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ABSTRACT 

Memristors are promising candidates for constructing neural networks. However, 

their dissimilar working mechanism to that of the addressing transistors can result in a 

scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-

terminal MoS2 memristors that work with a charge-based mechanism similar to that in 

transistors, which enables the homogeneous integration with MoS2 transistors to realize 

one-transistor-one-memristor addressable cells for assembling programmable network. 

The homogenously integrated cells are implemented in a 2×2 network array to 

demonstrate the enabled addressability and programmability. The potential for 

assembling scalable network is evaluated in a simulated neural network using obtained 

realistic device parameters, which achieves over 91% pattern recognition accuracy. This 

study also reveals a generic mechanism and strategy that can be applied to other 

semiconducting devices for the engineering and homogeneous integration of memristive 

systems.  
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Memristors have tunable conductance that can emulate the state modulation in neural 

systems.1-3 Computing architectures constructed from them can incorporate their state variables 

to yield in-memory computation, which are considered more efficient than conventional von 

Neumann systems.1-4 Although a broad category of memristors have been discovered and 

studied, a typical shared challenge in implementing them for scalable integration resides in the 

stochastic device performance.2, 3 This is attributed to a ‘destructive’ mechanism involved in 

many devices, in which the atomic structural rearrangement (often at local scale) associated 

with state change can be dispersive and irreversible,5, 6 resulting in performance nonuniformity 

across device and time. The filamentary nature in many memristors also suggests that the 

programming input (e.g., current) does not scale proportionally with device size,7-10 as opposed 

to that in the associated addressing device (e.g., transistor) in the architecture. This scaling 

mismatch presents a challenge for high-density integration because the addressing device may 

not shrink accordingly to provide the necessary driving current. The problem can be prominent 

as many existing memristors require large programming current.11-13  

 

The nondestructive charge-based mechanism in transistors ensures the reliability and 

scalability, making them a mature technology.14 Constructing memristive device from transistor 

structures can therefore harness these benefits to improve integration. Charge injection in the 

floating gate is often employed to tune the channel conduction for modulable states. These 

floating-gate transistors have been used to construct programmable computing systems, 

including programmable digital logics demonstrated first with semiconductor nanowires,15, 16 

and then two-dimensional (2D) materials.17 Analog neural networks have also been proposed 

based on floating-gate transistors.18 However, state modulation through a third gate terminal 

deviates from the simplicity offered by the two-terminal configuration in typical memristors, 

which is deemed advantageous for constructing computing network.    

 

The feasibility of constructing a two-terminal, charge-based memristor from transistor 

structure was suggested from a two-terminal nonvolatile memory device made from a 

semiconducting carbon nanotube.19 It was demonstrated that the drain voltage, besides 

producing an in-plane field for conduction, also yielded an out-of-plane field that pumped 

charge into the dielectric layer to modulate the channel conduction. The effect was also 

observed in graphene, although the modulation was not as large due to its lack of a bandgap.20 

Later developments employed 2D materials with inherent bandgap to yield a large On/Off ratio 

for constructing two-terminal nonvolatile memories.21 However, all these studies focused on 

the digital state modulation in the devices. Analog conductance modulation was only recently 

demonstrated in a two-terminal MoS2 transistor structure by using exfoliated graphene and 
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boron nitride as the charge trapping and tunneling layers, respectively, with the demonstration 

limited to single device for emulating synaptic behavior.22 

    

Here, we demonstrate two-terminal charge-based MoS2 memristors and the homogeneous 

integration with MoS2 transistors to realize one-transistor-one-memristor (1T1R) addressable 

cells for assembling programmable network. The synaptic weight in the MoS2 memristor can 

be modulated with four-bit precision against the noise level, while the MoS2 transistor enables 

selective addressing and programming of the memristor. The 1T1R cells are implemented in a 

2×2 crossbar array to demonstrate the enabled programmability. The potential for assembling 

scalable network is evaluated in simulated neural network using obtained realistic device 

parameters, which achieves a pattern recognition rate of >91%. 

 

We first studied the two-terminal memristive effect in an individual MoS2 transistor 

structure, which was fabricated from polycrystalline monolayer MoS2 synthesized by the metal-

organic chemical vapor deposition (MOCVD) method as described previously23 (Figure 1a). 

The MoS2 layer was contacted by a pair of source and drain electrodes, with a channel length 

of 1 µm and a width of 50 µm. A 5-nm Au layer, separated by a 7-nm Al2O3 tunneling layer,24, 

25 was defined underneath to serve as the charge-trapping layer. A bottom gate, further beneath 

the trapping layer and separated by a 30-nm Al2O3 insulating layer, was defined as the global 

reference (e.g., ground). 

 

For the two-terminal measurement, a drain voltage (Vds) was applied, with both the source 

and global reference grounded. In a series of current-voltage (I-V) sweeps (black curves, Figure 

1b), the device changed from a high-resistance state (HRS) to a low-resistance state (LRS) 

during a forward voltage sweep (0→6 V). The device maintained the LRS during the backward 

voltage sweep (6→0 V), showing nonvolatile state modulation. The voltage sweeps in the 

negative region (0→-6; -6 →0 V) showed an opposite trend, with the device changing from an 

LRS to an HRS. Together, these I-V characteristics featured typical memristor behavior.  

 

We performed following investigations to reveal the charge-based origin of the memristive 

effect. First, single-crystalline MoS2 flake was also used to fabricate a device of the same 

structure, which showed I-V curves with a similar memristive effect (see Supporting 

Information Figure S1). The result excluded the possibility of the memristive effect being 

caused by grain-boundary-mediated migration of defects in the polycrystalline MoS2.
26, 27 

Second, the field distribution in the device structure was simulated, which revealed a large 

vertical component (~ 4.6 MV/cm) at the drain injection boundary (Figure 1c). This vertical 
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field component is sufficient for charge injection through the tunneling layer.28 Specifically, a 

negative drain voltage creates an upward field that attracts electron to the trapping layer (upper 

panel, Figure 1c), which is expected to produce an effective negative gate effect and reduce the 

conduction in the n-type MoS2 channel to produce a Reset process. Conversely, a positive drain 

voltage creates a downward field that depletes the electron in the trapping layer (bottom panel, 

Figure 1c), which is expected to increase the channel conduction to produce a Set process. 

These expectations were consistent with the experimental observation (Figure 1b). Reducing 

the amplitude of Vds led to a decrease in the vertical field component (see Supporting 

Information Figure S2), which is expected to reduce the memristive effect. This was again 

consistent with the experimental results, in which the I-V hysteresis became less prominent with 

the decrease in the amplitude of Vds (color curves, Figure 1b). Third, this generic mechanism of 

drain-induced charge injection was further supported by two-terminal devices fabricated from 

other semiconducting nanomaterials such as Si and Ge/Si nanowires15, 16, 29, 30 which 

demonstrated a similar memristive effect (see Supporting Information Figure S3). The MoS2-

based device showed a lower switching voltage than these nanowire-based devices, possibly 

because the 2D flat MoS2-substrate interface has better charge injection efficiency compared to 

the 1D nanowire-substrate contact.    

 

Similar to other memristors, the conductance state in the MoS2 device can be modulated by 

pulsed programming (i.e., Vds pulse). In a series of Set-and-Reset cycles (Figure 1d), the device 

showed distinct LRS and HRS. A confined distribution was observed in both the LRS and HRS, 

consistent with the expectation from a nondestructive charge-based mechanism that can reduce 

dispersity in device performance. Controlling the amount of charge injection to the trapping 

layer through the number of Vds pulses led to the continuous modulation of the conductance 

states in the device (Figure 1e). The linearity in the modulation was comparable to or better 

than previous MoS2 memristors based on ion/defect migrations26, 27, 31, 32 (see Supporting 

Information Figure S4). This analog modulation was reversible and repeatable (Figure 1f), with 

the programmed states maintaining a stable value over time (Figure 1g). These results suggested 

that the device can be employed to function as a synaptic weight in a neural network. Note that 

the noise (Figure 1g) was revealed to have the 1/f origin (see Supporting Information Figure 

S5), which increases with the increase of conductance.33 Nevertheless, the relative noise level 

remained within the range of 2%, which did not significantly affect emulated neural function 

to be discussed later. The noise is expected to be suppressed by reducing surface contaminates 

or interfacial defects.33 

 

The programming current in many filamentary memristors does not scale with device size, 
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7-10 preventing a proportionate scaling in the addressing device (e.g., transistor). The charge-

based mechanism in the memristor provides an opportunity for proportionate scaling between 

the memristor and addressing transistor, enabling effective integration. Importantly, 

homogeneous integration by constructing both devices from the same material can further 

improve parameter matching and ease fabrication. Thus, we studied the feasibility of 

constructing both device elements in the 1T1R programmable cell from the same MoS2 material. 

Specifically, we adopted similar structural parameters for the addressing MoS2 transistor and 

MoS2 memristor due to material homogeneity (Figure 2a). The constructed MoS2 transistor 

showed typical n-type behavior in the current-and-gate (Ids-Vg) transport curve, featuring an 

On/Off ratio >105 (Figure 2b) convenient for selector function.34 For selective programming in 

the 1T1R cell, the transistor is first turned On (e.g., with Vg = +8 V) and then a Reset/Set voltage 

is applied to its drain. This drain voltage is expected to largely drop across the MoS2 memristor 

if its programmable resistance range is chosen to be much larger than the On resistance in the 

MoS2 transistor. Experimentally, an applied drain voltage of +4 V yielded a gradual current 

increase in the cell (orange, top panel, Figure 2c), suggesting a successful continuous Set 

programming in the MoS2 memristor. Conversely, an applied drain voltage of -5.5 V yielded a 

gradual current decrease in cell (blue, top panel, Figure 2c), suggesting a successful continuous 

Reset programming in the MoS2 memristor. Deselecting the cell by tuning Off the MoS2 

transistor (e.g., Vg = -15 V) yielded negligible current with applied Set/Reset voltage (bottom 

panel, Figure 2c), suggesting successful suppression of both current and voltage drop across 

the MoS2 memristor to prevent its state change.  

 

The controlled programmability in the 1T1R cell was further demonstrated in a series of 

pulse programming. As shown in Figure 2d, the initial conductance state ~ 50 nS (t = 0-2.15 s, 

bottom panel) in the memristor was retrieved by turning on the transistor (Vg = +8 V, top panel) 

and applying a read voltage of -0.1 V at the drain (middle panel). If the cell was deselected by 

turning off the MoS2 transistor (Vg = -15 V), an applied Reset voltage of -5.5 V at the drain (t = 

2.15-5.3 s) did not alter the state in the memristor (t = 5.3-7.45 s). If the cell was selected by 

turning on the transistor (Vg = +8 V), then a Reset voltage of -5.5 V applied at the drain (t = 

7.45-9.55 s) reduced the conductance in the memristor to ~30 nS (t = 9.55-11.7 s). Similarly, if 

the cell was unselected, an applied Set voltage of 4 V (t = 11.7-13.9 s) could not alter the 

memristor state (t = 13.9-16.05 s). If the cell was selected, then the same applied Set voltage (t 

= 16.05-18.2 s) increased the conductance in the memristor to ~150 nS (t = 18.2-20.35 s). These 

results show that the MoS2-based homogeneous 1T1R structure can serve as an addressable cell 

for constructing a programmable network. 
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We then implemented the cells in a crossbar array to evaluate the selective programmability 

for network applications. Since the sneak paths in a crossbar array are essentially composed of 

2×2 paths,35 we studied the feasibility in a 2×2 array without losing generality (Figure 3a). The 

array shared the same structure as existing 1T1R memristor network,34 in which the shared 

drain input in the row, shared source input in the column, and shared gate control of the 

transistors (selectors) served as the word line (WL), bit line (BL), and selection line (SL), 

respectively. For selective programming/reading (e.g., in cell C2), a gate voltage (+8 V) is 

applied to SL1 to turn on the selectors along the line, and a gate voltage (-15 V) is applied to 

the remaining SL2 to turn off the selectors along the line. A programming/reading voltage is 

applied to WL2 with WL1 floating. For the selected cell C2, the operation is expected to be the 

same as demonstrated in individual cell (Figure 2). The WL2 input is expected to have no effect 

on C4 since it is deselected, whereas the floating input from WL1 also ensures that C1 and C3 

are not programmed/read. The 1T1R addressing scheme described above can be extended to 

larger array sizes, ensuring that all non-target cells are either deselected or unbiased. This is 

different from a neural network constructed using the three-terminal Flash memory 

architecture,36 in which the Reset programming involves erasing the entire column and 

rewriting all other cells in that column. 

  

The testing results were consistent with the above analysis. The conductance of the selected 

C2 cell was changed from ~50 nS to ~500 nS (black curve, Figure 3b) by applying Set 

programming pulses of +4 V to WL2 with SL1 selected (+8 V). The conductance states in the 

remaining cells (color curves) remained unchanged during the process. Similarly, the 

conductance of the selected C2 cell was changed from ~500 nS to ~50 nS by applying Reset 

programming pulses of -5.5 V to WL2 with SL1 selected (+8 V), without altering the states in 

the remaining cells. These results demonstrate the addressable and reversable programmability 

that is key to weight update in a neural network. Furthermore, the conductance state in the 

selected cell can be continuously modulated by the number/width of programming pulses to 

control the cumulative charge injection in the trapping layer. A 10-state reversible programming 

in the selected C2 cell was readily achieved with the control of Set/Reset pulses (black curve, 

Figure 3c). The states in the unselected cells remained unchanged throughout the process (color 

curves). The state modulation in the selected cell was repeatable (Figure 3d), with each of the 

programmed states highly converged (Figure 3e). These results show the reliability in the 

addressing strategy for selective and continuous weight update. Smaller updates with more state 

levels are possible by using reduced pulse width (Figure 1e). The selective programming in the 

2×2 array validates that the homogeneous 1T1R MoS2 cells can be implemented in scalable 

arrays for programmable networks. The excellent selection ratio in the MoS2 transistor suggests 
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that the width (N) in a N×N array can be scaled to >105
 to maintain a read margin >20% (Figure 

3f; see detailed analysis in Supporting Information Figure S6).  

 

We therefore evaluated the potential of implementing the 1T1R cells in a network for a 

realistic task (e.g., handwritten digit recognition) based on the revealed device performance. 

Handwritten digits were obtained from the modified National Institute of Standards and 

Technology (MNIST) database and were normalized within a 28×28 pixel bounding box. A 

three-layer neural network was employed for the task, consisting of a layer of 784 input neurons 

(e.g., corresponding to the 28×28 input pixel number), a layer of 200 hidden neurons, and a 

layer of 10 output neurons (top, Figure 4a; see detailed procedure in Supporting Information 

Figure S7). The synaptic weight matrices were constructed from simulated arrays of 784×200 

and 200×10 MoS2 1T1R cells (bottom, Figure 4a). A set of 5000 randomly selected images 

from the MNIST database was used for training37 (e.g., an epoch), and a set of 1000 randomly 

selected images was used for recognition testing.  

 

The weight precision (i.e., state levels in the cell) is expected to affect the recognition 

accuracy. Our simulation showed that the accuracy increased with the increase of the number 

of available weight levels in the cell. An accuracy >90% was achieved with 16-level or four-bit 

state modulation in the cell (Figure 4b), which was readily attainable in the MoS2 memristor 

(Figure 1e). To get a close representation of realistic situation, noise in the weight was further 

added. The noise38 in 64 programmed weight levels from the MoS2 memristor was measured, 

showing a dominant distribution within 1.5% (inset, Figure 4c). Noise was randomly added to 

the 16-state network. The network showed robustness again noise, with a recognition 

accuracy >88% maintained at a noise level of 25% (Figure 4c). The accuracy increased to >91% 

within the noise level of 1.5%, which covered the dominant noise levels in the MoS2 memristor 

(inset). Specifically, the network with a 4-bit weight precision and 1.5% noise, corresponding 

to realistic MoS2 device performance, showed consistent accuracy for the individual 

recognitions of the 10 digits (Figure 4d). The overall accuracy was only ~3% lower compared 

to an ideal network that had arbitrary weight precision without noise (Figure 4e). These results 

show the potential of implementing MoS2 1T1R cells in realistic neural networks. 

 

The recent development of ultralow contact resistance in MoS2 devices has expanded the 

potential for device scaling.39 The shared transport mechanism and electronic parameters in the 

MoS2 transistor and memristor suggest that they can be proportionately scaled in the 

homogeneous 1T1R integration, if an effective selection (e.g., On/Off ratio) in the transistor 

and charge trapping in the memristor are retained. To demonstrate the potential, we fabricated 
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a 1T1R cell in which both the memristor and transistor were reduced to a size of 1×0.2 µm². 

Both devices maintained good performance, enabling selective programming in the 1T1R cell 

(see Supporting Information Figure S8). Furthermore, recent experimental and simulation 

studies have showed that both transistor performance and charge-trapping memory effect are 

retained even when the MoS2 channel length is reduced to below 50 nm.18, 40, 41 These studies 

indicate that the effective size of the homogeneously integrated 1T1R MoS2 cell can be scaled 

down to sub-100 nm size, which is smaller than existing heterogeneous 1T1R cells with sizes 

beyond the micrometer scale due to mismatched scaling.12, 42 Meanwhile, the Off resistance in 

the transistor/selector determines the sneak-path current level, which also means that its ratio 

to the upper-bound resistance in the MoS2 memristor will affect the scalability.35 Taking these 

values from sub-50 nm MoS2 transistors in a previous study,41 our estimate shows that the width 

(N) in an integrated N×N array can be over 104 (see Supporting Information Figure S9), which 

is larger than existing ones and sufficient for various functions. Improving the MoS2 material 

quality and device engineering, which are of common interest in the field, is expected to 

improve the potential of 1T1R integration. The two-terminal MoS2 memristors also enable the 

feasibility of integration with two-terminal selectors,34 including homogeneous MoS2-based 

selectors,43 for a simplified crossbar architecture. 

 

Our study also suggests a generic mechanism that can be applied to other semiconducting 

materials to engineer two-terminal charge-based memristors and enable homogeneous 1T1R 

integration. This approach has the potential to create a broad category of neuromorphic systems. 

It is likely that this strategy can be applied to silicon technology for expediated development, 

because it offers the maturity and well-controlled interface that are crucial for ensuring 

reliability and uniformity at a large scale for array integration.   

 

 

 

Supporting Information 

The Supporting Information is available free of charge at xxx  

Materials and Methods; Supporting Figures S1-S9 describe additional single-crystalline device 

performance, field simulation, nanowire device performance, linearity analysis, noise analysis, read 

margin calculation, neural network emulation, device scaling, and read margin simulation, 

respectively.   
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Figure Legends 

 

 

Figure 1. Two-terminal memristive effect in MoS2 device. a, (Top) Schematic of the MoS2 

device structure, in which a floating gate (FG) is defined underneath the MoS2 channel and a 

back gate (BG) serving as the global reference is grounded. The bottom panel shows optical 

images of fabricated MoS2 device array (left) and an individual device (right). Scale bars, 20 

µm (left) and 5 µm (right). b, A series of two-terminal I-V sweeps in a MoS2 device, showing 

drain voltage (Vds)-dependent hysteresis. c, Simulated electric field distribution in the MoS2 

device with Vds = -6 V (top) and Vds = 6 V (bottom). Note that here a 60-nm channel length was 

used for better display. The simulation showed that the field distribution at the drain region was 

very close between a 60-nm channel and a 1-µm channel. d, Programming cycles in the MoS2 

device. A +/- 7 V pulse (5 s) was applied to the drain to program the On/Off state and a -0.1 V 

was used to read the conductance in each cycle. e, Analog conductance modulation by 

continuously applying 1000 Set pulses (3 V, 60 ms) and 1000 Reset pulses (-6 V, 60 ms) at the 

drain. The conductance was read out after each programming pulse by -0.1 V. f, Repeated 

analog programming cycles. Each cycle involved 80 Set pulses (3.5 V, 60 ms) and 80 Reset 

pulses (-6.5 V, 60 ms), with the conductance read out by -0.1 V right after each programming 

pulse. g, Retention in 10 programmed states continuously monitored with -0.1 V.      
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Figure 2. Homogeneous integration. a, (Top) Schematic of the homogeneous 1T1R cell 

integrated from a MoS2 transistor and a MoS2 memristor, with the corresponding circuit 

diagram (bottom right) and the optical image of a fabricated cell (bottom left). Scale bar, 20 

µm. Note that in the fabricated cell, an addressing electrode was added between the transistor 

and memristor for the convenience of testing each device separately. b, A representative 

transport curve in the MoS2 transistor, showing typical n-type behavior. c, (Top) In a selected 

cell (transistor On, represented by an equivalent resistor in the Inset), the current gradually 

increased (orange) and decreased (blue) with applied Vds of 4 V and -5.5 V, respectively. 

(Bottom) In the deselected cell (transistor Off, represented by an open circuit in the Inset), the 

current remained negligible with applied Vds. The insets show the corresponding equivalent 

circuits. d, Demonstration of selective Set and Reset programming in the cell.  
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Figure 3. 2×2 array integration. a, (Left) Circuit diagram of 1T1R-based 2×2 addressable 

array. (Right) Optical image of a fabricated 2×2 array constructed from MoS2 1T1R cells. Scale 

bar, 20 µm. b, Selective programming of cell 2 (C2) in the array from the conductance of 50 

nS to 500 nS and then back to 50 nS (black curves), with the conductance in the rest cells 

unchanged (color curves). c, The conductance in the selected C2 cell (black dots) was set to 10 

increasing levels and then reset to 10 decreasing levels (between 70 – 480 nS). The increasing 

levels were programmed a series of Set (4 V) pulses of 0.2, 0.4, 0.4, 0.8, 1, 1.2, 1.8, 1.8, and 

1.8 s, respectively. The decreasing levels were programmed by a series of Reset (-5.3) pulses 

of 0.1, 0.1, 0.2, 0.4, 0.6, 1, 2.6, 4.4, and 8.6 s, respectively. Due to the tunneling nature (e.g., 

injection current has exponential increase with the voltage), much faster programming is 

possible by using larger voltages.22 The conductance in the rest cells was unchanged (color dots) 

during the process. d, Repeated programming in the same cell using the same parameters in (c). 

e, The distribution in each of the 10 conductance levels during the repeated programming in 

(d). f, Simulated read margin with respect to the array width (N) based on performance 

parameters in the MoS2 memristor and transistor (1 µm channel length and 50 µm channel 

width).   
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Figure 4. Simulated neural network based on MoS2 1T1R cells. a, (Top) Structure of a 3-

layer neural network for digit recognition, with the weight matrices constructed from two 1T1R 

crossbar arrays. The bottom panel shows an exemplary set of (4-bit) weight matrices from a 

trained network. b, Recognition rate or accuracy with respect to the available states (weight 

levels) in each cell in the simulated network. c, Recognition accuracy with respect to added 

noise in the network with 4-bit weight precision (i.e., 16 available states in each cell). The inset 

shows the actual measured noise σG (defined as the standard deviation of the relative 

conductance fluctuation)38 in 64 programmed states from a MoS2 memristor. d, Recognition 

accuracy for each digit using the network of 4-bit weight precision and 1.5% added noise. e, 

Comparison of the recognition accuracy between a realistic network of 4-bit weight precision 

and 1.5% added noise (red dots) and an ideal one with arbitrary weight precision and no noise 

(black dots).   
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