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High-valent Fe(IV)–oxo intermediates, found in enzyme active sites, are excellent targets for biomimetic

design of molecular catalysts for C–H bond activation. C–H bonds in inert aliphatic hydrocarbons, such

as methane, possess strong bonds that are resistant to chemical functionalization. To aid in the screening

of potential catalysts for C–H bond activation, computational methods, such as density functional theory

(DFT) and machine learning (ML), are valuable tools for performing high-throughput virtual searches of

the vast chemical compound space. In this study, we have designed a database of 50 Fe(IV)–oxo species

with varying coordination environments which are further functionalized for a total of approximately 181k

structures. DFT calculations are then performed on a subset of the molecular database to determine spin

states and C–H bond activation energies. The collected data are then curated based on a series of chemi-

cally informed criteria. To avoid performing 181k DFT calculations on the total chemical compound

space, we developed ML models that utilize a novel molecular representation based on persistence hom-

ology, called persistence images (PIs). In particular, we have developed a novel similarity search algorithm,

followed by training a regression model to predict C–H activation energies and a classification model to

predict the spin states. The priority is to provide high-fidelity predictions for C–H activation barriers. For

this purpose, we divided the full database into low- and high-fidelity structures and introduced a metric

(δΔG‡) which evaluates the effect of a specific ligand modification with respect to the parent, unsubsti-

tuted structure. A validation step that included additional DFT calculations on 15 structures demonstrated

the credibility of the proposed methodology.

1. Introduction

Methane is the main component in natural gas and methane
clathrates, and with the depletion of petroleum reserves, it is
estimated to become the most important hydrocarbon feed-
stock for the synthesis of fuels and chemicals.1,2 However,
methane is a highly volatile and flammable gas at room temp-
erature, two features that introduce storage and transportation
issues. Methane functionalization to methanol or light hydro-
carbons synthesis, which can be used as alternative fuels or
feedstocks, is of high importance for petroleum chemistry.3–5

For considering methane as a sustainable source of raw

materials, it should be converted at the place of extraction.
Thus, novel selective and energetically less demanding cata-
lytic processes are needed for methane valorization.6

One approach is the development of new catalysts that can
mimic nature’s enzymes. Non-heme enzymes, such as
α-ketoglutarate (αKG) dependent taurine dioxygenase (TauD)7,8

and syringomycin halogenase (SyrB2),9 form high-valent Fe
(IV)–oxo intermediates that are capable of abstracting an
H-atom from an inert C–H bond as strong as 106 kcal mol−1 to
initiate hydroxylation or halogenation.10 Similar to heme
chemistry, many stable non-heme Fe(IV)–oxo model complexes
have been synthesized and characterized.11–16 The high-spin
quintet (S = 2) spin state is considered the most reactive spin
state and is important for the iron(III)–hydroxo intermediate
formation, which is stabilized through an exchange controlled
mechanism.17 In 2000, Wieghardt et al.18 reported the first
non-heme Fe(IV)–oxo model complex [(cyclam-CH2CO2)
FeIV(O)]+. Cyclam and cyclam-based ligands became a widely
popular prospect for non-heme Fe(IV)–oxo chemistry. The first
successful crystallographic characterization of a non-heme Fe
(IV)–oxo complex, [FeIV(O)(TMC)(NCCH3)]

2+, was achieved by
Rohde et al.19 in 2003. The Fe(IV)–oxo intermediates formed in
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cyclam-based complexes are relatively stable and feature a
pseudo-octahedral coordination environment. The Fe–oxygen
interaction is considerably strong, leading to short bond
lengths, and is sterically hindered by the bulky nature of
cyclam-based ligands.20 Numerous successful attempts by syn-
thetic bioinorganic chemists to improve the cyclam ligand
scaffolds included ring size variation and binding site modifi-
cation. Tetramethylated cyclam ligands (TMC) have shown a
degree of catalytic tunability based on the ring size.21 The orig-
inal cyclam ligand and its derivatives stabilize an intermediate
spin state (S = 1) in the Fe(IV)–oxo intermediate. In many cases,
the intermediate spin state is less reactive than the high-spin
state for the hydrogen atom abstraction (HAA) reaction step,
which has been attributed to the increased exchange inter-
actions present in the high-spin state.22–24 Efforts to increase
reactivity have been made by replacing one or more of the
nitrogen binding sites of TMC with oxygen (TMCO).25 A
different approach is using weak field tripodal ligands to
stabilize high-spin Fe(IV)–oxo sites. The first S = 2 non-heme Fe
(IV)–oxo model complex was the [(TMG3tren)Fe

IVO]2+

(TMG3tren = (1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]
ethyl}amine)) which has a trigonal bipyramidal geometry.26

The HAA reactivity of this catalyst is diminished by the signifi-
cant steric hindrance around the Fe–O bond. In 2015, Biswas
et al.27 reported one of the most reactive non-heme Fe(IV)–oxo,
[(TQA)FeIV(NCCH3)O]

2+. The TQA ligand (tris(2-quinolyl-
methyl)amine) features four weak-field quinoline ligands that
stabilize an octahedral Fe(IV)–oxo. TQA stabilizes the S = 2 spin
state and prevents steric hindrance around the Fe–O bound
with a vacant site that is filled by a solvent molecule. A recent
example of a high-spin (S = 2) Fe(IV)–oxo formed via O2 acti-
vation. FeIV(O)(Me3TACN)((OSi

Ph2)2O) is the first species
formed via photolytic O–O cleavage of a peroxo(diiron)
complex.28

Computational studies have provided a comprehensive
understanding of the electronic structure of the Fe(IV)–oxo site
and its role in a wide variety of chemical reactions.29–37

However, for the development of novel design strategies that
lead to improved catalytic performance, a systematic explora-
tion of a large number of molecular systems is mandatory.
Previous studies range from the analysis of a small number of
complexes for the development of structure–function
relations38 to high-throughput virtual screening of large mole-
cular databases with the aid of quantum chemical methods
and machine learning (ML).39–45

ML has increased in prevalence in the chemical community
due to its ability to perform high-throughput evaluation of
many chemical species, allowing researchers to shift from the
study of individual molecules to the exploration of a larger
fraction of the chemical space.46–50 One major component of
data-driven chemistry pipelines is the generation of molecular
representations.51 Common examples include Coulomb
matrices (CMs),52 the Smooth Overlap of Atomic Positions
(SOAPs),53 and the revised autocorrelation functions (RACs)
developed by the Kulik group.54 Recently, we proposed
Persistence Diagrams (PDs) and Persistence Images (PIs) as

alternative molecular representations55 based on persistent
homology.56 PDs and PIs encode the topological information
of molecular functional groups and offer a favorable represen-
tation of similar size, an advantage over other fingerprinting
methods.

In this study, we have applied PIs as a generalizable featuri-
zation method for the exploration of the Fe(IV)–oxo chemical
compound space for the hydrogen atom abstraction reaction
step. Methane activation was selected as a probe reaction for
the extraction of important information related to the ligand
field effects on the Fe center. The starting point of this work is
a set of 50 Fe-containing complexes with varying coordination
environments, followed by a combinatorial database gene-
ration of about 300k structures. A similarity search based on
persistence homology for the removal of duplicate structures
and for the selection of data for density functional theory
(DFT) calculations is introduced. DFT calculations on a small
molecular subset provided reliable data for the training of
machine learning models for the prediction of C–H activation
energies and spin states. The development of ML models for
the high-throughput virtual screening of approximately 181k
structures is presented, and a detailed analysis of the results is
provided in the next paragraphs. Finally, our conclusions are
presented at the end of the article.

2. Results and discussion
2.1 The Fe(IV)–oxo molecular subspace

In this study, we are introducing a database of 50 Fe(IV)–oxo
complexes (Fig. 1) that include octahedral (1–15), κ1-trigonal
bipyramidal (16–29), square pyramidal (30–34), and κ

4-trigonal
bipyramidal or tetradentate tripodal (35–50) molecular struc-
tures. This database consists of 15 octahedral complexes con-
taining only monodentate water, ammonia, and phosphane
ligands (1–15), which introduce ligand field strength effects in
a systematic manner (H2O, NH3, PH3 as weak, intermediate,
and strong ligands, respectively). Additionally, there are 16 tri-
gonal bipyramidal complexes containing only monodentate
aqua, amino, methanimine, methanol, and trimethylamine
ligands (16–29). Complexes 1–29 are important for capturing
effects on the ligand field in both octahedral and trigonal
bipyramidal geometries. These complexes will serve to cali-
brate the ligand field effects in the evaluation of the extended
database (vide infra). Complexes 30–34 include derivatives of
the cyclam and tetramethyl cyclam ligands. These ligands
support an Fe(IV)–oxo with pseudo-C4v symmetry with a vacant
axial binding site. Cyclam and tetramethylated cyclams stabil-
ize an S = 1 Fe(IV)–oxo, while many of the TMC and TMCO
complexes have a transition state with a S = 2 spin state. The
remaining complexes (35–50) utilize tetradentate tripodal tren-
based ligands. The TMG3tren ligand scaffold supports the
notion that trigonal bipyramidal geometries can stabilize a
high spin Fe(IV)–oxo and may lead to high HAA reactivity.

A brute-force combinatorial expansion of the 50 parent
structures yields approximately 300 000 molecular structures
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(Fig. 2(a)). Single and double substitutions of hydrogen atoms
with fluorine, chlorine, bromine, methyl, or amino groups are
introduced in each of the 50 parent structures. Additionally,
we developed a novel molecular similarity algorithm based on
persistent homology to remove duplicate structures from the
database, which is briefly described here. First, each molecular
entry is grouped based on its parent structure and stoichio-
metry, and their respective persistent diagram (PD) and per-
sistent image (PI) are generated (ESI, Section S1†). The PIs of
structures within the same group are compared, and if they
have a mean squared error (MSE) below a given threshold
(here, 10−15), then the structures are considered identical
(Fig. 2(b)). This process significantly reduces the total number
of structures in the diluted database as it removes identical
molecules. The refined database consists of 181 436 unique
and diverse Fe(IV)–oxo structures (vide infra).

2.2 Data generation from DFT calculations

Once redundancies are removed, a fraction of the compound
space is chosen for explicit calculation of their activation
barrier using DFT. We sought to select the most unique struc-
tures by identifying 30 systems with the highest MSEs from the
comparison of PIs within a given parent structure (1500 total).
Once structures are selected, subsequent DFT calculations are
performed for the quintet (S = 2) and triplet (S = 1) spin states
of the Fe(IV)–oxo intermediate, as well as for the quintet (S = 2)
transition state (TS) of the C–H activation step. We chose two
different spin states for the reaction intermediate to properly
consider single-state and two-state reactivity channels, which
are the two most prominent reaction schemes in Fe(IV)–oxo
chemistry. In total, 4500 DFT calculations were performed.
From these calculations, we were able to determine the acti-
vation energy (ΔG‡) for each molecular structure. The com-
puted ΔG‡ values and the corresponding spin-states were used
to train and test ML models.

To ensure the integrity of the DFT results, we impose a strict
set of four criteria for the automated selection of reliable compu-
tational data. Two geometric criteria related to the F–O–H struc-
tural core of the HAA have been applied to the TS and the two Fe
(IV)–oxo intermediates (S = 1, 2). First, structures are flagged if at
least one of the three optimized geometries has an iron–oxygen
bond length that is less than 1.45 Å or greater than 1.8 Å, and
second, if the oxygen–hydrogen bond distance is less than 0.98 Å
or greater than 1.5 Å for the optimized TS structure. The first geo-
metric constraint identifies when a geometry optimization does
not converge to an iron–oxo species, while the second identifies
cases where the C–H bond remains unactivated. The third and
fourth criteria ensure that the correct TS was found based on the
imaginary vibrational modes. These consider that the primary
imaginary frequency (v1) must be between 100i and 1600i cm−1,
and for cases where there are two imaginary frequencies, the sec-
ondary frequency must be greater than 50i cm−1, which typically
correspond to a methyl rotational mode. It is important to note
that numerical frequencies were explicitly calculated for each
structure in the DFT training set, which allows the implemen-
tation of the last two criteria at no additional cost. Structures that
did not meet the criteria were manually examined and removed
if they did not correspond to the correct structures for HAA.

After this initial screening, structures are removed from the
dataset if there is a negative C–H activation barrier, or if DFT
does not converge. All reaction barriers presented herein corres-
pond to thermally corrected ΔG values (in kcal mol−1). Negative
activation barriers were observed in a few cases and have been
confirmed as artifacts derived from the high-throughput data
generation. These artifacts led to ligand decoordination and/or
rearrangement, incorrect transition state structures, and
migration of the reactive oxo atom from an axial position to an
equatorial position during the transition state search. To main-
tain the integrity of the calculated data, those cases were
removed from the dataset. While our criteria managed to remove

Fig. 1 The 50 parent Fe-containing molecular structures used in this study.
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most of the undesirable cases, we also removed structures that
exhibited ligand decoordination as it was traced to spin contami-
nation (difference between the ideal and the computed expec-
tation value of the S2 operator greater than 0.5) and based on the
Euclidean distance between the initial and optimized structure
(deviations larger than 2 Å). While there is no linear relationship
between these two values and it is difficult to derive explicit
boundary values for these metrics, we found that the outliers of
both metrics tended to be structures where the first coordination
sphere rearranges during the geometry optimization. Using our
data curation protocol, we refined our DFT database from 1500
data points down to 486 data points.

2.3 Machine learning model analysis and validation

Two ML models have been developed for the prediction of
spin states and reaction barriers with the DFT data collected

from the 486 complexes. Before scanning the database of
181 436 unique structures, we wanted to determine whether a
structure has a triplet or a quintet reactant intermediate
without explicitly performing 181 436 additional DFT calcu-
lations. For this purpose, we trained and tested a spin classifi-
cation model using ridge classification. The classification step
provides an overall accuracy of 96.47% for the prediction of
triplet/quintet spin states for the training set and 91.09% for
the test set (Fig. 3). Correctly predicted triplets (true positives)
make up 29.41% and 19.18% of the training and test set data,
respectively, while correctly predicted quintets (true negatives)
are 67.06% and 71.92% of the training and test set, respect-
ively. Upon inspection of the triplet–quintet gap (ΔET–Q) of the
false positive/false negative cases from the training set, we
found a very low mean ΔET–Q of 2.6 kcal mol−1, which is the
source of the misclassification of the 13 cases in the test set

Fig. 2 Database generation flowchart. (a) A combinatorial expansion of the 50 parent structures provides a database of approximately 300 000

molecular geometries with many redundant structures. (b) Structure refinement based on persistent homology yields 181 436 unique entries.
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(mean ΔET–Q of 7.7 kcal mol−1). From the erroneously pre-
dicted spin states, we conclude that the model is more likely to
predict a false negative (predicting a triplet for a true quintet)
than a false positive (predicted quintet for a true triplet),
which can be attributed to the overall distribution of quintets
(70.99%) versus triplets (29.01%) in the DFT data (Fig. 4
bottom left). The spin states of the full database are predicted
to be 57.77% quintet and 42.23% triplets (Fig. 4 bottom right).

Fig. 4 shows the geometric composition of the DFT dataset
and database along with the spin composition of the DFT
dataset and the predicted spin states of the ∼181k database.
The resulting DFT dataset is composed of 38% κ

4-trigonal
bipyramidal, 27% octahedral, 24% κ

1-trigonal bipyramidal,
and 12% square pyramidal geometries. The complete data-
base consists of 54% κ

4-trigonal bipyramidal, 17% octa-
hedral, 16% κ

1-trigonal bipyramidal, and 14% square pyrami-

Fig. 3 Confusion matrices represented as pie charts of training data (left) and test data (right). A true positive denotes a correctly predicted triplet

spin state, whereas a false positive denotes an incorrectly predicted triplet spin state instead of a quintet. True negative denotes a correctly predicted

quintet spin state, while a false negative denotes a wrongly predicted quintet instead of a triplet.

Fig. 4 Breakdown of the geometric (top) composition of the DFT database (left) and the full database (right) of 181 436 structures. The spin states

(bottom) of the DFT database (left) and the predicted spin states for the full database (right).
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dal geometries which demonstrates the heterogeneity of the
dataset.

Once the classification model was calibrated, we used
kernel ridge regression to predict the reaction barriers of the
remaining 181 436 molecular complexes within the database.
Fig. 5 shows the regression parity plot for the reaction barriers
of the trained ML model, where the x-axis corresponds to the
calculated DFT values, and the y-axis represents the ML (pre-
dicted) values. The regression model is evaluated using the
coefficient of determination (R2), mean absolute error (MAE),
and root-mean-square error (RMSE). The training set (70% of
the data) has an R2 of 0.99 with an MAE of 0.73 kcal mol−1 and
an RSME of 1.07 kcal mol−1. The test set (30% of the data) has
an R2 of 0.93 with a MAE of 1.69 kcal mol−1 and a RSME of
2.55 kcal mol−1. To further evaluate the model over the full
DFT dataset, we used 10-fold cross-validation to compute
average R2 values and RMSEs. The average training RMSE is
1.07 ± 0.04 kcal mol−1 with an average R2 of 0.99 ± 0.00. The
average test RMSE is 2.24 ± 0.40 kcal mol−1 with an average R2

of 0.95 ± 0.02. The four largest outliers in Fig. 5 correspond to
structures 706–(9), 884–(9), 155–(32), and 554–(20) (see ESI,
Section S6† for a more detailed discussion on the outliers).
The commonality between these four systems is the ligand
functionalization with halogens. We believe that this discre-
pancy in the predicted barriers is attributed to ligand combi-
nations that were underrepresented in the training set.

The trained model was used for the high-throughput com-
putational screening of the remaining 181 436 structures. The
largest predicted activation barrier is 58.1 kcal mol−1 (parent
structure 11 with double amine substituents on two phos-
phanes in cis positions) while the lowest predicted activation

energy is 2.1 kcal mol−1 (parent structure 37 with double
chlorine substitutions on the two adjacent carbons that
connect the equatorial oxygen binding site to the axial nitro-
gen binding site). We have partitioned the range of the pre-
dicted activation barriers into three regions: (A) activation bar-
riers below 5 kcal mol−1, (B) activation barriers between 5 and
25 kcal mol−1 and (C) activation barriers above 25 kcal mol−1.
Group A consists of low fidelity structures with an unphysically
low C–H activation barrier and is sparsely populated in the
DFT dataset (less than 3%). The cutoff value of 5 kcal mol−1

was chosen based on the analysis and curation of the data, as
the structures associated with barriers below this threshold
were characterized as unphysical. We found that these struc-
tures exhibit ligand decoordination and/or rearrangement or
in some other cases, migration of the oxo from its axial posi-
tion to an equatorial position. Overall, group A consists only of
0.5% of the 181 436 structures. Group B is the area with the
highest fidelity and the greatest potential insight for C–H
bond activation with Fe(IV)–oxo complexes (67.2% of the total
database). The complexes in this subspace are predicted to
have accessible activation barriers, below 25 kcal mol−1, which
is a threshold for potential catalytic activity at reasonable reac-
tion conditions, and are above 5 kcal mol−1, making them
more physically meaningful than A. The last subspace C

(32.3% of the total database) is in an area that is not particu-
larly useful for catalyst development and of average fidelity,
considering that this region populates roughly 16% of the DFT
dataset used in training.

Going forward, we will focus our analysis on subspace B

(high-fidelity/low reaction barriers) for the reliable extraction
of structure–function relations for the purposes of HAA. The
most commonly observed coordination environment within
this subspace is the κ

4-trigonal bipyramidal geometry (43% of
B). The rest of subspace B consists of 14% octahedral, 22% κ

1-
trigonal bipyramidal and 21% square pyramidal complexes.
The square pyramidal and κ

4-trigonal bipyramidal complexes
are of particular interest as they most resemble experimentally
characterized molecular Fe(IV)–oxo complexes. The optimal
candidates, which can be further computationally or experi-
mentally examined, are identified based on the previous ana-
lysis in combination with validation metrics. For that purpose,
we have utilized a kernel density estimate together with bar
plots of the DFT calculated barriers and the predicted barriers
of the full 181 436 database. A plot for each parent structure
1–50 can be found in ESI, Section S2.† Here, we analyze three
representative cases from the high-fidelity region of subspace
B, which correspond to parent structures 1, 27, and 30. The
selected plots (Fig. 6) provide metrics and descriptors that
highlight the performance of the ML model on a given parent
structures chemical space, i.e., the reliability of prediction.
These plots can be used in identifying areas where the
machine learning model is likely to provide more reliable pre-
dictions, indicated by the overlap of the orange (DFT data) and
blue (predicted data) densities and bars. For complexes 1, 27
and 30, the difference in mean errors is 0.94, 1.12 and
4.10 kcal mol−1, respectively. For validation of our compu-

Fig. 5 Predicted (kernel ridge regression) vs. DFT(OPBE-D3(BJ)/def2-

SVP) barrier heights (in kcal mol−1) for the training data points (blue) and

the test data points (orange).
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tational methodology and before extracting useful information,
we have selected 15 functionalized complexes from parent
structures 1, 2, 4, 27 and 30 (high fidelity regions), and DFT
calculations were employed to explicitly calculate the activation
barriers (see ESI, Table S6†). The ML predicted barriers show
good agreement with DFT, with a MAE of 2.18 kcal mol−1, a
minimum error of 0.17 kcal mol−1, and a maximum error of
8.60 kcal mol−1. The MAE of the validation step (2.18 kcal
mol−1) is comparable to the MAE of the full model (1.64 kcal
mol−1), which indicates that the reliability metrics can identify
areas where our model provides high accuracy. Additionally,
the tested complexes have relatively small activation barriers
and may provide further insight for catalyst development. The
change in ligand field effects observed in each entry varies
based on the parent structure. In complexes 1 and 2, the acti-
vation barriers increase by 3–4 kcal mol−1 through the
addition of an electron withdrawing group (halides) cis to an
electron donating group (amino or methyl). Barriers in
complex 4 are reduced by 3–4 kcal mol−1 with the addition of
two electron-withdrawing groups to trans aqua ligands. In
complex 30, the activation barrier is lowered when electron-
donating groups (methyl or amino) are added into the back-
bone of the ligand (i.e., to one of the carbon atoms that
connect the binding sites). This model exhibits the ability to
predict subtle changes to Fe(IV)–oxo complexes. In the next
section, a detailed analysis of the model predictions with
respect to ligand field effects is presented.

2.4 Ligand field exploration

First and second coordination effects on the electronic struc-
ture and oxidation strength of the Fe(IV)–oxo site vary signifi-
cantly based on the identity and position of functional groups
and the overall ligand architecture. To quantify the functionali-
zation effects, we introduce the δΔG‡ metric to denote the
change in the C–H activation energy as the result of the func-
tional groups introduced in the parent molecular structures.
Thus, δΔG‡ is computed from the difference between the ΔG‡

of the unsubstituted, parent complex and a given functiona-
lized complex. The average δΔG‡ as a function of the substitu-

ent type is shown in Fig. 7. The most favorable changes in
δΔG‡ derive from the substitution of hydrogen atoms with
fluorine and bromine, while the least favorable changes in
δΔG‡ result from the addition of an amino group.

Fig. 8 includes the largest positive and negative changes in
activation energy for each of the 20 possible group combi-
nations considered in this study. The largest negative δΔG‡

values for pure halide (X/X) substitutions were found for
parent structure 23, which is a trigonal bipyramidal coordi-
nation complex with three equatorial methoxy ligands and an
axial aqua ligand. Incorporation of halides into this ligand
architecture is predicted to have favorable changes in acti-
vation energy. This is a consequence of their electron with-
drawing character which reduces the electron density of atoms
coordinated on the Fe center. Therefore, the functionalized
complexes have weaker ligand fields with respect to their
parent structure equivalent, an effect that yields more reactive
Fe(IV)–oxo active sites. In a previous study, we explained this
effect by monitoring the electronic structure of Fe(IV)–oxo com-
plexes with strong and weak ligand fields.31 The Fe(IV)–oxo
reaction intermediates evolve into a Fe(III)–oxyl radical in order

Fig. 6 Spread of the DFT activation barriers (orange) and predicted database activation barriers (purple) using histograms and kernel density esti-

mates. Complexes 1 (left), 27 (center) and 30 (right) were selected as representative examples.

Fig. 7 Average changes in the activation barrier (in kcal mol−1) between

the 50 parent structures and the 181 436 unique entries. Negative values

correspond to reduced C–H reaction barriers.
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to activate a C–H bond, an effect that is enhanced under a
weaker coordination ligand field.27 Additionally, we found
common trends regarding the halide position in the functiona-
lized ligands. Seven of the nine most favorable mono- or diha-
lide substitutions utilize the same position, on a carbon atom
adjacent to the nitrogen that is directly coordinated to the Fe
center (for example, see structure 3558–(23) in Fig. 8, first
column, first row).

The largest favorable changes in activation energy for the
amino/methyl, amino/halide or methyl/halide substitutions
correspond to parent structures 26, and 29, which are trigonal

bipyramidal complexes with amino and phosphane ligands.
Even if the effect on the C–H activation barrier for these cases
is lower on average than in the pure halide cases, on an indi-
vidual basis they yielded some of the most favorable δΔG‡

values. The four largest favorable changes derive from methyl/
methyl and methyl/halide substitutions on parent structure 12

(2535–(12), 837–(12), 836–(12) and 4845–(12)). Parent structure
12 is comprised of four phosphane ligands and one equatorial
amino ligand arranged in an octahedral coordination environ-
ment. All four of these complexes share a methyl substituent
at the equatorial amino group. In the methyl/methyl case

Fig. 8 Functionalization type, database ID (integer-letter combination) with the parent structure in parenthesis, largest positive (unfavorable) and

negative (favorable) changes in activation energy (δΔG‡ in kcal mol−1) and activation energy of the complex of interest (ΔG‡ in kcal mol−1). Groups

and bonds displayed in blue indicate the location of functionalization and identity of the group.
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(Fig. 8, third column, first row), the second methyl is found on
a cis equatorial phosphane group. Methyl functionalized
amino and phosphane ligands become weaker π-accepting
ligands, which leads to increased electron density in the
π-antibonding orbital and weakens iron(IV)–oxo bond. All three
of the methyl/halide substitutions occur in the same position,
with the methyl group added to the amino ligand, and the
halide added to the axial phosphane ligand.

The distributions of the δΔG‡ values for each of the 50
different parent structures are shown as violin plots in Fig. 9.
The violin plots show a quantitative distribution of the data
using symmetric kernel density estimates, where more densely
populated areas are shown as wider areas on the graph, and
the minimum (bottom line), median (middle line), and
maximum (top line) from a box and whisker plot are shown as
horizontal lines. The octahedral complexes (1–15) have the
largest range (13.97 kcal mol−1) and the most favorable δΔG‡

values on average (−1.72 kcal mol−1). The κ
1-trigonal bipyrami-

dal complexes (16–29) and κ
4-trigonal bipyramidal complexes

(35–50) exhibit similar ranges of δΔG‡ (10.40 and 10.18 kcal
mol−1, respectively). However, on average, the κ

1-trigonal bipyr-
amidal complexes experience a more negative δΔG‡ than κ

4-tri-
gonal bipyramidal complexes (−1.47 and 0.68 kcal mol−1,
respectively), with the κ

4 complexes exhibiting the least favor-
able δΔG‡ of any group. These tetradentate complexes are
likely the most susceptible to change in the activation energy

due to the proximity and connectivity to the axial ligand. A
large majority of the functionalization sites are within 1–2
atoms of the axial ligand, where the effects of varying ligand
fields are experienced more directly by the oxo ligand. The
square pyramidal complexes (30–34) are likely the least suscep-
tible to changes in the activation energy, as they experience the
tightest spread of values, with an average range of 8.33 kcal
mol−1. The average δΔG‡ within this group is −0.47 kcal
mol−1, which is less favorable than both the octahedral and
monodentate trigonal bipyramidal complexes but is an
improvement to the κ

4-trigonal bipyramidal.

3. Conclusions

In this work, we have explored a large ligand space of Fe(IV)–oxo
complexes by combining quantum chemical data and novel
chemical machine learning methodologies. Our primary aim
was to extract relations between molecular structure and C–H
activation for catalyst optimization. Our previous work on Fe(IV)–
oxo chemistry and how the ligand field strength gives access to
multiple reaction channels was the starting point of this project.
Here, we began with 50 Fe(IV)–oxo parent structures and we
developed a molecular database via combinatorial expansion.
The ∼300 000 structures were examined via a novel similarity
metric that we developed for this project. This metric allowed

Fig. 9 Violin plots of the change in C–H activation energy (δΔG‡) in kcal mol−1, to highlight the range, spread and average changes in each parent

structure. Complexes grouped based on their molecular geometry.
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the further refinement of the chemical space of interest that
includes a total of 181 436 unique entries. DFT computations
were performed on a representative subspace, which were
further reduced to 486 by following an automated data curation
protocol. Two ML models were developed based on the 486 data
points, a spin state classification model and a C–H activation
barrier regression model. Input data were introduced in both
models by utilizing the PI molecular representation that encodes
geometric and topological information of molecular structures.
The trained classification and regression models achieved high
accuracy, with 91% confidence for spin state prediction and
1.69 kcal mol−1 mean absolute error for C–H activation barriers
(test data). Both models were further applied for the high-
throughput virtual screening of the full ∼181k database. We
divided the molecular structures into three groups based on the
C–H activation barriers: low fidelity/low barrier predictions
(group A, barrier less than 5 kcal mol−1), high fidelity/low
barrier predictions (group B, between 5 and 25 kcal mol−1), and
high fidelity/high barrier predictions (group C, more than
25 kcal mol−1). We then selected 15 structures from group B and
validated the prediction with additional DFT calculations.
Indeed, the largest deviation was 8.6 kcal mol−1, while the
lowest was only 0.17 kcal mol−1. Thus, our model was able to
reproduce DFT C–H activation barriers within a small statistical
deviation. Based on these findings, we examined the average
change in activation energy and functionalization type, which
enable us to highlight key substituents and their most and least
effective positions. For example, in strong ligand fields, methyl
functionalization to phosphanes and other strong field ligands
are highly favorable in octahedral, and both κ

1- and κ
4-trigonal

bipyramidal geometries. Conversely, with weak to moderate field
ligands, halide functionalization to the second coordination
sphere is heavily favorable for each of the four explored coordi-
nation environments. In moderate to strong field ligands, a com-
bination of halide/methyl substituents is found to be most favor-
able in anti positions, whereas halide/halide groups are generally
more favorable in syn positions. For that purpose, we introduced
the δΔG‡ metric which describes the net difference on the C–H
activation reaction step between the initial parent structure and
a particular molecular modification of the ligand.

Overall, the topology-based tools and metrics introduced in
this work have helped us explore the target chemical space of
the Fe(IV)–oxo complexes and enable us to develop a compu-
tational methodology for the fast and reliable examination of
ligand field effects for improved C–H bond activation. We are
currently exploring the transferability of the PI-based tools for
other chemical applications, including catalyst optimization for
more complex chemical reactions and ligand environments.

4. Experimental section
4.1 Persistent homology for molecular representations

In this work, we have extensively applied the persistence image
(PI) molecular representation, which is based on persistent
homology, a mathematical tool that allows the computation of

topological features of a space at different spatial resolutions.
A detailed description of the method can be found in ref. 55,
and a representative example is given in the ESI, Section S1.†
In short, the geometrical and topological information of a
molecular structure are encoded into a 2D diagram, the per-
sistent diagram (PD). The generation (birth) and the elimin-
ation (death) of the topological features included in a PD are
tracked though a filtration parameter. For this project, we have
chosen to include zeroth- and first-order topological features.
The zeroth-order features are called “connected components”
and encode the atom connectivity (bonds) of a molecule. The
first-order topological features are called “holes” and encode
the topology of atoms that form rings in a molecular structure.
Each molecular functional group has distinct “hole” birth and
death coordinates in the PD which are used as molecular fin-
gerprints. The PDs are then converted into vectorized 2D
images, the persistence images (PIs), that are used as input in
ML models.

4.2 Database generation

Molecular substitutions were performed on each of the 50
parent structures using molSimplify,57 which utilizes
OpenBabel in the backend,58,59 to generate force field opti-
mized structures. Either one or two of the ligand’s hydrogen
atoms were substituted with a fluorine, chlorine, or bromine
atom(s) or a methyl or amino group(s). This was performed for
each hydrogen atom and for each combination of hydrogen
atom pairs (Fig. 10). Structure generation in this manner is
highly comprehensive, but also introduces redundancies. The
naming conventions utilized in the full database (181
436 molecular complexes) for each entry is listed as an
integer–integer pair, e.g. 0–(1), 1–(2) …, etc. The first integer
number corresponds to a nondescript identifier that was used
to provide a unique x–(y) pair for every substituted parent
structure (y = 1, 2, …, 50).

4.3 Computational details

All density functional theory calculations were performed with
ORCA 4.2.1 60,61 using the OPBE functional,62,63 the def2-SVP
basis set,64,65 and the Grimme’s D3 dispersion correction66

with the Becke–Johnson damping function.67 Due to the large
number of computations required for the generation of the
database, we have selected a relatively small basis set, similarly
to previous high-throughput computational screening studies
of transition metal complexes for catalytic applications.68 The
resolution of identity chain-of-spheres approximation was
used in the two-electron integral evaluation with Lebedev’s
590-point integration grid.69,70 For each structure included in
the training set, a minimum of three calculations were per-
formed: (1) transition state optimization, (2) optimization of
the high-spin (S = 2) Fe(IV)–oxo intermediate and (3) optimiz-
ation of the low/intermediate spin (S = 1) Fe(IV)–oxo intermedi-
ate. The hydrogen atom abstraction transition state optimiz-
ation began with an initial transition state scan along the O–H
internal coordinate, from 1.5 to 1.1 Å in increments of 0.02 Å.
In a few cases, the preliminary internal coordinate scan led to
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an unsuccessful transition state optimization. In these cases,
the scanned geometries were manually inspected for potential
saddle points and the Cartesian coordinates were generated
from one of the intermediate scan structures. Full transition
state optimizations were then performed without constraining
the O–H coordinate. The OPBE functional was selected since
previous benchmark studies have shown that it has excellent
agreement with unrestricted coupled-cluster singles, doubles
and perturbative triples (UCCSD(T)).71,72 In addition, it has
been extensively used in previous computational studies on Fe
(IV)–oxo complexes.38,73,74

4.4 Machine learning model development

The PIs55 of each Fe(IV)–oxo species were generated using a pix-
elation of 20 by 20, a minBD of −0.1 Å (lower boundary of the
PI), a maxBD of 2.5 Å (upper boundary of the PI), and a spread
of 0.06 (standard deviation of the Gaussian kernel). The classi-
fication and regression models are performed using Python
3.6 with the Sci-kit Learn package.75 For both models, 70%
(340 structures) of the DFT data is used for training and 30%
(146 structures) of the data is used for testing.

The classification model is performed using linear ridge
classification, with an alpha regularization parameter of 1e-2.
We evaluate the effectiveness of our model using the accuracy
score, classification report, and confusion matrices as they are
implemented in Sci-kit Learn. The training set has an accuracy
of 0.96 and the test set has an accuracy of 0.91. Fig. 6 shows a
confusion matrix represented as a pie chart where negative
values, or 0, denote quintet structures and positive values, or
1, denote triplet structures. A true negative (TN) indicates a
negative value, or quintet, is predicted correctly and a false
negative (FN) indicates that a positive value is predicted incor-
rectly to be a negative value. For the triplets, a true positive
(TP) designates triplets being classified correctly and a false
positive (FP) designates a negative value being classified incor-
rectly as a positive value. The training set has a TN of 67.06%,
FN of 1.47%, TP of 29.41%, and FP of 2.06% and the test set
has a TN of 71.92%, FN of 5.48%, TP of 19.18%, and FP of
3.42%. Further evaluation of the model includes metrics such
as the precision, recall, and F1-score (see ESI, Section S3†).

After the calibration of the classification model, we per-
formed an extensive search of the kernel ridge regression para-
meters with three-fold cross-validation using GridSearchCV in
Sci-kit Learn (the parameters can be found in ESI, Section
S4†). The optimal parameters were a Laplacian kernel with an
alpha regularization parameter of 1e-2 and a gamma kernel
parameter of 1e-2.
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