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Quantum algorithms are touted as a way around some classically intractable problems
such as the simulation of quantum mechanics. At the end of all quantum algorithms
is a quantum measurement whereby classical data is extracted and utilized. In fact,
many of the modern hybrid-classical approaches are essentially quantum measurements
of states with short quantum circuit descriptions. Here, we compare and examine
three methods of extracting the time-dependent one-particle probability density from a
quantum simulation: direct Z-measurement, Bayesian phase estimation, and harmonic
inversion. We have tested these methods in the context of the potential inversion
problem of time-dependent density functional theory. Our test results suggest that direct
measurement is the preferable method. We also highlight areas where the other two
methods may be useful and report on tests using Rigetti’s quantum virtual device. This
study provides a starting point for imminent applications of quantum computing.
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1. INTRODUCTION

The real time simulation of quantum systems on a classical computer is a difficult problem even
for a supercomputer due to the fact that the Hilbert space grows exponentially with the system size
[1]. A universal quantum computer is believed to be the solution of the difficulty, where it is known
that a wide class of physical systems can be simulated efficiently on a quantum computer [1-6].
But running a practically meaningful quantum algorithm may require a large amount of qubits,
e.g., factoring 2,048 bit RSA integers may take up to 20 millions qubits [7], which is far beyond the
capacity of the current best 53-qubit quantum computer [8]. So the current quantum technology
works best when paired with classical algorithms. We have been studying the application of such
a hybrid algorithm in quantum chemistry. The primary example is the time-dependent density
functional theory (TDDFT) [9]. To utilize quantum technology in classical algorithms, quantum
measurement are necessary, here we measured the density operator on Rigetti’s quantum device
and then utilized the density to perform the potential inversion within the framework of TDDFT.
Density functional theory (DFT) is a powerful tool in modeling condensed matter systems [10].
In the framework of DFT, a non-interacting system with a self-consistently determined potential is
constructed to replace the interacting system. The additional potential term in the non-interacting
system is known as the Kohn-Sham potential. Such a system with non-interacting particles is
the Kohn-Sham(K-S) system. In the K-S system, the calculation of an exchange-correlation term
is required. However, the exact form of the exchange-correlation potential is not yet known.
This term is usually obtained with some approximation methods [11-14], machine learning
methods [15, 16]. In fact, the utilization of a quantum computer can help generate an accurate
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exchange-correlation potential. This idea is mentioned in the
article [17], where a hybrid method of generating exchange-
correlation potential for classical DFT calculation is proposed.

The time dependent counterpart of DFT, time-dependent
density functional theory (TDDFT) is widely used in finding
the dynamics of the system when a time-dependent potential is
present. Similar to DFT, TDDFT uses the time dependent K-S
system where a time-dependent K-S potential is required. We call
the task of constructing such a K-S potential when given the time-
evolution of the on-site probability density, the K-S potential
inversion problem. In article [18], a scheme of solving the K-
S potential inversion problem utilizing a quantum computer
was proposed. We have recently returned to this proposal with
improved numerical methods for inverting the potential [19]. To
obtain the K-S potential, we need to get the density of the time
evolved many-particle system using a quantum computer.

In this paper, we will present three different methods of
measuring the density operator on a quantum computer and
compare the performance of the methods.

An outline for the remainder of the article is as follows: first,
we discuss the phase estimation approach to measurement. Then
we describe the circuit implementation for measuring the on-site
fermionic density. Qubit descriptions for the fermionic operator
are explained in the next part followed by the illustration of a two-
electron test. Finally, three schemes for extracting the density are
tested numerically and compared.

2. METHODS

2.1. Phase Estimation

Quantum phase estimation [20, 21] plays an important role in
the quantum algorithm zoo [22], it is a key sub module of many
quantum algorithms [23-25]. It is also an important procedure
to measure the on-site density operator in our work.

Well next describe the general picture of doing the
measurement of an arbitrary operator and how quantum
phase estimation plays a role in our work. To implement the
measurement of an arbitrary observable, we will consider the
circuit as shown in Figure 1. The circuit has two parts, the part
before the dashed line is for evolving the initial state at time ¢
under a fixed fermionic Hamiltonian of chemical interests.

The system of the most chemical interests is the interacting
electron system. The Hamiltonian of a many-body interacting
system is given by

N 2 N

V: 1 1
H= E ——L 4V, i - E 1
i > + Vet (1)) + 2 - e — rj| (1)

where Vey(r;) is the external potential energy consists of the
interaction between the electrons and the external field.

The second quantized form of the above many-body
Hamiltonian is given by

1 +
H= Z hpqa;aq + 3 Z hpq,sal',a;a,as (2)
pa pars

where the fermionic operators {up,a;} satisfy u;ap + apul; =
Spg»Apaqg = —aqap and a;a; = —aZa;. Given the basis set

{xp(r)}, the coefficients h,q, hpgrs are given by

hpg = / dry ) (r) (—%Vz + Vm(r)> Xq(1) ©)

Xp (e1) %7 (x2) X (02) x5 (x1)
hpqrs:/drlerP 1) X g (X2) Xr(X2) Xs(X]
[ry — 11

(4)

The latter half is a phase estimation circuit where Up(t) = e~i0t
where O is the observable to be measured.

For a general state |1/), we can expand it in the eigenspace of
the operator O. To be precise, for a general state [/) = Y ¢k |k),
where Oy and |k) are the eigenvalue and eigenvector of the
operator O. Thus, the probability of measuring zero on the top
register is given by

POIT, ) = 5 + (W6 DI O) + W01 (7))

0
Xk: |ck(£)[? cos* (%)

1 1 . .
E + Z Z |Ck(t)|2 (elok‘r + e—lOk‘L’) (5)
k

where ¢, (t) = (k|U(t)|v).

In this article, we only consider O = n; = a;raj in order to
measure the local on-site density at site j. This is because the
inverse potential is determined by the on-site density and its first
and second order derivatives [18, 19].

The eigenvalues of n; = a;raj are 0 and 1, so the wave
function after the unitary evolution U(t) is given by |y (t)) =
co(t) an:O) + c1(t) an:l)- Thus, the expectation value of the

density is given by,
(D) = (W (B)]a] |y (1) = lea(B)]? (©)
2.2. Qubit Encoding

To implement the evolution and phase estimation algorithm
on a quantum computer, we need to encode the Hamiltonian
into qubits. A standard way is to use Jordan-Wigner (JW)
transformation, which encodes a fermionic system of M orbitals
into M qubits.

1 .

ap = E (XP+IYP) ZIZZ-~-Zp—1 (7)
1 .

a; = 3 (Xp — lYp) VAVZ ] (8)

With the above transformation, the fermionic Hamiltonian can
be encoded into qubit representation. Thus the Hamiltonian can
be written as H = ) _; h;, where all the h;’s are tensor product of
Pauli operators.

There is not an easy way to construct arbitrary unitary
operators on a quantum computer [26]. A pragmatic way
to simulate the propagator U(t) = e " is applying the
Trotter decomposition.
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FIGURE 1 | The circuit for measuring the density matrix. The half before the dashed line is used for evolving the state to time t, the half after is used for doing the

U®t) = e Mt ~ (e—ihlt/Ne—ihzt/N N e—ihnt/N>N )

Each individual term in the decomposition above can be
simulated efficiently on a quantum computer [27].

3. RESULTS AND DISCUSSION

We tested our methods on two different Hamiltonians, one is
the 4-orbital HeH" model, the other is the 8-orbital HeH™. For
the 4-orbital model, the basis set used to examine the HeH™
molecule is that given in [28] which results in four spin orbitals.
The interatomic distance is 1.401 Bohr. The basis functions
are orthogonalized and then transformed such that the one-
body Coulomb matrix is diagonal. This transformation was
chosen so that a corresponding scalar time-dependent Kohn-
Sham potential could be calculated using for this system using
the method of [19].

For the larger case, we used HeH™ at the same geometry but
in the 6-31G basis set [29]. This resulted in twice the number of
basis functions as the minimal example. The integrals in the 6-31
basis were computed using Pis4 [30].

The basis functions are orthogonalized and then transformed
such that the one-body Coulomb matrix is diagonal. This
transformation was chosen so that a corresponding time-
dependent Kohn-Sham potential could be calculated using for
this system using the method of [19]. In both models, the initial
state at + = 0 places two electrons in the first two modes of
opposite spin. This state is obtained by employing two X-gates
to prepare |(0)) = |1100) in the 4-orbital model and |y (0)) =
[11000000) in the 8-orbital model.

Using Rigetti’s quantum virtual machine [31], we then evolve
the system under its Hamiltonian for times less than three
atomic units. The propagation is implemented via the first-order
Trotterization with Trotter step equal to three. To reduce the
Trotter error in evolution, either a shorter Trotter step or a
higher order Trotter approximation must be used [32]. This
means more quantum gates are needed, making it harder to be
implemented on a near term device. Additional sources of error
are associated with finite sampling from the binomial distribution
and the error associated with the inference steps. To make the
virtual machine slightly closer to a real quantum computer, in all

methods below, measurement noise was added into the system,
giving 1% probability of flipping the qubit. It should be noted that
the quantum noise found on the actual device was much higher,
so we will not present the results from the actual quantum device.

In Figures 2A,C,D,F, we used 3,000 quantum measurement
samples per time-point. For harmonic inversion, a total of
120,000 quantum measurements occur for extracting the density
at each time point. This is because there were 40 equally
spaced t-points and 3,000 quantum measurements were used
per fixed . A comparison between the measuring results, the
exact solution of the original Hamiltonian and the exact solution
of the Trotterized Hamiltonian are compared in Figure 2.
In each subfigure, the dark green dots are the result from
measurement result, the red dashed line is the solution of the
Trotterized Hamiltonian, the black solid line is the solution of
the original Hamiltonian.

3.1. Method 1: Z-Basis Measurement

In the first method, we rely on the fact that the Jordan-
Wigner transformation of the on-site density operator has a
simple form a;ap = (1 — Z,)/2. Thus, we can directly
measure the local density operator by measuring Z, without
passing in the phase estimation circuit after the dotted line
in Figure 1.

For an arbitrary wave function |y (f)) = c¢o(t) [Yn,=0) +
c1(t) W”p:l)’ where ‘anp denotes the state projected into the
subspace where the p-th qubit is in state n,. Given the fact
that (Zy(t)) = lco()]* — lei(®)|* and |co()* + |a(®)* =
1, both amplitudes |co(t)]?> and |c1(t)|*> can be obtained from
the measurement.

By repeating the measurement at each time step in the time
range 0 < t < 3, we obtain the expectation value of the density.
The results based on 15 equally spaced time-points with 3,000
measurements at each fixed time are shown in Figures 2A,D.
The exact time evolution of the density is also shown in the
figure for comparison along with error bars of 2o reflective of
the N = 3,000 sample variance of the binomial distribution.

The simplicity of this measurement approach reduces the
classical runtime to the lowest of the three methods compared,
and the convergence of the error bars is faster than the Bayesian
measurement discussed later.
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FIGURE 2 | The expectation value of a;faw is measured via (A,D) direct Z-basis measurement, (B,E) harmonic inversion, and (C,F) Bayesian inference. The upper
panel are the results of 4-orbital model, the lower panel are the results of the 8-orbital model. All of the data points are plotted against the exact Trotter solution
depicted in as a continuous line. In (C,F), the first point shows a large deviation from the Trotter solution typical of the behavior of Bayesian inference whenever the
exact density’s value is close to one. Error bars shown in (A,C,D,F) are two standard deviations about the mean. The harmonic inversion does not have error bars
because the error comes from two sources: from the sampling error at different time = and from the reconstruction of the density using harmonic inversion.

t[atomic unit]

3.2. Method 2: Harmonic Inversion
Harmonic inversion is a technique of extracting the amplitudes
Aj, frequencies f;, phases ¢;, and exponential decay constants o;
out of a signal,

f(r) — ZAje—i(Zﬂf}I—(bj)—ajr (10)
J

which is evenly sampled [33, 34]. The signal reconstructed
from harmonic inversion has the same form as the probability
P(0]7) except for the decaying term which is negligible when
the decoherence is not considered. By comparing the form of
the reconstructed signal with the probability, we can obtain the
density from the reconstructed signal.

The results of density measurement through harmonic
inversion are shown in Figures 2B,E. Each point in Figures 2B,E
was computed through harmonic inversion using the HarmInv
package [35]. Because the local density operator a;up only has
eigenvalues zero and one, the measurement outcome has a
simple form

PO|T, ) = Ao(t) + AL (1) (e—’?”f’ T e"z”ff) (11)

where Ag(t) = %(2 — 1 ®?), AL(t) = |1 (D] /4, and f = 1/2m.

3.3. Method 3: Bayesian Inference
Bayesian inference can be used to estimate the density as well.
As a powerful tool of making inferences, Bayesian inference has

wide applications. We applied Bayesian inference to infer the
unknown parameters in a quantum system which, in our case,
is the on-site density. The density estimation was implemented
via sequential Monte Carlo (SMC) [36]. This method requires
the most communication between the classical and quantum
processors since the SMC suggests each 7-point based on the
previous outcomes. The Bayesian experimental design is based on
the implementation found in the QInfer package [37]. Bayesian
inference gives the probability distribution of a parameter over
the parameter space. The final decision is made according to the
posterior probability P(6|d;, d, . .. dy), where 6 is the parameter
we want to estimate, d;’s are the outcome of each measurement.
In the present application, 6 = (n;(t)).

Recall the Bayesian rule, the posterior probability is updated
by carrying out experiments sequentially,

N
P(0|dy, dy, ... dn) o< | | P(dil0)P(O) (12)

i=1

where P(0) is the the
likelihood function.

The likelihood function contains the information about the
parameters before conducting any experiments. Since we know
nothing before the experiment, we can initialize the prior with

a uniform distribution over the parameter space. For the phase

prior probability, P(d;|6) is
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estimation circuit of Figure 1, the likelihood function is given by

1 (=1 +
t— (W (O {Uo(z) + UL} (1)

(13)

P(d| {nj(t)); T) =

N |

where Up(t) = exp(—im}aj) and d = 0 or 1. Note, when d = 0
we recover Equation (5).
With this we can rewrite the likelihood function as

)d
5 (cost — 1) (n(t))

P(d| (nj()}; T) = 840 + (14)

This can be compared with Equation (5) in the case that d = 0.

The results of Bayesian inference are shown in Figures 2C,F.
Bayesian inference has good performance within a wide range of
the time domain except at the boundary of the estimate domain
e.g., when the density is one or zero. This is based on numerical
evidence since the majority of the points at or near the boundary
of the estimation domain needed to be discarded when cleaning
the data as discussed below.

Unlike harmonic inversion, t in the phase estimation circuit is
not required to be evenly spaced. Another advantage of Bayesian
inference is that we do not need to know the exact form of the
function to be estimated a priori. Bayesian inference could also
be applied to estimate more general parameters.

3.3.1. Comparison
To quantify the accuracy of these density extraction methods, we
employ the L; norm to measure the deviation from the Trotter
solution. For discrete data points, the deviation is given by the
loss function on the density at the first site: L = Z]kv |y () —
n1(te))|/N, where 711(t;) is the outcome of the measurement at
time tx, 11 (f;) is the solution of the Trotterized Hamiltonian.

Figure 3 shows how the loss function scales with the number
of trials for each of the three approaches. The convergence rate
for determining the bias of a coin would be 0.5 but here additional
measurement error has been introduced into the model which
prevents L = 0 situation even with an infinite number of
samples. Further, in our implementation, the Bayesian and
harmonic inversion techniques sometimes reported anomalously
poor estimates of the density at a given time. A single fluctuation
of this type along the time trace of the density entirely dominates
the loss function. For the sake of comparison, we did not include
the data points that are 50 away from the exact solution in all
three methods. This led to more stable results when the number
of trials is small. Another benefit of filtering the data is that for the
Bayesian inference, estimates close to the boundary of the domain
are subject to large fluctuations giving poor estimates. So we can
exclude the wrong data points by setting a 50 window. Although
the discarding procedure is ad hoc and requires knowing the
exact answer, we have tested our data at various levels of cutoff
finding that at any fixed cutoff harmonic inversion had the most
points discarded and consistently displayed marginally faster
convergence rates.

Figure 3A shows the scaling of loss function of the 4-orbital
model. The slope of the fitting lines are —0.4961, —0.3747, and

—0.4103, respectively. Points 50 away from the exact density
under the Trotter approximation are not used for calculating the
loss function. This resulted in 73.87, 87.26, and 90.07% of points
used in the plotted data, respectively.

Figure 3B shows the scaling of loss function of the 8-orbital
model. The slope of the fitting lines are —0.4346, —0.4595, and
—0.4184, respectively. Points 50 away from the exact density
under the Trotter approximation are not used for calculating the
loss function. This resulted in 80.53, 84.40, and 93.20% of points
used in the plotted data, respectively.

Harmonic inversion measures 40 times more than the other
two methods, so the actual data and fitting line should be shifted
to the right by 40 times the number of measurements showing in
the figure.

Regardless of the possible improvement in convergence, it
should be reminded that the harmonic inversion technique uses
many quantum computer queries to estimate P(0|z, t) at variable
7 before inferring the density at a fixed time t. In comparing
the three methods, all require time evolution of the system wave
function to time f. In the harmonic inversion and Bayesian
estimation techniques, additional gates are needed for the t
propagation under the observable for density. The difference
between queries in harmonic inversion and Bayesian inference
is the selection of the t parameter in Up(7).

While the convergence rates are all approximately the same, it
is clear that the Z-basis measurement has the best performance in
terms of the number of queries of the quantum computer. In the
case considered here, the direct Z measurements are convenient
for the Jordan-Wigner encoding. In other circumstances with
different fermion-to-spin transforms, the direct measurement
technique may not be as fruitful. For existing and near-term
quantum devices, the constraints of low circuit depth suggests
direct measurement of the Z operators as the best path forward
when using a Jordan-Winger transformed qubit Hamiltonian.

The runtime of these three methods also varies. Since direct Z-
measurements are the simplest from an inference point of view,
the classical computation time is also the least. Bayesian inference
requires many steps for the sequential Monte Carlo to converge
[36]. Consequently, this method used the longest amount of
classical computational time. Although harmonic inversion uses
40 times more measurement per time-point, it is interesting
to note that it only took an intermediate amount of classical
processing time.

4. CONCLUSIONS

We have tested three different methods of measuring the on-site
density operator for a toy model inspired by TDDFT. We were
able to conclude that direct Z measurements obtains the best
estimates of the on-site density for a given number of quantum
computer queries. This is based on the use of the Jordan-Wigner
transform and simulated measurement noise. Of course, we could
have considered other fermion-to-spin transforms which lead to
different encodings of the ujai.

For improving our noise models, we can do no better than
testing our circuits on current and future quantum devices. We
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FIGURE 3 | Loss function vs. number of measurements of the quantum computer (trials) in both 4-orbital model and 8-orbital model. Red diamonds, black triangles,
and blue circles are drawn from harmonic inversion, Bayesian inference and Z-basis measurement respectively. (A) 2 Electron 4 orbital case. (B) 2 Electron 8 orbital
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tested our circuits on Rigetti’s quantum device but found that
the loss function depends heavily on which qubits are used
as well as the permutation of qubit labels within the circuit.
Time evolution under the full Hamiltonian did not return
any signal even when using only one first-order Trotter step.
We therefore resorted to using a truncated Hamiltonian which
included the one-body Hamiltonian and only the Coulomb-like
(hijji) terms of the two-body Hamiltonian. After encoding and
exponentiation, this Hamiltonian results in 66 universal gates
and compiled non-deterministically using the PyQuil package
PyQuil to approximately 200 allowable gates on the Rigetti
device. Due to decoherence, only a weak signal was present
where amplitudes recovered were between three and twenty
percent of the exact solution. The recovered amplitude depended
mostly on qubit selection but also changed run-to-run. The
frequency and sinusoidal shape of the signal was recovered
more reliably. In our present study, the eigenenergies were not
interesting but we suspect that problems that depend on the
frequencies may be more successfully calculated on the current
Rigetti device.

We plan to continue our inquiry into the TDDFT potential
inversion problem using existing and forthcoming quantum
technology. Tasks that avoid QMA-hard [38] state preparation
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