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ABSTRACT: In the noisy intermediate-scale quantum era, ab initio Customizable Basi Modular Hvbrid
computation of electronic structure problems has become one of the major S:ts (? ;:::raatign asis ‘l;iflflear;nt)i(atrilm;
benchmar.ks for 1dent1fylng the boundary betwefen classical an'd quantum Beyond CGTO s
computational power. Basis sets play a key role in the electronic structure
methods implemented on both classical and quantum devices. To investigate
the consequences of single-particle basis sets, we propose a framework for
more customizable basis set generation and optimization. This framework
allows composite basis sets to go beyond typical basis set frameworks, such as
atomic basis sets, by introducing the concept of mixed-contracted Gaussian-
type orbitals. These basis set generations set the stage for more flexible
variational optimization of basis set parameters. To realize this framework, we
have developed an open-source software package named “Quigbox” in the Julia programming language. We demonstrate various
examples of using Quigbox for basis set optimization and generation, ranging from optimizing atomic basis sets on the Hartree—
Fock level, preparing the initial state for variational quantum eigensolver computation, and constructing basis sets with completely
delocalized orbitals. We also include various benchmarks of Quigbox for basis set optimization and ab initial electronic structure
computation.
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1. INTRODUCTION N N 7

1 '
M; N NY = - =V’ - —_—
Electronic structure” has been the intersection among multiple Hoedl )= Z 2 Z lr — R’
& a=1 a=1"Ta a

disciplines, including quantum physics, quantum chemistry, and
material science. The goal of the field is to study the states and + Z = Z hy(a; M) + Z hy(a, b)
dynamics of many-electron systems, or more specifically, the a=1,b>a Ta b>a 3)
electronic Hamiltonian' determined by a nuclear field. Consider
a quantum system consisting of N electrons and N’ nuclei, in where h;(a; M) is a one-electron operator that represents the
which the a’th nucleus with charge Z, is located on position R, kinetic energy of the ath electron and the Coulomb attraction

o

The information on all the nuclei forms a set that specifies the between it and the nuclei and (4, b) is a two-electron operator

nuclear field of the system that represents the interaction between the ath and bth

electrons. The sum of h,(a; M) forms the core Hamiltonian
M={(R,, Z)ld =1,...,N} (1) and the sum of h,(a, b) makes up the electron—electron
interaction in the system.

The electronic Hamiltonian of this system can be separated One of the basic goals of electronic structure study is to solve

from its total Hamiltonian H,, when the Born—Oppenheimer the eigenvalue problem of the electronic problem
approximation” is applied:
elecq)n 8 (I) (4)

eIec(M N Nl) = tot(M; N) - Hnuc(M) (2)
where N' and N* are the numbers of spin-up electrons and spin- E:f:;:;fl: g:::)abrzri 22002233 '%6%
down electrons, respectively, such that N = N' + N*. H, is the Accepted: October 1]9} 2023 \
sum of the nuclear kinetic energy and nuclear repulsion energy. Published: November 4, 2023 :\mé
Instead of being the direct sum of single-electron Hamiltonians,

H,,,. (in the Hartree atomic units) has the form
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where @, is the eigenfunction corresponding to the nth
eigenenergy &,. @, is a many-electron wave function that
obeys the antisymmetric constraint for identical Fermions.

In an effort to alleviate the exponentially growing computa-
tional cost with respect to the total number of electrons, various
ansatzes and numerical optimizations for the many-electron
eigenfunctions have been proposed. Within the domain of
classical numerical simulation, mean-field methods such as the
Hartree—Fock (HF) method"** were proposed to approximate
the ground state with a noninteracting Fermionic state (a single
Slater determinant). Post-HF methods"®™® try to further
represent the ground state with the superposition of Slater
determinants based on one reference state (HF state) or
multiple reference states.

With the successful demonstration on a quantum device to
solve for the ground state of He—H",’ variational quantum
eigensolver (VQE)'’™"* established its potential in utilizing
noisy intermediate-scale quantum (NISQ) devices'*™'® for
computing electronic structure. However, due to the limited
scale of NISQ devices, the applicable basis sets to perform qubit
encoding for VQE have been restricted to small-size basis sets. 13
On the other hand, the interest around basis set optimization for
electronic structures has grown in the past few years'’~'” with
the development of computer algebra techniques such as
automatic differentiation (AD).”"*!

We believe that flexible control and comparable design of
basis sets play a crucial role in developing and benchmarking
electronic structure algorithms in the NISQ_ era, when finding
the boundary between classical and quantum computational
power is vital for exploring practical quantum primacy.'>*>*’
Hence, we propose a unified framework for generating and
optimizing various composite basis sets based on Gaussian-type
orbitals (GTOs). This framework has been realized in an open-
source software toolkit we developed, Quigbox.jl (Quigbox),”*
using the Julia programming language.””*® We show that with
the help of Quigbox, one can control, modify, and improve the
existing basis sets composed of Gaussian-type atomic orbitals
(AOs). Moreover, one can also construct and optimize more
general basis functions beyond AOs. The basis set made of these
basis functions can outperform atomic basis sets or achieve
similar performance while meeting specific requirements, such
as minimal basis set size.

The paper is organized as follows. In Section 2, we elaborate
on the proposal to carry out a more systematic study of basis set
design in the NISQ era. In Section 3, we describe the additional
customizability our composite basis set generation framework
brings for electronic structure computation and introduce a
more general form of the linear combination of GTOs, mixed-
contracted GTOs. We then derive the general expression of the
basis set parameter gradient under the said framework and
explain Quigbox’s optimization architecture in Section 4. From
Sections 5—7, we demonstrate several examples of applying our
framework for basis set generation and optimization using
Quigbox. We conclude the paper and discuss the outlook of
potential basis set research directions in Section 8. In Appendix
A, we present benchmarks on Quigbox’s functionalities that are
mentioned in this paper and also offered by other electronic
structure packages to provide an overview of Quigbox’s
performance as a scientific software. Appendix B includes all
the Supporting Information for Section 5.2. Summaries of the
essential acronyms and notation conventions we use throughout
this paper are in Appendix C.
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2. BASIS SET DESIGN FOR THE NISQ ERA

Let E, be the approximate ground-state energy of H,,,
associated with a quantum many-electron system. Given a
nonorthogonal basis set {¢),In = 1, ..., W} that contains W spatial
orbitals with an overlap matrix § defined by S;; = (¢l¢);), we can
construct an orthonormal basis set

{p|Vmne(l,..., W}, {glp)=20,,}

by performing a symmetric orthogonalization

@, = ) X,¢, withX = 87/ ©

Thus, a trial state [¥,(c)) parametrized by ¢ can be
constructed from {¢,} following an ansatz of the ground
state. Depending on the selected ansatz, ¢ may not only
characterize the single-electron modes but also contain the
amplitudes of multiple Slater determinants formed by the
modes. According to the variational principle, E; would be the

(5)

lower bound of the energy expectation E(c) with respect to

I¥o(c))
EO < EO(C) = <lP0(C)|Helec|lPO(C)>

(Fo(e)¥5(c)) (7)

Regardless of the choice of ansatz (e.g., the HF
approximation) used to construct [¥(c)), Ey(c) in eq 7 can
always be decomposed into three parts

x = £ (Al{g,)),
y = f,(Bl{g,}]),
Ey(e) = f,(c; %, y)

(8)

. w? W’ w* .
where vector functions flz R" - R andfzz R" - R

generate intermediate results x and y mapped from tensor A and
tensor B, which discretize the one-electron and two-electron
operators, respectively, onto {¢,,}. The tensor elements of A and
B are called electronic integrals (or molecular integrals in the
context of molecular systems)

A= [ rg (e Mg () = (g)g) 9)

By = [ drdng )0 (), b () ()

= (2.9149) (10)

The third mapping function f; in eq 8 takes x and y as
parameters and ¢ as the input variable. In this way, the
computation of E; is transformed into an optimization problem
of finding the optimal value of ¢

¢’ = arg min Eo(c)
c (11)

This can be done using either self-consistent field (SCF)
methods"*”~*? or gradient-based methods realized by AD.*

One can see from eq 8 that the expressions of f, f,, and f;
depend on the choice of the ground-state ansatz. More
specifically, the elements of x and y can be considered as
contributions to the ground-state energy by the electronic
integrals. An example of f;, f,, and f3’s expression in the case of
restricted closed-shell HF (RHF) method is shown in eq 26 in
Section 4.1.

https://doi.org/10.1021/acs.jctc.3c00011
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Equations 9 and 10 indicate that the discretization of H,. is
affected by the choice of {¢,,}, which can introduce error due to
the incompleteness of the finite basis set and affect the hardness
of the electronic structure problem.”" Following (eqs 8—11), the
process of solving for the electronic structure properties can be

generalized into a standard procedure, as shown in Figure la.

Electronic N Finite Model Numerical
Hamiltonian Basis Set Approximation Eigensolver
(a)
Molecular Basis Set Quantum Circuit
Electronic —> For -> Circuit -> Obtimi
Hamiltonian NISQ Device Ansatz plilnizey

(b)

Well-Defined Computational Tasks Quantum/Classical/Hybrid

Algorithms
Elet_:tron_ic Customized | | ~ Quantum Classical
Hamiltonian + .
Ensemble Basis Sets Resources Resources

()

Figure 1. Overall procedure of solving the electronic Hamiltonian can
be divided into four steps for classical and quantum algorithms, as
shown in (a,b), respectively. A more systematic design and optimization
of basis sets can aid the development of these algorithms for electronic
structure problems, as shown in (c).

The electronic Hamiltonian of the system of interest is first
discretized by a finite set of basis functions. After that, based on a
model ansatz, a further approximation is applied (usually about
the many-electron wave function) to construct the algebraic
expression for the desired observable as an objective function
(i.e, the ground-state energy) with respect to the discretized
Hamiltonian. Thus, the objective function is implicitly a
functional of the basis set. Finally, a numerical eigensolver
(typically a variational optimizer) finds the approximate solution
¢®. Accordingly, the procedure of VQE for molecular electronic
structure also falls into four similar steps, as shown in Figure 1b.

From the generalized procedure of solving an electronic
Hamiltonian, we showed why a basis set can affect both the
accuracy and overhead of the overall computation. In the
context of using VQE for electronic structure, this effect
becomes more significant. Due to the limited number of qubits
in NISQ devices for Fermionic encoding,32_35 there is often a
trade-oft between the size of the basis set and the size of the
studied many-electron systems.”*° Moreover, the applied
Gaussian-type AOs (e.g,, STO-3G*” and cc-pVDZ?) are, in
fact, not fully optimized for electronic structure properties such
as ground-state energy given a fixed number of single-electron
modes. This can be supported by the literature about the
optimization of AOs.'®”” For the purpose of improving the
practicality of NISQ algorithms for electronic structure
problems, we believe a systematic study of customizable basis
set generation is of high importance. For instance, including
basis set optimization and design as part of VQE’s architecture
can introduce the physical characteristics of many-electron
systems in real space to VQE. This may improve various aspects
of the algorithm, such as trial qubit state preparation or
optimizer configuration for the landscape of the corresponding
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parameter space. To demonstrate the potential of a custom basis
set for VQE, we will include an example in Section 6 of preparing
an optimized basis set for ground-state VQE computation based
on the framework we shall introduce in the next two sections.

Additionally, customizable basis set generation enables a
better formulation to study the electronic Hamiltonian as a
computational task. It has been shown that approximating the
ground state of the electronic Hamiltonian with a fixed basis set
in real space (and fixed particle number) is QMA-complete.”"*’
This suggests that the way a basis set discretizes the real space
can affect the hardness of the electronic structure problem. We
can further incorporate this idea into basis set designs. Given an
ensemble of electronic Hamiltonians with the same number of
electrons, by designing customized basis sets, we shall generate
instances of electronic structure problems classified by different
computational complexities (see Figure 1c). Not only does this
help study the complexity of electronic Hamiltonians but also it
brings in computational complexity as another tool for
benchmarking quantum simulation algorithms'*>>*%*! %3
against purely classical methods in the context of electronic
structure.

3. HIGHER CUSTOMIZABILITY IN GAUSSIAN BASIS
SET DESIGN

Basis sets used for electronic structure computation are typically
classified into three categories: spatially delocalized basis sets
that rely on periodic functions like plane waves,*"** real-space
basis sets that use localized functions such as wavelets
distributed on grid points,46_48 and Gaussian basis sets that
utilize GTOs to form contracted functions to approximate
Slater-type orbitals (STOs).**>°

In our framework, we also use GTO as the building block of
more complicated basis functions for several reasons. First and
foremost, GTO is currently a common choice for constructing
basis sets for molecular systems, the scale of which is applicable
to VQE in the current state of NISQ devices.*”"* This allows us
to optimize and build new basis sets based on the existing
progress of GTO research. Second, the orbital integrals from eqs
9 and 10 in the case of GTO can be computed efficiently and
analytically for the most part”">” so that the numerical error of
the discretized electronic Hamiltonian can be controlled. Last
but not least, by applying specific combinations of Gaussian
functions, certain basis sets with different features from atomic
basis sets, such as floating Gaussian basis sets,>>™>° Gaussian-
based real-space basis sets,”®*” and even-tempered basis sets,*®
can also be constructed.

© H nucleus
@ floating CGTO 1
@ floating CGTO 2

Figure 2. 1 X 2 X 1 layered grid-based Gaussian basis set for H,. Based
on the geometric symmetry of H,, constraints on CGTO parameters are
imposed. CGTOs located on the grid points with the same color can
have identical exponent and contraction coefficients. Correlated grid
points can be directly generated using the helper function GridBox in

Quigbox.

https://doi.org/10.1021/acs.jctc.3c00011
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Figure 3. Comparison between the current standard basis set generation method and our framework in finding the electronic ground-state energy.
Light blue box represents the basis set construction. The light purple box represents the electronic structure algorithm to compute the approximated
electronic ground-state energy E,. The yellow dashed box represents the chosen eigensolver that produces c® as the final input to obtain E,. (a)
Complete computational graph of an algorithm solving for the electronic ground-state energy with the current standard basis set generation method.
(b) Computational graph with extra connectivity and layers after replacing the basis set generation method in (a) with our framework. In the light blue
box, the leftmost added layer represents the primitive parameters {6} that control CGTO parameters {p;} through mapping functions, which can be
either linear or nonlinear functions. Rightmost added layer is composed of MCGTOs as the output nodes (basis functions). Since the CGTOs can
share parameters in Quigbox, more connectivity (blue lines) between the CGTO parameters and CGTOs also becomes available.

In summary, by careful design, GTO can be used to generate ¢°™@r; R, i, j, k, @) = N(x — X)i(y —Y)(z - Z)k
more diverse basis functions beyond the existing Gaussian basis exp(—alr —RP), I=i+j+k r=[xy, 2],
set generation methods provided by the popular software R=[X,Y,Z] (12)
_— 59 .4 60 :
libraries, such as PySCF™" and Psi4,™" for specific needs. where a is the exponent coefficient that determines how diffused
In this section, we first formally introduce GTO. Then, we the GTO is, | represents the orbital angular momentum, and R is
the center position of the orbital. The most common use of
GTOs is to form a contracted GTO (CGTO)

¢mCGTO(r; Rm’ im’ jm’ km) = Z dnqbnGTO(r; Rm' an' im' jm’ km)
functions that improve the versatility of Gaussian-based basis .
(13)

d, are called “contraction coefficients” as multiple concentric
GTOs with equal angular momentum and different weights are
expressed as “contracted” to approximate a STO. STO is a type of orbital that

focus on describing the proposed framework that provides extra

customizability in building GTO-based composite basis

sets compared to the current standard approach.

In general, the form of a GTO in Cartesian coordinates can be

8035 https://doi.org/10.1021/acs.jctc.3¢00011
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accurately represents AOs." The function curve of STO has a
cusp near the orbital center due to its nonvanishing gradient,
which GTO is incapable of reconstructing. However, forming a
CGTO with appropriate contraction coeflicients instead of a
single GTO can alleviate this problem while retaining the
computational efficiency of the GTO.” In our basis set
generation framework, a basis function does not need to be a
CGTO but can also be the linear combination of GT Os that may
not have the same center position or angular momentum. We
define this type of generalized Gaussian-based orbital as mixed-
contracted GTO (MCGTO)

G STO(r) = YL 4 O Ry i s K
m (14)

The expressiveness of MCGTO in our framework provides
the freedom to construct more delocalized basis functions than a
GTO to incorporate the interatomic bonding information
before applying the SCF methods. For instance, one can use the
molecular orbitals of small systems as the basis functions for
larger combined systems.

Furthermore, primitive variables that correlate multiple
CGTOs through mapping functions add another layer of
customizability to basis set generation. These correlations can
encode additional physical information. For example, homo-
nuclear diatomic molecules have spatial symmetry that can be
described by the point group D, ie., they have rotational
symmetry about their internuclear axis and reflection symmetry
about a plane perpendicular to the axis.”’ Such molecular
symmetry affects the formation of their molecular orbitals.
Therefore, it is reasonable to correlate the parameters of AOs
during the atomic basis set generation so that such symmetry is
imposed to reduce the computational cost for later parameter
optimization.

By using primitive variables to correlate basis functions,
symmetries irrelevant to the specific molecular systems can also
be applied to a basis set. For example, in a grid-based Gaussian
basis set, the center position of each basis function would also be
the location of a grid point controlled by the spacing of the grid
points. A mapping function from the single spacing parameter
(i.e., the sparsity of gird points) to the floating CGTO center
positions greatly lowers the total number of basis set parameters
while maintaining the topology of the grid box. The exponent
and contraction coeflicients of the floating CGTOs can also be
correlated to reduce parameters further. In Figure 2, we show an
example of applying both the point-group symmetry of the H,
molecule and the translational symmetry of grid points to
construct a basis set.

Combining the generalized Gaussian-based orbital, MCGTO,
and the additional correlation configuration among orbital
parameters, we form a more customizable generation method of
Gaussian-based basis sets. To provide a straightforward
comparison to the currently common generation method, the
computational graphs of both methods in the context of
electronic ground-state energy computation are shown in Figure
3.

Aside from the system-specific parameters indicated in eq 3,
the parameters of the generated basis set {¢,} also affect E,. In
particular, for the typical Gaussian basis set generation method
(Figure 3a), the CGTO parameters {pli = 1-~Np} are such
parameters. However, our basis set generation framework
(Figure 3b) further allows more primitive parameters {]i =
1--Ny} to control these orbital parameters. On top of this,
correlations between CGTOs can be implemented with shared

orbital parameters among them, and MCGTOs serve as the
finally generated basis functions. As we fix the coefficients
generated by the eigensolver as shown in the yellow dashed box
(along with the nuclei information M in the gray circled boxes)
in Figure 3, E, is mapped from {0} through layers of
differentiable nodes connected by various mapping functions.
Thus, {6} as the basis set parameters can be optimized using
variational methods based on the analytical gradient of E, with
respect to them, which forms the process of basis set
optimization.

4. VARIATIONAL OPTIMIZATION OF BASIS SET
PARAMETERS

4.1. Generalized Analytical Electronic Structure Gra-
dient with Respect to Basis Set Parameters. Let
{616, e R,i=1,..., Ny} be a set of unique real parameters
(meaning they are distinguishable from each other by their
symbols and indices in spite of whether they have the same
value) that E, explicitly or implicitly depends on. To minimize
E, with respect to {8;}, we need to compute the gradient of E,,

with respect to the vectorized parameters 6 = [0),,....0,...,0x,]",

the analytical form of which can be expressed as****

dE OE, 0
0 — Fo X + <1p0 \p0>
(15)

do ~ d¢, 90
The first term in eq 15 represents the explicit dependency of
the parameters based on the ground-state approximation, and
the second term represents the effective force from the
Hellmann—Feynman theorem.”>*® For the purpose of a
systematic basis set optimization, {6} represents a set of unique
and independent basis set parameters to be optimized. Assuming
the electronic Hamiltonian is independent of these parameters
(e.g., the basis function centers can be detached from the nuclei
locations, forming floating basis functions™ ™), the second
term in eq 15 is eliminated. Thus, the partial derivative of E; with
respect to a single basis set parameter 8, reduces to
% aEO a('om

0, “ oy, 9, (16)

aHe:lec

00

Combining eq 16 with eqs 8—10, we can derive a more
detailed formula of the parameter partial derivative for a general
electronic structure algorithm

9E, _ Z OE, axj.@A + Z JE, a)’k.dB

06, ox, 0A 06, < dy 0B 00,

J

= Z (VAEO O aé){‘q)mn + Z (VBEO O aH[B)mnpq

mnpq
(17)
where © denotes element-wise multiplication, and
0E, 0%;
VAEQ ) = | D, —2—
( A O)mn Z Ox. A
L (18)
JE, %,
(VBEO)mnpq = {Z 0_00_Bk]
£ mnpg (19)
(0gA)n = (9@, l0) + (9,109%) (20)

https://doi.org/10.1021/acs.jctc.3c00011
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(04B)npg = (9g0,0)0,8) + (9,900)\0,0) + (4,81009,9)

+ (4,914,940 (21)

O, dc; | . . .
The term Zl a—c"a—g is not included in eq 17 because V E, is
1 i

always a null vector at ¢ = ¢°. This is under the assumption that
E,(c) is computed variationally and E,, is the global minimum of
E,(c)atc® cf. eqs 7 and 11. Therefore, it should be noted that eq
17 no longer holds true if E; is obtained through nonvariational
methods, such as traditional-coupled cluster method>**®° and
Molle—Plesset perturbation theory.”*

To further expand eqs 20 and 21, based on eq 6, the (Partial
derivatives of the orthonormal {¢,,} can be expressed as”*

n

V9,8V
(a(iX)mn = — z Vmp (A' A )(1/2(/?1/2 )j.q/ll/z) :;)
Pq P4 p q

(09S)un = (o) + (h)048,)

]T

(22)

where V, = [le, .. is the pth eigenvector of S with
corresponding eigenvalue 4,.
We can even further expand the partial derivative of each ¢, as

the product of two terms within the summation

o¢ op.
dh= 2~
pElp) dpj %,

- Vi,

(23)
where { p},"} are all the CGTO parameters ¢, explicitly depends

on and is differentiable with respect to

'} =

n n n
) {a, .., ang. o dy, ..

n n n n
) “Ngro? Xl ;Y1 )] Zl J]

ey X;\llcnen, Y;\’]Cnen, Z;\llcne“} (24)

The superscript n of the included CGTO parameters (e.g,, &’
) indicates that they are corresponding to ¢,. Specifically, N&rq
is the total number of GTOs in ¢, and N, _ is the total number of
GTO centers that group the GTOs in ¢, into concentric GTOs.
Thus, all the explicit (differentiable) CGTO parameters from
{¢,} would be

1 2 w

gt =1ptuiptu—uip} (25)

In the recent Gaussian basis set optimization method,"® all
basis functions in {¢),} are CGTOs so N, | = 1, and the basis set
parameters are just a subset of all the explicit parameters, as
shown in eq 25. This effectively reduces eq 23 to only one term, a
partial derivative with respect to 8, as dp;/90; = J;.

By calculating the analytical parameter gradient, one can
perform differentiation-based parameter optimization for the
generated basis set. In fact, optimization of minimal atomic basis
sets with respect to the HF energy has been implemented in a
Python software package named “DiffiQult”."® Optimizing the
basis set parameters with respect to the HF energy is a good
starting point for many more advanced electronic structure
algorithms, such as single-reference and multireference config-
uration interaction computations that are based on the HF state.
Thus, when we try to implement the generalized basis set
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optimization in Quigbox, we also set the objective function of
basis set parameter optimization to the HF energy. Specifically,
in the case of RHF, eq 8 would be specialized as'

T =f(A) = A,
T’ = £ (B) := B,

Ey(D) = f,(D; T*, T?)
= Z DU/J(T;ZI + Z D}»ﬁ[ZTiI/Uﬂ - T/{lo’y])
% Ao

(26)

where D is the charge density matrix of the electrons with the
same spin, which can be treated as a matrix format of ¢. Similarly,
T" and T’ are, respectively, ¥ and y in tensor formats.

4.2. Variational Parameter Optimization Based on
Hybrid Differentiation Design. If one can find all the
elementary differentiation rules required to compute eq 17,
along with the necessary rules for related program subroutines,
in a reliable AD software library, they will be able to finish the
code for the differentiation-based optimization with minimal
effort. Specifically, reverse-mode AD would be the preferable
AD mode to implement as the number of basis set parameters is
normally larger than the output dimension of the objective
function (e.g., E, for the HF energy).21 However, reverse-mode
AD is not well-defined when the diagonalization process of
matrices with degenerate eigenvalues emerges in the program-
ming code. This led to the compromise of using the rather
inefficient forward-mode AD to perform the gradient
computation in DifiQult."®

Instead of fully relying on forward-mode AD or adapting
reverse-mode AD with customized AD rules as a workaround,
we designed a hybrid differentiation engine in Quigbox. This
differentiation engine combines both AD and symbolic
differentiation (SD) so that it can provide both efficiency and
extensibility to Quigbox’s parameter optimization procedure.
The fundamental design of it is to divide the parameter
differentiation, i.e., eq 17, into three parts:

1. Compute V4E, and VgE,,.
2. Compute dyA and dyB.

3. Compute 0yE, = f,(V4Eo, VEy, 044, 0yB) where

f(1, T, T, 1) = Y (17 0 T9),, + ), (T 0 T9),,,

mn mnpq
(27)

The first part requires the computation of eqs 18 and 19,
hence it only depends on the choice of electronic structure
algorithm. The second part requires the computation of eqs 20
and 21, and thus it only depends on the generated basis set. The
third part is simply tensor contractions.

By dividing the chain of analytical differentiation into
computational modules, we lose the capability of utilizing a
single full AD computation. However, since each module can be
independently maintained and updated, doing so can reduce the
risk of code breaking due to bugs coming from external AD
libraries. This is crucial from the perspective of developing
sustainable scientific programs. More importantly, we now gain
the flexibility to design tailored optimization for each module.

Particularly for part one, one can choose between AD and SD
depending on the complexity of eqs 18 and 19 determined by the
applied electronic structure algorithm. As for part two, the
differentiation of each ¢, can be optimized by transforming it

https://doi.org/10.1021/acs.jctc.3c00011
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Figure 4. Diagram of the basis set optimization procedure of Quigbox.
Within each iteration cycle of the optimization, both AD and SD are
applied to compute the parameter gradient. Particularly, partial
derivatives of basis functions with respect to the parameters are then
transformed into a new derivative basis set D, such that part of gradient
computation can be transformed into a direct evaluation of electronic
integrals (shown in the teal box).

into an efficient Gaussian-based electronic integral computation.
Due to the generality of MCGTO, it can represent any linear
combination based on (eqs 12—14). Therefore, any partial
derivative of MCGTO at a fixed point, including a CGTO, can
be fully expressed by a new MCGTO. This means the expression
of MCGTO is complete for an arbitrary order of derivatives of

MCGTO. Hence, we can define a new basis function l//ng" with
respect to 6; and ¢, such that

yh= g, (28)

This effectively transforms the computation of eqs 20 and 21
into the computation of electronic integrals of MCGTOs that
compose a new derivative basis set

D = {g)} U {y) U U {y)

Quiqbox utilizes AD to compute all the partial derivatives that
directly contribute to contraction coeflicients and uses SD to
generate new MCGTOs as the partial differentiation of basis
functions. Due to the multiple dispatch feature and the just-in-
time (JIT) compilation in the Julia programming language,”® D
can be generated automatically and efficiently. In the current
version (0.5.7), Quigbox computes and stores all the
intermediate components of the gradients (V,Ey, VgE,, 944,
and 0y;B) before performing the tensor contraction, cf. eq 27, at
the end of the differentiation process. Consequently, the space
complexity (memory cost) of such a procedure has a lower

bound of Q(W*) and an upper bound of O(N,W*), depending

(29)
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on whether the partial derivatives are computed sequentially or
in embarrassingly parallel.

The architecture of Quigbox’s parameter optimization
procedure applied with the aforementioned hybrid-differ-
entiation design is shown in Figure 4. The computation of the
objective function is isolated from the computation of the
gradient as the former provides a stationary point of ¢ such that
E(c) ~ E, in order to proceed with the latter. As a result, the
option of objective functions can also be extended separately by
programming new computational modules. This allows Quiq-
box to adapt variational algorithms more advanced than HF
without overhauling the overall workflow of basis set
optimization.

In the following three sections, we give examples of utilizing
Quigbox for various basis set optimization and generation
applications. Unless specifically stated otherwise, all the data are
computed solely using Quigbox. The gradient-based optimizer
used by Quigbox is L-BFGS.""" For Quigbox’s performance (as
of version 0.5.7) and for basis set optimization and ab initio
computation, please refer to Appendix A.

5. EXAMPLE I: OPTIMIZING ATOMIC BASIS SETS ON
THE HF LEVEL

One immediate application of Quigbox is to optimize existing
atomic basis sets. Given that the currently implemented
electronic structure algorithms in Quigbox are HF methods,
we shall demonstrate some results of optimizing the CGTO
parameters (&, d, and R unless specified otherwise) of basis sets
for small molecules on the level of the HF approximation.

5.1. Dissociation Curves of H, and Li,. In quantum
chemistry, the potential energy surface (PES) with respect to the
dissociation of a molecular system into smaller constituents is
just as important, if not more important, than the ground-state
energy of the system at its equilibrium geometry. Suppose the
optimized basis set provides no improvement on the overall
shape of the PES curve but only a constant shift compared to the
original basis set. In that case, the practicality of optimizing basis
sets based on energy gradients will diminish, as the optimized
basis set does not provide a better description of energy change
during the dissociation process than the original one.

To show that the boost of the HF approximation from
optimized atomic basis sets can be nontrivial, we plotted the
dissociation curves of optimized STO-3G basis sets in the cases
of H, and Li,, as shown in Figure 5. Specifically, in Figure Sa, the
optimized STO-3G basis set (labeled STO-3G-opt) provides
both a lower energy globally and a better energy surface very
close to the higher-quality basis sets 6-31G®” and cc-pVDZ.*
On the contrary, the STO-6G basis set, which requires more
GTOs to build, is mainly a constant shift of STO-3G. As a result,
the dissociation energy (by the supermolecule approach®) of H,
in STO-3G-opt (0.132 Ha) is much closer to its value computed
in cc-pVDZ (0.130 Ha), as supposed to the results in STO-3G
and STO-6G (both of which are 0.184 Ha).

In the case of Li,, the optimized STO-3G basis set (labeled as
STO-3G-opt as well in Figure Sb) no longer recovers a high
percentage of the HF energy in cc-pVDZ or 6-31G compared to
the case of H,. However, it still provides a better agreement to
cc-pVDZ than both STO-3G and STO-6G from the region of
equilibrium geometry (around Li—Li distance equal to S au) to
the bond-breaking region (where Li—Li distance is beyond 10
au). This is shown more clearly in the lower half of Figure Sb.

https://doi.org/10.1021/acs.jctc.3c00011
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Figure 5. Unrestricted open-shell HF (UHF) potential energy surfaces with respect to the bond length in the cases of H, and Li,. The label “STO-3G-
opt” in each subfigure represents the optimized STO-3G basis set for the corresponding molecules. The surfaces of the HF energy with the nuclear
repulsion included (E) are plotted in the upper-larger canvas of each subfigure. The energy differences (AE) between using cc-pVDZ and each one of
the other four basis sets are shown in the lower-flat canvas of each subfigure.

Table 1. Atomization and Various Formation Energies Related to H and O Computed with Respect to Different Basis Sets”

H,0 +'/,0, >

H,—»H+H 0,-0+0 H,0>2H+0 H,0,—>2H+20 H,+!,0,-H0 H,+0,— H0, H,0,

AH AH AH AH AH AH AH

(kcal/ error (keal/ error (kcal/ error (keal/ error (kcal/ error (kcal/ error (kcal/ error
basis set mol) (%) mol) (%) mol) (%) mol) (%) mol) (%) mol) (%) mol) (%)
STO-3G 115.68 38.37 17.64 45.01 143.44 6.04 140.27 6.46 —18.94 64.27 —6.95 56.78 11.99 67.53
STO-3G-opt 82.98 0.74 —23.90 174.50 130.52 14.50 100.05 24.07 —-59.49 12.22 —40.97 154.79 18.52 49.85
STO-3G** 117.99 41.14 54.59 70.17 165.23 823 176.61 34.04 —19.95 62.37 —4.03 74.94 1591 56.92
STO-3G-opt** 83.08 0.62 20.34 36.60 143.81 5.80 12821 2.69 —50.56 4.62 —24.79 54.17 25.77 30.22
6-31G 81.65 2.33 -9.78 130.49 127.37 16.57 91.17 30.81 —50.60 4.55 —19.30 20.02 31.31 15.22
6-31G-opt 82.89 0.85 —6.09 118.98 133.72 12.41 96.86 26.49 —53.87 1.62 —20.05 24.69 33.82 8.42
cc-pVDZ 81.08 3.01 27.10 15.52 145.99 4.37 125.00 S5.13 —-51.36 3.11 —16.82 4.60 34.54 6.47
CBS limit 83.60 0.00 32.08 0.00 152.66 0.00 131.76 0.00 —-53.01 0.00 —16.08 0.00 36.93 0.00

“Particularly, the reaction enthalpies (AH in kcal/mol) are calculated based on the ground-state HF energies (including nuclear repulsion). The
values of them and the corresponding molecular geometries are provided in Tables 6 and 4, respectively, in Appendix B.

Based on the above two examples, we have shown that we can
improve the performance of a basis set for generating a
molecular system’s dissociation curve without adding more basis
functions. Specifically, optimizing the GTO parameters with
respect to the ground-state ansatz, which in this case is the HF
state, can improve the performance. However, given a fixed
number of primitive GTOs in each basis function, the
improvement it can give is specific to the target system (STO-
3G-opt in Li, provides less improvement than in H,). Thus, it
would be of interest to quantitatively study how the number of
GTOs used to construct CGTOs as basis functions will affect the
performance of an atomic basis set for molecular systems. Due to
Quigbox’s flexible basis set generation and optimization
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framework, it is already well-equipped for this potential future
research direction.

5.2. Atomizations and Formations Involving Hydro-
gen and Oxygen. Aside from the systematic error of the
ground-state energy across different geometries, the trans-
ferability of optimized atomic basis sets across different
molecules is also crucial.”® We refer to “transferability” as the
property of basis sets to provide consistent performance of
calculating the same physical observable for the different
molecular systems. For atomic basis sets, the basis sets from
the same family (e.g, 6-31G) are usually constructed using the
same protocol. By using atomic basis sets from the same family
to compute properties like atomization energy and chemical
reaction enthalpy, some systematic errors generated by the basis

https://doi.org/10.1021/acs.jctc.3c00011
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Chart 1. The Julia code of using Quigbox to optimize the -15.55 N VQE setting
exponent and contraction coeflicients of the STO-3G basis A ¢ UoosisTose
-3G-ECop
set for BeH ; 3G+
2 L Tteeaarree et SRR
1 # Install Quigbox if you haven't already T 1560 FCI/STO-3G
2 using Pkg i/
3 Pkg.add ("Quigbox") =
4 2
. © -15.65
5 # Load Quigbox
6 using Quigbox
7
8 # Set Be-H bond length -15.
' g 15700 10 20 30

9 AngToBr = 1 / 0.529177210903

10 BeHLen = 1.3264 x AngToBr

11

12 # Create a three-point chain of nuclei

13 nucPoints = GridBox((2,0,0), BeHLen) .point

14 nuc = ["H", "Be", "H"]

15 nucCoords = coordOf. (nucPoints) |> collect

16

17 # Build STO-3G with shared parameters

18 bsStr = "STO-3G"

19 bsHl1 = genBasisFunc (nucPoints[1l],bsStr,"H")
20 DbsBe = genBasisFunc (nucPoints[2],bsStr, "Be")
21 DbsHr = genBasisFunc. (bsHl,Ref (nucPoints[3]))
22 bs = [bsHl..., bsBe..., bsHr...]

23

24 # Use L-BFGS
25 # gradient-bas
26 Pkg.add("Optim
27 wusing Optim

28 1lbfgs = function (f, gf, x0)

I

om Optim.jl

0 Hh
D N

ed parameter optimizer

)

= (

29 m = LBFGS () # linesearch: Hager—-Zhang
30 d = Optim.OnceDifferentiable (

31 f, x->gf (x) [begin],

32 x0, inplace=false

33 )

34 o = Optim.Options(;

35 allow_f_increases=false,

36 Optim.default_options (m) ...
37 )

38 s = Optim.initial_state(m, o, d, x0)
39 function (x, _, _)

40 S.X .= X

41 Optim.update_state! (d, s, m)

42 Optim.update_g! (d, s, m)

43 Optim.update_h! (d, s, m)

44 X .= S.X

45 end

46 end

47

48 # Extract and optimize parameters
49 parsAll = markParams! (bs, true)

50 ## Only optimize exponent and contraction
51 ## coefficients

52 parsToOpt = vcat (getParams. (Ref (parsAll),
53 (:cx, :d))...)

54 config = POconfig(;threshold=(le-6, le-4),
55 maxStep=500,

56 optimizer=1bfgs)

57 optimizeParams! (parsToOpt,

58 bs, nuc, nucCoords, config)
59

60 # Renormalize the optimized basis set
61l bs = map(bf->bfx (invosgrtooverlap) (bf, bf),
62 flatten (bs))

sets can be canceled out when taking the energy differences.®””°

Since MCGTO based on optimized atomic basis sets are, by

optimization step

Figure 6. Optimization curves of the ground-state total energy of BeH,
with respect to VQE settings and basis sets. Specifically, “STO-3G-
ECopt” refers to STO-3G with optimized exponent and contraction
coefficients based on the RHF energy of BeH,; “UCCSD-AAS” refers to
applying an adaptive UCCSD VQE®" on an active space of six molecular
(spatial) orbitals with the highest energies. Vertical dashed line marks
the total energy from the FCI computation in STO-3G.

default, generated molecule by molecule as opposed to directly
grouping AOs, it is reasonable to question their transferability
compared to the original basis sets.

Conducting a comprehensive study of the transferability of
atomic basis sets and their optimized version would require
additional survey and analysis that deviates from the scope of
this paper. Thus, in light of this potential research direction, we
only provide a minimal test example where we compute a
handful of atomization and formation energies involving
molecules composed of H or O.

We optimized two basis sets, STO-3G and 6-31G,%” with
respect to the ground-state HF energy of various atomic or
molecular s?rstems at fixed molecular geometry provided by the
CCCBDB’' database (Table 4 in Appendix B contains the
specific nuclear coordinates). Then, we calculated the enthalpies
of various atomization and formation reactions using the
optimized basis sets (STO-3G-opt and 6-31G-opt) and
reference basis sets. The results are shown in Table 1. For
STO-3G-opt, despite providing lower energies (as shown in
Table 6 in Appendix B), the corresponding reaction enthalpies
are more often less accurate compared to STO-3G, according to
the results at the extrapolated complete basis set (CBS) limit.”*
For the larger 6-31G, 6-31G-opt does provide improvements in
most cases. We believe this suggests that optimizing a larger
basis set with more basis functions of the same angular
momentum (i.e, 6-31G does not add basis functions beyond
the s and p subshells in the cases of H and O) is more effective.

At the same time, missing orbitals with higher angular
momentum might be another limiting factor of the optimiza-
tion’s performance aside from inadequate basis functions. For
example, due to the lack of d-type orbitals compared to cc-
pVDZ, both 6-31G and 6-31G-opt provide a qualitatively wrong
atomization energy for O,. To observe the contribution of
higher-angular-momentum basis functions, we constructed and
tested hybrid basis sets STO-3G** and STO-3G-opt**. They
are augmented versions of STO-3G and STO-3G-opt,
respectively, by including additional polarization functions
(orbitals) that are appended to 6-31G to construct 6-31G**.”
Specifically, a set of basis functions corresponding to a full p-
subshell is added to the basis set for H, and a set of basis
functions corresponding to a full d-subshell is added to the basis
set for O. In this way, the added basis functions are fixed across
all cases. It is worth mentioning that such basis sets can be easily

https://doi.org/10.1021/acs.jctc.3c00011
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built using Quigbox as it supports grouping arbitrary basis
functions into a basis set. The results of STO-3G** and STO-
3G-opt** are also shown in Table 1, where STO-3G-opt**
outperforms both STO-3G and STO-3G**. Further inves-
tigation is needed to verify if such a strategy can also provide
significant improvement for other basis sets. Moreover, it would
be of interest to see whether optimization on the added basis
functions with higher angular momentum will further improve
the performance.

In spite of the preliminary results, the tests in Section 5 should
be mainly treated as demonstrations of potential perspectives for
a systematic study of basis set optimization with the aid of
Quigbox. More tests are required to provide more insights and
draw conclusions regarding the practicality and systematic
behavior of optimized atomic basis sets. We also carry out
additional discussions regarding related future research
directions in Section 8.

6. EXAMPLE Il: PREPARING THE INITIAL STATE FOR
GROUND-STATE VQE COMPUTATION

Although we have only demonstrated the possible improve-
ments MCGTO can provide as parameter-optimized atomic
basis sets with respect to the HF energy, we hope such potential
remains in post-HF computation. As mentioned in Section 2,
developing practical NISQ computation requires more efficient
utilization of the basis set due to the limitations of qubit
constraints and circuit depth. If the differentiation-based
optimization of the HF state also improves the performance of
the derived multiconfiguration state, then one can adopt basis
set optimizations as the final step of state preparations for post-
HF computation.

BeH, has been a popular testing molecule in multiple pieces of
literature 6proposing ground-state VQE implementa-
tions.""””*77® Thus, we chose the colinear gaseous form with
Be—H bond length at 1.3264 A as a target system to demonstrate
the possibility of optimizing basis sets for ground-state VQE
computation of molecular systems. We optimized the exponent
and contraction coeflicients to arrive at an atom-centered
optimized STO-3G (STO-3G-ECopt). To impose the point-
group symmetry of BeH, onto the basis set, we correlated the
parameters of two hydrogen STO-3G basis sets so that they
remained equal throughout the optimization process in
Quigbox. The code for preparing and optimizing STO-3G is
shown in Chart 1.

To compare STO-3G-ECopt to STO-3G, we used the
quantum computing software library Pennylane.”” With
Pennylane, we performed a classical simulation of VQE. The
VQE circuit ansatz for approximating the many-electron ground
state is constructed using parametrized Givens rotation gates.78
This is equivalent to a first-order Trotter approximation of the
unitary-coupled cluster with singly and doubly excitations
(UCCSD).>*>” The Jordan—Wigner transformation®>® is
used to translate the electronic Hamiltonian to a qubit
Hamiltonian. The parameters of the VQE trial state are
iteratively optimized. At each iteration, the gradient of the
energy with respect to the parameters is estimated from the
expectation values of the qubit Hamiltonian. This process is
repeated until convergence of the energy is reached. For more
detailed discussions of VQE, we refer the reader to ref 13.

The optimization curves of different VQE settings are shown
in Figure 6. The UCCSD VQE using STO-3G-ECopt
(UCCSD/STO-3G-ECopt) has an initial state with lower
energy than the full configuration interaction (FCI) energy in
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STO-3G (shown in the horizontal dashed line). It also reaches
even lower energy as it converges. We have also included the
result of another test run (labeled “UCCSD-AAS/STO-3G-
ECopt”) where an adaptive VQE®' with the same UCCSD
ansatz was run on a selected active space of molecular orbitals of
the initial HF state. We froze the molecular (spatial) orbital with
the lowest energy as the one core orbital and defined the active
space as the rest six orbitals. The active space selection reduces
the number of required qubits from 14 to 12, and the VQE
adaptively adjusts the depth of the circuit during the
optimization process by removing excitation operators deemed
unimportant. This setting provides a more practical setting if
running the VQE algorithm on an actual quantum device is
desired.

Since the ansatz for the VQE is post-HF, the resulting
improvement reflects the benefit of performing HF-level basis
set optimization for multiconfiguration methods. We expect this
to be true for both classical and quantum implementations.

Constructing natural orbitals®” is another method to improve
the convergence of CI expansion by identifying the least
important orbitals, which can be subsequently removed.
Similarly, local and pair natural orbital schemes are used in the
context of coupled cluster theory to compress the virtual
space.”” ™ Despite the multiple variants and types of natural
orbitals, essentially, they are all reoptimized linear combinations
of the initially given basis set. This is in contrast to the
optimization procedure of our framework, which changes the
initial basis set itself and cannot be replaced by linear
transformations of given orbitals. In future work, it will be
interesting to combine the two techniques together to determine
if the natural orbital methods are equally effective with Quigbox-
optimized basis functions as with standard basis sets.

7. EXAMPLE IlI: BUILDING BASIS SETS FROM
DELOCALIZED ORBITALS

Now we showcase the customizability MCGTO provides
beyond optimized atomic basis sets. Consider a basis set {¢},

where the Coulomb interaction between every two different
spatial orbitals is equal to a constant J, and the exchange
interaction between every two different spatial orbitals is equal
to a constant K i.e.

V4, 4 € (¢)
s. t.

8 * 4,

I = (dd\¢ ),

— e e
K= (@@.Iqﬁqui) (30)

Such basis sets can be considered to have “completely
delocalized orbitals (CDOs)”, resulting in the permutation
invariance of electronic modes with the same spin configuration.

One example of such a basis set is three pairs of identical
floating CGTOs that all intersect at the same point, such that
every line segment that connects two CGTOs (at their centers)
in the same pair is a perpendicular bisector of other pairs. The
two CGTOs of each pair are combined as a basis function in the
basis set. If each CGTO contains n GTOs, then in total, only n
floating GTOs with unique exponents and contraction
coefficients are used to construct all three basis functions of
the basis set.
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Figure 7. Basis set of three completely delocalized orbitals (CDO3)
concerning H,. Each pair of CGTO with the same exponent and
contraction coefficients, shaped like a “dumbbell”, forms a basis
function.

Chart 2. Julia code of generating and optimizing a CDO3-4G
basis set for H, using Quigbox.

1 # Install Quigbox if you haven't already
using Pkg
Pkg.add ("Quigbox")

# Load Quigbox
using Quigbox

W ~J oy U W N

# The function to construct the center pairs
9 # for delocalized orbitals
10 function genDOcenters (1)

11 Lp = £i11(1l) |>Ref

12 shapes = [(1,0,0), (0,1,0), (0,0,1)]
13 GridBox. (shapes, Lp)

14 end

15

16 # The function to build a delocalized
17 # orbital basis set
18 function genDObs (1, gfs)

19 cPairs = genDOcenters (1)

20 map (cPairs) do cp

21 gp = gfs|>Ref

22 genBasisFunc. (cp.point, gp) [>sum
23 end

24 end

25

26 # Build an initial basis set

27 gfs = [GaussFunc(17.0, 0.4),

28 GaussFunc( 2.5, 0.8),

29 GaussFunc( 0.5, 0.6),

30 GaussFunc( 0.1, 0.2)]

31 bs = genDObs (1.5, gfs)

32

33 # Extract the parameters to be optimized
34 pp = markParams! (bs, true) |>Ref

35 pSyms = [:L, :a, :d]

36 pars = vcat (getParams. (pp, pSyms)...)
37

38 # Specify the molecular geometry

39 nuc = ["H", "H"]

40 nucCoords = [[-0.7, 0.0, 0.0],

41 [ 0.7, 0.0, 0.0]]

42

43 # Perform parameter optimization

44 optimizeParams! (pars, bs,

45 nuc, nucCoords,

46 POconfig (maxStep=1000))

The geometry of this basis set is shown in Figure 7 and the
code for constructing an instance of such a basis set with n = 4
(i.e., CDO3-4G) in Quigbox is shown in lines 10—31 of Chart 2.

Table 2. RHF Energy (E,) of H, at the Bond Length of 0.7408
A (ie, 1.4 au) Using Different Basis Sets”

basis set W Ngro E, (Ha) error w.r.t. CBS limit (%)
STO-3G 2 6 —1.83100 0.910
6-31G 4 8 —1.84103 0.367
cc-pVDZ 10 16 —1.84300 0.261
aug-cc-pVDZ 18 24 —1.84307 0.257
CDO3-4G 3 24 —1.84617 0.089

“Ngro is the total number of GTOs in each basis set, regardless of
whether they share the same parameters. The parameters of CDO3
are optimized to provide the lowest possible E;. The results of the
CBS limit are computed using a three-point extrapolation scheme’”
based on the RHF results of cc-pVDZ, TZ, and QZ.

1 # Inputs: bsStrs, nuc, coords, ectol, gctol

2 # Configuration

3 bs = map(bsStrs, coords) do bsStr, center

4 genBFuncsFromText (bsStr; center,

5 adjustContent=true)

6 end |> flatten

7 secondaryConvRatio = (gctol/ectol, Inf)

8 SCF = SCFconfig(;secondaryConvRatio,

9 threshold=ectol)

10 HFc = HFconfig(;SCF, HF=:RHF, CO=:Hcore)

11 # Execution

12 runHF (bs, nuc, coords, HFc, printInfo=false)
(a)

1 # Inputs: atom, bsKey, ectol, gctol

2 # Configuration

3 mol = gto.M(unit ="bohr", atom=atom,

4 basis=bsKey, cart=True)

5 mol.verbose = 0

6 rhf_mol = scf.RHF (mol)

7 rhf_mol.direct_scf = False

8 rhf mol.init_guess = "le"

9 rhf _mol.conv_tol = ectol

10 rhf mol.conv_tol_grad = gctol

11 i =[]

12 def save_scf_iteration(envs):

13 cycle = envs["cycle"]

14 i.append(cycle)

15 rhf_mol.callback = save_scf_iteration

16 # Execution

17 rhf_mol.kernel ()

(b)

Figure 8. Code for implementing RHF from Quigbox and PySCF,
respectively. Additional wrapper functions and code for the
benchmarking routine are omitted. (a) Julia code of Quigbox’s
implementation (in version 0.5.7). It is worth noting that the user
would typically use function genBasisFunc to construct basis functions
either from GTOs or atomic basis set names (like specifying bsKey in
Figure 8b). However, due to the inconsistency of the default atomic
basis versions stored in two packages, we applied genBFuncsFromText
to generate the exact same basis sets as the ones used in PySCF. (b)
Python code of PySCF’s implementation (in version 2.2.1). A helper
function save_scf_iteration is implemented, as this version of PySCF
does not natively support exporting the cycle information on SCF
iterations. For more information on the functions used in two pieces of
code, we refer the reader to the official documentation of the two
packages.” ">’
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Figure 9. Number of cycles needed to converge the RHF energy of various molecular systems using the SCF procedure with different basis sets.

According to a Fermionic de Finetti theorem proven in
reference,”® a Fermionic quantum state of a finite-size system
that is invariant under permutations of modes can be well
described by a noninteracting Fermionic state produced by
mean-field methods. It would be of interest to study whether a
CDO-based basis set that enforces the orbital permutation
invariance would improve the performance of HF methods
without losing much information from discretizing the
molecular electronic Hamiltonian. We used Quigbox to perform
a parameter optimization of CDO3-4G (see lines 33—46 of
Chart 2). The result of this optimization is compared to typical
atomic basis sets in Table 2. CDO3-4G is able to produce lower
HF energy for H, with one-sixth as many orbitals as aug-cc-
pVDZ.*” This suggests the potential advantage of CDO-based
basis sets to compress the information on a Fermionic ground
state into a single Slater determinant, as opposed to the
traditional atomic basis sets.

As we see through the above examples, using Quigbox, one
can quickly modify an existing basis set, construct a customized
basis set, and proceed with parameter optimization to meet
specific research needs. In other words, Quigbox aims to
become a “quick toolbox” for basis set study in the NISQ era.

8. CONCLUSIONS AND PERSPECTIVE

On the one hand, ideas about Gaussian basis set design and
. 39,45,49,50,53—55,57,70,87,88

optimization have been constantly

developing along the advance of classical ab initio computation

for electronic structure problems. On the other hand, the
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existing popular Gaussian basis sets used in classical
computations do not provide a smooth transition for NISQ
devices as a practical solution to electronic structure problems.
In the NISQ era, both advanced classical methods and potential
quantum solutions are being presented and compared to draw
the future outlines of ab initial electronic structure computa-
tion
specific scenarios becomes more in demand. Aside from the

12,13,65 . a :
. 777" Under such a premise, tailoring new basis sets for

need for a more sophisticated construction of basis sets, we
explained the significance of a more systematic study of basis sets
beyond providing optimal numerical results for specific many-
electron systems in Section 2. Customizing and modifying basis
sets to a higher degree across different systems will provide finer
control of the electronic structure problem as a general
computational problem and help study the effect of basis set
discretization of electronic Hamiltonians.

To better aid the study of the aforementioned subjects, we
proposed a highly customizable basis set generation framework
based on MCGTOs, which form a superset of CGTOs.
Moreover, this framework allows connecting orbital parameters
through mappings from primitive parameters to capture the
correlation among basis functions or impose extra symmetry on
basis sets. This framework contains two main parts: basis set
generation and parameter optimization. We introduced in
Section 3, the concept of MCGTO and explained its capability
to go beyond AOs. In Section 4, we then introduced a variational
parameter optimization procedure for the basis sets composed
of MCGTOs, which can be implemented with general electronic

https://doi.org/10.1021/acs.jctc.3c00011
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Figure 10. Converged RHF energy of Quigbox’s SCF iteration compared to PySCF’s for various molecular systems with different basis sets. AE,
represents the converged RHF energy from PySCF, minus the one from Quigbox.

structure algorithms. This framework is already realized by the
open-source software package, Quigbox,”* which we have
developed using the programming language Julia.”>*® To
demonstrate the potential application of this framework as
well as the accompanying package Quigbox, we provided several
examples. They range from studying the performance of
parameter-optimized atomic basis sets for the HF methods
(Section §) and VQE computation (Section 6) to generating
and optimizing a basis set composed of “completely delocalized
orbitals” (CDOs). A CDO basis set with three orbitals and four
unique floating GTOs (CDO-4G) provides an improvement
over 0.003 Ha for the HF energy of H, from the aug-cc-pVDZ
basis set consisting of 18 orbitals (see Table 2).

Just as the potential of MCGTO and Quigbox as the first step
to a more systematic study on basis sets for electronic structure is
presented in this paper, more unanswered questions that require
further investigation also lie ahead. We want to divide the future
directions into two main categories, the study regarding the
advantages of specific finite basis set configurations and the
study of their CBS limit behaviors.

The first direction comes from the design of our modular
optimization procedure (see Figure 4), from which the
optimization can be tailored for specific electronic structure
properties and algorithms. By adding more post-HF methods as
objective functions and more tests on systems of interest, we can
deepen our understanding of the significance of differentiable
basis set optimization for electronic structure case by case.
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Furthermore, we can study the correlation between basis set
geometry and the performance of corresponding algorithms. For
instance, given a ground-state ansatz, can one design a basis set
that provides low-error discretization of the target electronic
Hamiltonian and reduces the computational cost of finding the
ground state? If such a basis set exists, then the parameter space
characterized by the basis set will contain a global minimum
closer to the true ground-state wave function, which allows the
optimizer to find it easily. In this case, the objective of the basis
set design is not necessarily tied to a specific system. Therefore,
instead of optimizing the basis set parameters with respect to a
specific system, we should optimize them with respect to an
ensemble of molecules. A more detailed discussion relating to
basis set design and the complexity of electronic structure is
presented in Section 2.

Additionally, it is important to connect the performance of a
specific basis set construction to its performance approaching
the CBS limit.*” This leads to our second category of future
directions. The basis set errors, such as basis set truncation error
(BSTE) and basis set superposition error (BSSE) from local
basis functions, always exist for a finite (incomplete) basis set,
regardless of the optimization of basis set parameters. There are
methods to handle specific sources of error, such as the
counterpoise correlation for BSSE.” However, to eliminate
these errors altogether, one would need to achieve the CBS limit.
A basis set family having a systematic convergence with respect
to a certain physical observable allows extrapolation of its CBS

https://doi.org/10.1021/acs.jctc.3c00011
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Figure 11. Relative mean runtimes of Quigbox’s RHF SCF iteration compared to PySCF’s. The upper error bar indicates the mean time plus one
standard deviation and the lower error bar records the minimal runtime.

limit performance without having to compute the observable at
many different basis set sizes.”” Unfortunately, this property
does not come automatically for any basis set design, which is
why correlation-consistent basis sets are a popular choice for
post-HF computation.”””" With Quigbox, one can optimize the
basis set with respect to a particular system. Specifically, we
considered the case of optimizing atomic basis sets in Section S.
If follow-up research can determine the convergence behavior of
reoptimized cc-pVxZ (where x controls the basis set size), then a
system-specific CBS extrapolation can be achieved in combina-
tion with basis set parameter optimization. Furthermore, we can
try incorporating new basis set completeness optimization
techniques into the basis set construction and optimization
procedure.”””* This may allow us to provide a supplementary
CBS extrapolation scheme.

Last but not least, we would like to continue optimizing
Quigbox’s performance. In this way, besides being a basis set
generation and optimization package, it can also become a
stronger option for doing related ab initio electronic structure
computation.

In an era where both NISQ and classical methods for
electronic structure are advancing, we proposed a framework
with higher customizability and flexibility to approach basis set
design. We hope this framework, with the software Quigbox we
have developed, is useful in extending existing methods in
quantum chemistry and beyond.
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B APPENDIX A: QUIQBOX PERFORMANCE

To demonstrate the performance of Quigbox (version 0.5.7 on
Julia 1.8.5), we compared it in three scenarios with existing
packages that share similar features to a limited extent. The tests
were run on a cluster node equipped with an AMD EPYC 7532
CPU.

A.1. HF Method
As the HF method is currently the main objective function for
basis set optimization in Quigbox, it is crucial to verify the
accuracy and efficiency of Quiqbox in performing such
computations. We selected various types of molecules based
on their geometries and chemical bonds, including hydrogen
chains, homonuclear diatomic molecules, hydrides, and metallic
compounds. The distance between adjacent nuclei of hydrogen
chains is set to 1.0 au and the geometries of other molecules are
set to the experimental geometries recorded on CCCBDB.”!
As for the reference software package, we chose the widely
used ab initio electronic structure package PySCF” (version
2.2.1 running on Python 3.10.11). The convergence methods
used in the two packages remained in their default configuration.
The convergence thresholds of the SCF iteration on two
packages were both set to 1 X 107 Ha and 1 X 10~* au for the
stepwise changes of energy and the orbital rotation gra-
dient,”*”*” respectively. The initial guess of the charge density
matrix in both packages was constructed from the orbital
coefficient matrix obtained by diagonalizing the core Hamil-
tonian of the system (i.e., the “core guess”). In this way, we could
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Figure 12. Element-wise differences between the same electronic integral tensors computed by either Quigbox or Libcint. max(AlInt) represents the

maximal value of the element-wise differences for a specific hydrogen chain.

have a more aggressive test on the default convergence
procedures in both packages.

Additionally, there were a few manual modifications we
needed to make in order to provide a more proper comparison of
the HF SCF computation between the two packages. First, we
found that, on the one hand, the basis functions stored in PySCF
have optimized general contraction coefficients, which in some
cases have fewer GTOs than the standard versions stored in
Quiqbox for the same basis set. On the other hand, the version of
these basis sets was older than those stored in Quigbox, such that
the regression they caused in the HF energy computation was
non-negligible. Therefore, we replaced the version of basis sets
in Quigbox with the one used in PySCF for benchmarking.
Second, the option direct_scf in PySCF was disabled as it
enforces the construction of the Fock matrix to be an
extrapolation of the Fock matrices from previous iterations
rather than a rigorous computation. Finally, the multithreading
computation was enabled for both packages, with the total
allowed number of threads set to eight. A code snippet of the two
packages’ configuration for the HF benchmark is shown in
Figure 8.

The benchmarking results are shown in Figures 9—11.
Specifically, Figure 9 shows the number of cycles needed for
the SCF iteration to converge, where we can see that Quigbox
and PySCEF are roughly in agreement as the numbers of cycles
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for two packages do not differ from each other by more than two.
The computed RHF energies from the two packages are also
consistent with each other, as shown in Figure 10. Most of the
differences between the converged energies are below the
convergence threshold, with the only exception being the case of
LiOH (STO-3G) in Figure 10d, where the difference was
around 1.4 X 107 Ha, which is still below the chemical accuracy.

In Figure 11, we show that the ratios of the average runtimes
of Quigbox’s and PySCF’s RHF procedure are mostly within the
same magnitude for basis sets STO-3G and 6-31G. Sometimes,
e.g., for hydrogen chains and hydrides, Quigbox outperformed
PySCF. However, when the larger basis set cc-pVDZ was
applied, the ratio of Quigbox’s runtime to Libcint was increased
to, at most, around 10. The reason for this is that the recorded
RHF runtimes include the time to compute electronic integral
for both packages, and currently, Quigbox’s own integral engine
scales worse than PySCF’s.

A.2. Electronic Integrals

Instead of directly relying on an external Gaussian-type
electronic integral library, we wrote our own integral engine
(also in Julia) as part of the core functions of Quigbox, based on
refs 52 and 94, additionally, we have added specialized
optimization methods to avoid repetitive integral computation
resulting from the orbitals with shared parameters. On top of
that, the integral engine is fully compatible with MCGTOs. By
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Figure 13. Quigbox’s relative mean runtimes of computing electronic integrals for different hydrogen chains with respect to Libcint’s. Same as in
Figure 11, the upper error bar indicates the mean time plus one standard deviation and the lower error bar records the minimal runtime.

Table 3. Benchmark for Quigbox’s Parameter Optimization of STO-3G Basis Set with Respect to the RHF Energy against
DiffiQult”

parameters speed-up
molecule types quantity package optimizer E, (Ha) step wall-clock time (s) total per-step
H, ad 12 DiffiQult BEGS (SW) ~1.83731 30 843.5 1.0 10
12 (6) Quigbox BEGS (SW) ~1.83731 25 12 702.9 585.8
BEGS (HZ) —1.83731 17 1.7 496.2 281.2
L-BFGS (HZ) ~1.83731 17 17 4962 2812
Adam —1.83730 352 8.0 105.4 1237.1
a d R 18 DiffiQult BEGS (SW) —1.84063 37 1081.7 1.0 10
18 (9) Quigbox BEGS (SW) —1.84082 27 1.8 600.9 4385
BEGS (HZ) —1.84082 21 2.8 386.3 219.3
L-BEGS (HZ) —1.84082 21 2.8 3863 2193
Adam —1.84081 375 10.4 104.0 1054.2
LiH ad 2 DiffiQult BEGS (SW) N/A N/A >12.00 X 3600 1.0 N/A
Quigbox L-BFGS (HZ) —8.96458 267 0.82 X 3600 >14.6 N/A

“In the column “parameters,” @, d, and R, respectively, represent all exponent coefficients, all contraction coefficients, and all center positions of the
GTOs in the basis set. Each row of the sub-column “quantity” shows the total number of parameters. The numbers in parentheses (when they
appear) after them represent the reduced numbers of unique parameters after imposing parameter correlations in Quigbox.

contrast, PySCF relies on the C-based electronic integral library electron interaction between Quigbox and Libcint. We used the
Libcint.” hydrogen chains (with up to 18 hydrogen atoms) again to test
We compared the basic electronic integral computations of how the computation accuracy and efficiency scale with respect
the overlap matrix, the core Hamiltonian, and the electron— to the growth of system size. Since Quigbox does not have the
8047 https://doi.org/10.1021/acs.jctc.3¢00011
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Table 4. Theoretical Equilibrium Geometries of Various
Molecules According to the HF Approximation Using STO-
3G7"

coordinates (A)

molecule atom 6 y z
H, H 0.0000 0.0000 0.0000
H 0.7122 0.0000 0.0000
0O, (¢] 0.0000 0.0000 0.0000
(¢) 1.2172 0.0000 0.0000
H,0 (e] 0.0000 0.0000 0.1272
H 0.0000 0.7581 —0.5086
H 0.0000 —0.7581 —0.5086
H,O0, (¢ 0.0000 0.6981 —0.0504
(¢} 0.0000 —0.6981 —0.0504
H 0.8712 0.8912 0.4034
H —0.8712 —0.8912 0.4034

Table S. Size Information of the Basis Sets Tested in Section
5.27

H (0]
basis set w fgro w ngro

STO-3G 1 3 S 15
STO-3G-opt

STO-3G** 4 6 11 21
STO-3G-opt™*

6-31G 2 4 9 22
cc-pVDZ N 8 15 40

“Specifically, the total number of basis functions (W) and primitive
Cartesian GTOs (ngro) used to build each basis set are included.

feature of automatically optimizing the computation based on
the symmetry of the molecule as in PySCF, we manually turned
off the option in PySCF. Again, due to the issue with PySCF’s
prestored basis sets mentioned in Appendix A.1, we performed
the same replacement for Quigbox’s basis sets.

Quigbox and Libcint agreed on all the computation results
within a difference of 107" au, as shown in Figure 12. In respect
of computation efficiency, we can see from Figure 13, for smaller
basis sets such as STO-3G and 6-31G, the minimal runtime
difference between Quigbox’s integral engine and Libcint is
within the same magnitude in the best cases. For the cc-pVDZ
basis set, the differences increase, particularly for electron—

Table 7. Acronyms of Single-Particle Spatial Wavefunctions

acronym full name

AO atomic orbital

GTO Gaussian-type orbital
CGTO contracted GTO
MCGTO mixed-contracted GTO

Table 8. Notations of the Physical Variables Determined by a
Many-Electron System

symbol meaning
N number of electrons
Nt number of spin-up electrons
N number of spin-down electrons
N’ number of nuclei
I\ set of nuclear positions and the corresponding charges
H,. electronic Hamiltonian
H,. sum of nuclear kinetic and nuclear repulsion energy
H,, total Hamiltonian
60 true ground-state energy of H.

electron interaction integrals. The author of Libcint mentioned
in their technical literature that they implemented optimization
on the hardware level for processes such as CPU caching and
addressing as well as software-level optimization for sparse
matrix computation to improve Libcint’s overall performance,”
both of which are currently lacking in Quigbox’s integral engine.
We believe that by implementing this optimization in the future,
we can shorten the efficiency gap between Quigbox’s integral
engine and Libcint.

Fundamentally, the benchmarks between Quiqbox and
PySCF serve as a brief demonstration of Quigbox’s general
user experience in terms of performance, not a strict competition
against PySCEF. This is not only because benchmarking software
packages written in different programming languages is a
complex subject but also because Quigbox and PySCF are only
partially functionally overlapped. The former is a basis set
optimization package (as of the version tested) and the latter is a
comprehensive quantum chemistry package. The different goals
of the two packages affect their code design even when
implementing the features seemingly the same on the surface
level.

Table 6. Ground-State HF Energies (Including Nuclear Repulsion) of H, O, and Related Molecules (in a Fixed Molecular

Geometry Shown in Table 4) Using Various Basis Sets”

H/UHF (M, = 1/2) H,/RHF O/UHF (M, = 1) 0,/UHE (M, = 1) H,0/RHF H,0,/RHF

error error error error error error

basis set B (Ha) (%)  Eo(Ha) (%)  Eo(Ha) (%) Eyor (Ha) (%)  Eo(Ha) (%) Eyo: (Ha) (%)
STO-3G —0.4666 668  —11175 139  —73.8042 136  —147.6364 137  —749659 144  —1487650 138
STO-3G-opt —04970 060  —11262 062  —743185  0.67  —148.5990  0.73  —75.5205 071  —149.7905  0.70
STO-3G** —0.4666 668  —11212 106  —73.8197 134  —147.7263 131  —750161 138  —148.8539 132
STO-3G-opt**  —04970 060  —1.1264 060  —743599  0.61  —1487523 063  —755831 063  —1499181  0.62
6-31G —04982 036  —11266 0.8  —747803 005  —149.5450 0.0  —759797 011  —150.7024  0.10
6-31G-opt —0.4993 014  —1.1307 022  —747858 004  —149.5619  0.09  —759975 009  —150.7245  0.08
cc-pVDZ —04993 014  —11278 048  —747923 004  —149.6278  0.04  —760235 005  —150.7824  0.04
CBS limit —0.5000  0.00 —11332 000 —748194 000  —149.6900  0.00  —76.0627  0.00  —150.8489  0.00

“For each tested basis set, both the energy value and its relative error with respect to the extrapolated CBS limit”> (based on the results using cc-
pVDZ, TZ, and QZ) are provided. UHF is applied to compute the open-shell ground states, for which the z component of total spin (M) is also

included in the table.
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Table 9. Notations of the Variables and Quantities Related to
Basis Functions

symbol Meaning

&,

S the overlap matrix of basis set {¢,ln = 1, .., W}

the nth basis function

7. the mth ortho normalized basis function
Y, trial wave function of the approximate ground state based on
an ansatz

D, the nth eigenfunction of the electronic Hamiltonian

c ansatz parameters of ¥,

Eo energy expectation with respect to ¥,

lower bound of

E, 2

A one-electron integral tensor of {¢,,}

B two-electron integral tensor of {¢,,}

c® value of ¢ that minimizes E to E,

a the exponent coefficient of a GTO

I=i+j+k the orbital angular momentum of a GTO

R=[X,Y,Z] the center position of a GTO

d the contraction coefficient in a CGTO

6 ({6}) basis set parameters

{r"} all the diﬂerentiable CGTO parameters of the nth basis
J function

{P,»} all the differentiable CGTO parameters in the basis set
0, the basis function equivalent to the partial derivative of ¢,
n with respect to 6;

D the derivative basis set that transforms the parameter

gradients of elements in {¢,} into electronic integrals

For example, how Quigbox stores the basis set information
differs drastically from PySCF. In the PySCF (libcint), where
only prestored CGTO is allowed, the basis set data can be easily
(andis) reduced to a homogeneous floating-point number array.
On the other hand, due to the flexibility and customizability of
MCGTO in Quigbox, most tunable basis set parameters (in the
custom datatype ParamBox) have their own meta-information
and data structure. On top of this, basis functions are
constructed hierarchically (primitive parameters - GTO —
CGTO — MCGTO) and mutable by reassignments, combina-
tions, separation, etc. From a high-performance computing
standpoint, this nonhomogeneous storing can affect the
program’s performance, such as integral computation. It is also
worth mentioning that implementing our native integral engine
allows us to realize proper normalization for Cartesian-
coordinate-based GTO integrals, unlike Libcint.” Maintaining
the proper normalization is crucial for the MCGTOs used in
Quigbox.

A.3. Basis Set Parameter Optimizations

To showcase the performance of Quiqgbox’s basis set
optimization, we compared it with DifiQult, one of the first
open-source software packages that implemented differentiable
HF methods.'® Since DiffiQult does not support basis sets
beyond atomic basis sets, the testing basis set was set to STO-
3G. Moreover, DifiQult does not support multithreading
computation so Quigbox was constrained to only use one
thread both when running native Julia functions and when
calling the default back-end linear algebra library OpenBLAS.”

Nevertheless, Quigbox’s optimization function showed a
significant advantage against DiffiQult, as presented in Table 3.
We included two testing cases for H, (with the bond length at
0.7408 A): one was for optimizing only the exponent and
contraction coefficients (@ and d) and the other one also

8049

included the GTO centers (R). The reason for doing so is that
DiffiQult does not support optimizing GTO centers and the
other two simultaneously, which is not a limitation for Quigbox.
Using the same numerical optimizer as DiffiQult, BEGS” with a
line search algorithm using the strong Wolfe (SW) conditions,”
Quigbox provided roughly a 700 times speed-up. By replacing
the line search algorithm with the one used in the nonlinear
conjugate gradient method proposed by Hager and Zhang
(HZ),"* Quigbox was able to achieve faster convergence in
terms of the number of steps with a slightly lower wall-clock time
speed up. We also include the test results using a limited-
memory version of BEGS (L-BFGS)'%" (memory size set to 20)
combined with the HZ linear algorithm to demonstrate a more
practical use case. When only using a first-order stochastic
gradient descent optimizer like Adam,'”” Quigbox still out-
performed DiffiQult with over 100 times speed-up.

The drastic improvement of basis set optimization’s efficiency
pushes forward the practicality of variational basis set
optimization, especially for larger systems. For example, in the
case of optimizing the STO-3G basis set for LiH (with the bond
length at 1.5949 A), Quigbox was able to finish the optimization
within 1 h. In contrast, DiffiQult did not achieve convergence
even after running for more than 12 h. This result is included in
Table 3 as well.

B APPENDIX B: SUPPLEMENTARY INFORMATION
FOR ATOMIZATION AND FORMATION ENERGY
COMPUTATION

We herein provide the preliminary data used to compile Table 1
in Section 5.2. Specifically, the geometries of tested molecules
are in Table 4, the size information on compared basis sets is in
Table 5, and the ground-state HF energies (including nuclear
repulsion) of the reactants and products used for the
atomization and formation calculation are in Table 6.

B APPENDIX C: ACRONYMS AND NOTATIONS

Acronyms and notations used in this work are given in Tables 7,
8, 9.
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