

1 **Microbial nanowires with genetically modified peptide ligands to sustainably fabricate**
2 **electronic sensing devices**

3
4 Yassir Lekbach^{1±}, Toshiyuki Ueki^{1±}, Xiaomeng Liu², Trevor Woodard¹, Jun Yao^{2,3,4}, and Derek R.
5 Lovley^{1,3*}

6
7 ¹Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA

8 ²Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA
9 01003, USA

10 ³Institute for Applied Life Sciences (IALS),University of Massachusetts, Amherst, MA 01003,
11 USA

12 ⁴Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003,
13 USA

14
15 [±]Both authors contributed equally

16
17 *Corresponding author: D.R. Lovley dlovley@umass.edu

18
19
20

21 **Abstract:**

22 Nanowires have substantial potential as the sensor component in electronic sensing devices.

23 However, surface functionalization of traditional nanowire and nanotube materials with short

24 peptides that increase sensor selectivity and sensitivity requires complex chemistries with toxic

25 reagents. In contrast, microorganisms can assemble pilin monomers into protein nanowires with

26 intrinsic conductivity from renewable feedstocks, yielding an electronic material that is robust

27 and stable in applications, but also biodegradable. Here we report that the sensitivity and

28 selectivity of protein nanowire-based sensors can be modified with a simple plug and play

29 genetic approach in which a short peptide sequence, designed to bind the analyte of interest, is

30 incorporated into the pilin protein that is microbially assembled into nanowires. We employed a

31 scalable *Escherichia coli* chassis to fabricate protein nanowires that displayed either a peptide

32 previously demonstrated to effectively bind ammonia, or a peptide known to bind acetic acid.

33 Sensors comprised of thin films of the nanowires amended with the ammonia-specific peptide

34 had a ca. 100-fold greater response to ammonia than sensors made with unmodified protein

35 nanowires. Protein nanowires with the peptide that binds acetic acid yielded a 4-fold higher

36 response than nanowires without the peptide. The protein nanowire-based sensors had greater

37 responses than previously reported sensors fabricated with other nanomaterials. The results

38 demonstrate that protein nanowires with enhanced sensor response for analytes of interest can be

39 fabricated with a flexible genetic strategy that sustainably eliminates the energy, environmental,

40 and health concerns associated with other common nanomaterials.

41

42 **Keywords:** protein nanowire, sustainable electronics, e-biologics, nanowire sensor,

43 electromicrobiology

44 **1. Introduction**

45 Nanowires are desirable electronic materials because they facilitate miniaturization and
46 convey flexibility to electronics. They are particularly important for fabricating electronic
47 sensors with improved sensing performance (Patolsky and Lieber 2005). Adding functional
48 groups to the nanowire surface can lead to specific binding of analytes of interest for more selective
49 detection. However, the traditional chemistries for attaching functional groups are complex.
50 Furthermore, common non-biological synthetic materials such as silicon nanowires and carbon
51 nanotubes pose serious sustainability challenges due to requirements for toxic chemicals and/or
52 high energy inputs for synthesis. High temperatures are required to generate silicon nanowires
53 and carbon nanotubes and fabrication of silicon nanowires also requires the vaporization of
54 highly toxic components (Hu et al. 1999; Prasek et al. 2011). The need for a clean-room
55 environment for material production increases costs and technical complexity, limiting the
56 feasibility of mass production. These non-biological nanomaterials are not biodegradable and
57 carbon nanotubes are toxic and carcinogenic (Hansen and Lennquist 2020).
58 In contrast, microorganisms can sustainably produce non-toxic electrically conductive protein
59 nanowires from renewable organic feedstocks (Lovley 2017; Lovley and Yao 2021). Most
60 notable are the 3 nm diameter conductive protein nanowires assembled from the native pilin
61 protein of *Geobacter sulfurreducens* (Clark and Reguera 2020; Lovley 2022a, b).

62 . These pilin-based protein nanowires have served as the electronic components in a
63 diversity of applications including: devices that generate electricity from atmospheric humidity
64 (Liu et al. 2020b); neuromorphic memory devices (Fu et al. 2021; Fu et al. 2020b); and sensors
65 (Liu et al. 2020a; Smith et al. 2020). A key feature of pilin-based nanowires is that their function
66 can readily be modified with simple changes to the pilin gene sequence. Pilin-based nanowire

67 conductivity was tuned over a million-fold (40 μ S/cm to 277 S/cm at pH 7) simply by modifying
68 the pilin gene sequence to adjust the abundance of aromatic amino acids in the pilin protein
69 (Adhikari et al. 2016; Tan et al. 2017; Tan et al. 2016). In addition to their ‘green’ synthesis,
70 pilin-based nanowires are robust with long-term stability in electronics applications (Liu et al.
71 2020a; Liu et al. 2020b; Smith et al. 2020), but are also biodegradable, avoiding the
72 accumulation of electronic waste (Lovley 2017; Lovley and Yao 2021).

73 Sensors that can detect volatile compounds have broad biomedical and environmental
74 applications (Ge et al. 2020; Rasheed et al. 2020). Vapor sensor designs often rely on pattern
75 recognition algorithms to interpret the binding of analytes to sensor arrays, but a more direct
76 sensing approach is to design sensor elements that specifically bind analytes of interest (Barbosa
77 et al. 2018; McAlpine et al. 2008; Wasilewski et al. 2022). Peptides can be designed to function
78 as ligands for specific chemical and biological targets (Pardoux et al. 2020; Sfragano et al. 2021;
79 Wu et al. 2001). For example, guidance from the binding domains of human olfactory receptor
80 proteins, coupled with molecular simulations and experimental verification, has identified
81 peptides that specifically bind gases of interest (Wu et al. 2001). Silicon nanowires (McAlpine et
82 al. 2008) and carbon nanotubes (Li et al. 2020; Palomar et al. 2020) can be functionalized with
83 peptides to improve selectivity of nanowire-based sensors, but in addition to the limitations noted
84 above in producing the nanowire material, the peptide sensor components have to be synthesized
85 and purified in an expensive complex process requiring toxic reagents.

86 In contrast, decorating pilin-based protein nanowires with desired peptide sequences is
87 sustainably achieved with simple and versatile modifications to the pilin gene sequence (Ueki et
88 al. 2019). Pilin gene sequences customized to encode 6-9 extra amino acids at the carboxyl end
89 of the pilin yielded nanowires in which the added amino acid sequences were displayed along the

90 outer surface of the nanowire without interfering with nanowire conductivity. This approach
91 offers a strategy for displaying peptide ligands on the outer surface of nanowires for potential
92 sensing applications that is much more programable and sustainable than the methods for
93 functionalizing non-biological nanowire materials.

94 Therefore, we investigated whether decorating pilin-based protein nanowires with
95 peptides designed to bind analytes of interest could increase the sensing response obtained in
96 pilin-based electronic gas sensors. We focused on ammonia and acetic acid analytes, which were
97 also the focus of similar studies with silicon nanowires (McAlpine et al. 2008) because these
98 volatiles in breath are indicators of kidney disease (ammonia) (Ricci and Gregory 2021) and
99 asthma (acetic acid) (Pineau et al. 2021). We expressed the customized protein nanowires in an
100 *Escherichia coli* chassis engineered to assemble nanowires from the *G. sulfurreducens* pilin gene
101 (Ueki et al. 2020). This approach provides a simple method for mass production of pilin-based
102 nanowires while avoiding the possibility that the nanowire preparations are contaminated with
103 other *G. sulfurreducens* outer surface proteins (Ueki et al. 2020). The results demonstrate that
104 pilin-based nanowires can be designed to specifically enhance sensor response to analytes of
105 interest.

106 **2. Material and methods**

107 *2.1 Construction of E. coli strains for nanowire expression*

108 *E. coli* strains for the production of nanowires for sensing ammonia or acetic acid were
109 constructed as described previously (Ueki et al. 2020) with modifications as follows. The *G.*
110 *sulfurreducens* pilin gene was extended to encode peptides that were previously found
111 (McAlpine et al. 2008; Wu et al. 2001) to specially bind either ammonia (DLESFL) or acetic
112 acid (RVNEWVI) at the carboxyl end of the pilin protein. DNA fragments for the nanowire

113 monomers for ammonia or acetic acid were amplified with the PCR with primer pairs, *GspilA*-F
114 (TCTCATATGGACAAGCAACGCGGTTCACCCCTATCGAGCTGC)/*GspilA*-Am-R
115 (TCTGAGCTCTTACAGAAAGCTCTCCAGATCACTTCGGGCGGATAGGTTG) or
116 *GspilA*-F (TCTCATATGGACAAGCAACGCGGTTCACCCCTATCGAGCTGC)/*GspilA*-Ac-
117 R (TCTGAGCTCTTAGATAACCCACTCATTAACGCGACTTCGGGCGGATAGGTTG),
118 respectively. The amplified DNA fragments were digested with NdeI and SacI and then cloned
119 into the nanowire expression vector T4PAS/p24Ptac (Ueki et al. 2020). The resultant plasmids,
120 designated *GspilA*-AMM/T4PAS/p24Ptac (ammonia) or *GspilA*-ACE/T4PAS/p24Ptac (acetic
121 acid), were transformed into *E. coli* Δ *fimA* Δ *fliC*, a strain in which genes for FimA, the primary
122 monomer for type I pili, and FliC, the structural flagellin of flagella, were deleted. Strain
123 Δ *fimA* Δ *fliC* (kanamycin-sensitive) was constructed by deleting the *fliC* gene from strain Δ *fimA*
124 (Ueki et al., 2020) as described previously (Baba et al. 2006; Datsenko and Wanner 2000). The
125 amino acid sequences of the unmodified pilin, the pilin with the ammonia-binding peptide, and
126 the pilin with the acetic acid-binding peptide were:

127 Unmodified pilin:

128 FTLIELLIVVAAIIGILAAIAIPQFSAYRVKAYNSAASSDLRNLKTALESAFADDQTPPPES

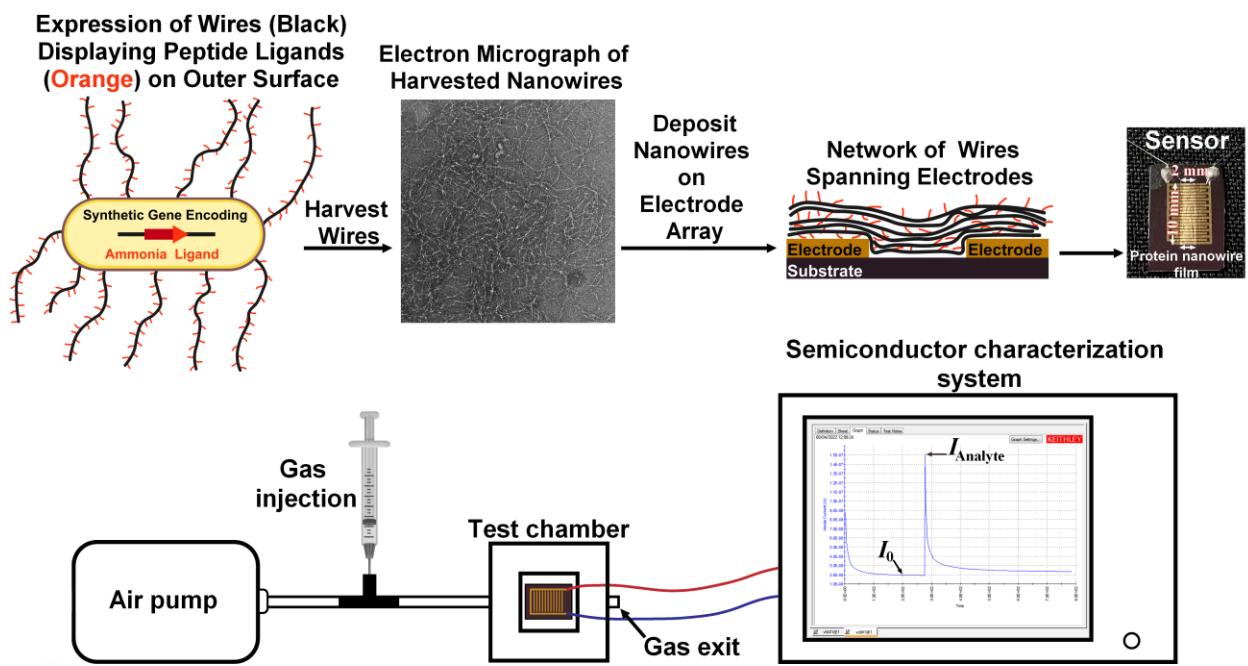
129 Pilin modified with ammonia-binding peptide:

130 FTLIELLIVVAAIIGILAAIAIPQFSAYRVKAYNSAASSDLRNLKTALESAFADDQTPPPESDLESFL

131 Pilin modified with acetic acid-binding peptide:

132 FTLIELLIVVAAIIGILAAIAIPQFSAYRVKAYNSAASSDLRNLKTALESAFADDQTPPPESRVNEWVI

133 2.2 Protein nanowire fabrication


134 *E. coli* strains were grown aerobically at 30 °C in agar-solidified LB medium supplemented with
135 kanamycin (50 µg/ml) (Ueki et al. 2020). After 24 h incubation, the cells were gently scraped off
136 the agar and then spread plated onto agar-solidified M9 medium held in sterile stainless steel

137 trays (37 cm × 27 cm × 6 cm). M9 medium consists of Na₂HPO₄·7H₂O, 12.8 g/l; KH₂PO₄, 3 g/l;
138 NaCl, 0.5 g/l; NH₄Cl, 1 g/l; MgSO₄, 2 mM; CaCl₂, 0.1 mM; glycerol, 0.5%;; IPTG, 0.5 mM;
139 kanamycin, 50 µg/ml and agar 15 g/l. After 48 h incubation at 30 °C, bacterial cells were scraped
140 from the agar surface and suspended in M9 medium. The suspension was centrifuged to harvest
141 cells, and the resultant pellets were suspended in ethanolamine HCl buffer (150 mM, pH 10.5).
142 Protein nanowires were purified with an ammonium sulfate precipitation method, as previously
143 described (Fu et al. 2020b). Briefly, protein nanowires were sheared from the bacterial
144 suspension in a blender at low speed. The resultant solution was centrifuged to remove cell
145 debris. The protein nanowires in the supernatant were precipitated with ammonium sulfate
146 (20%), followed by centrifugation, and then resuspended in ethanolamine HCl (150 mM, pH
147 10.5). Impurities were removed with a 1% ammonium sulfate precipitation and subsequent
148 centrifugation. Protein nanowires were precipitated in 18% ammonium sulfate and collected via
149 centrifugation. Pellets were suspended in ethanolamine HCl (150 mM, pH 10.5) and then
150 dialyzed against deionized water to remove salts. The purified nanowires were suspended in 2 ml
151 of sterile water and stored at 4°C until use. Protein concentration was determined using the BCA
152 protein assay kit (Thermo Pierce, USA) according to the manufacturer's instructions.

153 *2.3 Sensor construction*

154 The gas sensing devices were prepared as previously described (Smith et al. 2020).
155 Briefly, a pair of interdigitated electrodes was fabricated on a Si/SiO₂ wafer with standard
156 lithography, metal deposition (Cr/Au, 5/50 nm), and lift-off processes. The width of each
157 electrode was 400 µm and the electrode separation was 100 µm. Ten µl of a suspension of
158 purified protein nanowires solution (70 µg/ml) were drop-casted onto the surface of the pair of
159 interdigitated electrodes and left to dry at room temperature.

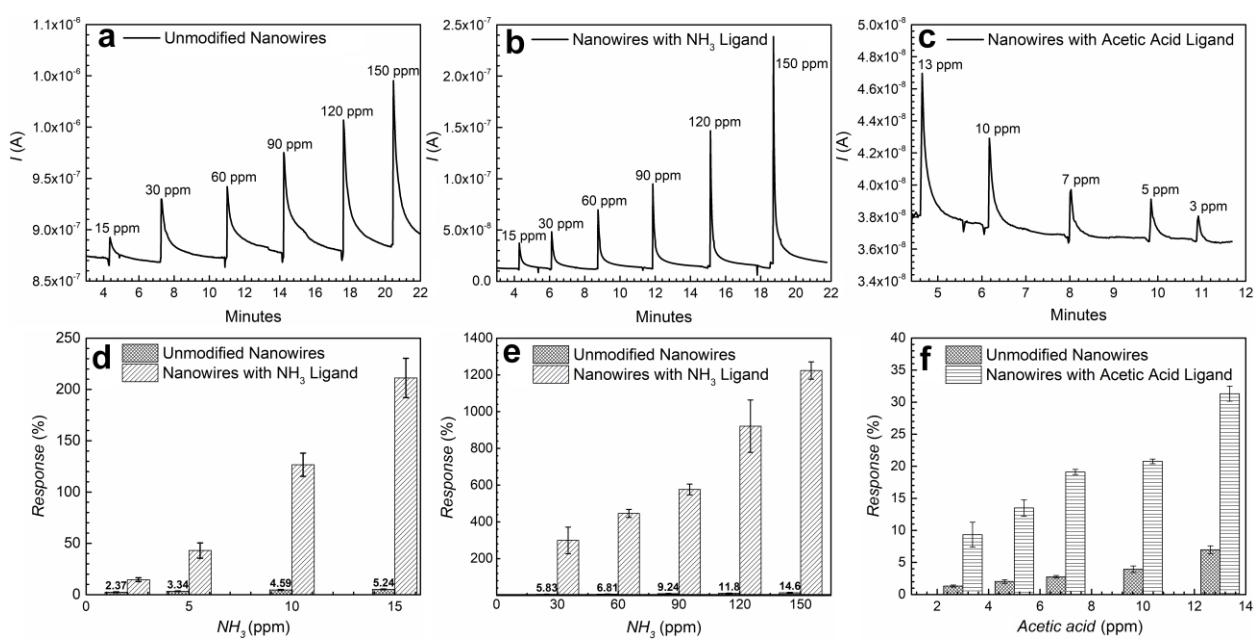
160 The sensor was connected to a semiconductor characterization system (Keithley 4200-
 161 SCS) and placed inside a custom-built airtight test chamber (Fig. 1). A voltage of 1 V was
 162 applied across the electrodes. An air pump provided a steady stream of air that entered the test
 163 chamber through a tubing connection. The relative humidity of the air was constant ($21 \pm 1\%$)
 164 throughout the testing process. Vapor samples to be evaluated were injected into the air stream
 165 through a septum with a syringe and needle.

166 **Fig. 1. Schematic of sensor fabrication and evaluation.**

167 The sensor responses were calculated using the following formula (Chou et al. 2018; Jha
 168 et al. 2018):

$$169 \text{ Response (\%)} = \left[\left(\frac{I_{\text{Analyte}}}{I_0} \right) - 1 \right] \times 100$$

170 where I_0 was the background current measured when just air was passing through the system and
 171 I_{Analyte} was the maximum current when the gas sample passed through the test chamber.


172 **3. Results and Discussion**

174 Preparations of outer surface filaments harvested from *G. sulfurreducens*, which are
175 dominated by pilin-based nanowires (Fu et al. 2020b; Liu et al. 2021), effectively functioned as
176 the sensor element for specifically detecting ammonia, but not other gases typically present in
177 human breath, such as carbon dioxide, ethanol, or acetone (Smith et al. 2020). In an effort to
178 increase the response to ammonia, the *G. sulfurreducens* pilin gene was modified to encode the
179 peptide DLESFL, which has a high affinity for ammonia gas (Wu et al. 2001), at the carboxyl
180 terminus of the pilin. Prior studies have indicated that the added peptide can be expected to be
181 displayed on the outer surface of the microbially assembled nanowires (Ueki et al. 2019), thus
182 providing ligands for ammonia along the length of the nanowires. The pilin gene was expressed
183 in *E. coli* to avoid the possibility of contamination of the protein nanowire preparation by other
184 nanofilaments expressed by *G. sulfurreducens* (Ueki et al. 2020).

185 As expected from previous studies with pili produced with *G. sulfurreducens* (Smith et
186 al. 2020), the nanowires that *E. coli* assembled from the unmodified *G. sulfurreducens* pilin
187 responded to ammonia with increasing current output as ammonia concentrations increased (Fig.
188 2a). The current output from devices with an equivalent quantity of nanowires customized with
189 the ammonia-binding peptide was ca. 100-fold higher than the output from the nanowires
190 assembled from the unmodified pilin (Fig. 2b,d,e). The response to ammonia was rapid and the
191 electrical signal quickly returned to baseline as the air flow flushed the ammonia from the
192 sensing chamber. These results demonstrated that modifying the nanowires with the ammonia
193 ligand substantially enhanced the response to ammonia and suggested that ammonia binding to
194 the ligand was readily reversible as the ammonia was rapidly re-released into the overlying air
195 stream. Thus, the sensor is capable of detecting dynamic changes in ammonia concentrations in
196 real time. The device response was stable over 30 days of evaluation (Figure S1), consistent with

197 previous demonstrations of the long-term stability of pilin-based nanowires (Lovley and Yao
 198 2021; Smith et al. 2020). As expected from previous studies (Smith et al. 2020), neither the
 199 unmodified nanowires or the nanowires modified with the ammonia ligand responded to (ethanol
 200 (25 ppm) or acetone (100 ppm), indicating the selectivity to the intended analyte.

201 At comparable ammonia concentrations, the response of the sensors fabricated with the
 202 *E. coli*-synthesized protein nanowires with the ammonia-specific ligand was greater than the
 203 response of previously described nanomaterial-based sensors (Table 1). This included silicon
 204 nanowires functionalized with the same ammonia-specific peptide ligand (McAlpine et al. 2008)
 205 that was incorporated into the *E. coli*-synthesized protein nanowire (Table 1). Only one of the
 206 alternative sensor studies (Table 1) reported a limit of detection in a flow cell comparable to the
 207 evaluated in our studies {Song, 2021 #8544}. In that study {Song, 2021 #8544}, the detection
 208 limit of the silicon nanowire-based sensor was 0.1 ppm, whereas the detection limit with the
 209 modified pilin-based nanowires was 2.5 ppm. However, the pilin-based nanowires gave a
 210 substantially higher response than the silicon-based nanowire device at higher ammonia
 211 concentrations (Table 1).

212

213 **Fig. 2. Response of sensors fabricated with *E. coli*-synthesized protein nanowires in which**
214 **the pilin gene was modified to express protein nanowires with either an ammonia- or acetic**
215 **acid-specific peptide ligand, or were unmodified. Current outputs in response to injections**
216 **of different ammonia or acetic acid concentrations in sensor devices with unmodified**
217 **nanowires (a) or nanowires modified with ammonia- (b) or acetic acid- (c) specific peptide**
218 **ligands. Relative current response of sensors fabricated with nanowires with analyte-**
219 **specific ligands versus unmodified nanowires for ammonia (d,e) or acetic acid (f). Data in**
220 **panels a-c are representative current outputs from triplicate sensing devices. Bars and**
221 **error bars in panels d-f designate the means and standard deviations from triplicate sensor**
222 **devices.**

223

224 The peptide RVNEWVI has a high affinity for acetic acid (Wu et al. 2001). A pilin gene
225 which encoded the RVNEWVI amino acid sequence at the carboxyl terminus yielded nanowires
226 with a rapid response to acetic acid (Fig. 2c) that was ca. 4-fold higher than sensors fabricated
227 with the unmodified nanowires (Fig. 2f). Although the relative increase in current output
228 achieved with the acetic acid ligand modification was smaller than that with the ammonia-
229 specific ligand, the results do further demonstrate that nanowires can be customized to improve
230 sensor response. Furthermore, the response of the sensors fabricated with the *E. coli*-synthesized
231 protein nanowires with the acetic acid-specific ligand was greater than previously described
232 nanomaterial-based sensors, several of which required high temperatures to function (Table 1).
233 None of these studies with alternative sensors reported detection limits in flow-through systems.
234 The detection limit for acetic acid with the modified pilin-based nanowire device was 3 ppm.
235 Sensors fabricated with silicon nanowires functionalized with the same acetic acid-specific
236 peptide ligand (McAlpine et al. 2008) that was incorporated into the *E. coli*-synthesized protein
237 nanowire functioned at room temperatures, but were less sensitive than the protein nanowire-
238 based sensors (Table 1).

239 The ligand additions selectively increased response to the intended analyte. The current
240 response to 13 ppm acetic acid for sensor devices fabricated with the nanowires modified with

241 the ammonia-specific ligand ($6.51 \pm 0.76\%$; mean \pm standard deviation, $n=3$) was similar to the
 242 response with unmodified nanowires ($6.98 \pm 0.61\%$), confirming the specificity of these modified
 243 nanowires for sensing ammonia. This result is consistent with the previous finding that the
 244 DLESFL peptide has a much higher affinity for ammonia than acetic acid with a selectivity ratio
 245 of 75:1 (McAlpine et al. 2008).

246 In previous studies the selectivity of the RVNEWVI peptide for acetic acid versus
 247 ammonia was only 3.75:1 (McAlpine et al. 2008). In accordance with these findings, the
 248 nanowires modified with RVNEWVI to enhance acetic acid binding had a higher response to
 249 ammonia at 150 ppm ($44.2 \pm 5.05\%$) than the unmodified nanowires ($14.6 \pm 2.41\%$). However,
 250 the increased response of the nanowires modified with RVNEWVI was much less than the
 251 response to 150 ppm ammonia ($1224 \pm 47.2\%$) of the nanowires modified with the DLESFL
 252 peptide designed for binding ammonia.

253

254 **Table 1. Comparison of ammonia and acetic acid responses with sensors fabricated with *E.***
 255 ***coli*-synthesized protein nanowires with analyte-specific ligands and previously described**
 256 **nanowire-based sensing devices.**

Analyte	Sensing materials	Operating temperature (°C)	Gas concentration (ppm)	Response (%)	This work		Reference
					Gas concentration (ppm)	Response ^a (%)	
Ammonia	Gold functionalized ZnO nanowires	32	2	~0.6	2	14.6 ± 1.9	(Anasthasiyya et al. 2018)
	PEDOT:PSS/silver nanowire	RT	15	28	15	211 ± 19	(Li et al. 2017)
	TiO ₂ nanowires	RT	50	0.12	60	445 ± 21	(Shooshtari and Salehi 2021)
	Multi-walled carbon nanotubes/polyaniline	RT	50	117	60	445 ± 21	(Ma et al. 2021)
	Self-aligned SiNWs	RT	100	75.8	90	576 ± 29	(Song et al. 2021)
	Porous silicon/Pd-loaded WO ₃ nanowires	RT	100	5	90	576 ± 29	(Qiang et al. 2018)

	Peptide SiNW DLESFLD ^b	RT	100	127	90	576±29	(McAlpine et al. 2008)
	α -Fe ₂ O ₃ nanowires	150	5	~10	5	13.5±1.3	(Wang et al. 2008)
Acetic acid	Pure ZnO	380	20	0.75	13	31.3±1.2	(Wang et al. 2014)
	Peptide SiNW RVNEWVID ^b	RT	100	~6.5	13	31.3±1.2	(McAlpine et al. 2008)

257 ^aData from this study (mean ± standard deviation with triplicate sensing devices).

258 ^bD was included in the peptide to link the peptide to the silicon nanowires, not considered to
259 contribute to the analyte binding.

260

261 **4. Conclusions**

262 The results demonstrate that pilin-based protein nanowires for sensor applications can be
263 fabricated with an *E. coli* chassis and that the sensing response of the pilin-based nanowires can
264 be genetically tuned for higher sensitivity (ca. 100- and 4-fold higher for ammonia and acetic
265 acid, respectively) by genetically encoding specific amino acid sequences at the carboxyl end of
266 the pilin monomer. The response of the protein nanowire-based sensors was consistently higher
267 than sensors fabricated from other nanomaterials. The simple, low energy, ‘green’ synthesis of
268 peptide-functionalized nanowire sensing components is in marked contrast to the fabrication of
269 non-biological nanowire materials, which require complex fabrication procedures that involve
270 high energy inputs and toxic chemicals and/or yield toxic products. Previous studies have
271 demonstrated that it is possible to express individual protein nanowires with multiple different
272 peptide ligands and to control the stoichiometry of ligand display along the length of the protein
273 nanowires with precise control over genetic expression circuits (Ueki et al. 2019). This further
274 expands the sensor design possibilities beyond what is readily possible with non-biological
275 nanowire materials.

276 Peptides have been designed to specifically bind other volatiles, such as aldehydes
277 (Wasilewski et al. 2018), trimethylamine (Lee et al. 2015), isopropyl alcohol, isoprene, toluene

278 (Sankaran et al. 2011), o-xylene, (Wu et al. 2001) butyric acid, dimethyl amine, benzene, and
279 chlorobenzene (Lu et al. 2009). Thus, microbially produced nanowires might be designed for
280 effective sensing of a diversity of gases of biomedical, environmental, or practical importance. It
281 may also be possible to tailor protein nanowires for sensing non-volatiles such as proteins
282 (Vanova et al. 2021), viruses (Fu et al. 2020a), pathogenic bacteria (Bruce and Clapper 2020;
283 Pardoux et al. 2019), and metallic ions (Liu et al. 2015; Ramezanpour et al. 2021).

284 These possibilities combined with potential to power protein nanowire sensors with
285 protein nanowire-based devices that harvest electricity from atmospheric humidity (Fu et al.
286 2021; Liu et al. 2020b), or biofilm devices that generate electricity from sweat evaporation (Liu
287 et al. 2022), coupled with protein nanowire-based devices to interpret the sensor outputs (Fu et
288 al. 2021; Fu et al. 2020b), demonstrate the many opportunities for developing sustainable, self-
289 powered monitoring devices for biomedical and environmental applications.

290

291 **Acknowledgement**

292 J.Y. and D.R.L. acknowledge support from the National Science Foundation (NSF)
293 DMR2027102.

294

295 **References**

296 Adhikari, R.Y., Malvankar, N.S., Tuominen, M.T., Lovley, D.R., 2016. Conductivity of individual *Geobacter*
297 pili. *RSC Advances* 6, 8354-8357.

298 Anasthasiya, A.N.A., Kampara, R.K., Rai, P.K., Jeyaprakash, B.G., 2018. Gold functionalized ZnO nanowires
299 as a fast response/recovery ammonia sensor. *Applied Surface Science* 449, 244-249.

300 Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L.,
301 Mor, i.H., 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio
302 collection

303

304 . *Molecular Systems Biology* 2, 1-11.

305 Barbosa, A.J.M., Oliveira, A.R., Roque, A.C.A., 2018. Protein- and Peptide-Based Biosensors in Artificial
306 Olfaction. *Trends in Biotechnology* 36(12), 1244-1258.

307 Bruce, J.A., Clapper, J.C., 2020. Conjugation of Carboxylated Graphene Quantum Dots with Cecropin P1
308 for Bacterial Biosensing Applications. *ACS omega* 5(41), 26583-26591.

309 Chou, T.-C., Chang, C.-H., Lee, C., Liu, W.-C., 2018. Ammonia sensing characteristics of a tungsten trioxide
310 thin-film-based sensor. *IEEE Transactions on Electron Devices* 66(1), 696-701.

311 Clark, M.M., Reguera, G., 2020. Biology and biotechnology of microbial pilus nanowires. *Journal of
312 Microbiology and Biotechnology* 47, 897-907.

313 Datsenko, K.A., Wanner, B.L., 2000. One-step inactivation of chromo- somal genes in *Escherichia coli* K-12
314 using PCR products. *Proc Natl Acad Sci U S A* 97, 6640–6645.

315 Fu, M.-Q., Wang, X.-C., Dou, W.-T., Chen, G.-R., James, T.D., Zhou, D.-M., He, X.-P., 2020a. Supramolecular
316 fluorogenic peptide sensor array based on graphene oxide for the differential sensing of ebola virus.
317 *Chemical Communications* 56(43), 5735-5738.

318 Fu, T., Liu, X., Fu, S., Woodard, T.L., Gao, H., Lovley, D.R., Yao, J., 2021. Self-sustained green neuromorphic
319 interfaces. *Nature Communications* 12, 3351.

320 Fu, T., Liu, X., Gao, H., Ward, J.E., Liu, X., Yin, B., Wang, Z., Zhuo, Y., Walker, D.J.F., Yang, J., Chen, J., Lovley,
321 D.R., Yao, J., 2020b. Bioinspired bio-voltage memristors. *Nature Communications* 11, 1861.

322 Ge, L., Li, S.-P., Lisak, G., 2020. Advanced sensing technologies of phenolic compounds for pharmaceutical
323 and biomedical analysis. *Journal of Pharmaceutical and Biomedical Analysis* 179, 112913.

324 Hansen, S.F., Lennquist, A., 2020. Carbon nanotubes added to the SIN List as a nanomaterial of very high
325 concern. *Nature Nanotechnology* 15, 3-4.

326 Hu, J.T., Odom, T.W., Lieber, C.M., 1999. Chemistry and physics in one dimension: Synthesis and
327 properties of nanowires and nanotubes. *Accounts of Chemical Research* 32(5), 435-445.

328 Jha, R.K., Wan, M., Jacob, C., Guha, P.K., 2018. Ammonia vapour sensing properties of in situ polymerized
329 conducting PANI-nanofiber/WS2 nanosheet composites. *New Journal of Chemistry* 42(1), 735-745.

330 Lee, S.H., Lim, J.H., Park, J., Hong, S., Park, T.H., 2015. Bioelectronic nose combined with a microfluidic
331 system for the detection of gaseous trimethylamine. *Biosensors and Bioelectronics* 71, 179-185.

332 Li, S., Chen, S., Zhuo, B., Li, Q., Liu, W., Guo, X., 2017. Flexible Ammonia Sensor Based on PEDOT:PSS/Silver
333 Nanowire Composite Film for Meat Freshness Monitoring. *IEEE Electron Device Letters* 38(7), 975-978.

334 Li, W., Gao, Y., Zhang, J., Wang, X., Yin, F., Li, Z., Zhang, M., 2020. Universal DNA detection realized by
335 peptide based carbon nanotube biosensors. *Nanoscale Advances* 2(2), 717-723.

336 Liu, Q., Wang, J., Boyd, B.J., 2015. Peptide-based biosensors. *Talanta* 136, 114-127.

337 Liu, X., Fu, T., Ward, J., Gao, H., Yin, B., Woodard, T.L., Lovley, D.R., Yao, J., 2020a. Multifunctional protein
338 nanowire humidity sensors for green wearable electronics. *Advanced Electronic Materials* 6, 2000721.

339 Liu, X., Gao, H., Ward, J., Liu, X., Yin, B., Fu, T., Chen, J., Lovley, D.R., Yao, J., 2020b. Power generation from
340 ambient humidity using protein nanowires. *Nature* 578, 550-554.

341 Liu, X., Ueki, T., Gao, H., Woodard, T.L., Nevin, K.P., Fu, T., Sun, L., Lovley, D.R., Yao, J., 2022. Microbial
342 biofilms for electricity generation from water evaporation and power to wearables. *Nature Communications* 13, 4369.

344 Liu, X., Walker, D.J.F., Nonnenmann, S., Sun, D., Lovley, D.R., 2021. Direct observation of electrically
345 conductive pili emanating from *Geobacter sulfurreducens*. *mBio* 12, e02209-02221.

346 Lovley, D.R., 2017. e-Biologics: Fabrication of sustainable electronics with 'green' biological materials.
347 *mBio* 8, e00695-00617.

348 Lovley, D.R., 2022a. Microbial nanowires. *Current Biology* 32, R110-R112.

349 Lovley, D.R., 2022b. On the existence of pilin-based microbial nanowires. *Frontiers in microbiology* 13,
350 872610.

351 Lovley, D.R., Yao, J., 2021. Intrinsically conductive microbial nanowires for 'green' electronics with novel
352 functions. *Trends in Biotechnology* 39, 940-952.

353 Lu, H.-H., Rao, Y.K., Wu, T.-Z., Tzeng, Y.-M., 2009. Direct characterization and quantification of volatile
354 organic compounds by piezoelectric module chips sensor. Sensors and Actuators B: Chemical 137(2), 741-
355 746.

356 Ma, J., Fan, H., Li, Z., Jia, Y., Yadav, A.K., Dong, G., Wang, W., Dong, W., Wang, S., 2021. Multi-walled carbon
357 nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible
358 room temperature ammonia gas sensor with high responses. Sensors and Actuators B: Chemical 334,
359 129677.

360 McAlpine, M.C., Agnew, H.D., Rohde, R.D., Blanco, M., Ahmad, H., Stuparu, A.D., Goddard Iii, W.A., Heath,
361 J.R., 2008. Peptide- nanowire hybrid materials for selective sensing of small molecules. Journal of the
362 American Chemical society 130(29), 9583-9589.

363 Palomar, Q., Xu, X., Selegård, R., Aili, D., Zhang, Z., 2020. Peptide decorated gold nanoparticle/carbon
364 nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7. Sensors and
365 Actuators B: Chemical 325, 128789.

366 Pardoux, É., Boturyn, D., Roupioz, Y., 2020. Antimicrobial Peptides as Probes in Biosensors Detecting
367 Whole Bacteria: A Review. Molecules 25(8), 1998.

368 Pardoux, É., Roux, A., Mathey, R., Boturyn, D., Roupioz, Y., 2019. Antimicrobial peptide arrays for wide
369 spectrum sensing of pathogenic bacteria. Talanta 203, 322-327.

370 Patolsky, F., Lieber, C.M., 2005. Nanowire nanosensors. Mater. Today 8, 20-28.

371 Pineau, N.J., Krumeich, F., Guntner, A.T., Pratsinis, S.E., 2021. Y-doped ZnO films for acetic acid sensing
372 down to ppb at high humidity. Sensors and Actuators B: Chemical 327, 128843.

373 Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Kizek, R., 2011. Methods for
374 carbon nanotube synthesis—review. J. Materj. Chem. 21, 15872.

375 Qiang, X., Hu, M., Zhao, B., Qin, Y., Zhang, T., Zhou, L., Liang, J., 2018. Preparation of porous silicon/Pd-
376 loaded WO₃ nanowires for enhancement of ammonia sensing properties at room temperature. Materials
377 Science in Semiconductor Processing 79, 113-118.

378 Ramezanpour, S., Barzinmehr, H., Shiri, P., Meier, C., Ayatollahi, S.A., Mehrazar, M., 2021. Highly selective
379 fluorescent peptide-based chemosensors for aluminium ions in aqueous solution. Analytical and
380 Bioanalytical Chemistry 413(15), 3881-3891.

381 Rasheed, T., Hassan, A.A., Kausar, F., Sher, F., Bilal, M., Iqbal, H.M.N., 2020. Carbon nanotubes assisted
382 analytical detection – Sensing/delivery cues for environmental and biomedical monitoring. TrAC Trends
383 in Analytical Chemistry 132, 116066.

384 Ricci, P.P., Gregory, O.J., 2021. Sensors for the detection of ammonia as a potential biomarker for health
385 screening. Scientific Reports 11(1), 7185.

386 Sankaran, S., Panigrahi, S., Mallik, S., 2011. Olfactory receptor based piezoelectric biosensors for detection
387 of alcohols related to food safety applications. Sensors and Actuators B: Chemical 155(1), 8-18.

388 Sfragano, P.S., Moro, G., Polo, F., Palchetti, I., 2021. The Role of Peptides in the Design of Electrochemical
389 Biosensors for Clinical Diagnostics. Biosensors (Basel) 11(8).

390 Shooshtari, M., Salehi, A., 2021. Ammonia room-temperature gas sensor using different TiO₂
391 nanostructures. Journal of Materials Science: Materials in Electronics 32(13), 17371-17381.

392 Smith, A.F., Liu, X., Woodard, T.L., Emrick, T., J.M., J., Lovley, D.R., Yao, J., 2020. Bioelectronic protein
393 nanowire sensors for ammonia detection. Nano Research 13, 1479-1484.

394 Song, X., Hu, R., Xu, S., Liu, Z., Wang, J., Shi, Y., Xu, J., Chen, K., Yu, L., 2021. Highly Sensitive Ammonia Gas
395 Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors. ACS Applied
396 Materials & Interfaces 13(12), 14377-14384.

397 Tan, H.-Y., Adhikari, R.Y., Malvankar, N.S., Ward, J.E., Woodard, T.L., Nevin, K.P., Lovley, D.R., 2017.
398 Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional
399 conductivity. mBio 8, e02203-02216.

400 Tan, Y., Adhikari, R.Y., Malvankar, N.S., Pi, S., Ward, J.E., Woodard, T.L., Nevin, K.P., Xia, Q., Tuominen, M.T., Lovley, D.R., 2016. Synthetic biological protein nanowires with high conductivity. *Small* 12, 4481–4485.

403 Ueki, T., Walker, D.J.F., Tremblay, P.-L., Nevin, K.P., Ward, J.E., Woodard, T.L., Nonnenmann, S.S., Lovley, D.R., 2019. Decorating the outer surface of microbially produced protein nanowires with peptides. *ACS Synthetic Biology* 8, 1809-1817.

406 Ueki, T., Walker, D.J.F., Woodard, T.L., Nevin, K.P., Nonnenmann, S., Lovley, D.R., 2020. An *Escherichia coli* chassis for production of electrically conductive protein nanowires. *ACS Synthetic Biology* 9, 647-654.

408 Vanova, V., Mitrevska, K., Milosavljevic, V., Hynek, D., Richtera, L., Adam, V., 2021. Peptide-based 409 electrochemical biosensors utilized for protein detection. *Biosensors and Bioelectronics* 180, 113087.

410 Wang, C., Ma, S., Sun, A., Qin, R., Yang, F., Li, X., Li, F., Yang, X., 2014. Characterization of electrospun Pr-411 doped ZnO nanostructure for acetic acid sensor. *Sensors and Actuators B: Chemical* 193, 326-333.

412 Wang, G., Gou, X., Horvat, J., Park, J., 2008. Facile Synthesis and Characterization of Iron Oxide 413 Semiconductor Nanowires for Gas Sensing Application. *The Journal of Physical Chemistry C* 112(39), 414 15220-15225.

415 Wasilewski, T., Brito, N.F., Szulczyński, B., Wojciechowski, M., Buda, N., Melo, A.C.A., Kamysz, W., Gębicki, J., 2022. Olfactory receptor-based biosensors as potential future tools in medical diagnosis. *TrAC Trends in Analytical Chemistry* 150, 116599.

418 Wasilewski, T., Szulczyński, B., Kamysz, W., Gębicki, J., Namieśnik, J., 2018. Evaluation of Three Peptide 419 Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase. 420 *Sensors* 18(11), 3942.

421 Wu, T.-Z., Lo, Y.-R., Chan, E.-C., 2001. Exploring the recognized bio-mimicry materials for gas sensing. 422 *Biosensors and Bioelectronics* 16(9-12), 945-953.

423