
1. Introduction

Inspired by the perspectives that emerged from the second World Climate Research Programme (WCRP) Model 

Hierarchies Workshop, which took place at Stanford University in August-September 2022, we offer our thoughts 

on the future of climate model hierarchies, in particular to attempt to capture the potential future directions of 

evolution of the field.

The essence of the issue around the use of climate model hierarchies is that, while the Navier-Stokes equations 

have been known since the early nineteenth century, there is a glaring absence of first-principles theory linking 

the equations themselves to all their emergent complexities in various contexts. There is also the problem of 

processes across scales: motions on scales smaller than a model grid box and time step are not explicitly resolved, 

but significantly impact the resolved scales of motion and the processes they couple with. Furthermore, some 

Earth system processes such as sea-ice, land, and vegetation dynamics do not have closed-form mathematical 

representation, complicating their simulation in climate models and adding uncertainty in climate projections. 

Limitations in computing power also impose inherent trade-offs on which processes can be simulated and for 

how long. Simplified models, both analytical and numerical, thus have historically been of great use in advancing 

understanding of the fluid dynamics of the Earth's atmosphere and ocean, and have also aided the development 

of comprehensive global Earth system models.

The two key differences that made this second workshop stand out from the first, in our view, are (a) the dramatic 

growth of machine learning (ML), and data-informed methods more generally, as tools to aid modeling and 

understanding of the Earth system on weather, seasonal, and climate time scales, and (b) a fervent desire on 

the part of the modeling community to provide actionable science to downstream users of climate and weather 

models, which could include policy makers, private industry, and governments.

Abstract The climate model hierarchy encompasses models of varying complexity along different axes, 

ranging from idealized models that elegantly describe isolated mechanisms to fully coupled Earth system 

models that aspire to provide useable climate projections. Based on the second Model Hierarchies Workshop, 
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to become integrated into the model hierarchies framework.
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In Section 2, we introduce model hierarchies and define concepts discussed in this manuscript, such as complex-

ity, generalizability, and interpretability. Given the rapid rise in popularity of ML and data-informed methods, 

in Section 3 we review their use in various aspects of modeling, including uncertainty quantification (UQ), 

subgrid-scale (SGS) modeling, and emulating various aspects of models, including the model itself. In Section 4, 

we discuss broadening the traditional scope of model hierarchy to incorporate the increasing desire for climate 

science that is useful in predicting and preparing for climate change impacts. In Section 5, we present conclusions 

and offer suggestions for the future of model hierarchies.

2. Model Hierarchies Today

With the advent of high performance computing, the general circulation model (or global climate model; GCM), 

has become the standard starting point for climate research. For many areas of research, however, a GCM is 

an insufficient and/or opaque tool, necessitating the use of models with different spatial scales, with different 

complexities, or that include different physical processes.

Following Held (2005), Bony et al. (2013), Jeevanjee et al. (2017), and Maher et al. (2019), among others, we 

consider climate model hierarchies as a set of ladders connecting our conceptual understanding of the physical 

principles of Earth's climate with comprehensive modeling and attempts at prediction of the Earth system in all 

its complexity. A “hierarchy” may also be defined as a spectrum of complexity along many different axes. Model 

resolution is one of the more commonly traveled axes, often traded against the size of the model domain or length 

of simulation. Others include the number of parameterized processes, the complexity of those parameterizations, 

and the coupling of multiple different models together, such as an oceanic model to an atmospheric model, or a 

climate model to an economic model. We can visualize different possible model configurations on different axes 

of the hierarchy, as in Figure 1 of Jeevanjee et al. (2017). The term “digital twin” is increasingly used to describe 

extremely high-resolution models at the “top” of the hierarchy, which produce data volumes on par with observa-

tions of the Earth (Bauer et al., 2021). There are many ways to arrange models into a hierarchy, but because the 

results of model experiments are interpreted in terms of the models' differences, careful choice of the hierarchy's 

axis is an important part of experimental design. In Figure 1, we offer a visualization of different models in terms 

Figure 1. Diagram highlighting the range of models in the hierarchy, including idealized models, complex models, and 

purely data-driven models. Here “GCM” is used to mean atmosphere- or ocean-only general circulation models, in contrast 

to fully coupled Earth system models that include atmosphere, ocean, chemistry, land, vegetation, biosphere, sea-ice, and 

cryosphere components.
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of their overall complexity (which can include the different axes described above) and the influence of data, 

which is becoming increasingly more relevant along with the prevalence of ML.

“Interpretability” and “generalizability” are two terms with specific meanings for a model hierarchy, and the goal 

of any hierarchy should be to produce results that are both interpretable and generalizable. We define these as 

follows:

Interpretability: the ability to translate a model into terms that are understandable to a human (Barredo Arrieta 

et al., 2020), that is, an interpretable model ensures the behavior of a system follows known scientific laws.

Generalizability: the degree to which a model maintains accuracy or skill when applied across different problems 

or regimes, that is, a generalizable model should perform well under a range of scenarios.

These definitions are not new in the context of model hierarchies, and it is typical to deem simpler models with 

fewer parameters (“more parsimonious”) as “more interpretable” when compared against more complex models 

that include many competing mechanisms (Jeevanjee et al., 2017; Saravanan, 2021). In contrast, more idealized 

models within the hierarchy are more likely to be designed for a specific case, regime or scenario and may be 

less generalizable than complex models (e.g., a dry dynamical core). As we discuss in Section 3.3, when adopt-

ing artificial intelligence (AI) into the model hierarchy, these definitions of interpretability and generalizability 

remain relevant. In AI or ML models, results are “interpretable” if direct mechanistic connections can be made 

between model input variables and the output. Black-box models are not interpretable, but their results potentially 

can be made interpretable if the connections they find can be tested using a different model in the hierarchy. 

Generalizability tests the robustness of model output to the design of the experiment. Under what conditions do 

the model experiment's conclusions hold? Is the proposed mechanism or process always important for describing 

the behavior of the system? By systematically varying the simulated processes and the complexity of the system, 

model hierarchies are well suited to provide answers to these questions.

Useful prediction of the impacts of weather and climate on society require accurate representation of interac-

tions across multiple scales and domains. For example, quantifying the potential impact of a hurricane requires 

knowing the likely track and intensity as well as the population density and built environment along its track. The 

rapidly growing area of “impacts research” explores the projected impact of climate change on economic and 

behavioral responses and feedbacks. As computing resources have increased, impacts research has grown more 

complex. Model hierarchies are often used both to study important processes in isolation and to evaluate causality 

by studying linkages between processes under simplified sets of assumptions. Just as model hierarchies can be 

useful in systematically varying a physical parameter space, so too can they be used to explore the possibility 

space of future human decisions.

3. Data-Driven Methods: The Emergence of Machine Learning

Data indirectly powers many models in the hierarchy already, either by providing initial or boundary conditions 

that resemble observations (e.g., sea surface temperatures or radiative equilibrium profiles, e.g., the relaxation 

temperature in Held-Suarez; Held & Suarez, 1994). Indeed, proper observations have been crucial in ensuring 

consistency with observed climate in state-of-the-art GCMs. However, the past decade has seen the emergence 

of a new data-driven paradigm, ML, in the existing climate model hierarchy. ML is generally defined as the 

development of algorithms that allow computers to learn without being explicitly programmed (Samuel, 1959). 

It is a subset of AI, which is the capability of computers to imitate human behavior. ML-driven modeling poten-

tially provides a radically new approach to dynamical systems modeling, weather forecasting, and comprehensive 

climate modeling, to the extent of being classified as a new member in the model hierarchy. This section presents 

an evaluation of the recent developments, benefits, and limitations of ML-driven modeling and where it fits in the 

hierarchy. We present Figure 1 as a visual aid for describing a model in terms of both its reliance on ML-learned 

relationships and its complexity in the traditional model hierarchy sense.

3.1. An Introduction to Data-Driven Methods

The power of ML lies in its ability to learn complex, nonlinear relationships solely from data. An expanding set 

of satellite observations and high-resolution climate model integrations provide access to unprecedented volumes 

of climate data. This abundance of data makes the data-driven approach a great fit for developing faster and 
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possibly more accurate models, and even unlocks the potential to discover new science by learning previously 

unknown relationships. ML methods may not fit into the common concept of a model hierarchy based on process 

complexity. Still, as we discuss in this section, the diverse set of ML techniques at our disposal merits including 

them as a novel modeling approach, one that relies exclusively on data.

Climate modeling has already adopted numerous ideas from the field of AI and has, within a short period of 

time, witnessed a meteoric rise in ML-driven modeling (Reichstein et al., 2019). As discussed at the workshop, 

ML-assisted analyses have begun to pervade practically all aspects of the existing model hierarchy: from modeling 

fundamental partial differential equations (PDEs) and dynamical systems (Liu et al., 2022; Pathak et al., 2018a), 

to modeling and performing equation discovery for SGS processes (e.g., Brenowitz & Bretherton, 2019; Gentine 

et  al.,  2018; Rasp et  al.,  2018; Yuval & O’Gorman,  2020; Zanna & Bolton,  2020), to full-blown efforts to 

completely replace complex weather prediction models with a single ML model (Bi et al., 2022; Lam et al., 2022; 

Pathak et al., 2022). Moreover, rather than just being used to build new models, ML is also helping modelers 

improve existing models by aiding calibration and UQ, by providing emulators that approximate computation-

ally expensive models, and by catalyzing the development of a new-class of data-driven parameterizations (e.g., 

Schneider et al., 2023).

The first application of ML in climate science dates back to the early 1960s (Glahn, 1964), not long after the first 

ML model was implemented (Samuel, 1959). For the next several decades, limited computing power discouraged 

widespread usability of ML (Balaji, 2021). As a result, ML did not gain traction in climate science until the late 

1990s, when it was applied to perform a nonlinear variation of principal component analysis (Monahan, 2000), and 

to design a computationally superior radiation scheme for climate models (Chevallier et al., 1998; Krasnopolsky 

et al., 2005).

ML based models do not directly rely on the underlying physical principles, distinguishing themselves as new 

members in the climate model hierarchy.

•  Focus on Empiricism: Orthogonal to all the existing models within the climate model hierarchy of Jeevanjee 

et al. (2017), which codify first principles from classical physics in varying degrees to model the large-scale 

flow, ML models learn the mechanics of the modeled process primarily through data and not from the under-

lying equations, that is, their reliance on data makes them more empirical than the other members in the 

hierarchy. In the context of numerical weather prediction (NWP), a traditional weather forecasting model uses 

an assimilated initial state along with the primitive equations and a suite of physical parameterizations to step 

that state forward in time and generate forecasts. A ML-based NWP, in contrast, would use the same assimi-

lated state but instead input it to a trained Neural Network (NN) to generate new forecasts.

•  Novel approach to process-isolation: Having models of varying complexity in the hierarchy facilitates 

process-isolation, allowing isolating the contribution of certain processes toward, for example, the global 

circulation or climate sensitivity. ML-based methods provide a fresh approach to process-isolation by stimu-

lating the discovery of latent patterns and correlations.

•  Bidirectional interactions with the existing hierarchy: The dependence of ML models on observations or 

existing model simulations for training and validation establishes a two-way relationship that connects them 

with all the existing members of the model hierarchy. As we will discuss, ML models not only benefit from 

training and validation data provided by the model hierarchy, but also can be trained on observations to gener-

ate state-of-the-art models for the hierarchy.

3.1.1. Machine Learning: Supervised Versus Unsupervised

The broad and rapidly advancing field of AI offers a multitude of models that use abstract “learning” algorithms 

(e.g., LeCun et  al.,  2015). These algorithms can be broadly partitioned into two sub-classes: supervised and 

unsupervised, with supervised learning algorithms being more widely adopted in many areas of research. The key 

factor distinguishing the two learning styles is the labeling of data. In supervised learning, the input to the ML 

model is mapped to a labeled output in order to develop a learning association, akin to inputting an image of an 

animal and labeling it as a cat, dog, or squirrel. After sufficient “training,” the model eventually learns the  defin-

ing features of each furry animal. Supervised learning algorithms, which include regression and classification, 

are thus suitable for making predictions on new inputs. In contrast, unsupervised learning algorithms mine a 

high-dimensional data stream to uncover systematic patterns, anomalies or clusters, akin to viewing a landscape 

photo and clustering areas into forest or savannah, or for dimensionality reduction. A subset of unsupervised 

algorithms, called generative algorithms, learn joint probability distributions which can be used to generate new 
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samples. This bird's-eye-view dichotomy, however, is starting to blur, with the emergence of a new class of 

“semi-supervised” learning (or weak supervision) algorithms that blend ideas from both supervised and unsu-

pervised learning, for example, to train predictive models with unlabeled data. Table 1 provides a glimpse of the 

spectrum of ML algorithms that currently are being explored in climate modeling. For the remainder of Section 

3, we focus on ML applications that are relevant to the model hierarchy. These tend to fall under the category 

of supervised learning for prediction, while unsupervised methods are most useful for data analysis (clustering, 

regime identification, dimension reduction).

3.1.2. The Basics of Supervised Learning

When described simply, supervised learning appears very similar to linear regression, where a function input 

is linearly mapped to the function output. The distinguishing feature of modern ML, however, is its ability to 

sift through large volumes of data and learn complex nonlinear relationships. Such learning cannot be achieved 

through simple linear transformations. “Deep learning” methods, such as deep NNs, comprise multiple learning 

layers through which the input passes, making them particularly tailored to learn complex mappings. The number 

of layers, which determines the complexity of the NN, can be instrumental in determining its learning skill. 

Within each layer, the layer-input is mapped to the layer-output using a nonlinear activation (mapping) function 

(LeCun et al., 2015; Schneider et al., 2017). A composite of multiple such nonlinear activations endows discrim-

inatory powers to the NN. This nonlinearity is being leveraged to learn the multi-scale evolution of the climate 

system exclusively through data, bypassing the need to use the nonlinear equations of fluid flow.

3.2. AI in the Context of Model Hierarchies

The supervised learning approach outlined above has been central to several recent studies exploring ML meth-

ods in climate science. These studies predominantly explore how AI can (a) improve weather forecasting and 

climate prediction skill and speed, by developing enhanced forecast models, (b) develop novel data-driven phys-

ical parameterizations, or (c) quantify model uncertainty arising from parameterizations. Note the two distinct 

benefits that ML can provide: skill and speed. Points (a) and (b) are concerned with using ML to improve model 

skill, by training on high quality data sets such as observations or high resolution simulations. In contrast, point 

(c) relies on the speed-up that ML emulators provide for large ensemble generation and UQ.

3.2.1. Prediction (Supervised and Semi-Supervised Learning)

ML is increasingly being applied to attempt to improve weather forecasting and climate prediction. The central 

hypothesis being tested is whether data-driven models shine where equation-driven models struggle, by:

 (a)  learning the chaotic evolution of synoptic-scale weather systems and producing quick and skillful forecasts, 

even providing statistically robust subseasonal-to-seasonal (S2S) forecasts, and

 (b)  providing an improved representation of unresolved processes in order to provide more certain climate 

projections for the 21st century and beyond

3.2.1.1. ML Has Had Success in Weather Forecasting

Recent research suggests that ML has begun to break ground in terms of improving weather forecast accuracy. 

NN-based prediction models can now generate increasingly precise predictions of simple chaotic systems, such 

as those modeled by higher-order nonlinear PDEs (Pathak et al., 2018a). This numerical capability of NNs has 

been generalized by Liu et al. (2022) to develop faster deep learning numerical solvers that can replace traditional 

time-stepping numerical schemes, such as those heavily employed by climate models to solve the equations of 

motion. Rigorous tests on more advanced chaotic systems such as the Lorenz-96 model (L96) have reaffirmed 

the advantages of NN-based predictions (Chattopadhyay et  al.,  2020). Because different variables in an L96 

model evolve on different timescales, this model can serve as an idealized proxy for the multi-scale evolution 

of the climate system. For this reason, such models have been frequently used in climate science to study chaos. 

In Chattopadhyay et al. (2020), NNs generated accurate predictions of the slowly evolving state variables in an 

L96 model, while struggling to capture the intermittent evolution of the fast variables. These results illustrate 

the latent power of ML, which could be leveraged for skillful weather forecasting and S2S predictability (Cohen 

et al., 2019).

Such proofs-of-concept have motivated NN-based weather forecasting initiatives like Scher (2018), Resnet (Rasp 

& Thuerey, 2021), Weyn et al. (2021), FourCastNet (Pathak et al., 2022), PanguWeather (Bi et al., 2022), and 
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ML architecture Description/properties Examples

SUPERVISED LEARNING Regression (linear, non-linear, logistic, etc.) Basic regression methods can be considered machine learning Atmospheric chemistry parameterization 

(Nowack et al., 2018)

Random forests, boosted forests Ensemble of decision trees, useful for prediction SGS parameterizations (Yuval & 

O’Gorman, 2020)

Artificial Neural Networks (NNs, incl. recurrent 

NNs, convolutional NNs)

Layers of interconnected nodes and neurons that can learn 

highly non-linear relationships. Recurrent NNs used for 

time-series analysis, CNNs for image processing.

SGS parameterizations (e.g., Krasnopolsky 

et al., 2005)

Weather forecasts (e.g., Pathak et al., 2022)

Downscaling (e.g., Blanchard et al., 2022)

Gaussian processes Bayesian approach to learn predictive distributions Uncertainty quantification (e.g., Carslaw 

et al., 2013)

UNSUPERVISED LEARNING Generative models, for example, Variational 

Autoencoders (VAEs), Generative Adversarial 

Networks (GANs)

Models that learn joint probability distributions. Useful for 

learning latent space (e.g., VAEs) and for generating new 

samples.

Dimensionality reduction (Mooers 

et al., 2022; Tibau et al., 2018)

Stochastic SGS parameterizations 

(Perezhogin et al., 2023)

K-means clustering A clustering algorithm that identifies clusters/classes in 

multi-dimensional data

Identifying weather regimes (Michelangeli 

et al., 1995)

Principal component analysis and its variants A dimensionality reduction technique that can be used to 

identify patterns that capture the most variability

Jet variability (Thompson & 

Wallace, 2000)

SEMI-SUPERVISED LEARNING Derivative-free optimization methods, for 

example, Ensemble Kalman Inversion

Train supervised model architectures (e.g., NNs) without 

direct observations of model output, or with missing/noisy 

observations

SGS parameterizations (Kovachki 

& Stuart, 2019; Lopez-Gomez 

et al., 2022)

Transformers NN that learns where to direct learning through attention 

mechanism (often referred to as a type of self-supervised)

Weather forecasts (e.g., Pathak et al., 2022)

Image-style transfer NNs trained with loss function that combines supervised and 

unsupervised loss functions

Identification of sparse/rare phenomena 

(e.g., Mahesh et al., 2023)

Table 1 

Examples of Machine Learning (ML) Architectures and Their Uses in Climate Science

 19422466, 2023, 10, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023MS003715, Wiley Online Library on [02/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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GraphCast (Lam et al., 2022). These initiatives aim to completely replace complex weather forecasting systems 

and their suite of physics parameterizations with standalone NNs that learn synoptic-scale variability directly 

from high-dimensional observations. Although they do not embed any physics (e.g., conservation laws) into the 

ML architecture, they can accurately learn the expected behavior of the system on short timescales. Once trained, 

the authors claim that NNs can operate up to 45,000× faster than typical NWP models, on fewer compute nodes 

(Pathak et al., 2022), offering a cost-effective alternative to produce reliable forecasts and larger ensemble gener-

ation. Currently, the focus has been on weather forecasting, with NN-based models achieving skillful forecasts for 

lead times consistent with atmospheric predictability (∼2 weeks), although they do not yet include data assimila-

tion techniques. Next, we might expect advances that allow for longer-term prediction on S2S and climate times-

cales, where it becomes necessary to account for other components of the Earth system, such as land and ocean.

3.2.1.2. Climate Prediction Is More Complex Than Weather Forecasting

Predicting future climate is significantly more challenging than forecasting near-term weather. Unlike opera-

tional NWP models, climate models are not nudged to observations but instead self-consistently evolve through 

time. Therefore, multidecadal climate predictions require accurate model representation of a plethora of Earth 

system processes that induce climate variability over multiple timescales. Many of these processes, including 

shallow and deep convection, radiation, and gravity waves, are not resolved explicitly at typical climate model 

resolutions. Some processes, such as cloud microphysics, vegetation, and sea ice evolution, do not even have 

closed-form analytical formulations at any resolution. These processes are, therefore, parameterized. Almost 

all of these parameterizations are based on approximate single-column mass, momentum, or energy closures 

and, taken together, are the leading source of structural uncertainty in a model. These parameterizations also are 

often ill-tuned and form computational bottlenecks (Hourdin et al., 2017). ML models provide a fresh approach 

to developing the next generation of potentially faster and more physically consistent parameterizations, ones 

that benefit from a growing set of climate data. The underlying principle is fairly simple: if finding a closed-

form representation for a physical process is intractable, one can instead learn its governing principles from 

data through physics-informed learning. This empowers the creation of a new class of empirical data-driven 

parameterizations for potentially all Earth system processes, one that can work in concert with the existing model 

hierarchy to provide better climate projections (Schneider et al., 2017).

This approach would require suitable quantities of training data, either from observations or high-resolution 

modeling. High-resolution models can provide training data for dynamics-driven SGS processes in the atmos-

phere and oceans, such as gravity waves, turbulence, convection, and cloud cover. These processes lie in the “gray 

zone,” with scales O (1–100 km) which are under-resolved in typical climate models but are largely resolved in 

computationally intensive sub-kilometer scale models (e.g., atmospheric subgrid momentum fluxes: Yuval & 

O’Gorman, 2020; Yuval et al., 2021; Wang et al., 2022; ocean momentum forcing: Guillaumin & Zanna, 2021; 

Perezhogin et al., 2023; convection: Brenowitz & Bretherton, 2019; Gentine et al., 2018; clouds: Rasp et al., 2018; 

gravity waves: Sun et al., 2023) or large eddy simulations (e.g., eddy-diffusivity momentum flux: Lopez-Gomez 

et al., 2022; Shen et al., 2022). However, other coupled processes such as atmospheric chemistry, sea ice cover, 

and vegetation dynamics are not modeled explicitly at any resolution and may make use of observational data sets 

(e.g., ozone: Nowack et al., 2018; sea-ice: Andersson et al., 2021; vegetation: Chen et al., 2021). Alternatively, 

some studies simply use ML to emulate existing parameterizations at a lower computational cost (e.g., radiation: 

Chevallier et al., 1998; Krasnopolsky et al., 2005; aerosol microphysics: Harder et al., 2022; cloud microphysics: 

Andre Perkins et al., 2023). These studies have demonstrated that ML can successfully replace physics-based 

parameterizations to improve either model accuracy or speed. Some of the main challenges lie in maintaining 

stability once coupled online to a GCM (e.g., Brenowitz et al., 2020; Rasp, 2020), and in the interpretability and 

generalizability of model output, discussed further in Section 3.3. We suggest that ML methods may be most 

valuable when used in concert with parameterizations that remain as physics-based as possible, for example, in 

learning a specific parameter from data (e.g., Schneider et al., 2017, 2023), as discussed further in Section 3.2.2.

3.2.1.3. The Need for ML-MIPs

In the past 5 years, several modeling groups worldwide have adopted the data-driven approach to developing 

SGS parameterizations. This motivates the need for systematic comparison of emerging data-driven parameter-

izations. Similar to existing model intercomparison projects (MIPs), these comparisons could be instrumental 

in evaluating robustness and reproducibility of data-driven parameterizations. Such evaluations should focus 

on physical consistency, sensitivity, and generalizability of these parameterizations. Without sufficient care, the 
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NN-based approach to parameterizations could be susceptible to producing nonphysical outputs without account-

ability. Thus, in order to ensure maximum interpretability, the parameterizations from different modeling groups 

could be tested rigorously on key issues such as the sensitivity of the parameterization to the ML architecture 

and which training data are used, optimal objectives, validation, out-of-set performance, and UQ. These goals 

can be accomplished by introducing benchmark tests, analogous to those for existing model intercomparisons, 

in which the different parameterizations developed using different training data sets are re-trained on identical 

training data and optimized to minimize identical loss functions. Moreover, a key element of such tests could 

be to comprehensively evaluate process evolution and predictive skills on multiple timescales, in addition to 

obtaining a desired long-term climatology. Preliminary efforts in this direction are taking shape, with initiatives 

including WeatherBench (Rasp et al., 2020), WeatherBenchProbability (Garg et al., 2022), and ClimateBench 

(Watson-Parris et  al.,  2022), all of which demonstrate benchmark data sets designed for ML comparisons of 

standard meteorological variables and set the stage for more comprehensive, future ML-MIP projects.

3.2.2. Uses of ML for Uncertainty Quantification and Calibration

The 2022 Model Hierarchies Workshop also highlighted how ML increasingly is being used to improve model 

projections by aiding UQ. UQ is the estimation of uncertainties in model output. These uncertainties include lack 

of knowledge about future climate scenarios (scenario uncertainty), uncertainty in model parameters (parametric 

uncertainty), internal variability of the climate system, and discrepancies between a model and reality (structural 

uncertainty) (Hawkins & Sutton, 2009). UQ requires integrating a large number of model simulations to span a 

wide range of model inputs (parameters, scenarios, or initial conditions), which can be a challenge when working 

with comprehensive GCMs. This need arises because UQ studies usually assume model inputs to be defined by 

probability distributions, where many samples are required to obtain accurate probability distribution functions 

(e.g., using Bayesian methods), which are computationally expensive to generate for GCMs using traditional 

methods. ML methods are a way to emulate GCM output and make the cost of UQ computationally feasible. UQ 

is a well-established method for fairly small-scale problems with O(10) inputs, which can make use of emulators 

such as regression splines, Gaussian processes, and polynomial chaos expansions (e.g., Bulthuis et al., 2019; 

Carslaw et al., 2013; Sraj et al., 2016). Recent advances in deep learning enable addressing higher-dimensional 

UQ problems with even O(1,000) inputs (Lan et al., 2022).

Parametric UQ is closely related to calibration, where the chosen model parameters are carefully tuned to obtain 

model output consistent with some ground truth, such as a desired climate state or its variability. Bayesian methods 

are also popular for calibration, including Bayesian optimization (Kennedy & O’Hagan, 2001), ensemble Kalman 

inversion (e.g., Cleary et al., 2021), and history matching or iterative refocusing (Williamson et al., 2013). These 

methods involve assigning a prior probability distribution to parameters based on domain knowledge. If we do 

not have much knowledge of what the parameter values should be, this distribution can instead be chosen to be 

a wide uniform prior, known as a “vague” prior. The probability distribution is then constrained by data, often 

from observations, to derive a posterior probability distribution. Each of these methods requires either gradients 

(Bayesian optimization) or an ensemble of simulations (ensemble Kalman inversion, history matching), making 

ML-driven emulators such as Gaussian processes useful. Calibration should lead to improvements in model accu-

racy at any level within the model hierarchy (e.g., Couvreux et al., 2021; Hourdin et al., 2021).

Both calibration and UQ benefit the model hierarchy framework. They are useful for model development to better 

understand and improve GCM components (e.g., Carslaw et al., 2013; Couvreux et al., 2021; Dunbar et al., 2021; 

Guo et al., 2014; Williamson et al., 2017; Yang et al., 2012) and are relevant to impact studies concerned with risk 

and uncertainty (e.g., Clare et al., 2022; Edwards et al., 2021; Harrington et al., 2021).

3.3. Are Data-Driven Schemes Trustworthy?

Training exclusively on model or observational data can have its drawbacks. There is no clear way to decide 

whether the model has been trained sufficiently, whether it performs well on a previously unseen set of inputs 

(generalizability) or, most importantly, whether we can meaningfully interpret its output (interpretability). Trust-

worthy ML is a growing area of interest as users favor models that are fair, reliable, and robust, which becomes 

especially important for high-stakes decision making (e.g., McGovern et al., 2022). The precise definition of 

“trust” in a model depends on its application, but for integration into the model hierarchy, we aspire for a trust-

worthy ML model to be both generalizable and interpretable, as we do with any model. Simply put, we can trust 

 1
9

4
2

2
4

6
6

, 2
0

2
3

, 1
0

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ag

u
p

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
2

9
/2

0
2

3
M

S
0

0
3

7
1

5
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

2
/1

2
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Journal of Advances in Modeling Earth Systems

MANSFIELD ET AL.

10.1029/2023MS003715

9 of 19

a model if it can both deduce how the Earth system responds to unseen forcing, and if we can understand how it 

made that deduction. The issue of trustworthiness is potentially more pronounced for ML models than for other 

models in the hierarchy which are typically derived using a robust set of scientific laws and assumptions, naturally 

making them more interpretable.

3.3.1. Generalizability

The key issue of generalizability concerns whether an ML scheme can generate reliable predictions for climate 

states it was not previously trained on. Studies that have applied ML to weather forecasting with some success 

(e.g., Arcomano et al., 2020; Bi et al., 2022; Pathak et al., 2022; Rasp & Thuerey, 2021) assume that a sufficiently 

large training set contains almost all possible states of the Earth system. In such cases, an ML algorithm can 

be carefully trained and validated to avoid overfitting. Overfitting occurs when an ML model provides skillful 

prediction on the data it was trained on, but performs poorly on new data. This issue becomes particularly impor-

tant for ML-based climate models applied to global warming scenarios. Even large volumes of training data based 

on the present-day climate cannot contain all possible states of a rapidly warming climate. Thus, the relationships 

learned during training may generalize poorly to drastically different climatologies, for example, extreme precip-

itation in a 2K-warmer globe. In such cases, extrapolation by the ML model can be meaningless. For example, 

Rasp et al. (2018), found that a NN-based SGS cloud parameterization embedded in a GCM performs poorly 

when applied to temperatures exceeding those in the training data. Pitfalls like these call into question the trust-

worthiness of ML schemes as opposed to physics-based models, which tend to be more climate-agnostic.

Espinosa et  al.  (2022) present a ML model that appears to generalize well, in the sense that it responds to 

new scenarios similarly to the model on which it was trained. However, the degree of generalizability presum-

ably is sensitive to the complexity of the problem and the NN architecture (e.g., Rasp et al., 2018). Other ML 

methods  such as random forests (Table 1) exhibit excellent online stability but also fail to generalize well (e.g., 

Brenowitz et al., 2020; Yuval & O’Gorman, 2020).

There is currently no universal solution to generalizability, but one helpful approach could be to design the train-

ing data more strategically. For example, by simply expanding the spatial coverage of their input data, Sit and 

Demir (2019) significantly improved flood projections using a recurrent NN, even predicting out-of-set extreme 

flooding events. Similarly, when designing emulators for existing GCMs (e.g., for faster prediction or to emulate 

high-resolution processes by training on parameterizations), incorporating a wide range of climate model scenar-

ios covering both present-day and projected future climates reduces the chance of erroneous extrapolation (e.g., 

O’Gorman & Dwyer, 2018; Rasp et al., 2018; Watson-Parris et al., 2022). If the desired wide range of training 

data does not exist, this approach requires first creating the necessary set of GCM simulations for training. This 

makes traditional GCMs central for constraining ML models, and also reiterates the third point about bidirectional 

interactions that we mention in Section 3.1. Of course, unlike Sit and Demir (2019), who relied on observations, 

using this approach to improve generalizability seems muddled by the fact that the future projections of GCMs 

themselves are marked with uncertainties; training ML models on such data could amplify these uncertainties. 

In this case, encouraging consistency with the physical laws of the Earth system might salvage efforts to create 

generalizable models (e.g., Reichstein et al., 2019).

Physics-informed ML (or knowledge/theory-guided ML) couples physical knowledge to the ML architecture 

and offers one approach to enhance ML generalizability and trust (e.g., Gentine et al., 2021; Irrgang et al., 2021; 

Karpatne et al., 2017; Kashinath et al., 2021; Raissi et al., 2019a). Here, physical conservation laws are incorpo-

rated into ML algorithms, either by constraining the loss function (soft constraints, also called regularization; e.g., 

Brenowitz et al., 2020; Harder et al., 2022) or by more strictly enforcing conserved properties (hard constraints; 

e.g., Beucler et al., 2021a; Chattopadhyay et al., 2021). Variations of physics-informed ML include designing 

“climate-invariant” algorithms by rescaling inputs and outputs to avoid extrapolation (Beucler et al., 2021b) or 

incorporating equations governing the dynamics to build hybrid ML algorithms (e.g., Pathak et al., 2018b; Raissi 

et al., 2019a).

Yet another option is quality control (also called novelty detection or UQ), where the ML algorithm includes 

a quality control check that determines whether there are likely to be large errors because, for instance, the 

data are out of sample. This technique is increasingly used in the SGS parameterization community to develop 

“compound parameterizations”, which use a ML model for within-sample data and revert to the physics-based 

model for out-of-sample prediction (Krasnopolsky et al., 2008; Sanford et al., 2022; Song et al., 2021). Bayesian 
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methods such as Bayesian NNs are a natural choice of ML architecture for estimating model uncertainty along-

side predictions (e.g., Garg et al., 2022; Luo et al., 2022; Ortiz et al., 2022).

From a model hierarchies perspective, physics-informed ML seems the most promising method because it enables 

understanding individual physical systems with known underlying principles. However, it may be challenging to 

use this approach for many other Earth system processes, such as land ecology and biosphere processes, which 

might be too complex to have even approximate closed-form representations.

3.3.2. Interpretability

Even when an ML model can successfully generalize, it can be difficult to interpret its output. This leads us to the 

second major hurdle in the adoption of ML in climate science: interpretability, defined in Section 2 as the ability 

to translate a model into understandable terms.

Model hierarchies are imperative to understanding the mechanisms driving climate variability (e.g., Nabizadeh 

et al., 2019; Roach et al., 2022; Shaw & Smith, 2022). ML methods have high relevance in climate science, yet 

their prohibitively limited interpretability prevents their full assimilation into operational GCMs (e.g., Chantry 

et al., 2021; Irrgang et al., 2021). As discussed in Section 4, interpretability is crucial when using ML models for 

climate change impacts, risk assessment, and policy making. Investing time and resources to mitigate the effects 

of climate change based on the predictions of a non-interpretable model would be difficult to justify. This need is 

motivating the development of new ML models whose outputs can be explained or interpreted.

In practice, the first approach to interpret an ML model is to manually verify the correlations between outputs are 

reasonable (e.g., Rasp & Thuerey, 2021). Following this initial step, there exists a wide variety of more sophisti-

cated methods that can be used to look inside the “black box” of ML models and explain the information hotspots 

that establish the relationships learned (Mamalakis et al., 2022; McGovern et al., 2019). These methods are often 

labeled as “explainable AI” (XAI), which can be defined as:

Explainable AI: AI that provides details or reasons to make its functioning clear or easy to understand 

(Barredo Arrieta et al., 2020).

Examples of XAI methods include saliency maps (e.g., Brenowitz & Bretherton, 2019), backward optimization 

(e.g., Gagne et al., 2019), layerwise relevance propagation (e.g., Labe & Barnes, 2021), and Shapley values (e.g., 

Espinosa et al., 2022). These XAI methods typically involve creating visualization maps which are used to inter-

pret the weights of the trained model by connecting them to established theory (see McGovern et al., 2019 for a 

more comprehensive list of methods used in meteorology). They highlight why a model predicts a given output, in 

terms of which input variables are more influential. For example, wet-bulb temperatures are the primary predictor 

of large hail based on an ML model, which makes sense because above a certain temperature threshold, freezing 

rain is impossible (McGovern et al., 2019). This analysis requires experts to manually determine whether these 

relationships make sense in the context of current theory. Specifically, one would check that (a) correlations 

between input and output variables are not spurious and have a physical basis and (b) if there is a lack of correla-

tions between given input and output variables, then this is due to a lack of a physical relationship. Verification 

is usually performed on a subset of the test data and cannot be applied to all predictions. This leads us to the 

question: how many test cases can we assess before assuming the interpretability of the model holds everywhere? 

In other words, is the interpretability itself generalizable?

The fact that these methods are applied post hoc—that is, after building, training and testing the model—

highlights an important limitation of XAI: the process requires retrospectively verifying that the relationships are 

consistent with the existing physical theory. This does not mean that an ML model is inherently interpretable or, 

following our definition in Section 2, understandable to a human. For instance, it is possible that XAI methods 

highlight the right correlations for the wrong reasons (e.g., a sample bias or limited training data) (Rudin, 2019). 

Rudin points out the subtle difference between XAI and interpretable AI, which can be defined as

Interpretable AI: building AI models that follow steps that can be translated into understandable terms 

(Rudin, 2019).

While XAI provides reasons, in terms of correlations, for why a model makes a particular prediction, interpreta-

ble AI aims to build models where the computations themselves can be interpreted, making them less black-box 

and more transparent. This approach could ensure that known causal relationships exist in model predictions. 
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Currently, only a few methods allow interpretability tools to be built into their ML architecture (Barnes et al., 2022; 

Chen et al., 2019; Sonnewald & Lguensat, 2021). Barnes et al. (2022) introduce an interpretable convolutional 

NN that classifies the phase of the Madden-Julian Oscillation by separately classifying sub-regions of the data 

and selecting the phase with the highest probability based on similarities across all sub-regions. Sonnewald and 

Lguensat  (2021) use a classification algorithm to first select the most likely global dynamical ocean regime, 

from which circulation changes are predicted using supervised learning. These methods both involve careful 

design based on expert knowledge of the possible regimes within the climate system, much like a traditional 

physics-based model, and once built, can also harness the computational speed-ups offered by ML. Similarly, 

physics-informed or hybrid approaches as discussed above offer a way to incorporate interpretable steps into a 

model (e.g., by enforcing conservation laws, Beucler et al., 2021a; Chattopadhyay et al., 2021). Alternatively, 

techniques such as data-driven equation discovery can learn closed-form equations for SGS parameterizations, 

which are more easily interpreted (e.g., Mojgani et al., 2022; Raissi et al., 2019b; Zanna & Bolton, 2020).

All of the above interpretable ML methods are still relatively new within climate modeling and have been 

successful at revealing known relationships, but they have not yet discovered new scientific insights. With further 

research into interpretable ML for climate modeling, one could envision how these methods may be incorporated 

into the model hierarchy framework and possibly assist prediction in a transparent way.

3.4. Model Hierarchies Tomorrow: Incorporating Data-Driven Methods

Efforts like XAI have demonstrated the potential to uncover new statistical relationships between model inputs 

and outputs. In addition to improving existing climate models, and complementing physics-based models in the 

hierarchy through better parameterizations, calibration, and UQ, some claim that ML-based models may also 

provide a novel approach to modeling physical systems and unraveling new climate patterns, teleconnections, 

and mechanisms through a potentially more nuanced process isolation and learning (Mamalakis et al., 2022)—

which is one of the central goals of having a model hierarchy. Incorporation of ML algorithms has already led 

to novel discoveries in medicine (Stokes et al., 2020), astronomy (Valizadegan et al., 2022), chemistry (Hueffel 

et al., 2021) and mathematics (Davies et al., 2021). Thus far, ML has not led to an entirely new breakthrough 

in climate science. However, given the difficulty involved in predicting the future of scientific enterprise, this 

possibility may still exist.

The relationship between data-driven and physics-based models must be two-way, as we rely on physical models 

to validate the explainability of ML models in the hierarchy (e.g., Mahesh et  al.,  2023). Thus, the degree of 

data-drivenness involved in climate modeling, predominantly via ML algorithms, inspires us to add another axis to 

the existing notion of model hierarchies, where the existing axes describe the trade-off between model complexity 

and parsimony/ideology (Figure 1). One end of the hierarchy comprises idealized models that elegantly describe 

a system using closed-form equations, such as Lorenz-96 or energy balance models. One can ascend the model 

hierarchy by increasing the representation of dynamical processes (resolved dynamics), physical processes (such 

as boundary layer or bulk processes that are typically unresolved in GCMs; Jeevanjee et al., 2017), or resolution 

(Maher et al., 2019). At the top of this hierarchy, we can expect to find the most complex physical models that 

aim to achieve realistic prediction of the Earth system.

Figure  1 introduces a new axis defined by the inclusion of data as an additional way to ascend or descend 

the model hierarchy, with purely statistical or “inductive” models on the lower right-hand corner, compared to 

theory-based or “deductive” models that exist along the upper left axis (see, e.g., Chapter 17 of Saravanan, 2021). 

A user may wish to consider the influence of data when choosing models most suited for a particular problem. 

For example, if the goal is to cheaply obtain an ensemble of forecasts to assess the likelihood of a heatwave, a 

purely data-driven model might be best suited (e.g., Weyn et al., 2021) but may not be so easily interpreted. If, in 

contrast, the goal is to query possible mechanisms for why a heatwave might occur, one might employ multiple 

models of differing complexity. While traditionally these models would be physics-based, explainable and/or 

interpretable AI methods could complement (rather than replace) them, by highlighting the main drivers of a 

given prediction and narrowing down the possible mechanisms to be explored.

Data play a role in all models in some way. Even idealized models such as aquaplanets are partially driven by data 

that describe the boundary conditions. However, some rely much more heavily on data: for example, reanalysis 

models, which involve assimilating large observational data sets into dynamical models. In the “middle” of the 
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hierarchy, we can find hybrid models containing both data-driven and physics-driven components: for example, 

a GCM with ML-based parameterizations which may achieve faster prediction or improved skill. These models 

achieve performance at the cost of interpretability, especially if multiple ML-based parameterizations are coupled 

together. They may be suitable for developing scientific understanding, but the private sector and governments 

may consider these less interpretable and therefore less trustworthy. They are distinct from GCMs that include 

physics-based parameterizations that have been tuned using ML techniques to improve prediction skill while also 

maintaining interpretability.

4. Model Hierarchies for Climate Change Impacts and Useable Climate Science

4.1. A Desire for Usability

One recurring theme of the workshop was the expressed desire by climate scientists for their work to be useful 

outside the scientific community. Also voiced was a growing desire within the private sector to make use of 

climate model projections. These ideas were the main topic of several presentations at the workshop and were 

given as an underlying motivation for a few others.

This movement toward usability (e.g., Gettelman & Rood, 2016) presumably is driven by the increasing magni-

tude and urgency of the anthropogenic climate change crisis (IPCC, 2018, 2021; Reidmiller et al., 2018). And as 

governments and the private sector increasingly accept that some degree of climate change adaptation is necessary, 

opportunities are emerging for scientists to direct their research toward climate change impacts (PCAST, 2023).

When motivating research in basic climate science, researchers often implicitly or explicitly assume a “linear 

model” of science informing policy, in which impartial scientists provide information to legislators and regula-

tory agencies who act in the public's best interest (Beck, 2011; Jasanoff & Wynne, 1998; Lahsen, 2005; Pielke 

& Roger, 2007; Sobel, 2021). However, as argued by Sobel (2021), this linear model does not presently apply to 

climate science: because of political roadblocks, better climate science does not directly translate to better climate 

policy.

Climate science can influence policy through other pathways, such as forming the basis for litigation (Held 

v. State of Montana,  2020; Muffett & Feit,  2017), or swaying political agendas or public opinion (Drake & 

Henderson, 2022), as in some extreme-event attribution studies (Jézéquel et al., 2020; Sobel, 2021). Results of 

basic research in climate dynamics may not always be actionable for mitigating or adapting to the impacts of 

climate change, and reducing scientific uncertainty in climate change projections may not lead to an increase in 

use of this information by policymakers and other end-users (Lemos & Rood, 2010). As a result of this impasse, 

many climate scientists are asking how they can use their scientific research to contribute toward solving chal-

lenges associated with the impacts of climate change.

4.2. A Need for Actionable Climate Risk Predictions

Government officials and agencies, nonprofit and community-based organizations, and corporations across 

various sectors increasingly desire to incorporate climate change knowledge into their planning for the future. 

Along with individuals, these groups are collectively commonly referred to as decision makers, or anyone “who 

may need to make decisions about climate change” (p.  25, National Research Council,  2011). For example, 

state and local governments along the Gulf Coast of the United States face concerns about rising sea levels 

and potentially increased risk of damages from hurricane landfall, while other regions face increased risk of 

wildfires and drought (Reidmiller et al., 2018). However, current GCMs have coarser grid spacings than typical 

city scales, necessitating the use of regional or downscaled models to simulate local impacts. Directing climate 

science toward understanding risks of specific local or regional climate change impacts, and working with local 

or regional governments and entities, is a way to work toward actionable climate science.

Model credibility and trustworthiness vary depending on the intended application and target audience. 

State-of-the-art GCMs, such as those used in the Coupled Model Intercomparison Project (CMIP) version 5 

(CMIP5; Taylor et al., 2012) or version 6 (CMIP6; Eyring et al., 2016), have greatly enhanced our scientific 

understanding of global climate but are not always useful to or interpretable by non-scientists. One hurdle to the 

usability and interpretability of these models is their complexity. Another obstacle to the usability of CMIP6 

models is their coarse spatial scale, typically 50–100 km, which is insufficient to resolve some features that are 
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important for regional-scale planning and disaster preparedness. For example, while hydrological features such 

as the North American Great Lakes affect local weather and climate, most CMIP5 models do not represent their 

regional climate impact at all (Briley et al., 2017, 2021). Regional climate models traditionally have proven very 

useful for assessing current risk at finer spatial scales (Giorgi, 2019), but these models have limited capabilities 

for projection because climate change is a global phenomenon and local variability can depend upon changes and 

teleconnections far afield.

Insurance companies represent another large sector planning for and already dealing with the use of climate data. 

These for-profit financial institutions use their own “catastrophe” or “cat” models, statistical models developed 

in-house, to calculate the risk of insurance payouts due to natural disasters, many of which are increasingly influ-

enced by climate change (Hereid, 2022). The potential for ML to improve cat models is an area of exploration 

(Gualdi et al., 2022; Swiss Re, 2021). As the forced climate change signal becomes larger relative to the internal 

variability in a given location, cat models will need to account for a changing climate state, rather than rely solely 

on historical data.

The push by companies to incorporate climate change information into their business models is driven by 

both financial and regulatory pressures (Hereid, 2022). A recent proposal by the United States Securities and 

Exchange Commission (SEC) would require companies to disclose their climate change-related financial risks 

at the ZIP-code level (SEC, 2022). Demands such as these have “leap-frogged the current capabilities of climate 

science and climate models by at least a decade” (Fiedler et  al.,  2021) and reflect a disconnect between the 

detailed local-scale information sought by the financial and insurance industries and the coarser-scale projections 

typical of the global climate modeling community. A move toward integrating understanding of local-scale and 

near-term risks with global projections, or otherwise bridging the gap between the information sought by these 

decision makers and the information climate science currently can provide, would be a step in the right direction 

for useable climate science.

4.3. An Ecosystem of Models for Climate Change Impacts

One possible example of a model hierarchy applied to climate risk, in which models of differing complexity can 

be applied to the same problem, is downscaling. Downscaling may be achieved using a finer-scale dynamical 

model embedded in a GCM (Giorgi & Gutowski Jr, 2015), a statistical model (Thrasher et al., 2022), or ML 

(Blanchard et al., 2022). In a sense, these models of differing levels of complexity and connections to first prin-

ciples could be viewed as an expanded hierarchy.

Apart from the example of downscaling, it is difficult to define the application of model hierarchies, as the 

climate science community commonly understands them, to climate risk assessment. Whereas a model hierarchy 

employs an array of models to simulate the same phenomenon at different levels of complexity, with the goal of 

developing fundamental understanding and idealized physical theory, it is not immediately clear how this could 

extend to modeling the risks of economic and human loss due to extreme weather. Statistical relationships or 

heuristics, such as a relationship between the wind speed of a hurricane and the severity of the resulting infra-

structural damage (Emanuel, 2011), are fundamentally different from the physical understanding gained from a 

model hierarchy, and may require a reframing of the hierarchy.

The related concept of a model “ecosystem,” described in a report by the President's Council of Advisors on 

Science and Technology (PCAST, 2023), offers a helpful complement to the more traditional model hierarchy. 

A model ecosystem resembles a model hierarchy in that it encompasses a variety of models used in concert to 

achieve a scientific purpose. But unlike a hierarchy, in which an array of models simulates the same phenomenon 

at different levels of complexity, a model ecosystem incorporates models of different processes from different 

disciplines. Such an ecosystem of models might include physical weather and climate models that estimate prob-

abilities of extreme weather events such as wildfires or flooding, models of the local-scale variations in intensity 

and impacts of those events, and models that project damage due to those local impacts (PCAST, 2023). Bringing 

together these models from different disciplines would help make the resulting predictions more transparent, 

easily verifiable, trustworthy, and perhaps interpretable for downstream users, and would facilitate progress 

toward better, more actionable predictions of extreme weather risk due to climate change (PCAST, 2023).

While “interpretability” has a specific definition for ML, as described in Section 2, it is also a more generally 

desired quality for decision makers, who need to be able to draw defensible conclusions from climate model 
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projections that are deemed trustworthy. Accordingly, it is worth considering how the paradigm of the model 

hierarchy or ecosystem can aid in this task, especially as ML and other new methods and data sets are deployed, 

existing models are improved, and new ones are developed.

Though not directly related to the concept of a model hierarchy or ecosystem, another possible step toward 

making climate data more accessible to end users is the involvement of human interpreters. For example, most 

weather forecast bureaus use models to provide guidance in concert with teams who assess the model projections 

and communicate results to the public. Analogous figures for climate models, termed “climate interpreters” 

(Gettelman & Rood, 2016) or “climate translators” (Fiedler et al., 2021), could help frame model projections with 

easy-to-follow narratives or “storylines” (Shepherd et al., 2018) that still capture the key science, making them 

more interpretable, trustworthy, and salient for decision makers.

In summary, there is a growing demand for useable climate science, especially in the form of studying climate 

change impacts and adaptation. GCMs are too complex, difficult to interpret, and spatially coarse to offer useable 

information about local-scale climate change impacts. Instead, insurance companies and others outside academia 

are developing their own models to assess local climate change impacts and risks. Whereas GCMs fail to be 

sufficiently interpretable, credible, and useable for many decision makers, risk models could be designed with 

end users in mind, and at different levels of complexity depending on their research purpose. This set of models 

could form an “ecosystem” (PCAST, 2023), with each model tailored to a different purpose and climate scientists 

helping to develop and interpret them. Some of the same concepts central to model hierarchies thus may play a 

new and growing role in making climate science actionable.

5. Conclusions

While theming a conference around the principle of model hierarchies may predispose the attendees to favoring 

this paradigm, many of the talks and discussions at the 2022 Model Hierarchies Workshop also highlighted the 

need to look beyond a linear hierarchy when discussing model organization and use. Within fluid dynamics, a 

hierarchy refers to the level of simplification of the governing equations and which processes and features (such 

as moisture and continents) are included or omitted. This abstraction is possible because the simplified forms 

of complex fluid dynamical processes have long been known to retain fundamental information about physi-

cal truths. The validity of this reductionism, however, is less certain for areas of study which inherently bring 

together multiple interacting processes, and for applications where model results are only useful when they speak 

to specific impacts. An “ecosystem” of models could be an alternative path forward. These ideas came up the 

most when discussing impacts modeling, but an expanded organizational paradigm may also help to tie the use 

of ML into the traditional modeling framework. Due to the common need for interpretability and generalizability 

among both scientific users and decision makers, there is a demand for the hierarchy to provide models built on 

established theory as well as on data.

There was a clear sense from the workshop attendees that some type of model taxonomy is necessary, but whether 

we need a single unified paradigm or whether different applications may benefit from varying approaches is an 

ongoing topic of discussion. We do not pretend to have a definitive answer, but we hope that the community will 

continue to reflect on this topic, and on how the organization of model types and complexities can help shape the 

types of scientific questions we ask and their societal relevance.
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