

Salt marsh nitrogen cycling: Where land meets sea

Jennifer L. Bowen¹, Amanda C. Spivak², Anne E. Bernhard³, Robinson W. Fulweiler⁴, Anne E. Giblin⁵

¹ Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA

²Department of Marine Sciences, University of Georgia, Athens, GA 30602 USA

³Biology Department, Connecticut College, New London, CT 06320

⁴Department of Earth and Environment, Department of Biology, Boston University, Boston, MA, 02215, USA

⁵ The Ecosystems Center, Marine Biological Laboratory, MA, 02543, USA

14 Correspondence: je.bowen@northeastern.edu (J. L. Bowen)

Key Words: salt marshes, redox gradients, nitrogen cycle, global change

18 Abstract

19 Salt marshes sit at the terrestrial-aquatic interface of oceans around the world. Unique
20 features of salt marshes that differentiate them from their upland or offshore counterparts include
21 high rates of primary production from vascular plants and saturated saline soils that lead to sharp
22 redox gradients and a diversity of electron acceptors and donors. Moreover, the dynamic nature
23 of root oxygen loss and tidal forcing leads to unique biogeochemical conditions that promote
24 nitrogen cycling. Here, we highlight recent advances in our understanding of key nitrogen
25 cycling processes in salt marshes and discuss areas where additional research is needed to better
26 predict how salt marsh N cycling will respond to future environmental change.

28 **Salt marshes are hot spots for nitrogen removal**

29 Salt marshes occupy a unique ecological niche between the land and sea. However, their
30 precarious position in the terrestrial to marine continuum leaves them vulnerable to
31 anthropogenic disturbances from both directions (Fig. 1). From the land, salt marshes intercept
32 terrestrial runoff, often laden with nitrogen (N) from anthropogenic sources including sewage
33 waste disposal, excess fertilizer, and atmospheric deposition from fossil fuel combustion [1].
34 From the sea, upwelled nutrients can be advected into estuaries to support salt marsh production
35 [2]. At the same time, rising sea levels can waterlog soils, leading to increased ponding [3] and
36 decreased productivity that inhibits the natural ecogeomorphic feedbacks that have allowed these
37 ecosystems to survive thousands of years of global change [4]. Extensive historic salt marsh loss,
38 combined with unprecedented rates of global change, have dramatically shrunk the spatial extent
39 of marshes, with an estimated loss rate of $0.28\% \text{ y}^{-1}$ between 2000 and 2019, causing billions of
40 dollars of economic damages [5].

41 Loss of salt marsh habitat also threatens adjacent waters, in part because microbes that
42 reside in salt marsh soils can remove N before the negative consequences of that N can be
43 realized. Although our atmosphere is made predominantly of di-nitrogen (N_2) gas, many
44 ecosystems, including salt marshes, are limited by the amount of biologically available N. While
45 N can limit growth, too much N from land or sea is also negative and can lead to a series of
46 deleterious effects including excess algae growth, low oxygen conditions, and decreases in
47 biodiversity [6]. However, the complex cycling and removal of N by salt marshes can mitigate
48 downstream eutrophication. Micro-organisms cycle this N by converting it to different forms that
49 exploit energetic gradients and promote cell growth. Several unique features of salt marshes
50 differentiate them from terrestrial and offshore habitats and make them hot spots for N removal,

51 because they lead to widely fluctuating redox conditions that favor microbial N transformations
52 (Box 1). Below, we review recent literature on microbial N cycling in salt marshes and how
53 oscillating redox conditions facilitate N removal and support critical ecosystem services.

54 **Mineralization**

55 The process of N mineralization (Box 2) converts organic N to inorganic ammonium
56 (NH_4^+). The fraction of mineralized N not immobilized as microbial biomass can be assimilated
57 by primary producers or other microbes or it can be oxidized. Mineralization rates span a wide
58 range, from 3-122 g N $\text{m}^{-2} \text{ y}^{-1}$ [7], are broadly related to climatic factors (e.g., temperature) and
59 ecosystem properties (e.g., soil composition, microbial biomass, C:N ratios) and decrease with
60 depth in the soil [8,9]. Since mineralization of organic N is the principle means by which reactive
61 N is recycled back to primary producers, this process plays a key role in determining overall
62 ecosystem productivity, particularly when external inputs are low.

63 Salt marshes are strongly N limited and, although N loading rates from surrounding
64 watersheds and coastal upwelling can be high, mineralization supports 50-200% of plant N
65 demand [7]. Excess NH_4^+ production is generally either immobilized in microbes or enters into
66 other N cycling pathways, rather than being exported from the system via lateral fluxes [7].
67 Ammonium production can occur through cleavage of N-rich compounds by extracellular
68 enzymatic degradation of proteins and polypeptides; this is a multi-step process whereby
69 proteases and peptidases, respectively, cleave amino acids and amides that are further degraded
70 by amidases, releasing NH_3 . Microbial uptake of substrates is size restricted so particulate and
71 dissolved forms of organic N must first be degraded into low molecular weight components. The
72 dissolved organic N (DON) pool is smaller in coastal soils, compared to terrestrial soils and the
73 ocean, and it remains poorly characterized [10]. Moreover, there is a limited understanding of

74 how DON composition varies with salt marsh plant species, tidal inundation, and soil redox
75 [11,12].

76 Salt marsh plants affect mineralization through litter production and by altering soil redox
77 conditions and carbon availability [12,13]. These effects can be species specific, but marsh plant-
78 microbe interactions are often poorly characterized. Indirect evidence suggests that salt marsh
79 plant rhizodeposition differs between rapid growth and flowering life stages [14] but
80 environmental conditions, nutrient availability, and the interactions among them, likely affect
81 rates and composition as well [15-18].

82 Unlike well-drained terrestrial soils and much of the ocean, salt marsh soils are saturated
83 and anoxic within millimeters of the surface. Tidal wetting and drying affect N mineralization by
84 altering redox conditions and organic matter vulnerability to decomposition [19]. Oscillating
85 redox conditions created by tides, bioturbation, and root translocation affect mineral-organic
86 matter associations, depolymerization of macromolecules, and whether microbial decomposition
87 proceeds through aerobic or anaerobic pathways [13,20,21]. Ultimately, the likelihood that low
88 molecular weight products of depolymerization and fermentation will be mineralized depends on
89 kinetic and thermodynamic constraints on microbes.

90 Recent methodological advances have allowed better estimation of net and gross
91 mineralization rates. The former is often based on accumulation of NH_4^+ and nitrate (NO_3^-) over
92 time and captures the net outcome of productive and consumptive processes. Highly sensitive
93 ^{15}N tracer techniques estimate gross mineralization as the dilution of added $^{15}\text{NH}_4^+$ and/or $^{15}\text{NO}_3^-$
94 by the same compounds produced at natural abundance. Lastly, there have been efforts to
95 measure hydrolytic enzymes involved in mineralization across salt marsh habitats [22].
96 Emerging frameworks that consider both the free energy yield of the electron acceptor and the

97 nominal oxidation state of organic carbon [23] offer a promising way forward in predicting
98 substrate availability to microbes and the efficiency of mineralization [8].

99 **N₂ fixation**

100 Nitrogen fixation (N₂ fixation) is a critical process in the N cycle that connects largely
101 unreactive atmospheric N₂ to the biologically active pools of N (Box 2). It can help ease N
102 limitation and increase primary production. Photoautotrophs, chemolithotrophs, and
103 heterotrophs, can perform N fixation (collectively referred to as diazotrophs), where N₂ is
104 transformed into ammonia (NH₃) and rapidly protonated to NH₄⁺. This NH₄⁺ is then incorporated
105 into microbial biomass, or it may leak out of the cell into the environment. N₂ fixation is
106 energetically expensive, requiring 16 ATP for every mole of N₂ fixed.

107 One of the first N budgets for a salt marsh demonstrated that ~10% of the total N inputs
108 to the marsh came from N₂ fixation and most of this was due to rhizosphere bacteria [24]. Since
109 then, a variety of studies demonstrated N₂ fixation rates ranging from 0-60 mg N m⁻² d⁻¹ with a
110 median rate of 12.6 mg N m⁻² d⁻¹ and a total annual N addition to salt marshes each year of 1.7
111 Tg N y⁻¹ [25]. Overall, salt marsh N₂ fixation contributes only modestly to the global N budget.
112 Most of these rates are from the acetylene reduction assay, which is logistically simpler and more
113 cost-effective than using a ³⁰N₂ label. However, this method has numerous artifacts, including
114 causing shifts in the microbial community, particularly among sulfate reducing bacteria, which
115 are important N₂ fixers in salt marshes [26].

116 On an individual salt marsh basis, N₂ fixation may be an important N source, albeit one
117 that is challenging to accurately measure. This is especially true for younger salt marshes that
118 have low nutrient stocks and N limited primary production. In fact, higher rates of N₂ fixation
119 were observed in younger, artificially created salt marshes [27]. As salt marshes age, a variety of

120 changes take place that could limit N₂ fixation, such as decreases in light availability and
121 increases in concentrations of sulfide and NH₄⁺. For example, Tyler et al. [28], used a natural salt
122 marsh chronosequence to show that summer N₂ fixation rates were 2-3 fold higher in a young
123 marsh compared to older marsh. They also demonstrated that N₂ fixation exceeded N demand in
124 the young salt marshes.

125 Other controls on N₂ fixation include organic matter availability [29], which is important
126 for heterotrophic N₂ fixers, and oxygen concentrations, which inhibit nitrogenase. The role of
127 dissolved inorganic N in controlling N₂ fixation is an active mystery. Some studies clearly
128 demonstrate that N₂ fixation is down regulated in the presence of NH₄⁺ and NO₃⁻ [30], while
129 others show no change [31]. This lack of consistent inhibition in the presence of dissolved
130 inorganic N might hint at the type of diazotroph present, as well as their reason for fixing N [31].
131 For example, some N₂ fixation may occur as a mechanism to maintain intracellular redox
132 balance [31], rather than to fill an N deficit.

133 The application of next generation sequencing approaches reinforces the ubiquity and
134 high diversity of salt marsh diazotrophic communities. Predicted metabolic potential for soil N₂
135 fixation was widespread across a salt marsh-to-sea transition zone [32]. Nitrogen fixers
136 associated with roots of the grass *Elytrigia atherica* were more abundant at higher compared to
137 lower elevations [33]. Bulseco et al. [34] demonstrated an increase in N fixation genetic
138 signatures with depth in a New England salt marsh. And recent *Spartina alterniflora* root
139 microbiome studies demonstrate the importance of N fixing sulfur cycling prokaryotes that
140 simultaneously increase N availability and detoxify sulfide from the root zone [22,35]. The
141 microbial community associated with *S. alterniflora* is a function of plant phenotypic
142 characteristics, with N₂ fixing sulfate reducers predominating in the areas associated with the tall

143 form, and N₂ fixing methanogens more typically associated with short form [36]. Understanding
144 how N₂ fixation rates will change under future climate conditions is imperative for predicting
145 future salt marsh productivity and thus their ability to keep pace with sea level rise and sequester
146 carbon.

147 **Nitrification**

148 Nitrification, the oxidation of NH₄⁺ to NO₃⁻, is carried out by bacteria and archaea known
149 as ammonia-oxidizers, or more colloquially, as nitrifiers (Box 2). The canonical ammonia-
150 oxidizing bacteria (AOB) have been joined by ammonia-oxidizing archaea (AOA) and, most
151 recently, complete ammonia oxidizers known as comammox bacteria. AOA and AOB oxidize
152 NH₄⁺ to nitrite (NO₂⁻), while comammox carry the process all the way to NO₃⁻. Nitrification rates
153 and abundances reported in salt marshes vary over orders of magnitude, with rates ranging from
154 0.1 x 10³ μmol N g⁻¹ day⁻¹ and nitrifier abundances show similar variability [37]. Factors that
155 drive differences in abundance, diversity, and activity of nitrifiers include salinity, oxygen,
156 temperature, sulfide, and pH [38]. However, a primary characteristic of salt marshes that
157 distinguishes them from other coastal or marine systems is the dominance of plants. Typically,
158 higher nitrification rates and nitrifier abundances are associated with vegetated marsh soils [39].
159 However, in a recent study of the *S. alterniflora* microbiome [22], AOB were enriched in the
160 root/rhizome samples, while AOA and comammox were higher in soils separated from plant
161 roots. Higher absolute abundances of AOA and AOB were also found in bulk versus vegetated
162 soils along a salt marsh chronosequence [40]. Conflicting results may simply reflect complex
163 dynamics in salt marsh soils, but they may also be due to different plant species compositions.

164 Soils dominated by different salt marsh plant species have different nitrifier communities,
165 activities (e.g., [41,42]), and abundances that can vary over several orders of magnitude.

166 However, it is not clear whether plants are impacting the nitrifiers by species-specific root
167 exudates [43] or differential O₂ loss from roots [44]. Two studies of comammox conducted in the
168 same region with similar plant species, reported conflicting results. In one study, pH and salinity
169 were the most important factors driving comammox distribution [45], while a second reported
170 plant species as the major driver [46]. One confounding factor affecting studies on the
171 interactions between plants and nitrifiers in salt marshes is that both the patterns of plant
172 zonation and controls on nitrifier communities are dictated by soil chemistry, which is driven by
173 the dynamics of groundwater flow and tidal flooding [47]. Thus, disentangling plant effects from
174 soil chemistry effects can be difficult, and may contribute to conflicting results.

175 The effect of plants on nitrifiers, although still not fully resolved, explains why salt
176 marshes are often categorized as more terrestrial than marine. However, the presence of saltwater
177 in marshes makes them more similar in some ways to marine systems. Salinity is a critical factor
178 regulating abundance, activity, and community structure of nitrifiers [38,48]. However, the
179 nitrifier communities in salt marshes differ significantly from those in marine systems. In marine
180 systems, AOA are consistently more abundant than AOB [49], but in salt marshes, AOB
181 sometimes outnumber AOA [40,42], suggesting more variation in salt marshes relative to marine
182 environments.

183 AOA community composition also differs between salt marshes and oceans [50], with
184 *Nitrososphaera* increasing in abundance as the environment transitions from offshore to the
185 coastal zone (Fig. 2). Studies of AOB communities suggest a transition from freshwater to
186 marine waters, with *Nitrosomonas* being more abundant at the freshwater end, and *Nitrosospira*
187 and uncultivated AOB being more abundant in brackish and marine systems (reviewed in
188 Bernhard and Bollman [38]). *Nitrosomonas* is also associated with more eutrophic environments,

189 compared to *Nitrosospira* [51,52]. Unfortunately, a global quantitative analysis of AOB
190 distribution has not been done.

191 Comammox have not yet been detected in ocean systems, but their abundance rivals and
192 even outnumbers AOB in some salt marshes [37,45], suggesting an important role for these
193 organisms. The apparent absence of comammox in oceans has led the hypothesis that
194 comammox does not grow well in high salinity and a recent study demonstrated low saline
195 tolerance of the cultured comammox, *Nitrospira inopinata* [53]. However, their abundance in
196 salt marshes and other estuarine systems suggests more ecophysiological diversity among these
197 nitrifiers, and our current inventory of comammox diversity is far from complete. Regardless of
198 whether NH_4^+ is oxidized via AOA, AOB, or comammox bacteria, the process requires a supply
199 of oxygen to generate oxidized N. Therefore, in salt marshes where redox conditions oscillate,
200 nitrification forms a critical link between the mineralization of NH_4^+ and the production of
201 oxidized N needed for subsequent dissimilatory NO_3^- transformation and loss. Thus, nitrifiers
202 play an outsized role in the N removal benefits provided by salt marshes, even though they do
203 not directly remove N themselves.

204 **Dissimilatory NO_3^- loss and transformation**

205 While nitrification requires the presence of oxygen, there are three important
206 dissimilatory NO_3^- loss and transformation processes that require the absence of oxygen —
207 denitrification and anammox (anaerobic ammonium oxidation), which generate N_2 that is lost
208 from the system, and dissimilatory NO_3^- reduction to ammonium (DNRA), which transforms
209 NO_3^- into its most reduced form (Box 2). Unlike the open ocean, where oxidized N is typically
210 upwelled from deep NO_3^- rich seawater, in marshes this NO_3^- is provided either by anthropogenic
211 sources, coastal upwelling, or via nitrification of mineralized NH_4^+ . Thus, the unique oscillating

212 redox gradients in salt marshes allow close coupling between the oxidation of NH_4^+ and the
213 reduction of NO_3^- , which facilitates N loss from the system.

214 *Denitrification* — Salt marshes are hot spots for denitrification, which is the multistep conversion
215 of NO_3^- through several intermediates to N_2 (Box 2). Many microbial taxa have the genetic
216 capacity for denitrification [54,55] but estimates are difficult due, in part, to the complex
217 dynamics of tidal flooding and oxidation within the rhizosphere. However, one analysis of
218 published studies suggests that the median salt marsh denitrification rates ($14\text{--}28 \text{ mg N m}^{-2} \text{ d}^{-1}$)
219 are higher than estuarine and coastal shelf sediments [25] and terrestrial forests [56] and on par
220 with agricultural soils [57].

221 Denitrifying microbes require a supply of NO_3^- , which, in many salt marshes is primarily
222 provided via *in situ* nitrification [58] even under elevated supplies of anthropogenic NO_3^- [59].
223 Since denitrification also requires low oxygen conditions, the varying redox profiles of salt
224 marshes provide both the supply of oxygen needed for NO_3^- production from nitrification and the
225 anoxic conditions needed to facilitate NO_3^- respiration by denitrifiers. These factors are strongly
226 driven by plant traits, such that plant species diversity can further differentiate rates of
227 denitrification and the structure of the microbes responsible [60,61]. Although denitrification is
228 typically associated with heterotrophic metabolisms that require a supply of organic matter as an
229 electron donor, recent work also indicates that autotrophic denitrification can occur in salt marsh
230 soils [34,62], though its contribution to total denitrification is unclear.

231 Each step in the denitrification pathway (Box 2) is facilitated by different enzymes and
232 the process is modular [63,64], as not all microbes contain all the genes essential for complete
233 denitrification. Critically, a key intermediate in the denitrification pathway is the conversion of
234 nitrogen oxide (NO) to nitrous oxide (N_2O), a potent greenhouse gas, which, in canonical

235 denitrification is converted in the final step to N_2 . However, many microbial taxa lack the gene
236 that facilitates the final step in the denitrification pathway, leading to N_2O production [63].
237 Nitrous oxide can also be produced biotically and abiotically during nitrification, making it
238 challenging to determine which pathway is the proximate source of N_2O [65]. In salt marshes
239 with low supply of ambient NO_3^- , nitrification appears to dominates N_2O production however,
240 under high NO_3^- , denitrifiers appear to dominate N_2O production and consumption [66]. Lastly,
241 recent work examining N_2O production in marsh fungi also suggests a role for fungal
242 denitrification in N_2O production [67], though its quantitative importance remains uncertain.

243 *Anammox* — anaerobic ammonium oxidation — is an autotrophic microbial pathway where
244 NH_4^+ is oxidized to N_2 under anoxic conditions using NO_2^- as the electron acceptor [68].
245 Anammox is an important pathway for N loss in oceans, where it is a major, and often the
246 dominant N_2 producing process in deeper marine sediments [69] and oxygen minimum zones
247 [70]. This can be contrasted with terrestrial systems, where little was known about anammox.
248 However, a recent review of 1212 observations found that while anammox rates were extremely
249 low in natural forests and grasslands, they were fairly high in wetlands (averaging 2.17 nmol N
250 $g^{-1} hr^{-1}$) and in crop lands (averaging 1.6 nmol N $g^{-1} hr^{-1}$) [71].

251 In salt marshes anammox appears to be responsible for 1-12% of NO_3^- reduction to N_2 .
252 Rates of anammox fall within the lower end of the range of those typically reported for marine
253 systems [72,73]. However, the low importance of anammox is less due to lower rates of
254 anammox, and more due to the high rates of denitrification and DNRA, thereby reducing the
255 relative importance of anammox. High organic matter availability is an important factor affecting
256 the partitioning of NO_3^- reduction away from anammox [74] but higher salinity [72] and high
257 sulfide concentrations [75] may also reduce the importance of anammox.

258 *Dissimilatory Nitrate Reduction to Ammonium (DNRA)* — DNRA is the microbial reduction of
259 NO_3^- to NH_4^+ . This process is important because unlike denitrification or anammox, it retains
260 fixed N in the ecosystem. There are two very different pathways for DNRA, one is heterotrophic
261 fermentative DNRA and the other is carried out by autotrophic bacteria using sulfide or other
262 reduced compounds as the electron donor [76]. Several studies have suggested that fermentative
263 DNRA is favored over denitrification under conditions when organic carbon availability is high
264 and nitrate concentrations are low [74,77,78].

265 The advent of new molecular techniques and wider use of ^{15}N tracers has revealed that
266 DNRA is common in many habitats. It was first reported to be an important NO_3^- reduction
267 pathway in coastal marine sediments as well as some freshwater environments where rates can
268 be quite high [76]. DNRA tends to be a less important NO_3^- reducing process in deeper marine
269 sediments. For example, in Arctic continental shelves DNRA made up less than 10% of total
270 NO_3^- reduction [79]. Because DNRA was believed to require sustained anaerobic conditions it
271 was thought to only occur in saturated soils and sediments. However, this view began to change
272 when Silver et al. [80] reported that up to 75% of NO_3^- reduction in tropical soils was due to
273 DNRA. Since then, a variety of studies in terrestrial soils have reported the occurrence of
274 DNRA. A review of 85 studies found a mean global rate of DNRA of $0.31 \mu\text{g N g}^{-1} \text{d}^{-1}$ [81] with
275 the highest rates in paddy soils and the lowest in unfertilized crop lands.

276 DNRA is an important process in many salt marsh and mangroves systems and while the
277 number of studies is small, typical rates fall within a range of 0.7 to $8 \text{ mg N m}^{-2} \text{ d}^{-1}$. In a
278 compilation of 14 studies Giblin et al. [82] found that DNRA accounted for anywhere between 3
279 to 99% of the total salt marsh soil NO_3^- reduction, and in 30% of studies DNRA was the

280 dominant NO_3^- reduction pathway. Although rates are on average lower than those of
281 denitrification, they can be a relatively high percentage of the total NO_3^- reduction.

282 The controls on DNRA are not well understood and while the relative availability of
283 organic matter to NO_3^- is predictive in some cases, it does not hold all the time. In terrestrial
284 systems, Cheng et al. [81] found precipitation was the main factor stimulating DNRA, however,
285 others found that rates can be influenced by plant type [83] and soil N availability [83,84]. In
286 aquatic soils, DNRA tends to be favored under condition of high organic matter, and sulfide
287 concentrations were the most accurate predictor of the DNRA [75] in estuarine sediments,
288 consistent with laboratory studies [85]. Other studies found salinity to be an important control,
289 with DNRA being less important than denitrification at low salinities [86,87]. Nutrients also play
290 a role. Peng et al. [65] found that while NO_3^- reduction in a natural temperate salt marsh was
291 dominated by DNRA, large N additions shifted the balance to favor denitrification. Other studies
292 found that N additions increase both processes, although denitrification showed greater
293 stimulation than DNRA [59]. Discrepancies between these studies may reflect differences in the
294 amount and types of N added [88]. Plant species may also play a role. Studies in China where *S.*
295 *alterniflora* is invading mangrove wetlands suggested that this grass enhanced denitrification by
296 almost three-fold while decreasing DNRA by nearly 90%.

297 **Concluding remarks and future directions**

298 While we understand many of the individual controls on microbial N cycling, more
299 questions remain regarding how these processes will respond in aggregate to changing
300 environmental conditions (see Outstanding Questions Box). Ultimately, N from natural and
301 anthropogenic sources and N fixation and mineralization determine the extent of primary
302 productivity in salt marshes, with ecosystem-wide consequences. New discoveries, such as the

303 identification of abundant comammox microbes in salt marshes, further demonstrate that we
304 have an incomplete understanding of the taxonomic breadth of organisms underlying these
305 pathways. While we are beginning to document the genetic capacity of these processes through
306 metagenomics, we have very little information on what genes are being expressed, what proteins
307 are being produced, and how microbial interactions with each other and with marsh vegetation
308 affect N cycling. Coupling manipulative field and lab experiments with measurements of rates
309 and metatranscriptomics and metaproteomics will provide new insights into controls on these
310 critical steps in the marsh N cycle.

311 **Acknowledgements**

312 This effort was supported by several awards, including from the National Science
313 Foundation: NSF 2224608 to Anne Giblin and Jennifer Bowen, NSF 2203322 to Jennifer Bowen
314 and NSF 2203323 to Anne Giblin, NSF 2015825 to Robinson Fulweiler and NSF 2121019 to
315 Amanda Spivak. Robinson Fulweiler was also supported by an award from RI Sea Grant and and
316 Amanda Spivak received support from the US Coastal Research Program W912HZ-20-2-0053.

317 **Literature Cited**

- 318 1. Galloway, J.N. *et al.* (2003) The nitrogen cascade. *BioScience* 53, 341-356
- 319 2. Hinson, A.L. *et al.* (2019) Environmental controls on the distribution of tidal wetland soil
320 organic carbon in the continental United States. *Global Biogeochem. Cy.* 33, 1408-1422
- 321 3. Spivak, A.C. *et al.* (2020) Salt marsh pond biogeochemistry changes hourly-to-yearly but
322 does not scale with dimensions or geospatial position. *J. Geophys. Res. Biogeosci.* 125,
323 e2020JG005664
- 324 4. Luk, S. *et al.* (2023) Peat decomposition and erosion contribute to pond deepening in a
325 temperate salt marsh. *J. Geophys. Res. Biogeosci.* 128, e2022JG007063

326 5. Campbell, A.D. *et al.* (2022) Global hotspots of salt marsh change and carbon emissions.

327 *Nature* 612, 701-706

328 6. Breitburg, D. *et al.* (2018) Declining oxygen in the global ocean and coastal waters.

329 *Science* 359, eaam7240

330 7. Tobias, C. and Neubauer, S.C. (2019) Chapter 16 - Salt Marsh Biogeochemistry—An
331 Overview. In *Coastal Wetlands (Second Edition)* (Perillo, G.M.E. *et al.*, eds), pp. 539-
332 596, Elsevier

333 8. Li, Z. *et al.* (2020) The stoichiometry of soil microbial biomass determines metabolic
334 quotient of nitrogen mineralization. *Environ. Res. Lett.* 15, 034005

335 9. Li, Z. *et al.* (2020) Global variations and controlling factors of soil nitrogen turnover rate.
336 *Earth-Sci. Rev.* 207, 103250

337 10. Zhang, X. *et al.* (2020) Global nitrogen cycle: critical enzymes, organisms, and processes
338 for nitrogen budgets and dynamics. *Chem. Rev.* 120, 5308-5351

339 11. Jilling, A. *et al.* (2021) Priming mechanisms providing plants and microbes access to
340 mineral-associated organic matter. *Soil Biol. Biochem.* 158, 108265

341 12. Liu, Y. *et al.* (2022) Root exudates shift how N mineralization and N fixation contribute
342 to the plant-available N supply in low fertility soils. *Soil Biol. Biochem.* 165, 108541

343 13. Noyce, G.L. *et al.* (2023) Oxygen priming induced by elevated CO₂ reduces carbon
344 accumulation and methane emissions in coastal wetlands. *Nat. Geosci.* 16, 63-68

345 14. Hines, M.E. *et al.* (1989) Sulfate reduction and other sedimentary biogeochemistry in a
346 northern New England salt marsh. *Limnol. Oceanogr.* 34, 578-590

347 15. de Vries, F.T. *et al.* (2019) Changes in root-exudate-induced respiration reveal a novel
348 mechanism through which drought affects ecosystem carbon cycling. *New Phytol.* 224,
349 132-145

350 16. Pett-Ridge, J. *et al.* (2021) Rhizosphere carbon turnover from cradle to grave: The role of
351 microbe-plant interactions. In *Rhizosphere Biology: Interactions Between Microbes and*
352 *Plants* (Gupta, V.V.S.R. and Sharma, A.K., eds), pp. 51-73, Springer Singapore

353 17. Vives-Peris, V. *et al.* (2020) Root exudates: from plant to rhizosphere and beyond. *Plant*
354 *Cell Rep.* 39, 3-17

355 18. Jia, J. *et al.* (2019) Effects of salinity and moisture on sediment net nitrogen
356 mineralization in salt marshes of a Chinese estuary. *Chemosphere* 228, 174-182

357 19. LaCroix, R.E. *et al.* (2019) Shifting mineral and redox controls on carbon cycling in
358 seasonally flooded mineral soils. *Biogeosciences* 16, 2573-2589

359 20. Huang, W. *et al.* (2020) Trade-offs in soil carbon protection mechanisms under aerobic
360 and anaerobic conditions. *Global Change Biol.* 26, 3726-3737

361 21. Koop-Jakobsen, K. *et al.* (2021) Plant-mediated rhizosphere oxygenation in the native
362 invasive salt marsh grass *Elymus athericus*. *Front. Plant Sci.* 12,

363 22. Rolando, J.L. *et al.* (2022) The core root microbiome of *Spartina alterniflora* is
364 predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes,
365 USA. *Microbiome* 10, 37

366 23. Keiluweit, M. *et al.* (2016) Are oxygen limitations under recognized regulators of organic
367 carbon turnover in upland soils? *Biogeochemistry* 127, 157-171

368 24. Valiela, I. and Teal, J.M. (1979) The nitrogen budget of a salt marsh ecosystem. *Nature*
369 280, 652-656

370 25. Hopkinson, C.S. and Giblin, A.E. (2008) Nitrogen dynamics of coastal salt marshes. In
371 *Nitrogen in the Marine Environment, 2nd Ed.* (Capone, D.G. *et al.*, eds), pp. 991-1036,
372 Elsevier

373 26. Fulweiler, R.W. *et al.* (2015) Examining the impact of acetylene on N-fixation and the
374 active sediment microbial community. *Front. Microbiol.* 6, 418

375 27. Piehler, M.F. *et al.* (1998) Development and N₂-fixing activity of the benthic microbial
376 community in transplanted *Spartina alterniflora* marshes in North Carolina. *Restor. Ecol.*
377 6, 290-296

378 28. Tyler, A.C. *et al.* (2003) Nitrogen fixation and nitrogen limitation of primary production
379 along a natural marsh chronosequence. *Oecologia* 136, 431-438

380 29. Cohen, R.A. *et al.* (2009) Polysaccharide addition effects on rhizosphere nitrogen fixation
381 rates of the California cordgrass *Spartina Foliosa*. *Wetlands* 29, 1063-1069

382 30. Darnajoux, R. *et al.* (2022) Ammonium sensitivity of biological nitrogen fixation by
383 anaerobic diazotrophs in cultures and benthic marine sediments. *J. Geophys. Res.*
384 *Biogeosci.* 127, e2021JG006596

385 31. Fulweiler, R.W. (2023) More Foxes than Hedgehogs: The Case for nitrogen fixation in
386 coastal marine sediments. *Global Biogeochem. Cy.* 37, e2023GB007777

387 32. Tebbe, D.A. *et al.* (2022) Seasonal and zonal succession of bacterial communities in
388 North Sea salt marsh sediments. *Microorganisms*. 10, 859

389 33. Hernandez, E.G. *et al.* (2020) Salt marsh elevation drives root microbial composition of
390 the native invasive grass *Elytrigia atherica*. *Microorganisms* 8, 1619

391 34. Bulseco, A.N. *et al.* (2020) Metagenomics coupled with biogeochemical rates
392 measurements provide evidence that nitrate addition stimulates respiration in salt marsh
393 sediments. *Limnol. Oceanogr.* 65, S321-S339

394 35. Rolando, J.L. *et al.* (2023) Sulfur oxidation and reduction are coupled to nitrogen fixation
395 in the roots of a salt marsh foundation plant species. *bioRxiv*, 2023.2005.2001.538948

396 36. Kolton, M. *et al.* (2020) Elucidation of the rhizosphere microbiome linked to *Spartina*
397 *alterniflora* phenotype in a salt marsh on Skidaway Island, Georgia, USA. *FEMS*
398 *Microbiol. Ecol.* 96, fiaa026

399 37. Bernhard, A.E. *et al.* (2021) Biogeography of ammonia oxidizers in New England and
400 Gulf of Mexico salt marshes and the potential importance of comammox. *ISME Comm.* 1,
401 9

402 38. Bernhard, A.E. and Bollmann, A. (2010) Estuarine nitrifiers: New players, patterns and
403 processes. *Estuar. Coast. Shelf Sci.* 88, 1-11

404 39. Chen, S. *et al.* (2022) Invasive *Spartina alterniflora* accelerates soil gross nitrogen
405 transformations to optimize its nitrogen acquisition in an estuarine and coastal wetland of
406 China. *Soil Biol. Biochem.* 174, 108835

407 40. Wang, M. *et al.* (2018) Compositional and abundance changes of nitrogen-cycling genes
408 in plant-root microbiomes along a salt marsh chronosequence. *Antonie Van Leeuwenhoek*
409 111, 2061-2078

410 41. Moin, N.S. *et al.* (2009) Distribution and diversity of archaeal and bacterial ammonia
411 oxidizers in salt marsh sediments. *Appl. Environ. Microbiol.* 75, 7461-7468

412 42. Beltz, J.K. *et al.* (2019) Vegetation-dependent response to drought in salt marsh
413 ammonia-oxidizer communities. *Microorganisms* 8, 9

414 43. Oliveira, V. *et al.* (2012) Prokaryotes in salt marsh sediments of Ria de Aveiro: Effects of
415 halophyte vegetation on abundance and diversity. *Estuar. Coast. Shelf Sci.* 110, 61-68

416 44. Engelaar, W.M.H.G. *et al.* (1995) Preservation of nitrifying capacity and nitrate
417 availability in waterlogged soils by radial oxygen loss from roots of wetland plants.
418 *Biology and Fertility of Soils* 20, 243-248

419 45. Wang, D.Q. *et al.* (2021) Abundance and niche specificity of different types of complete
420 ammonia oxidizers (comammox) in salt marshes covered by different plants. *Sci. Total
421 Environ.* 768, 144993

422 46. Lin, Y. *et al.* (2023) Plant species-driven distribution of individual clades of comammox
423 Nitrospira in a subtropical estuarine wetland. *Microb. Ecol.* 85, 209-220

424 47. Wilson, A.M. *et al.* (2015) Groundwater controls ecological zonation of salt marsh
425 macrophytes. *Ecology* 96, 840-849

426 48. Santos, J.P. *et al.* (2020) The response of estuarine ammonia-oxidizing communities to
427 constant and fluctuating salinity regimes. *Front. Microbiol.* 11, 574815

428 49. Schleper, C. and Nicol, G.W. (2010) Ammonia-oxidising archaea: physiology, ecology
429 and evolution. *Adv. Microb. Physiol.* 57, 1-41

430 50. Alves, R.J.E. *et al.* (2018) Unifying the global phylogeny and environmental distribution
431 of ammonia-oxidising archaea based on amoA genes. *Nat. Commun.* 9, 1517

432 51. Albright, R. *et al.* (2010) Ocean acidification compromises recruitment success of the
433 threatened Caribbean coral *Acropora palmata*. *Proc Natl Acad Sci U S A* 107, 20400-
434 20404

435 52. Peng, X. *et al.* (2013) Community composition of ammonia-oxidizing archaea from
436 surface and anoxic depths of oceanic oxygen minimum zones. *Front. Microbiol.* 4, 177

437 53. Zhao, M. *et al.* (2021) Salinity gradients shape the nitrifier community composition in
438 Nanliu River Estuary sediments and the ecophysiology of comammox Nitrospira
439 inopinata. *Sci. Total Environ.* 795, 148768

440 54. Rosenzweig, B.R. *et al.* (2018) Nitrogen regulation by natural systems in “unnatural”
441 landscapes: denitrification in ultra-urban coastal ecosystems. *Ecosyst. Health Sust.* 4,
442 205-224

443 55. Qi, H. and Liu, Y. (2023) Nitrogen removal through denitrification in China's aquatic
444 system. *Sci. Total Environ.* 891, 164317

445 56. Fang, Y. *et al.* (2015) Microbial denitrification dominates nitrate losses from forest
446 ecosystems. *Proc. Natl. Acad. Sci. USA* 112, 1470-1474

447 57. Weitzman, J.N. *et al.* (2021) Drivers of hot spots and hot moments of denitrification in
448 agricultural systems. *J. Geophys. Res. Biogeosci.* 126, e2020JG006234

449 58. Gao, D. *et al.* (2022) High importance of coupled nitrification-denitrification for nitrogen
450 removal in a large periodically low-oxygen estuary. *Sci. Total Environ.* 846, 157516

451 59. Koop-Jakobsen, K. and Giblin, A.E. (2010) The effect of increased nitrate loading on
452 nitrate reduction via denitirification and DNRA in salt marsh. *Limnol. Oceanogr.* 55, 789-
453 802

454 60. Mason, O.U. *et al.* (2021) New insights into the influence of plant and microbial diversity
455 on denitrification rates in a salt marsh. *Wetlands* 41, 33

456 61. Ooi, S.K. *et al.* (2022) Vegetation zones as indicators of denitrification potential in salt
457 marshes. *Ecol. Appl.* 32, e2630

458 62. Vineis, J.H. *et al.* (2023) Microbial chemolithoautotrophs are abundant in salt marsh
459 sediment following long-term experimental nitrate enrichment. *FEMS Microbiol. Lett.*
460 370, fnad082

461 63. Roco, C.A. *et al.* (2017) Modularity of nitrogen-oxide reducing soil bacteria: linking
462 phenotype to genotype. *Environ. Microbiol.* 19, 2507-2519

463 64. Graf, D.R. *et al.* (2014) Intergenomic comparisons highlight modularity of the
464 denitrification pathway and underpin the importance of community structure for N₂O
465 emissions. *PLoS One* 9, e114118

466 65. Peng, X. *et al.* (2021) Long-term fertilization alters nitrous oxide cycling dynamics in salt
467 marsh sediments. *Environ. Sci. Technol.* 55, 10832-10842

468 66. Ji, Q. *et al.* (2015) Nitrogen substrate-dependent nitrous oxide cycling in salt marsh
469 sediments. *J. Mar. Res.* 73, 71-92

470 67. Lazo-Murphy, B.M. *et al.* (2022) Nitrous oxide production and isotopomer composition
471 by fungi isolated from salt marsh sediments. *Front. Mar. Sci.* 9, 1098508.

472 68. van de Graaf, A.A. *et al.* (1995) Anaerobic oxidation of ammonium is a biologically
473 mediated process. *Appl. Environ. Microbiol.* 61, 1246-1251

474 69. Thamdrup, B. *et al.* (2021) Anammox bacteria drive fixed nitrogen loss in hadal trench
475 sediments. *Proc Natl Acad Sci U S A* 118, e2104529118

476 70. Lam, P. *et al.* (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone.
477 *Proc. Natl. Acad. Sci. USA* 106, 4752-4757

478 71. Yao, Y. *et al.* (2023) Global variations and controlling factors of anammox rates. *Global
479 Change Biol.* 29, 3622-3633

480 72. Koop-Jakobsen, K. and Giblin, A.E. (2009) Anammox in tidal marsh sediments: The role
481 of salinity, nitrogen loading, and marsh vegetation. *Estuar. Coasts* 32, 238-245

482 73. Zhou, Z. *et al.* (2021) Coupled relationships among anammox, denitrification, and
483 dissimilatory nitrate reduction to ammonium along salinity gradients in a Chinese
484 estuarine wetland. *J. Environ. Sci. (China)* 106, 39-46

485 74. Algar, C.K. and Vallino, J.J. (2014) Predicting microbial nitrate reduction pathways in
486 coastal sediments. *Aquat. Microb. Ecol.* 71, 223-238

487 75. Plummer, P. *et al.* (2015) Nitrogen reduction pathways in estuarine sediments: Influences
488 of organic carbon and sulfide. *J. Geophys. Res. Biogeosci.* 120, 1958-1972

489 76. Burgin, A.J. and Hamilton, S.K. (2007) Have we overemphasized in aquatic removal of
490 nitrate the role of denitrification in aquatic ecosystems? A review of nitrate removal
491 pathways. *Front. Ecol. Environ.* 5, 89-96

492 77. Kraft, B. *et al.* (2014) The environmental controls that govern the end product of bacterial
493 nitrate respiration. *Science* 345, 676-679

494 78. Hardison, A.K. *et al.* (2015) Influence of organic carbon and nitrate loading on
495 partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N₂
496 production. *Geochim. Cosmochim. Acta* 164, 146-160

497 79. McTigue, N.D. *et al.* (2016) Biotic and abiotic controls on co-occurring nitrogen cycling
498 processes in shallow Arctic shelf sediments. *Nat. Commun.* 7, 13145

499 80. Silver, W.L. *et al.* (2001) Dissimilatory nitrate reduction to ammonium in upland tropical
500 forest soils. *Ecology* 82, 2410-2416

501 81. Cheng, Y. *et al.* (2022) Global patterns and drivers of soil dissimilatory nitrate reduction
502 to ammonium. *Environ. Sci. Technol.* 56, 3791-3800

503 82. Giblin, A. *et al.* (2013) The importance of dissimilatory nitrate reduction to ammonium
504 (DNRA) in the nitrogen cycle of coastal ecosystems. *Oceanography* 26, 124-131

505 83. Shi, X. *et al.* (2020) Dissimilatory nitrate reduction to ammonium dominates soil nitrate
506 retention capacity in subtropical forests. *Biology and Fertility of Soils* 56, 785-797

507 84. Wan, Y. *et al.* (2023) Rapid dissimilatory nitrate reduction to ammonium conserves
508 bioavailable nitrogen in organic deficient soils. *Soil Biol. Biochem.* 177, 108293

509 85. Murphy, A.E. *et al.* (2020) Sulphide addition favours respiratory ammonification
510 (DNRA) over complete denitrification and alters the active microbial community in salt
511 marsh sediments. *Environ. Microbiol.* 22, 2124-2139

512 86. Giblin, A.E. *et al.* (2010) The effects of salinity on nitrogen losses from an oligohaline
513 estuarine sediment. *Estuar. Coasts* 33, 1054-1068

514 87. Upreti, K. *et al.* (2022) Dissimilatory nitrate reduction to ammonium (DNRA) is
515 marginal relative to denitrification in emerging-eroding wetlands in a subtropical
516 oligohaline and eutrophic coastal delta. *Sci. Total Environ.* 819, 152942

517 88. Bowen, J.L. *et al.* (2020) Not all nitrogen is created equal: Differential effects of nitrate
518 and ammonium enrichment in coastal wetlands. *BioScience* 70, 1108-1119

519 89. Mise, K. *et al.* (2021) Undervalued pseudo-nifH sequences in public databases distort
520 metagenomic insights into biological nitrogen fixers. *mSphere* 6, e00785-00721

521 90. Daims, H. *et al.* (2015) Complete nitrification by Nitrospira bacteria. *Nature* 528, 504-
522 509

523

524

525

526 **Figure legends**

527

528 Figure 1: Aerial view of the Great Marsh located Northeastern Massachusetts. The Great Marsh
529 forms part of the study areas of the NSF funded Plum Island Long-Term Ecological Research
530 Site (PIE-LTER). The photograph captures the essence of marshes being influenced by both
531 terrestrial and marine forces, with the terrestrial uplands behind and to the left of the camera
532 view that trends toward fully marine systems in the distant downstream toward the top of the
533 photo. This image was taken using a helium blimp and kite from heights of 300-500 feet in
534 August, 2009 by James S. Aber, Susan W. Aber and Vinton Valentine.

535

536 Figure 2. Relative distribution of archaeal *amoA* sequences in different habitats, based on data
537 from Alves et al. [50]. The top figure shows the distribution of sequences from all habitats; the
538 bottom figure shows the distribution of sequences from marine and estuarine/coastal habitats,
539 broken down into sub-habitats. NT = *Nitrosotalea*, NS = *Nitrososphaera*, NP = *Nitrosopumilus*.

540

541 Fig. I: Contrasts on the timescales and frequency of oscillations that affect ecosystems processes
542 along the terrestrial to ocean continuum, highlighting the divergence of salt marshes from both
543 terrestrial and deep ocean habitats.

544

545 Figure II: Summary of key nitrogen cycle processes and the oxidation states associated with
546 those transitions. Although organic matter (OM) has variable oxidation states, the N that is
547 mineralized as reduced N becomes part of the N pool that feeds into microbial N cycling in salt
548 marshes. Colored boxes and arrows indicate specific processes (blue - anammox, red -

549 denitrification, purple - DNRA, green -N₂ fixation, orange - nitrification, and brown -
550 mineralization).

551 **Box 1: Marshes in the middle.**

552 Aside from navigating the combined effect of anthropogenic disturbance on land and
553 rising waters from the sea, the location of salt marshes between terrestrial upland and oceanic
554 habitats creates other unique features with important implications for our understanding of marsh
555 nitrogen cycling (Fig. I). Along a terrestrial to ocean continuum, vegetated terrestrial soils (left
556 panel) experience diel fluctuations in photosynthesis and, depending on location, seasonal
557 variation in temperature and episodic patterns of precipitation and drought. Deep ocean
558 sediments (right panel), by contrast, have exceedingly stable temperature, light, pH, salinity, and
559 oxygen levels and experience seasonal and episodic deposition of organic material from the
560 surface ocean. Salt marshes (center panel) by contrast, have all the same oscillations observed in
561 terrestrial systems, coupled with tidal forcing that induces patterns of inundation and drying on a
562 12-hour 25-minute cycle and on the lunar cycle of spring and neap tides. Further, they have
563 variation in salinity driven by the extent of precipitation and drought, which further influences
564 the timing, delivery, and relative importance of terrigenous vs oceanic inputs. The combined
565 effect of these multiple oscillating processes happening in marshes, results in highly dynamic
566 redox environments that enhances the cycling and removal of N from natural and anthropogenic
567 sources.

568

569 **Box 2: Key processes in the marsh nitrogen cycle.**

570 The nitrogen (N) cycle in salt marshes contains several key N transformations (Fig. II,
571 Key Figure) that are often mediated by diverse groups of microbes that facilitate different steps.
572 Below we briefly describe the key steps in the N cycle, and the genes that are diagnostic for each
573 step.

574 Mineralization is the conversion of high molecular weight organic material into
575 ammonium (NH_4^+) facilitated through hydrolysis of complex organic material into simpler
576 compounds. In salt marshes, the molecular analysis of mineralization lags behind the rest of the
577 N cycle, although there have been efforts to quantify extracellular enzymes and the
578 Carbohydrate-Active enZYmes Database (CAZY), will allow future exploration of the genetic
579 underpinnings of mineralization.

580 Nitrogen fixation is a critical process carried out by micro-organisms that convert N_2 gas
581 to NH_4^+ . N_2 Fixation can be carried out by a wide array of diazotrophs, is catalyzed by the
582 enzyme nitrogenase, and can be detected using the diagnostic gene *nifH*, recent work has
583 emphasized the importance of also considering *nifD* or *nifK* [89].

584 Nitrification is the two-step process that converts NH_4^+ first to NO_2^- and then to NO_3^- .
585 Typically thought to result from two different microbes, the recent discovery of complete
586 ammonia oxidizers (comammox) revised our understanding [90]. The first step of nitrification is
587 considered rate limiting and the *amoA* gene that encodes ammonia monooxygenase is considered
588 diagnostic.

589 Denitrification is the conversion of NO_3^- through multiple steps into N_2 gas. Incomplete
590 denitrification occurs when the full process is truncated and leads to release of the greenhouse
591 gas N_2O . Different genes encode different steps in the pathway but the most commonly used

592 diagnostic genes are *nirS/nirK* and *nosZ* that encode nitrite and nitrous oxide reductases,
593 respectively.

594 Anammox is an autotrophic process where the oxidation of ammonium to dinitrogen gas
595 is carried out using nitrite as an electron acceptor. It is anaerobic and strongly inhibited by
596 oxygen [68]. The most common gene used to study anammox is hydrazine synthase, encoded by
597 *hzsCBA*.

598 Dissimilatory nitrate reduction to ammonium (DNRA) is the microbial conversion of
599 NO_3^- to NH_4^+ . DNRA is carried out by both heterotrophic and autotrophic organisms and is
600 important because it retains fixed nitrogen in marshes where it can be used to support primary
601 production. The *nrfA* gene is most commonly used to study DNRA, although DNRA may not be
602 restricted to bacteria with the *nrfA* gene.

603

604