pausata et al., 2020). Hence, 941 

understanding teleconnection patterns and major processes that control the Saharan climate 942 

variability is, therefore, of high priority and scientific significance. 943 
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