
Data-Driven Refinement of Electronic Energies from Two-Electron
Reduced-Density-Matrix Theory

Grier M. Jones, Run R. Li, A. Eugene DePrince, III,* and Konstantinos D. Vogiatzis*

Cite This: J. Phys. Chem. Lett. 2023, 14, 6377−6385 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The exponential computational cost of describing strongly
correlated electrons can be mitigated by adopting a reduced-density matrix
(RDM)-based description of the electronic structure. While variational two-
electron RDM (v2RDM) methods can enable large-scale calculations on such
systems, the quality of the solution is limited by the fact that only a subset of
known necessary N-representability constraints can be applied to the 2RDM in
practical calculations. Here, we demonstrate that violations of partial three-
particle (T1 and T2) N-representability conditions, which can be evaluated
with knowledge of only the 2RDM, can serve as physics-based features in a
machine-learning (ML) protocol for improving energies from v2RDM
calculations that consider only two-particle (PQG) conditions. Proof-of-
principle calculations demonstrate that the model yields substantially improved
energies relative to reference values from configuration-interaction-based
calculations.

A n active space of strongly correlated electrons is
challenging to describe computationally because the

complexity of the exact configuration interaction (CI) wave
function grows exponentially with the number of active
electrons and orbitals. As a result, the largest reported
complete active space self-consistent field (CASSCF)1−4

calculation to date involved only 22 electrons distributed
among 22 orbitals [a (22e, 22o) active space].5 In light of
these difficulties, a large body of work has attempted to
circumvent the exponential scaling of exact CI through various
approximate CI schemes,6−14 as well as via alternative
representations of the electronic structure, including the
density matrix renormalization group (DMRG) approach15−19

and two-electron reduced density matrix (2RDM) meth-
ods.20,21

The energy of a many-electron system can be represented
exactly in terms of the 2RDM, and the 2RDM itself is a
compact mathematical object (relative to the complexity of the
wave function). Hence, a 2RDM-based representation of
electronic structure seems natural, ostensibly making 2RDM
theory a desirable alternative to CI. Unfortunately, a variety of
issues plague 2RDM-based calculations,22−27 and these issues
are rooted in a singular challenge: without explicit knowledge
of a wave function that maps to the 2RDM, a large number of
nontrivial constraints must be applied to the 2RDM to
guarantee that it is derivable from an N-electron density matrix
or an ensemble of such density matrices. Such a 2RDM is said
to be “N-representable.”28

The ensemble N-representability problem is, in principle,
solved, at least in the sense that a complete hierarchy of

constraints on the 2RDM has been proposed.29−31 In practical
variational 2RDM (v2RDM) calculations,20−24,26,32−56 how-
ever, one imposes only a subset of necessary N-representability
conditions; such conditions usually include the two-particle
(PQG) conditions35 or the partial three-particle conditions
known as T1 and T2.44,57 At the PQG level, in particular, large
numbers of strongly correlated electrons can be efficiently
treated; for example, a v2RDM-based calculation involving a
(64e, 64o) active space can be completed in a matter of
hours.55 While PQG-level calculations can give important
insight into the qualitative properties of strongly correlated
systems, the quantitative accuracy of such calculations can be
poor, with the correlation energy often overestimated by as
much as 20%, even in small systems near their equilibrium
geometries.58 PQG-derived energy differences, such as spin-
state splittings,21 can be much more accurate, but it is
nonetheless clear that partial three-particle conditions (e.g.,
T2) or even full three-particle conditions (three-positivity or
3POS)43,59 may be necessary to achieve quantitative accuracy,
in general. The challenge is that imposing these additional
conditions comes at a much higher floating-point cost.
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Machine learning (ML) is an emerging tool in electronic
structure theory for recovering the electronic energies,60−67

wave functions,68,69 and molecular properties of post-Hartree−
Fock methods.70,71 Specifically, for ML applications to wave
function methods, representative examples include coupled-
cluster with singles-and-doubles excitations (CCSD), where
ML is used to learn the two-electron amplitudes,65,68 and the
CI problem where ML allows the efficient selection of
important configurations.72−76 With respect to RDMs, a so-
called density tensor representation has been proposed77 to
predict CCSD electronic energies and dipole moments from
the one-electron reduced density matrix (1RDM), and more
recently, Sager-Smith and Mazziotti78 have demonstrated that
geminal occupations (the eigenvalues of the 2RDM) can be
estimated from correlation temperatures extracted from a
convolutional neural network.
The goal of the present work is the prediction of complete

active space (CAS) CI quality electronic energies from CAS-
v2RDM calculations that consider only the PQG constraints.
Toward this aim, we developed an ML protocol called data-
driven v2RDM (DDv2RDM) that learns differences between
CI and v2RDM energies using features that can be generated
from RDMs optimized at the PQG level of theory. Crucial to
the success of this model is the recognition that the T1 and T2
conditions are partial three-particle conditions, in the sense
that they are expressible in terms of the 2RDM, without
knowledge of any three-body RDMs. As such, violations of the
T1 and T2 conditions can be evaluated using 2RDMs
generated at the PQG level of theory. Here, we show that
these intrinsic features of the v2RDM method are necessary for
a transferable ML model. Moreover, this procedure paves the
way for improved data-driven v2RDM models that consider
additional higher-order lifted constraints29,31 that also only
depend on the 2RDM and, thus, could serve as features in such
ML-based models.
The elements of the 1RDM and the 2RDM are defined in

second-quantized form as

= | |
†

D a aq
p

p q
1

(1)

and

= | |
† †

D a a a ar s
p q

p q s r
2

(2)

respectively. Here, indices p, q, r, and s represent spatial
molecular orbital labels and σ and τ are spin labels. We are
considering only nonrelativistic Hamiltonians, in which case
the nonzero blocks of 1D and 2D are spin conserving. In order
for the 2RDM to be physically meaningful, it must satisfy a
number of statistical conditions: it should have a fixed trace, be
Hermitian, be antisymmetric with respect to the exchange of
particle labels, and contract to the 1RDM. These RDMs must
also be positive semidefinite (e.g., 2D ≻̲ 0). At the PQG level
of theory, the one-hole RDM (1Q), the two-hole RDM (2Q),
and the particle-hole RDM (2G) should also be positive
semidefinite, and the elements of these RDMs should map
onto the elements of the 2RDM and 1RDM according to the
anticommutation relations of Fermionic creation and annihi-
lation operators. The elements of 1Q, 2Q, and 2G are defined
as
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respectively. Here, we see that 1Q and 2Q have the same spin-
block structures as 1D and 2D, respectively, whereas that of 2G
is more complex. The symbols κ and λ represent spin labels,
and the nonzero spin blocks of 2G are those for which the
number of α-spin (β-spin) creation operators equals the
number of α-spin (β-spin) annihilation operators.
At the full 3POS level of theory, four additional three-body

RDMs should be positive semidefinite and map to one another
and to the 2RDM (see ref 59 for additional details). The
elements of these RDMs are defined by
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Here, μ and ν represent spin functions, and as was the case for
2G, the nonzero spin blocks of 3E and 3F are those for which
the number of α-spin (β-spin) creation operators equals the
number of α-spin (β-spin) annihilation operators. One can also
define weaker three-body constraints on the 2RDM by taking
specific linear combinations of the three-particle RDMs
defined above.44,57 In particular, we have

= +T1 D Q
3 3

(10)

= +T2 E F
3 3 (11)

Both of these RDMs should be positive semidefinite, and
importantly, the right-hand sides of eqs 10 and 11 can be
defined without knowledge of any three-body RDM. As a
result, we can evaluate errors in the T1 and T2 conditions (the
appearance of negative eigenvalues in these matrices) using
RDMs optimized at the PQG level of theory.
The aim of our work is to develop an ML model to learn the

difference between CI energies and those generated at the
PQG level of theory using features based on the RDMs defined
above. In order to generate a viable and transferable model, we
performed extensive exploratory data analysis and feature
engineering. We include the following features in the
DDv2RDM model: the entropy of one- and two-body RDMs

=S n nlog
i

i i2
(12)

where ni are the eigenvalues of the RDM, traces of the spin
blocks of the cumulant 2RDM, Tr(2Δ), with

= D D D
2 2 1 1 (13)

the norms of the spin blocks of the cumulant 2RDM, || 2Δ||2,
and information related to violations in the T1 and T2
conditions (i.e., the existence of negative eigenvalues). We
quantify both the frequency of the T1 and T2 violations (how
many eigenvalues are negative, as a percentage) as well as the
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magnitude and distribution of these violations (average,
variance, and root-mean-square of the negative eigenvalues).
In eq 13, the symbol ∧ denotes the Grassman wedge
product.79

Our data set includes these features computed along
potential energy curves for 36 neutral diatomic species formed
from hydrogen, lithium, beryllium, boron, carbon, nitrogen,
oxygen, and fluorine atoms. We consider multiple spin states,
i.e., singlet and triplet states for molecules with even numbers
of active electrons and doublet and quartet states for molecules
with odd numbers of active electrons. Dissociation curves are
evaluated over interatomic distances ranging from 0.6 to 2.9 Å
for all cases. We also considered multiple basis sets (STO-3G,
6-31G, and cc-pVDZ). For minimal basis (STO-3G)
calculations, the active space was chosen to be the full orbital
space, whereas correlated calculations performed within the 6-
31G and cc-pVDZ basis sets considered only the full valence
space to be active. Canonical restricted (open-shell) Hartree−
Fock orbitals were used in all correlated calculations (i.e., the
orbitals were not further optimized for v2RDM- or CI-driven
CASSCF). All v2RDM calculations account for PQG35

ensemble N-representability constraints. The v2RDM calcu-
lations were considered converged when the primal-dual
energy gap fell below 10−6 Eh and the primal/dual errors fell
below 10−5. We refer the reader to ref 55 for a description of
these quantities. We used a value of −1 × 10−8 for eigenvalues
of T1 and T2 as a cutoff when evaluating the statistical
measures of violations in these conditions.
In our ML model, we formulate the target value as a

correction to the v2RDM energy, i.e., the difference between
the CI and v2RDM energies, ECI − Ev2RDM. Systems for which
the mean of the root-mean-square errors (RMSEs) of the T1
or T2 violations across the potential energy curve are less than
10−6 are excluded. Since we consider multiple spin states, the
ML model is evaluated on two sets of data, corresponding to
systems in their ground or excited spin states, as determined by
the CI energy at the equilibrium geometry. The spin
multiplicities for all systems can be found in the Supporting
Information (Figure S1).
To gain insights into the distributions of the target values,

we analyze the minimum, mean, and maximum values across
the potential energy curves for all molecules represented within
the STO-3G, 6-31G, and cc-pVDZ basis sets (Figure 1a,b,c,
respectively). As shown in Figure 1a−c, the maximum
deviation often occurs at intermediate bond lengths, with the
exception of the ground spin states optimized in the cc-pVDZ
basis (left-hand panel of Figure 1c). In this case, the maximum
deviation occurs closer to the bond dissociation limit. For the
ground spin states, the maximum deviation between v2RDM
and CI energies occurs for the singlet state of the C2 molecule,
regardless of the basis set. For the STO-3G, 6-31G, and cc-
pVDZ basis sets, these maximum deviations are 0.0982 Eh,
0.0717 Eh, and 0.0485 Eh, respectively. For the excited spin
states, the maximum deviation between v2RDM and CI
energies occurs for the doublet state of the BC molecule in the
STO-3G and 6-31G basis sets and the singlet state of the BN
molecule in the cc-pVDZ basis set. For the STO-3G, 6-31G,
and cc-pVDZ basis sets, these maximum deviations are 0.0850
Eh, 0.0554 Eh, and 0.06179 Eh, respectively. Overall, these large
deviations between the CI and v2RDM energies motivate the
development of an ML-based methodology to correct the
v2RDM energies.

All ML models developed for this study utilize kernel ridge
regression (KRR) with a radial basis function (RBF) kernel,
defined as

= || ||k x x x x( , ) exp( )i j i j 2
2

(14)

where γ is a hyperparameter. In all models, input features were
normalized using a MinMaxScaler function, while γ and the
model regularization parameter α were optimized using a 5-
fold parameter grid search as implemented in Sci-kit Learn.80

An example of the model parameters examined can be found in
the Supporting Information (section S2).
Figure 2 shows CI and v2RDM potential energy curves

(panel a) as well as deviations between CI energies and those
from v2RDM and DDv2RDM (panel b) for a representative
example: the N2 molecule within the cc-pVDZ basis set. Here,
we consider evenly spaced points along the curves, with 50% of
the data used for training and the remaining data reserved for
testing. Figure 2b shows that the maximum deviation between
CI and v2RDM for the singlet state is 2.1222 × 10−2 Eh at 1.8
Å, while that for the triplet state is 1.7031 × 10−2 Eh at 1.7 Å.
Overall, the RMSE between CI and v2RDM energies are
1.2149 × 10−2 Eh and 9.6136 × 10−3 Eh for the ground and
excited states, respectively. Addition of the DDv2RDM
correction reduces the RMSE of the singlet spin state to
2.3550 × 10−4 Eh and 1.1683 × 10−3Eh for the training and test
sets, respectively. For the triplet spin state, the training set
RMSE is reduced to 7.0262 × 10−9 Eh, while for the test set the
error is reduced to 8.8469 × 10−4 Eh. These reductions
translate into percent improvements of 98.1% and 90.3% for
the training and testing for the singlet state, respectively, while

Figure 1. Minimum, mean, and maximum values of the target values
(ECI − Ev2RDM) at each bond length for ground (left) and excited
(right) spin states optimized within the (a) STO-3G, (b) 6-31G, and
(c) cc-pVDZ basis sets.
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for the triplet state, these improvements are 99.9% and 90.8%,
respectively.
We have assessed the transferability of the DDv2RDM

method for two cases: (i) different models were developed for
ground versus excited spin states within a given basis set, and
(ii) a unified model was created that considered all available
data within a given basis set. Based on the T1/T2 selection
criteria, the data set for the ground spin states includes 22
STO-3G, 17 6-31G, and 18 cc-pVDZ systems, while that for
the excited spin states includes 19 STO-3G, 21 6-31G, and 19
cc-pVDZ systems. We evaluate the performance of the models
using standard regression metrics, which include the RMSE
and the coefficient of determination (R2). It was found that the
most transferable and least overfit model was obtained when
both sets of data were used for training and testing DDv2RDM
(section S4 in the Supporting Information). The regression
parity plots for this model are shown in Figure 3 for the three
basis sets under consideration. For the STO-3G basis set
(Figure 3a), the model achieves R2 values of 0.9891 and 0.9858
for the training and test set, respectively. The training set has
an RMSE of 1.8393 × 10−3 Eh, and the test set has an RMSE of
2.1117 × 10−3 Eh. Figure 3 shows that the model trained on 6-
31G data exhibits increased accuracy, with respect to the STO-
3G basis set. Training and testing R2 values are 0.9954 and
0.9897, respectively, which correspond to RMSE values of
8.8163 × 10−4 Eh and 1.3442 × 10−3 Eh, respectively. The least
overfit model is the cc-pVDZ model (Figure 3), which has R2

values of 0.9468 and 0.9426 for training and testing,
respectively, with RMSEs of 2.6844 × 10−3 Eh and 2.7863 ×

10−3 Eh, respectively.
We further examined the performance of our model by

analyzing the RMSE of the DDv2RDM energy for each system

in the ground and excited spin states, as shown in Figure 4. For
the STO-3G basis set, the molecules with the largest training
and test errors are the singlet (ground) state of BeO (4.4841 ×

10−3Eh and 5.2121 × 10−3 Eh, respectively, Figure 4a) and the
singlet (excited) state of BeC (3.8980 × 10−3 Eh and 4.3875 ×

10−3Eh, respectively, Figure 4b). The largest RMSEs for the 6-
31G basis set correspond to four different systems for the
training and test sets for both spin states. For the ground state,
shown in Figure 4a, the largest error in the training set
corresponds to the doublet state of CN with an RMSE of
1.7559 × 10−3 Eh and, for the test set, the singlet state of C2

with an RMSE of 2.1021 × 10−3Eh. The excited spin states
have a training RMSE of 2.1099 × 10−3 Eh for the doublet state
of BC and test RMSE of 2.8779 × 10−3 Eh for the singlet state
of B2. Among the ground state systems, CN has the largest
training and test RMSE of 6.5752 × 10−3 Eh and 7.0247 × 10−3

Eh, respectively, both of which correspond to the doublet state

Figure 2. (a) The potential energy curves of N2 using the cc-pVDZ
basis set for the ground (singlet, purple) and excited (triplet, orange)
spin states. The CI energy is shown as a solid line and the v2RDM
energy as a dashed line. (b) Deviations between CI and (DD)v2RDM
energies.

Figure 3. Regression parity plots comparing the true, calculated target
values with the predicted target values for the (a) STO-3G, (b) 6-
31G, and (c) cc-pVDZ basis sets. Probability density histograms are
given on the x- and y-axes. The left (purple) panel shows the training
and right (orange) panel shows the test data.
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of CN at the cc-pVDZ basis set. Similar to the ground state
systems, the largest training and test errors for the excited
states correspond to two cc-pVDZ systems, where the training
RMSE is 5.3685 × 10−3 Eh for the singlet state of C2 and the
test RMSE is 4.9285 × 10−3 Eh for the doublet state of BC.
Lastly, we explore the issue of interpretability by

investigating how the feature set affects the performance of
the DDv2RDM model performance. For that purpose, we have
used SHapley Additive exPlanation (SHAP) values.81 The
SHAP analysis provides feature explanation values based on
cooperative game theory that show how features (players in
the game) affect the ML model in an additive manner with
regard to the prior expectation value E[f(X)], where f(X) is the
model target value dependent on the feature set X. As a
method based on game theory, the base value of E[f(X)]
corresponds to the model trained without any features (no
players being present), and then, features are added into the

model such that the SHAP values of individual features always
sum to the difference between all features (players) and no
features (players) being present. In other words, the SHAP
values will sum up to the difference between E[f(X)] and f(X).
Based on this formulation, SHAP values can provide a clear
measure of how strongly a feature positively or negatively
impacts the model, as each SHAP value is summed from
E[f(X)] to the predicted value f(X).
As a measure of feature importance, we use the absolute

value of the SHAP values when analyzing single systems and
the mean absolute SHAP values when analyzing sets of data. As
an example, using the 6-31G basis set, we compare the
absolute SHAP values of the ground spin state of the C2

molecule at 1.7 Å (Figure 5a) and the mean absolute SHAP
values of the full data set (Figure 5b) consisting of 17
molecules in their ground spin state and 21 molecules in their
excited spin state. For both cases, the three most important
features correspond to the average violation of the T2
conditions and the entropies of the α- and β-blocks of one-
hole RDM (1Q). The essential role of T2 is not surprising.
Violations in the T1 and T2 conditions are the only features
that are directly related to energy errors (in the sense that, for
an exact solution, the T1 and T2 conditions would not be
violated), and T2 is known to be the stronger condition. On
the other hand, the importance of the entropy of the one-hole
RDM was not anticipated, nor was the fact that the entropy of
the 1RDM apparently contains much less valuable information
for the model. 1D and 1Q have complementary structures, so it
is not immediately obvious why one of these RDMs would
contain more useful information than the other. Nevertheless,
the SHAP values clearly indicate that the entropy of 1Q
significantly impacts the model performance.
Among the features that have less impact on the model

performance, a few are worth highlighting. First, as shown in
Figure 5a,b, the variance of the violations of the T1 condition
and the RMS violations in the T1 condition are clearly not
important. The average violation in the T1 condition carries
slightly more weight in the model, but this feature is still far
less impactful than the entropy of 1Q or the average violation
in the T2 condition. While violations in the T1 condition
imply that the 2RDM is not N-representable and, thus, that the
associated energy is a lower bound to the CI energy, it is well-
known that T1 is a weak condition, compared to T2. From this
point of view, it is not too surprising that violations in T1 do
not carry much important information for the model. Second,
for the full set of data in the 6-31G basis set (Figure 5b), the
least important feature is the trace of the αβ-block of 2Δ; this
feature is also unimportant for the specific case of the ground
spin state of C2 (Figure 5a). It can be shown that the trace of
the full cumulant 2RDM is negative for a correlated system; it
can also be shown that the trace of the αβ-block of 2Δ should
be exactly zero. However, in practice, we obtain small nonzero
values for Tr(2Δαβ) that reflect the convergence criteria we use
in the v2RDM optimization. We have intentionally included
these small, nonphysical quantities in our model as a means of
testing the ability of SHAP analysis to identify irrelevant
features. Indeed, the SHAP values clearly and correctly reflect
that this feature does not impact the ML model, which
suggests that this sort of analysis could be used for more
elaborate feature engineering. When retraining the model in
the absence of the Tr(2Δαβ) feature, we obtain incrementally
improved results, with less overfitting. This reduction in
overfitting is highlighted by reduction of the absolute deviation

Figure 4. Error plots for the model trained considering all available
data within a given basis set where the (a) ground and (b) excited
spin states are partitioned into the training (top; 50% of the data) and
test set (bottom; 50% of the data).
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between train and test RMSEs of 4.6253 × 10−4 Eh of the
original model and 3.4936 × 10−4 Eh for the updated model
(see Figure S66).
The trends highlighted for the 6-31G data set from the

SHAP analysis are consistent with those observed in the STO-
3G (Figure S63) and cc-pVDZ (Figure S64) data sets, which
are compared with the 6-31G data in Figure S65. As discussed
above, the average violation of T2 is among the most
important features in the STO-3G and cc-pVDZ models
(actually, according to the SHAP analysis, it is the most
important feature in these models), and the entropies of 1Qα

and 1Qβ are also among the three most important features for
the STO-3G data set. For the cc-pVDZ data set, only the
entropy of 1Qβ appears among the three most important
features. As depicted in Figure S65 we can also see that
Tr(2Δαβ) and violations of the T1 condition are, again, among
the least important features in the data sets. Overall, the SHAP
values appear to be useful for providing insights into the
relationships between the physical information introduced
through the DDv2RDM feature set and the target value.
To summarize, we have introduced a data-driven v2RDM-

based method, DDv2RDM, which is an ML model for the
efficient recovery of CI-quality electronic energies. Using a
diverse data set composed of diatomic species in multiple spin
states and basis sets, our models exhibit mean RMSEs of
1.4443 × 10−3 to 1.7841 × 10−3 Eh, which is near chemical
accuracy (i.e., 1.5936 × 10−3 Eh or 1 kcal/mol) and a
significant improvement over the native accuracy of v2RDM
calculations performed under two-body N-representability
conditions. A crucial component of the success of this model
is the use of features based on high-order N-representability
conditions (T2) evaluated with knowledge of RDMs that can
be optimized efficiently using low-order v2RDM theory. We
also introduced SHAP value analysis, a feature importance
method based on cooperative game theory that can provide
insights into the physical information included in the feature
set and the impact of these features on the ability of the model
to learn the v2RDM energy correction. The insights provided
by this method confirmed our expectation that violations in the
T2 condition carry important information that could be
exploited by the ML model while also revealing the surprising
impact of the entropy of the one-hole RDM on the model.
This work paves the way for improved ML models that refine
energy estimates from v2RDM theory and provide high-
accuracy alternatives to intractable CI-based calculations on
large numbers of strongly correlated electrons.
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