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ABSTRACT

Memristors are promising candidates for constructing neural networks. However,
their dissimilar working mechanism to that of the addressing transistors can result in a
scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-
terminal MoS; memristors that work with a charge-based mechanism similar to that in
transistors, which enables the homogeneous integration with MoS; transistors to realize
one-transistor-one-memristor addressable cells for assembling programmable network.
The homogenously integrated cells are implemented in a 2x2 network array to
demonstrate the enabled addressability and programmability. The potential for
assembling scalable network is evaluated in a simulated neural network using obtained
realistic device parameters, which achieves over 91% pattern recognition accuracy. This
study also reveals a generic mechanism and strategy that can be applied to other
semiconducting devices for the engineering and homogeneous integration of memristive

systems.
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Memristors have tunable conductance that can emulate the state modulation in neural
systems.!* Computing architectures constructed from them can incorporate their state variables
to yield in-memory computation, which are considered more efficient than conventional von
Neumann systems.!* Although a broad category of memristors have been discovered and
studied, a typical shared challenge in implementing them for scalable integration resides in the
stochastic device performance.>* This is attributed to a ‘destructive’ mechanism involved in
many devices, in which the atomic structural rearrangement (often at local scale) associated
with state change can be dispersive and irreversible,> © resulting in performance nonuniformity
across device and time. The filamentary nature in many memristors also suggests that the

programming input (e.g., current) does not scale proportionally with device size,’ !

as opposed
to that in the associated addressing device (e.g., transistor) in the architecture. This scaling
mismatch presents a challenge for high-density integration because the addressing device may
not shrink accordingly to provide the necessary driving current. The problem can be prominent

as many existing memristors require large programming current.!!-3

The nondestructive charge-based mechanism in transistors ensures the reliability and
scalability, making them a mature technology.!* Constructing memristive device from transistor
structures can therefore harness these benefits to improve integration. Charge injection in the
floating gate is often employed to tune the channel conduction for modulable states. These
floating-gate transistors have been used to construct programmable computing systems,
including programmable digital logics demonstrated first with semiconductor nanowires,' 16
and then two-dimensional (2D) materials.!” Analog neural networks have also been proposed
based on floating-gate transistors.!® However, state modulation through a third gate terminal

deviates from the simplicity offered by the two-terminal configuration in typical memristors,

which is deemed advantageous for constructing computing network.

The feasibility of constructing a two-terminal, charge-based memristor from transistor
structure was suggested from a two-terminal nonvolatile memory device made from a
semiconducting carbon nanotube.' It was demonstrated that the drain voltage, besides
producing an in-plane field for conduction, also yielded an out-of-plane field that pumped
charge into the dielectric layer to modulate the channel conduction. The effect was also
observed in graphene, although the modulation was not as large due to its lack of a bandgap.*
Later developments employed 2D materials with inherent bandgap to yield a large On/Off ratio
for constructing two-terminal nonvolatile memories.?! However, all these studies focused on
the digital state modulation in the devices. Analog conductance modulation was only recently

demonstrated in a two-terminal MoS; transistor structure by using exfoliated graphene and



boron nitride as the charge trapping and tunneling layers, respectively, with the demonstration

limited to single device for emulating synaptic behavior.?

Here, we demonstrate two-terminal charge-based MoS, memristors and the homogeneous
integration with MoS; transistors to realize one-transistor-one-memristor (1T1R) addressable
cells for assembling programmable network. The synaptic weight in the MoS, memristor can
be modulated with four-bit precision against the noise level, while the MoS, transistor enables
selective addressing and programming of the memristor. The 1T1R cells are implemented in a
2x2 crossbar array to demonstrate the enabled programmability. The potential for assembling
scalable network is evaluated in simulated neural network using obtained realistic device

parameters, which achieves a pattern recognition rate of >91%.

We first studied the two-terminal memristive effect in an individual MoS; transistor
structure, which was fabricated from polycrystalline monolayer MoS; synthesized by the metal-
organic chemical vapor deposition (MOCVD) method as described previously?® (Figure 1a).
The MoS; layer was contacted by a pair of source and drain electrodes, with a channel length
of 1 um and a width of 50 um. A 5-nm Au layer, separated by a 7-nm Al,O; tunneling layer,?*
25 was defined underneath to serve as the charge-trapping layer. A bottom gate, further beneath
the trapping layer and separated by a 30-nm Al,O; insulating layer, was defined as the global

reference (e.g., ground).

For the two-terminal measurement, a drain voltage (V4) was applied, with both the source
and global reference grounded. In a series of current-voltage (I-V) sweeps (black curves, Figure
1b), the device changed from a high-resistance state (HRS) to a low-resistance state (LRS)
during a forward voltage sweep (06 V). The device maintained the LRS during the backward
voltage sweep (60 V), showing nonvolatile state modulation. The voltage sweeps in the
negative region (0—>-6; -6 =0 V) showed an opposite trend, with the device changing from an
LRS to an HRS. Together, these /- characteristics featured typical memristor behavior.

We performed following investigations to reveal the charge-based origin of the memristive
effect. First, single-crystalline MoS, flake was also used to fabricate a device of the same
structure, which showed I-V curves with a similar memristive effect (see Supporting
Information Figure S1). The result excluded the possibility of the memristive effect being
caused by grain-boundary-mediated migration of defects in the polycrystalline MoS,2% %’
Second, the field distribution in the device structure was simulated, which revealed a large

vertical component (~ 4.6 MV/cm) at the drain injection boundary (Figure 1c). This vertical
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field component is sufficient for charge injection through the tunneling layer.?® Specifically, a
negative drain voltage creates an upward field that attracts electron to the trapping layer (upper
panel, Figure 1c), which is expected to produce an effective negative gate effect and reduce the
conduction in the n-type MoS, channel to produce a Reset process. Conversely, a positive drain
voltage creates a downward field that depletes the electron in the trapping layer (bottom panel,
Figure 1c), which is expected to increase the channel conduction to produce a Set process.
These expectations were consistent with the experimental observation (Figure 1b). Reducing
the amplitude of Vg led to a decrease in the vertical field component (see Supporting
Information Figure S2), which is expected to reduce the memristive effect. This was again
consistent with the experimental results, in which the /-/ hysteresis became less prominent with
the decrease in the amplitude of Vs (color curves, Figure 1b). Third, this generic mechanism of
drain-induced charge injection was further supported by two-terminal devices fabricated from
other semiconducting nanomaterials such as Si and Ge/Si nanowires'> ¢ 2% 3% which
demonstrated a similar memristive effect (see Supporting Information Figure S3). The MoS,-
based device showed a lower switching voltage than these nanowire-based devices, possibly
because the 2D flat MoS,-substrate interface has better charge injection efficiency compared to

the 1D nanowire-substrate contact.

Similar to other memristors, the conductance state in the MoS; device can be modulated by
pulsed programming (i.e., Vs pulse). In a series of Set-and-Reset cycles (Figure 1d), the device
showed distinct LRS and HRS. A confined distribution was observed in both the LRS and HRS,
consistent with the expectation from a nondestructive charge-based mechanism that can reduce
dispersity in device performance. Controlling the amount of charge injection to the trapping
layer through the number of Vg pulses led to the continuous modulation of the conductance
states in the device (Figure 1le). The linearity in the modulation was comparable to or better
than previous MoS, memristors based on ion/defect migrations®® 2" 3! 32 (see Supporting
Information Figure S4). This analog modulation was reversible and repeatable (Figure 1f), with
the programmed states maintaining a stable value over time (Figure 1g). These results suggested
that the device can be employed to function as a synaptic weight in a neural network. Note that
the noise (Figure 1g) was revealed to have the 1/f origin (see Supporting Information Figure
S5), which increases with the increase of conductance.®® Nevertheless, the relative noise level
remained within the range of 2%, which did not significantly affect emulated neural function
to be discussed later. The noise is expected to be suppressed by reducing surface contaminates

or interfacial defects.®

The programming current in many filamentary memristors does not scale with device size,



710 preventing a proportionate scaling in the addressing device (e.g., transistor). The charge-
based mechanism in the memristor provides an opportunity for proportionate scaling between
the memristor and addressing transistor, enabling effective integration. Importantly,
homogeneous integration by constructing both devices from the same material can further
improve parameter matching and ease fabrication. Thus, we studied the feasibility of
constructing both device elements in the 1T1R programmable cell from the same MoS; material.
Specifically, we adopted similar structural parameters for the addressing MoS, transistor and
MoS; memristor due to material homogeneity (Figure 2a). The constructed MoS, transistor
showed typical n-type behavior in the current-and-gate (/4s-V;) transport curve, featuring an
On/Off ratio >10° (Figure 2b) convenient for selector function.** For selective programming in
the 1T1R cell, the transistor is first turned On (e.g., with V; =+8 V) and then a Reset/Set voltage
is applied to its drain. This drain voltage is expected to largely drop across the MoS, memristor
if its programmable resistance range is chosen to be much larger than the On resistance in the
MoS; transistor. Experimentally, an applied drain voltage of +4 V yielded a gradual current
increase in the cell (orange, top panel, Figure 2c), suggesting a successful continuous Set
programming in the MoS, memristor. Conversely, an applied drain voltage of -5.5 V yielded a
gradual current decrease in cell (blue, top panel, Figure 2¢), suggesting a successful continuous
Reset programming in the MoS, memristor. Deselecting the cell by tuning Off the MoS;
transistor (e.g., Ve = -15 V) yielded negligible current with applied Set/Reset voltage (bottom
panel, Figure 2c), suggesting successful suppression of both current and voltage drop across

the MoS, memristor to prevent its state change.

The controlled programmability in the 1T1R cell was further demonstrated in a series of
pulse programming. As shown in Figure 2d, the initial conductance state ~ 50 nS (¢ = 0-2.15 s,
bottom panel) in the memristor was retrieved by turning on the transistor (V; = +8 V, top panel)
and applying a read voltage of -0.1 V at the drain (middle panel). If the cell was deselected by
turning off the MoS; transistor (V; =-15 V), an applied Reset voltage of -5.5 V at the drain (¢ =
2.15-5.3 s) did not alter the state in the memristor (¢ = 5.3-7.45 s). If the cell was selected by
turning on the transistor (¥, = +8 V), then a Reset voltage of -5.5 V applied at the drain (¢ =
7.45-9.55 s) reduced the conductance in the memristor to ~30 nS (¢ = 9.55-11.7 s). Similarly, if
the cell was unselected, an applied Set voltage of 4 V (¢ = 11.7-13.9 s) could not alter the
memristor state (£ = 13.9-16.05 s). If the cell was selected, then the same applied Set voltage (¢
=16.05-18.2 s) increased the conductance in the memristor to ~150 nS (#=18.2-20.35 s). These
results show that the MoS,-based homogeneous 1T1R structure can serve as an addressable cell

for constructing a programmable network.



We then implemented the cells in a crossbar array to evaluate the selective programmability
for network applications. Since the sneak paths in a crossbar array are essentially composed of
2x2 paths,® we studied the feasibility in a 2x2 array without losing generality (Figure 3a). The
array shared the same structure as existing 1T1R memristor network,** in which the shared
drain input in the row, shared source input in the column, and shared gate control of the
transistors (selectors) served as the word line (WL), bit line (BL), and selection line (SL),
respectively. For selective programming/reading (e.g., in cell C2), a gate voltage (+8 V) is
applied to SL1 to turn on the selectors along the line, and a gate voltage (-15 V) is applied to
the remaining SL2 to turn off the selectors along the line. A programming/reading voltage is
applied to WL2 with WLI1 floating. For the selected cell C2, the operation is expected to be the
same as demonstrated in individual cell (Figure 2). The WL2 input is expected to have no effect
on C4 since it is deselected, whereas the floating input from WLI also ensures that C1 and C3
are not programmed/read. The 1T1R addressing scheme described above can be extended to
larger array sizes, ensuring that all non-target cells are either deselected or unbiased. This is
different from a neural network constructed using the three-terminal Flash memory

6

architecture,®® in which the Reset programming involves erasing the entire column and

rewriting all other cells in that column.

The testing results were consistent with the above analysis. The conductance of the selected
C2 cell was changed from ~50 nS to ~500 nS (black curve, Figure 3b) by applying Set
programming pulses of +4 V to WL2 with SL1 selected (+8 V). The conductance states in the
remaining cells (color curves) remained unchanged during the process. Similarly, the
conductance of the selected C2 cell was changed from ~500 nS to ~50 nS by applying Reset
programming pulses of -5.5 V to WL2 with SL1 selected (+8 V), without altering the states in
the remaining cells. These results demonstrate the addressable and reversable programmability
that is key to weight update in a neural network. Furthermore, the conductance state in the
selected cell can be continuously modulated by the number/width of programming pulses to
control the cumulative charge injection in the trapping layer. A 10-state reversible programming
in the selected C2 cell was readily achieved with the control of Set/Reset pulses (black curve,
Figure 3c). The states in the unselected cells remained unchanged throughout the process (color
curves). The state modulation in the selected cell was repeatable (Figure 3d), with each of the
programmed states highly converged (Figure 3e). These results show the reliability in the
addressing strategy for selective and continuous weight update. Smaller updates with more state
levels are possible by using reduced pulse width (Figure 1e). The selective programming in the
2x2 array validates that the homogeneous 1T1R MoS; cells can be implemented in scalable

arrays for programmable networks. The excellent selection ratio in the MoS; transistor suggests
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that the width (N) in a NxN array can be scaled to >10° to maintain a read margin >20% (Figure

3f; see detailed analysis in Supporting Information Figure S6).

We therefore evaluated the potential of implementing the 1T1R cells in a network for a
realistic task (e.g., handwritten digit recognition) based on the revealed device performance.
Handwritten digits were obtained from the modified National Institute of Standards and
Technology (MNIST) database and were normalized within a 28x28 pixel bounding box. A
three-layer neural network was employed for the task, consisting of a layer of 784 input neurons
(e.g., corresponding to the 28x28 input pixel number), a layer of 200 hidden neurons, and a
layer of 10 output neurons (top, Figure 4a; see detailed procedure in Supporting Information
Figure S7). The synaptic weight matrices were constructed from simulated arrays of 784x200
and 200%10 MoS; IT1R cells (bottom, Figure 4a). A set of 5000 randomly selected images
from the MNIST database was used for training®’ (e.g., an epoch), and a set of 1000 randomly

selected images was used for recognition testing.

The weight precision (i.e., state levels in the cell) is expected to affect the recognition
accuracy. Our simulation showed that the accuracy increased with the increase of the number
of available weight levels in the cell. An accuracy >90% was achieved with 16-level or four-bit
state modulation in the cell (Figure 4b), which was readily attainable in the MoS, memristor
(Figure le). To get a close representation of realistic situation, noise in the weight was further
added. The noise*® in 64 programmed weight levels from the MoS, memristor was measured,
showing a dominant distribution within 1.5% (inset, Figure 4c). Noise was randomly added to
the 16-state network. The network showed robustness again noise, with a recognition
accuracy >88% maintained at a noise level of 25% (Figure 4c). The accuracy increased to >91%
within the noise level of 1.5%, which covered the dominant noise levels in the MoS,; memristor
(inset). Specifically, the network with a 4-bit weight precision and 1.5% noise, corresponding
to realistic MoS, device performance, showed consistent accuracy for the individual
recognitions of the 10 digits (Figure 4d). The overall accuracy was only ~3% lower compared
to an ideal network that had arbitrary weight precision without noise (Figure 4e). These results

show the potential of implementing MoS; 1TIR cells in realistic neural networks.

The recent development of ultralow contact resistance in MoS; devices has expanded the
potential for device scaling.?® The shared transport mechanism and electronic parameters in the
MoS; transistor and memristor suggest that they can be proportionately scaled in the
homogeneous 1TIR integration, if an effective selection (e.g., On/Off ratio) in the transistor

and charge trapping in the memristor are retained. To demonstrate the potential, we fabricated



a 1T1IR cell in which both the memristor and transistor were reduced to a size of 1x0.2 pm?.
Both devices maintained good performance, enabling selective programming in the 1TIR cell
(see Supporting Information Figure S8). Furthermore, recent experimental and simulation
studies have showed that both transistor performance and charge-trapping memory effect are
retained even when the MoS, channel length is reduced to below 50 nm.!® 44! These studies
indicate that the effective size of the homogeneously integrated 1T1R MoS; cell can be scaled
down to sub-100 nm size, which is smaller than existing heterogeneous 1T1R cells with sizes
beyond the micrometer scale due to mismatched scaling.'> *> Meanwhile, the Off resistance in
the transistor/selector determines the sneak-path current level, which also means that its ratio
to the upper-bound resistance in the MoS, memristor will affect the scalability.*® Taking these
values from sub-50 nm MoS; transistors in a previous study,* our estimate shows that the width
(N) in an integrated N xN array can be over 10* (see Supporting Information Figure S9), which
is larger than existing ones and sufficient for various functions. Improving the MoS, material
quality and device engineering, which are of common interest in the field, is expected to
improve the potential of 1T1R integration. The two-terminal MoS, memristors also enable the
feasibility of integration with two-terminal selectors,* including homogeneous MoS,-based

selectors,* for a simplified crossbar architecture.

Our study also suggests a generic mechanism that can be applied to other semiconducting
materials to engineer two-terminal charge-based memristors and enable homogeneous 1TIR
integration. This approach has the potential to create a broad category of neuromorphic systems.
It is likely that this strategy can be applied to silicon technology for expediated development,
because it offers the maturity and well-controlled interface that are crucial for ensuring

reliability and uniformity at a large scale for array integration.

Supporting Information

The Supporting Information is available free of charge at xxx

Materials and Methods; Supporting Figures S1-S9 describe additional single-crystalline device
performance, field simulation, nanowire device performance, linearity analysis, noise analysis, read
margin calculation, neural network emulation, device scaling, and read margin simulation,
respectively.
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Figure 1. Two-terminal memristive effect in MoS; device. a, (Top) Schematic of the MoS»
device structure, in which a floating gate (FG) is defined underneath the MoS, channel and a
back gate (BG) serving as the global reference is grounded. The bottom panel shows optical
images of fabricated MoS; device array (left) and an individual device (right). Scale bars, 20
um (left) and 5 um (right). b, A series of two-terminal /-V sweeps in a MoS; device, showing
drain voltage (Vg)-dependent hysteresis. ¢, Simulated electric field distribution in the MoS;
device with Vgs=-6 V (top) and V4 = 6 V (bottom). Note that here a 60-nm channel length was
used for better display. The simulation showed that the field distribution at the drain region was
very close between a 60-nm channel and a 1-pum channel. d, Programming cycles in the MoS,
device. A+/- 7 V pulse (5 s) was applied to the drain to program the On/Off state and a -0.1 V
was used to read the conductance in each cycle. e, Analog conductance modulation by
continuously applying 1000 Set pulses (3 V, 60 ms) and 1000 Reset pulses (-6 V, 60 ms) at the
drain. The conductance was read out after each programming pulse by -0.1 V. f, Repeated
analog programming cycles. Each cycle involved 80 Set pulses (3.5 V, 60 ms) and 80 Reset
pulses (-6.5 V, 60 ms), with the conductance read out by -0.1 V right after each programming
pulse. g, Retention in 10 programmed states continuously monitored with -0.1 V.
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Figure 2. Homogeneous integration. a, (Top) Schematic of the homogeneous 1TIR cell
integrated from a MoS, transistor and a MoS, memristor, with the corresponding circuit
diagram (bottom right) and the optical image of a fabricated cell (bottom left). Scale bar, 20
pm. Note that in the fabricated cell, an addressing electrode was added between the transistor
and memristor for the convenience of testing each device separately. b, A representative
transport curve in the MoS; transistor, showing typical n-type behavior. ¢, (Top) In a selected
cell (transistor On, represented by an equivalent resistor in the Inset), the current gradually
increased (orange) and decreased (blue) with applied Vas of 4 V and -5.5 V, respectively.
(Bottom) In the deselected cell (transistor Off, represented by an open circuit in the Inset), the
current remained negligible with applied V. The insets show the corresponding equivalent
circuits. d, Demonstration of selective Set and Reset programming in the cell.
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Figure 3. 2x2 array integration. a, (Left) Circuit diagram of 1T1R-based 2x2 addressable
array. (Right) Optical image of a fabricated 2x2 array constructed from MoS, I1TIR cells. Scale
bar, 20 um. b, Selective programming of cell 2 (C2) in the array from the conductance of 50
nS to 500 nS and then back to 50 nS (black curves), with the conductance in the rest cells
unchanged (color curves). ¢, The conductance in the selected C2 cell (black dots) was set to 10
increasing levels and then reset to 10 decreasing levels (between 70 — 480 nS). The increasing
levels were programmed a series of Set (4 V) pulses of 0.2, 0.4, 0.4, 0.8, 1, 1.2, 1.8, 1.8, and
1.8 s, respectively. The decreasing levels were programmed by a series of Reset (-5.3) pulses
of 0.1, 0.1, 0.2, 0.4, 0.6, 1, 2.6, 4.4, and 8.6 s, respectively. Due to the tunneling nature (e.g.,
injection current has exponential increase with the voltage), much faster programming is
possible by using larger voltages.?? The conductance in the rest cells was unchanged (color dots)
during the process. d, Repeated programming in the same cell using the same parameters in (c).
e, The distribution in each of the 10 conductance levels during the repeated programming in
(d). f, Simulated read margin with respect to the array width (N) based on performance
parameters in the MoS; memristor and transistor (I pm channel length and 50 um channel
width).
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Figure 4. Simulated neural network based on MoS; 1T1R cells. a, (Top) Structure of a 3-
layer neural network for digit recognition, with the weight matrices constructed from two 1T1R
crossbar arrays. The bottom panel shows an exemplary set of (4-bit) weight matrices from a
trained network. b, Recognition rate or accuracy with respect to the available states (weight
levels) in each cell in the simulated network. ¢, Recognition accuracy with respect to added
noise in the network with 4-bit weight precision (i.e., 16 available states in each cell). The inset
shows the actual measured noise o (defined as the standard deviation of the relative
conductance fluctuation)®® in 64 programmed states from a MoS, memristor. d, Recognition
accuracy for each digit using the network of 4-bit weight precision and 1.5% added noise. e,
Comparison of the recognition accuracy between a realistic network of 4-bit weight precision
and 1.5% added noise (red dots) and an ideal one with arbitrary weight precision and no noise
(black dots).
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