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Abstract

Mechanical forces generated by dynamic cellular activities play a crucial role in the morphogenesis and growth of
biological tissues. While the influence of mechanics is clear, many questions arise regarding the way by which
mechanical forces communicate with biological processes at the level of a confluent cell population. Some answers
may be found in the development of mathematical models that are capable of describing the emerging behavior of a
large population of active agents based on individualistic rules (single-cell response). In this perspective, the present
work presents a continuum-scale model that can capture, in an average sense, the active mechanics and evolution
of a confluent tissue with or without external mechanical constraints. For this, we conceptualize a confluent cell
population (in a monolayer) as a deformable dynamic network, where a single cell can modify the topology of its
neighborhood by swapping neighbors or dividing. With this description, we use concepts from statistical mechanics
and the transient network theory to derive an equivalent active visco-elastic continuum model, which can recapitulate
some of the salient features of the underlying network at the macroscale. Without loss of generality, the cell network
is here assumed to follow well-known rules used in vertex model simulations, which are: (a) cell elasticity based
on its bulk and cortical elasticity, (b) cell intercalation (or T1 transition), and (c) cell proliferation (expansion and
division). We show, through examples and illustrations, that the model is able to characterize complex cross-talk
between mechanical forces and biological processes, which are likely to drive the emergent growth and deformation
of cell aggregates.

Keywords: Growth mechanics; Tissue viscoelasticity; Active materials; Statistical mechanics; Transient network
theory

1. Introduction

Confluent cell ensembles are well-known to organize into a variety of architectures such as highly functional epithelial
tissues, developmental embryonic tissues, and multi-cellular tumor spheroids. During development and disease, these
cells are able to collectively grow, divide and reorganize, which can drastically change the aggregate size, architecture,
and shape. These activities are orchestrated by a combination of biochemical signals, active force generation, and me-
chanical deformation that closely interact through feedback mechanisms (Gjorevski and Nelson, 2010; Heisenberg
and Bellaı̈che, 2013). Deciphering how these cell-level interactions drive the long-term evolution of ensembles is at
the heart of a number of biomedical applications across tissue engineering, organoid development, and oncology. At
the same time, the development of accurate morpho-mechanic models (Montell, 2008; Friedl and Gilmour, 2009) is
challenging for several reasons. First, the elasticity and long-term rheology of such active multicellular systems is
highly nonlinear, time-dependent (Matoz-Fernandez et al., 2017; Kim et al., 2021; Duclut et al., 2022) and driven
by active forces (Ladoux and Mège, 2017). Second, their mechanical response arises from diverse interacting factors
(biological, chemical, physical) operating at di↵erent lengths and time scales (Wyatt et al., 2016). This includes glassy
dynamics behavior (Schötz et al., 2013; Bi et al., 2016; Oswald et al., 2017) where they can transit from a fluid-like
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soft state to a solid-like jammed state. It is therefore necessary to concurrently consider the active mechanics of the
cell cytoskeleton which operates at the sub-micron level (the deformation of single cells at the level of 1-10 microns)
and finally the collective behavior of cells at the tissue level.

Cells in epithelial tissues are tightly bound via adherens molecules at the cell-cell interface endowing them with
structural integrity as opposed to fluid-like embryonic tissues which lack mature adhesion junctions. Besides adhe-
sion, the mechanical properties of these tissues are also ensured by the plasma membrane, the cytoplasm, and stresses
generated within the actomyosin networks of the cell cortex and cell junctions. For instance, the cortical actomyosin
networks, via their ability to generate localized and directed contractile stresses, are known to power cell division, po-
larization, and rearrangement (Montell, 2008). On the other hand, the junctional actomyosin networks are responsible
for regulating the adhesion strengths at the junctions. In complement to experimental approaches, the agent-based
models (or individual based models) (Osborne et al., 2017) have become important tools to better understand and
quantify exactly how these cellular-level activities a↵ect tissue development and mechanics (Wyczalkowski et al.,
2012; Fletcher et al., 2017). Among them, the most prominent are particle-based models (Van Liedekerke et al.,
2015), cellular Potts model (Szabó and Merks, 2013) and vertex models (Fletcher et al., 2014; Alt et al., 2017). Even
though each one of them has its own strengths and limitations, the latter is particularly attractive for confluent cellular
networks due to its ability to capture several physics (such as adhesion and contractility) and individual cell shapes in
epithelial tissues. These models have been proven to explain phenomena such as wound healing (Tetley et al., 2019),
rigidity transitions (Bi et al., 2015), cell proliferation (Farhadifar et al., 2007), as well as topological transformations
(division, neighbor exchange, apoptosis and rosette transitions) (Staple et al., 2010; Yan and Bi, 2019) in epithelial
sheets. With the advent of dynamic vertex models (Barton et al., 2017), the approach could be extended to out-of-
equilibrium dynamics where the role of fluctuations (Sadati et al., 2013) and cell polarity (Asnacios and Hamant,
2012) could be explored in systems such as tumors (Lin et al., 2017) or embryo development in the drosophila (Kong
et al., 2017). As with any modeling paradigm, the vertex model has its own limitations owing to its discrete and
stochastic approach. These limitations mostly arise when considering tissues or organs made of a very large number
of cells and in three dimensions. In this situation, the problem not only becomes computationally prohibitive (Fletcher
et al., 2013) (although progress in high-performance computing may be a solution), but the dynamics become dom-
inated by the law of large numbers. In other words, the mechanics of the large tissues is dominated by the average
statistical response of the cell population.

On this end of the spectrum, continuum field theories o↵er an attractive mathematical framework, which lends it-
self to a deeper understanding of tissue dynamics. Continuum models have therefore been developed to describe
tumor growth (Ambrosi and Mollica, 2004), tissue elasticity (Kupferman et al., 2020), rheology (Preziosi et al.,
2010), and morphogenesis. These methods typically follow a top-down approach to derive constitutive relations from
macroscopic observations, satisfying material symmetries and thermodynamic balance laws. Thus, by contrast to the
bottom-up discrete approaches, the relationship between a continuum law and the underlying mechanisms is some-
times unclear. For instance, vertex simulations have shown that tissue rheology may arise from purely dissipative
rearrangement mechanisms (Erdemci-Tandogan and Manning, 2021), but could alternatively be driven by active pro-
cesses (Duclut et al., 2022). These may include, for instance, T1 transition propelling convergent extension (Zhou
et al., 2015; Kong et al., 2017), or active stresses originating from cell division (Doostmohammadi et al., 2015).
Similarly, continuum growth laws based on mixture theories (Humphrey, 2021) or the multiplicative decomposition
of the deformation gradient tensor into elastic and growth components (Rodriguez et al., 1994; Lubarda and Hoger,
2002) successfully account for various macroscopic observations. However, they fall short in specifying the cellular
processes at play. One such process of importance in biological growth is cell proliferation, which involves concurrent
cell expansion and division. Although expansion and division are interconnected, they stem from distinct biological
mechanisms, exerting disparate e↵ects on growth dynamics. Existing continuum growth theories lack di↵erentiation
between these growth modes: increase in cell size versus increase in cell number. Additionally, during proliferation,
cells, as seen in embryonic tissues, readily undergo rearrangements (neighbor exchange) (Jones and Chapman, 2012).
Consequently, these models, treating tissue as behaving elastically over the growth timescale, prove inadequate for
scenarios where rearrangements during growth could lead to viscous dissipation. To address these shortcomings and
establish a deeper connection between macroscopic laws and cellular mechanisms, it is desirable to refine existing
continuum models that are able to distinguish between tissue-level and cell-level deformation. A few models have

2



gone in this direction (Brodland et al., 2006; Graner et al., 2008; Blanchard et al., 2009; Guirao et al., 2015; Tlili
et al., 2015). One way to do so is by representing tissue configuration in terms of a mean cell with additional internal
state variables containing cell-scale information. For instance, the model developed by Ishihara et al. (2017) is able
to clearly link the mean cell conformation in epithelial tissues to their viscoelasticity and active behavior in response
to T1 transitions. To the best of the authors’ knowledge, this work was the first instance that combined ideas from the
vertex model and a continuum-level model of tissues. Recently Staddon et al. (2023) also used the mean-field form
of vertex models to explore the elastic behavior of epithelial tissues in detail. Even though hybrid continuum-discrete
models (Van Liedekerke et al., 2015) have the potential to model complex tissue dynamics, most averaging techniques
have primarily focused on capturing elastic behavior, with some consideration for the dissipative response. The in-
vestigation of tissue growth and cell proliferation has comparatively received less attention. Additionally, extending
these theories into three dimensions faces practical challenges attributed to the mathematical formulation employed.

In the pursuit of advancing bottom-up methodologies (that are extendable to three dimensions), we here introduce
a comprehensive continuum theory designed to model tissue growth and viscoelasticity based on the microscale kine-
matics of cell proliferation. To do this, we use the concepts of statistical mechanics with the objective of clearly
linking the stochastic mechanics of a cell population to its macroscopic e↵ective response. In solid mechanics, these
concepts were originally developed by Flory and Rehner (1943) to describe the entropic elasticity of polymer net-
works. With the Transient Network Theory (TNT) (Tanaka and Edwards, 1992; Vernerey et al., 2017), the approach
was then generalized to describe the viscoelasticity of networks with dynamic connections. The basic idea relies
upon representing the discrete structure as a network whose elements possess an elastic component (elastic segment)
and a time-dependent component, which enables the network to grow and change topology over time. Confluent cell
ensembles do possess the attributes of a dynamic network, where nodes (representing cells) may exchange, create, or
lose neighbors over time. The objective of the present work is therefore to employ ideas from statistical mechanics
to construct a continuum theory for confluent cell ensembles, in which cells can undergo intercalation (T1 transi-
tions), expansion, and division, three processes that are major players in tissue rheology, growth, and morphogenesis.
For clarity and consistency with previous work, the model is constructed around the free energy and cellular-level
rules delineated in the widely accepted vertex model. Given that vertex models are predominantly used for studying
two-dimensional epithelial tissues, we confine this theory’s application to confluent cell monolayers including cancer
monolayers (Roshal et al., 2022). However, it is crucial to highlight that the model’s adaptability to three dimensions
is readily feasible and will be pursued in the near future.

The manuscript is organized as follows. In section 2, we provide a statistical description of a cellular network,
corresponding statistical measures, and how they relate to cell conformation, which includes cell area and perime-
ter. Section 3 concentrates on the kinematics of a confluent cell population and their implication on the evolution of
statistics over time. This yields a Fokker-Plank equation describing the evolution of the network’s probability density.
Section 3 concludes with a brief overview of thermodynamic formalism which sets the basis for not only deriving
constitutive laws but also for providing deeper insights into the inelastic processes. Section 4 then focuses on the
mechanics of the tissue by introducing the average elastic energy density of the cell population based on the vertex
model. This allows us to introduce the average stress in the tissue. Section 5 then develops the inelastic models that
arise from the considerations of inelastic processes, starting from the T1 transitions, cell division followed by prolif-
eration which includes both - cell expansion and division. Illustrations of the resulting model are presented for simple
boundary-value problems and compared with similar studies in the literature. Section 6 finally provides concluding
remarks.
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Table 1: Summary of important mathematical symbols used in this study

Type symbol Meaning Dimension

Vertex model quantities

E Free energy J
K Cell area elasticity N/m3

AR Preferred cell area m2

LR Preferred cell perimeter m
�̄ Normalised cell contractility 1
⇤̄ Normalised junction tension 1
pp Preferred cell shape index 1
e0,�0 scaling factors for energy and stress J,N/m

Cell population statistics

N Number of cells 1
r Segment vector m
n Number of segment vectors 1
c Nominal segment density 1/m2

C Nominal cell density 1/m2

⌦ Segment conformation space m ⇥ m
� Nominal segment distribution density 1/m4

p Probability density function (pd f ) 1
M Segment distribution covariance m2

E Confidence ellipse of M
A Mean cell area m2

L Mean cell perimeter m

Continuum model quantities

B0 Initial stress-free configuration
⇣0 Residual volumetric elastic deformation 1
Bi Intermediate stress-free configuration
⇣i Inelastic cell expansion ratio 1
⌘ Cell number ratio 1
B Current deformed configuration
µ Elastic deformation tensor 1
⇣e Elastic volumetric deformation 1
⇣ Dimensionless cell area 1
 i Free-energy per unit area in Bi N/m
⇢i Mass per unit area in Bi Kg/m2

D Energy dissipation in tissue J/s
� Cauchy stress tensor N/m
⇠c, ⇠l Segment creation and loss rate 1/s, 1/s
kT , kD, kG Rates for T1 transition, cell division and cell growth 1/s, 1/s, 1/s
dT , dD, dG Inelastic flow rate tensors 1/s, 1/s, 1/s
� Cell shape anisotropy 1

2. Description of cell-networks

In an attempt to bridge cellular mechanisms to continuum scale, we opt for vertex models because, as we will see,
they provide for a straightforward mapping between averaged constitutive laws and discrete-level rules governing
stochastic e↵ects and topological changes. Hence we start by briefly reviewing vertex models for epithelial tissues.
This will then set the foundation for defining the confluent tissue configuration in various deformed and physical states
in our model.

2.1. Discrete representation: vertex approach
Vertex models (Fletcher et al., 2013, 2014; Alt et al., 2017; Barton et al., 2017) make use of a simplified approximation
in which cells within a confluent tissue can be mathematically represented as convex polygons. With this description
(see Fig. 1a.), three or more straight junctions meet a single point called the vertex. Despite certain e↵orts (Bock
et al., 2010) that alleviate these geometric constraints (linear edges and polygon convexity) and capture more realistic
cell shapes (Käfer et al., 2007), classical vertex models continue to e↵ectively predict collective cell behavior. A
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particularly attractive feature of these models is the introduction of a free energy functional E that is expressed in
terms of biophysical parameters and cell-level properties which include area AI , perimeter LI and junction length lIJ
where I and J denote cell indices. A coarse-grained estimation Ishihara et al. (2017); Staddon et al. (2023) of this
energy functional can be made in terms of mean cell area A = hAIi and mean cell perimeter L = hLIi as:

E ⇡ N
"
K
2

(A � AR)2 +
�

2
L2 +

⇤

2
L
#

(2.1)

where N is the total number of cells in the population. The first term arises from the cell’s resistance to changes in
its area and is expressed in terms of the cell’s bulk modulus K and preferred area AR. The second term represents the
energy associated with the changes in the cell’s perimeter, due to the combined elasticity � of the membrane and its
underlying cortical actomyosin network. The third and last term finally characterizes the energy contribution from
two competing factors, one the cell-cell adhesion mediated by E-cadherin junction molecules and the other junctional
actomyosin networks, giving rise to a tension ⇤ at the cell-cell interface. Depending on which of the two dominates,
the term ⇤ is a↵ected as follows. A positive ⇤ implies that contractility in the junctional actomyosin networks domi-
nates and cells work to decrease their contact area. In contrast, a negative ⇤ indicates that adhesion dictates, driving
junction area expansion. The last two terms in eqn. (2.1) can also be interpreted as sources of surface tension forces
as they regulate any changes in cell shape where � is responsible for cell-surface tension while ⇤ characterizes inter-
cellular-surface tension (Lecuit and Lenne, 2007).

In the vertex models, the minimization of the above energy drives cell deformation and motion. In time, this en-
ergy may indeed change due to two mechanisms, which may be passive or active. Passive mechanisms merely arise
from the application of external forces that could induce both elastic and inelastic tissue deformation. On the other
hand, active mechanisms can be multiple and usually depend on the interplay between adhesion and contractile forces
within the cells as well as in the junctions. Contractile forces that are generated by the junctional actomyosin struc-
tures (a layer of F-actin filaments and Myosin II motor proteins) control both the cortical elasticity � and bond tension
⇤ over time. Notably, bond tension can occur in a specific direction in order to coordinate anisotropic cell movement
(Bertet et al., 2004; Zallen and Wieschaus, 2004; Rauzi et al., 2008). But cortical and junctional dynamics are not
the only mechanisms that drive cell shape changes and their collective motion. Changes in preferred cell area AR
triggering growth and changes in cell polarity influencing migration patterns are some of the other forms of active
mechanisms that can be modeled as per the vertex-based simulations (Barton et al., 2017). A variety of rules can be
introduced in vertex models to observe the emerging behavior of epithelial tissues under various cellular processes.
With an increase in system size, i.e. degrees of freedom, the amount of information can quickly become very large,
which could sometimes, make it di�cult to identify the governing factors for a given macroscopic response. To ad-
dress this issue, we now develop a continuum model based on the reduced mean-field approximation of confluent
cellular networks. Our objective in this context is not to propose an alternative to the vertex model, but rather to gain
insights into how the cell-level events manifest in a continuous framework.

2.2. Statistical description: TNT approach
In this section, we employ a statistics-based approach to provide a novel interpretation of cell networks that is indepen-
dent of individual cell geometries. Consider a two-dimensional macroscopic tissue domain B confined by boundary
@B as shown in Fig. 1b. An elementary area centered around a point with Lagrange coordinate X can be thought of
to be composed of a large number, N(X, t), of confluent cells. This collection of N cells can be used to statistically
describe the tissue structure at continuum point X. Following the transient network theory (TNT) (Vernerey et al.,
2017), this collection may be viewed as a dynamic network (Fig. 1b.) of cells whose nodes represent the geometric
cell centers and segments, denoted by the vector r, indicate a physical connection between two neighboring cells.
Also, note that the segment vectors are apolar, i.e., their direction is randomly assigned such that, they can be written
in terms of a magnitude r = |r| and a direction angle ✓, resulting in r = [rx, ry] = [rcos✓, rsin✓]. The total number
n(X, t) of such segment vectors in the network is given by n = ca(0), where c(X, t) is the nominal density of segment
vectors and a(0) is the initial elementary area at X. A statistical description of the cellular network may then be intro-
duced by considering r as a continuous random variable in virtual conformation space⌦ (Fig. 1c.) which is embedded
within the Lagrangian point X. Theoretically, this conformation space ⌦ is an infinite space with segment vectors
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Figure 1: (a.) Vertex model representation as given by a unique polygonal tessellation, called Voronoi tessellation (b.) A network of confluent
cells where nodes (solid black dots) correspond to the geometric cell centers and segments (solid red lines) connect adjacent cell centers. (c.) The
network statistics is captured by the distribution of these center-to-center segment vectors in a conformation space ⌦ 2 R2 with bases {rx, ry}. The
probability density function p(rx, ry) of this distribution is depicted as a confidence ellipse whose principal axes align with the eigenvectors of
M. This ellipse is then used to estimate the characteristics of the mean cell for an isotropic network (d.) and an oriented network (e.). Note: (i)
Network description in (b.) does not, by any means, correspond to the network shown in (a.) and (ii) The plotted distributions in (d.) and (e.) are
for illustrative purposes only and may not accurately reflect actual multicellular systems.

spanning all possible directions (0  ✓ < 2⇡) with all possible magnitudes (0 < r < 1). We can therefore define a
distribution density function �(X, r, t) to measure the number dn(X, r, t) of segment vectors with conformations lying
within (r, r + dr) per unit conformation space per unit initial area a(0):

�(X, r, t) :=
1

a(0)
dn
d⌦

(X, r, t) (2.2)

The nominal segment vector density c can then be expressed in terms of � as:

c(X, t) =
Z

⌦

�(X, r, t) d⌦ (2.3)

where the integral is defined by any function (⌅) of the random variable r (and its norm r = |r|) as:
Z

⌦

(⌅) d⌦ =
Z 2⇡

0

Z 1

0
(⌅) rdrd✓ (2.4)

Conveniently, c can also be related to the nominal concentration C(X, t) = N(X, t)/a(0) of cells in the network by
invoking the average coordination number z. This number indeed measures the average number of connections per
cell for a given population and hence relates the segment density c to the cell density C by c = (z/2)C, where a factor
of 2 accounts for the fact that each connection is counted twice. For an asymptotically large population of confluent

6



cells away from the boundary, the average coordination z = 6. In the context of vertex models, z would represent the
average number of sides of polygonal cells which can vary over time (Farhadifar et al., 2007). In such cases, z would
be an additional state variable that would need to be solved but for simplicity, here we will assume that z remains a
constant. In the remainder of this work, we will see that it is worthwhile to use a multiplicative split of the segment
distribution density � as:

�(X, r, t) = c(X, t)p(X, r, t) (2.5)

where p(X, r, t) is the probability density function of the random variable r, that satisfies the classical requirementR
⌦

p(X, r, t) d⌦ = 1. We emphasize again that the conformation space, ⌦, which is the space over variable r, and
its associated distributions (�, p) represent the current state of the transient network at point X and hence drop the
notation X hereafter. Also, the keyword initial used for defining area a(0) is important because it refers to the stress-
free configuration at time t = 0 and not just any stress-free state as will become more clear in section 3.

2.3. Mean-field approximation
We will see in the subsequent sections how the above distribution densities (� and p) can be used to describe the
evolution of dynamic networks. But before that, one first needs to establish relationships between their expression
and measurable quantities in the cellular assembly (notably the mean cell area A, mean circumference L, and nominal
cell concentration C), which will eventually permit the evaluation of the elastic energy density from eqn. (2.1). For
this, let us consider a known segment distribution density � and attempt to determine C, A, and L. First, using eqn.
(2.3) and the relation c = (z/2)C, the nominal cell concentration is found as:

C =
2
z

Z

⌦

�(r) d⌦ (2.6)

Let us now proceed to assess the mean cell area A and perimeter L by first expressing the covariance of the probability
density p(r) using a second order, symmetric, positive definite tensor M defined as:

M :=
Z

⌦

p(r) r ⌦ r d⌦ =
 
hr2

xi hrxryi
hrxryi hr2

y i

!
(2.7)

where ⌦ denotes the dyadic product. Geometrically, the tensor M can be represented by a confidence ellipse E whose
semi-major axes’ lengths and orientations describe the average shape of a cell as illustrated in Figs. 1d. and 1e.
Calculating the area and perimeter of this confidence ellipse (see Appendix A.1), the mean cell area A and perimeter
L can be written as:

A = ⇡
p
|M| and L = 2⇡

r
Tr(M)

2
(2.8)

where operators |⌅| and Tr(⌅) denote the determinant and trace of a tensor (⌅) respectively. We will demonstrate
further in sections 3.1 and 4.1, how A and L are used to measure deformation in a cell network. For now, it is su�cient
to understand that M, and hence (A, L), describe the current state of the population in the form of a composite or mean
cell.

3. Continuum theory

For monolayers or tissues comprising a large number of cells, the network is expected to display an emerging behavior
that transcends each individual stochastic event. At this macroscopic level, their mechanics is described by continuum
models and characterized in terms of its viscoelastic and growth behavior. Biological growth is typically modeled as
time-dependent plastic deformation in continuum mechanics. Mechanistically, topological transitions (cell intercala-
tion, division, or apoptosis) can also be seen as time-dependent plastic rearrangements as these processes involve an
“activation energy” leading to tissue’s plastic behavior. This behavior, in a way, resembles yield-stress fluids (Cous-
sot, 2014; Varchanis et al., 2020), with dynamic rearrangements occasionally driven by active mechanisms (which
consume chemical energy). Tissue response is influenced not only by these inelastic processes but also significantly
by changes in properties like preferred area AR, contractility �, and junction tension ⇤. This section aims to compre-
hensively outline the theoretical description of inelastic cellular mechanisms along with the role of material properties
on complex tissue dynamics.
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3.1. Kinematics
Consider a macroscopic solid tissue in its initial stress-free configuration defined by B0. As this tissue deforms over
time (due to growth, topological alterations, and external forces), it assumes a current deformed state represented by
B(t). To characterize the deformation from B0 to B(t) (see Fig. 2), we introduce a Cartesian coordinate system with
bases vectors {e1, e2}. In this system, the coordinate of a material point is noted X while it is denoted as a spatial
point x = x(X, t) in the current deformed state. The function x (or motion) is here assumed to be continuous and
di↵erentiable over space and time. The deformation gradient tensor F(X, t) of a material point can then be introduced
as the tangent mapping operator:

F(X, t) :=
@x
@X

(3.1)

The time derivative of this tensor may further be written in terms of the spatial velocity gradient ` so that:

Ḟ = `F with ` =
@ẋ
@x

(3.2)

where the notation Ḟ is used for the material time derivative. We now ask how the mean cell area, perimeter, and
network distortion evolve as a function of this macroscopic deformation. To answer this, we draw upon the frame-
work originally devised to model finite-strain elastoplasticity (Lee, 1969). According to this classical theory, when a
body is elastically unloaded from its current state B(t) and all stresses are released, it does not revert to its original
configuration B0. Instead, due to irreversible deformations, it assumes a new, permanently altered stress-free (inter-
mediate) state denoted as Bi(t), which itself may evolve over time. Alternatively, one could conceive of this state Bi(t)
as if the body had undergone deformation from B0 solely through inelastic processes that do not result in any elastic
stresses. This concept is more commonly recognized as multiplicative decomposition theory, wherein the complete
deformation gradient F is expressed as:

F = FeFi (3.3)

where Fe and Fi are, respectively, the elastic and inelastic components of the deformation gradient tensor. Conse-
quently, the velocity gradient tensor ` is additively decomposed as ` = `e+`i where `e = ḞeF�1

e and `i = FeḞiF�1
i F�1

e .
Therefore, we see that in order to construct an elasto-visco-plastic theory for confluent cell aggregates, one first needs
to provide a proper definition of elastic deformation Fe, which in turn requires the description of reference or stress-
free states: B0 and Bi. Characterization of these states for biological materials has always been a topic of discussion
(Hoger et al., 2004; Du et al., 2018; Kupferman et al., 2020), primarily for two reasons: (1) Biological tissues are
often residually stressed, signifying the presence of stored elastic energy even without external loads. (2) Minimum-
energy configurations exhibit degeneracy, implying the existence of multiple stress-free arrangements. In addition to
this, these states can evolve over time. In the next section, we will lay down the groundwork for our elasticity model
(section 4) by defining the stress-free configurations (B0,Bi) within the framework of vertex models. To streamline our
discussion, we divide stress-free states into two categories: one addressing the time-independent state and the other
delving into time-dependent phenomena. The time-independent stress-free state serves as the initial configuration B0
which is at equilibrium, while the intermediate configuration Bi(t) accommodates time-dependent inelastic processes
and non-equilibrium response.

3.1.1. Initial stress-free configuration B0

In order to completely characterize our tissue state in B0, we resort to the vertex model energy functional introduced
in eqn. (2.1). It is customary (Bi et al., 2015) to omit the line tension term and express the energy functional E as:

E = N
"

K
2

(A � AR)2 +
�

2
(L � LR)2 � ⇤

2

8�

#
(3.4)

where LR = �⇤/(2�) is referred to as the preferred perimeter. Note that preferred area AR and preferred perimeter LR
are not necessarily geometrically compatible and should be treated as two separate entities. Furthermore, for greater
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Figure 2: Mapping between initial, intermediate, and current configurations. Schematic of the underlying mean cell at arbitrary continuum points
are shown as well.

utility, it is recommended to express the coe�cients � and ⇤ in their non-dimensional forms: normalized contractility
�̄ = �/ (KAR) and normalized tension ⇤̄ = ⇤/

⇣
KA3/2

R

⌘
, respectively. By making this substitution in eqn. (3.4) and

neglecting the term ⇤2/(8�) (since it only shifts the total energy and does not contribute to the constitutive relations),
we now rewrite our energy functional as:

E = KNA2
R

2
666664
1
2

 
A
AR
� 1

!2

+
�̄p2

p

2

 
L
LR
� 1

!23777775 (3.5)

where pp = LR/
p

AR = �⇤̄/
⇣
2�̄

⌘
is the preferred shape index. This shape index, initially introduced by Bi et al.

(2015), sets up a competition between the preferred perimeter LR and the preferred area AR wherein the dominant
term e↵ectively sets the average shape of cells in the layer. More specifically, a high value of pp is associated with
cells that optimize their perimeter over their area and vice-versa for lower values. We can now evaluate the equilib-
rium state B0 by minimizing the energy in eqn. (3.5). Upon solving the minimization problem (Staple et al., 2010),
depending on pp, the stable solution is either of the two following:

(a.) The fluid state (when A = AR and L = pp
p

AR): This corresponds to the global minimum of E and describe
the configuration of cell network when cells tend to take their most optimum shape with preferred area AR and pre-
ferred perimeter LR. Cells in this configuration can form a realistic packing as long as they satisfy the constraint
pp � 2

p
⇡ (see Appendix A.2). Under this condition, the cell network is often referred to as soft or fluid because the

network can not sustain any shear deformation due to its negligible shear resistance. It is also characterized by high
fluctuation levels in the cell’s motion as low energy barriers make the process of T1 transition e↵ortless (Bi et al.,
2015).

(b.) The solid-state (when A < AR and L > pp
p

AR): In this situation, the network is not in its absolute mini-
mum energy state, but rather in a local minimum. The reason for this is because, unlike the fluid state, this state is
geometrically incompatible since pp < 2

p
⇡. As a consequence, when cells mechanically interact with each other to

feasibly form a cohesive confluent tissue, they are locally deformed and induce residual stresses to restore compatibil-
ity. More specifically, cells are elastically compressed while their perimeter experiences tensile stresses (Tong et al.,
2022; Staddon et al., 2023) that originate from a mismatch between L and LR. The mean cell conformation in this
case takes an area A = ⇣0AR that is di↵erent from its preferred area AR by a factor of ⇣0 where this ⇣0 models residual
elastic volumetric deformation. Note that since the compressive stresses within the cell are balanced by the tensile
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stresses at cell boundaries, the overall aggregate in a macroscopic sense can be deemed stress-free.

As evident from the preceding discussion, confluent cell aggregates exhibit a jamming transition behavior that has
been extensively investigated through vertex models (Bi et al., 2015) and continuum models (Kupferman et al., 2020;
Staddon et al., 2023). Our focus here lies in characterizing both these phases within the statistical framework in-
troduced in section 2.2. In a fluid state, cells reduce energy by expanding their contact area. This leads to their
conformation as elongated polygons (as per-vertex models) or ellipses (in a coarse-grained context). Due to the ran-
dom orientation of these ellipses, the network’s average representation can be given by some isotropic covariance
tensor MR = mRI, where I being the identity tensor, such that using eqn. (2.8) we can write initial preferred cell area
AR(0) = ⇡mR. Cells in the solid state, on the other hand, exist in the form of regular hexagons (as per-vertex models)
and simply circular geometries (in a coarse-grained sense). Hence here also the network is isotropic represented by
tensor M0 = m0I where the initial mean cell area A(0) is simply ⇡m0. Recalling A(0) = ⇣0AR(0), we get M0 = ⇣0 MR.
Since we are interested in the solid-state tissue, which has finite bulks and shear modulus, M0 describes the initial
stress-free configuration B0 in our model. Also from the isotropic shape of the mean cell in this configuration, the
corresponding perimeter L(0) is 2

p
⇡A(0). Assuming the initial cell count to be N(0), the energy E(0) in B0 can be

found by simply substituting A = A(0), AR = AR(0), L = L(0) and N = N(0) in eqn. (3.5) which results in:

E(0) = e0

2
666664
1
2

(⇣0 � 1)2 +
�̄p2

p

2

 
2
pp

p
⇡⇣0 � 1

!23777775 (3.6)

where we introduce two scaling factors of energy and stress, respectively, given by

e0 = KAR(0)2N(0) and �0 = KAR(0) (3.7)

Note that ⇣0 in eqn. (3.6) is yet an unknown that needs to be determined. The procedure to obtain ⇣0 is outlined in
section 4 where we will show that ⇣0 is solely a function of material properties �̄ and ⇤̄.

3.1.2. Intermediate stress-free configuration Bi

In this section, we will introduce what cell-level mechanisms can operate in Bi and how they can be translated to the
macroscopic level to model growth mechanics in viscoelastic tissues. In this regard, we take a micro-mechanics-based
approach consistent with vertex model rules to define our intermediate configuration Bi. Before proceeding we would
like to underline that while the rules for inelasticity have been motivated from vertex models, they are in general
applicable to most confluent cell populations. Hence the proposed methodology can be extended to model a wide
variety of systems.

The idea of the existence of an intermediate Bi, in the context of biological materials, is usually applied to study
growth within continuum mechanics. Consider a body initially stress-free, starts growing freely under some growth
deformation tensor Fg(X, t) (Lubarda and Hoger, 2002; Garikipati, 2009; Jones and Chapman, 2012; Goriely, 2017;
Genet, 2019). The resultant configuration Bi(t) at any time t with increased mass or volume or both, even though
stress-free may or may not be physically compatible. Incompatibilities generally arise when the growth is inhomoge-
nous (Skalak et al., 1996; Jones and Chapman, 2012). Elastic deformation Fe is then applied to restore compatibility.
As a result of this, the current configuration B(t) becomes residually stressed.

In the absence of any inelastic activities, the tissue remains in equilibrium in B0 and the stored energy remains con-
stant. However, if inelastic mechanisms are present, then the tissue comes out of equilibrium, and energy changes.
This occurs when cells are able to change their preferred area AR(t) via expansion and/or division and number N(t)
via cell divisions. Also since the tissue is growing stress-freely in Bi(t), its area ai(t) at any time t, is simply the area
Ai(t) of mean cell times the current number N(t) of cells in the population. The macroscopic inelastic volumetric
deformation, given by Jacobian Ji = |Fi|, can then be expressed in terms of an inelastic volumetric expansion ratio ⇣i
and a cell number ratio ⌘ such that:

⌘(t) =
N(t)
N(0)

, ⇣i(t) =
AR(t)
AR(0)

=
Ai(t)
A(0)

and Ji(t) =
ai(t)
a(0)

= ⌘(t)⇣i(t) (3.8)
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Note that while writing the expression for ⇣i in eqn. (3.8), we have assumed that the residual elastic strain ⇣0 (i.e.
the ratio of Ai(t) to AR(t)) remains una↵ected from any deformation including inelastic deformations. At the same
time, we assume no change in preferred shape index pp. Based on this assumption the preferred cell perimeter LR(t)
evolves with ⇣i(t) according to LR(t) =

p
⇣i(t)LR(0). The implications of treating ⇣0 and pp as material constants will

be addressed further in sections 4 and 5. Now as is clear from eqn. (3.8), Ji(t) arises from two processes: the inelastic
deformation of individual cells (through the expansion term ⇣i(t)) and the increase in cell number ratio ⌘(t) from cell
division. These relations, therefore, provide a bridge between the mechanisms of proliferation and the deformation
tensor Jacobian Jg of deformation tensor Fg widely used in the growth literature.

The fundamental concept to grasp is that Bi represents an intermediate stress-free configuration where cells expe-
rience growth, division, and intercalation. Since no external forces are applied, these processes unfold randomly,
devoid of bias, thus maintaining isotropy within the network. Accordingly, the covariance tensor Mi in Bi becomes
Mi(t) = ⇣i(t)M0. Assuming that ⇣0 does not change during these processes and realizing that the network isotropy is
not a↵ected, energy in Bi transforms to a time-dependent function Ei(t) given by:

Ei(t) = ⌘(t)⇣2
i (t)E(0) (3.9)

Equation (3.9) demonstrates how the energy of the tissue in Bi changes due to cell growth and/or division. Despite the
possibility of cells rearranging through passive T1 transitions in this configuration, these transitions do not alter the
energy Ei. This is simply because the mean cell conformation in an isotropic network remains una↵ected by random
intercalations.

It is important to reiterate that all discussions so far and in the remainder of the study pertaining to determining the
macroscopic tissue state are centered around an arbitrary continuum point X. This state is influenced by the collective
behavior of cells within a microscopic RVE-like region en-grained within that point. Our initial state B0 is a compatible
state and no incompatibilities as a result of inelastic deformation Fi from B0 to Bi arise at the scale of this RVE.
However, since the macroscopic fields (Ji(t), ⇣i(t), ⌘(t), Ai(t)) are all, in general, functions of X where the argument X
has been dropped, the notion of incompatibility emerging from non-uniform deformation fields remains valid. The
tissue state, described by Bi(t), will now serve as a reference configuration for measuring elastic deformation.

3.1.3. Elastic deformation
When the tissue deforms due to applied external stress or through the cell proliferation process, which may be me-
chanically constrained, the network deforms into its current configuration B(t) represented by the covariance tensor
M. We are now in a position to introduce the measure of elastic deformation with a strain-like quantity µ defined as:

µ :=
M

|Mi(t)|1/2
=

1
⇣i

M
|M0|1/2

=
1
⇣i

M
m0

(3.10)

where |M0|1/2 = m0 = A(0)/⇡ is the normalizing area that remains constant over time. In general, the tensor µ is not
isotropic and can be decomposed into an areal ⇣e and pure distortion (isochoric) component µ̄ (verifying |µ̄| = 1) as
µ = ⇣eµ̄ where ⇣e defined as:

⇣e =
A(t)
Ai(t)

= |µ|1/2 (3.11)

is a dimensionless measure of the elastic expansion of the current mean cell area A(t) from its current reference state
Ai(t). With these definitions, µ satisfies the following properties: (a) it is represented by a tensor which is equal to
the identity (I) when the tissue is in its intermediate stress-free configuration Bi and (b) it varies due to both inelastic
expansion ⇣i of cells and the application of pure elastic deformations.

At the macroscopic level, the volumetric deformation of the cell population is denoted by the Jacobian J = |F| of
the total deformation gradient F. Following the multiplicative decomposition F = FeFi, J can also be split into a per-
manent (inelastic) contribution Ji (eqn. (3.8)) and an elastic contribution Je = |Fe| such that J = JeJi. By definition, J
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can also be represented as the ratio of the current deformed area a(t) to the initial undeformed area a(0), resulting in:

J(t) =
a(t)
a(0)

=
⇣(t)N(t)A(0)

N(0)A(0)
= ⇣(t)⌘(t) (3.12)

where ⇣ = ⇣e⇣i is simply a ratio of current mean cell area A(t) to its initial state A(0). Using this relation and eqn. (3.12),
the elastic volumetric deformation Je(t) of the population is found to be equal to the average elastic deformation ⇣e
experienced by each cell. This suggests that when a tissue behaves elastically, individual cells, on average, encounter
the same deformation as the applied external deformation. However, when inelastic mechanisms start to operate, the
deformation ⇣e felt by cells is di↵erent from the applied deformation J.

3.2. Time evolution of the elastic deformation
We will now see how the elastic deformation, as measured by µ, changes in response to external forces and cellular
processes. For this, it is first worthwhile to derive an evolution equation for the distribution density � and consequently,
the probability density p, referred to as the Fokker-Planck equation. The derivation of the Fokker-Planck equation
for a transient polymer network that can stochastically gain and lose segments over time has been discussed in detail
in previous work (Vernerey et al., 2017). For this reason, we defer derivations to the appendix (see Appendix B.1).
Again consider our conformation space ⌦. Since this region is defined for each material point X, no heterogeneities
in terms of macroscopic quantities exist within ⌦. In other words, it is assumed that the deformation gradient F(X, t)
is translated uniformly throughout ⌦. As a result, the elastic motion of existing segments (between the time they are
created and deleted) deform a�nely with macroscopic deformation, and we can write ṙ = `r where ` = ḞF�1 is the
macroscopic velocity gradient. In addition, if the rates of segment creation and loss are represented by functions ⇠c
and ⇠l, respectively, the time evolution of �(r, t) for our compressible cellular network is expressed by:

�̇ = �` :
 
@�

@r
⌦ r

!
� Tr(`) � + ⇠c (r) � ⇠l (r) (3.13)

where the first two terms arise from the convection of existing segments with the velocity gradient ` while the last
two terms exemplify topological changes within the network. The vertex model extensively considers three kinds of
topological transformations (Staple et al., 2010): cell intercalation (also known as T1 transition), cell division, and
cell apoptosis (also known as T2 transition). We note that all three are characterized as irreversible kinetic events
and can depend on a number of biomechanical and biochemical factors. To name a few such as cell density, cell
shape, stress, and nutrient availability. These transitions, along with cell growth, are the primary contributors to tissue
growth and morphogenesis. To see how they a↵ect cell number ratio ⌘ and cell state µ, we carry out two operations.
First, using � = (z/2)Cp and eqn. (2.6), the di↵erential equation (3.13) can be used to obtain the following evolution
for ⌘ (see Appendix B.2) as:

⌘̇ =
2

zC(0)

Z

⌦

�̇ d⌦ =
2

zC(0)
(⌅c � ⌅l) (3.14)

where C(0) = 1/A(0) is the initial nominal cell density and the overall rates of creation and depletion of segment
vectors are written respectively,

⌅c =

Z

⌦

⇠c d⌦ and ⌅l =

Z

⌦

⇠l d⌦ (3.15)

Second, combining eqns. (3.13) and (3.14), we can now write the evolution equation for the probability density p(r, t)
as:

ṗ = �` :
 
@

@r
⌦ (pr)

!
+ 2

⇠c � p⌅c

z⌘C(0)
� 2

⇠l � p⌅l

z⌘C(0)
(3.16)

which is our Fokker-Planck equation as derived in Appendix B.3. Taking the covariance of this equation quickly
yields an evolution equation for the covariance tensor M as:

Ṁ =

Z

⌦

ṗ r ⌦ r d⌦ = `M + M`T + 2
Z

⌦

 
⇠c � p⌅c

z⌘C(0)

!
r ⌦ r d⌦ � 2

Z

⌦

 
⇠l � p⌅l

z⌘C(0)

!
r ⌦ r d⌦ (3.17)
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Note that this equation can therefore be used to follow the evolution in cell area and perimeter via relations (2.8). To
further simplify the notation, one can invoke the definition of the Lie derivative of a tensor (here M) convected by the
velocity gradient `, written in the form:

L (M) = Ṁ � `M � M`T (3.18)

The evolution of M can now be re-written in the simpler format:

L (M) =
2

z⌘C(0)

"Z

⌦

(⇠c � p⌅c) r ⌦ r d⌦ �
Z

⌦

(⇠l � p⌅l) r ⌦ r d⌦
#

(3.19)

The convective rate of elastic deformation can now be derived using the relation C(0)m(0) = 1/⇡ and eqns. (3.19),(3.10).
This rate is represented by the tensor:

L (µ) = � ⇣̇i

⇣i
µ �

 
2⇡
z

!
1
Ji

"Z

⌦

(⇠l � p⌅l) r ⌦ r d⌦ �
Z

⌦

(⇠c � p⌅c) r ⌦ r d⌦
#

(3.20)

In the next few sections, we concentrate on articulating di↵erent inelastic cellular processes associated with T1 tran-
sitions (denoted by a subscript D), cell division (denoted by a subscript D), and cell growth (denoted by subscript G).
More specifically we will look into deriving the explicit forms of flow rates due to inelastic deformations pertaining
to T1 transitions (dT ), cell divisions (dD), and cell growth (dG). The complete theoretical model can then be captured
by the flow rule:

L (µ) = µ̇ � `µ � µ`T = �dT � dD � dG and ⌘̇ = ⌘̇T + ⌘̇D + ⌘̇G (3.21)

where ⌘̇T , ⌘̇D, ⌘̇G are the changes in cell number ratio due to T1 transition, cell division, and cell growth respectively.
To connect the above expression with classical models, let us consider the purely elastic situation where growth,
divisions, and intercalations do not occur. In this case, eqn. (3.21) becomes:

L (µ) = 0 and ⌘̇ = 0 (3.22)

The solution of this equation is µ = FFT , i.e. the elastic tensor degenerates to the classical left Cauchy-green
deformation tensor b. In the case where inelastic processes take place, the elastic deformation µ may change due to
topological transitions and/or cell expansion. These mechanisms are discussed in detail in section 5. For the time
being, we concentrate on the macroscopic elastic response of the cell aggregate.

3.3. Thermodynamic formalism
In this section, we will develop a general framework for deriving the constitutive relations for a growing viscoelastic
solid. We start by postulating the existence of a Helmholtz free energy function  defined per unit mass. This potential,
in general, is a function of the elastic deformation tensor µ and a set of history-dependent internal state variables (ISVs)
� = {�1,�2,�3, ...,�m} that define the thermodynamic state of the material at any time t. Mathematically we write:

 =  (µ,�) (3.23)

where the elements of � are, in general, second-order tensors characterizing the inelastic mechanisms that include
growth, remodeling, and dissipative rearrangements inside our material. Next, we employ the Clausius-Duhem form
of the second law of thermodynamics, which states that internal dissipation D (per unit current volume) for an open
system (that can change mass) under iso-thermal (constant temperature) and adiabatic (no heat transfer) conditions
should satisfy (Huang et al., 2021):

D = � : ` � ⇢ ̇ � 0 (3.24)

where � is the Cauchy stress tensor, ⇢ is the mass density defined per unit current volume and  ̇ is the material
time derivative of  . The first term � : ` is the rate of work done by internal forces per unit current volume and
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is often represented by Wint. For systems that are growing as a result of the change in mass, it is more useful to
introduce another measure of Helmholtz free-energy density  i defined per-unit volume in the intermediate stress-free
configuration:

 i = ⇢i where ⇢i = Je⇢ (3.25)

is the mass density defined per unit volume in intermediate stress-free configuration Bi. Most continuum growth
theories assume that  i is only a function of elastic deformation Fe and is independent of any growth-related variables.
Here, we consider the general case where  i, not only depends on µ, but also on the ISVs �. Hence:

 i =  i(µ,�) (3.26)

As per the multiplicative decomposition theory F = FeFi, mass growth only takes place between B0 and Bi. In other
words, the mass of the system in the current configuration B is the same as the mass in Bi. Using this condition we
can get the required relation (3.25) between ⇢ and ⇢i. Now substituting for  and ⇢ from eqn. (3.25) in eqn. (3.24),
we can rewrite our Clausius-Duhem inequality as:

D = � : ` � 1
Je
 ̇i +

1
Je

⇢̇i

⇢i
 i � 0 (3.27)

where  ̇i from eqn. (3.26) can be expressed using chain rule as:

 ̇i =
@ i

@µ
: µ̇ +

mX

a=1

@ i

@�a
: �̇a (3.28)

The first term includes partial derivatives with respect to invariants I1, I2, I3 of tensor µwhile the second term accounts
for the change in  i due to inelastic rates �̇a. We will now use this Clausius-Duhem inequality (3.27) and eqn. (3.28)
to first derive an expression for Cauchy stress tensor � in section 4 and then later to investigate the growth and
viscoelasticity behavior of confluent cell monolayers in section 5.

4. Elasticity model

In this section, we focus on the elastic behavior of tissue where cells do not grow, divide, or intercalate and therefore
L (µ) = 0 and ⌘̇ = 0. For our purposes, we use the vertex model energy functional (3.5) and vertex model-based
stress-free states (sections 3.1.1 and 3.1.2) to derive our material model.

4.1. Network stress
Having quantified all stress-free configurations B0 and Bi as well as the elastic deformation, we can now summarize
our current mean cell area A(t) and perimeter L(t) in terms of continuum variables (see Appendix B.4):

A
AR
= ⇣0⇣e and

L
LR
=

2
pp

r
⇡⇣0I1

2
(4.1)

where ⇣e = Je =
p

I3 =
p
|µ| and I1 = Tr(µ) are the invariants of the elastic tensor µ. Using eqns. (3.5), (3.7), (3.8),

and (4.1) the energy E(t) of tissue in current configuration B(t) can be expressed in terms of dimensionless quantities
I1, I3, ⌘, ⇣i as:

E(I1, I3; ⌘, ⇣i) = e0⌘⇣
2
i

2
6666664
1
2

(⇣0⇣e � 1)2 +
�̄p2

p

2

0
BBBBB@

2
pp

r
⇡⇣0I1

2
� 1

1
CCCCCA

237777775 (4.2)

where note that we have split the arguments to distinguish between elastic deformation measures (I1, I3) and ISVs
(⌘, ⇣i). The Helmholtz -free energy density  i defined as  i = E/ai can now finally be written as:

 i(I1, I3; ⇣i) = �0⇣i

"
1

2⇣0

⇣
⇣0

p
I3 � 1

⌘2
+ a

⇣
b
p

I1 � 1
⌘2
#

(4.3)
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where the non-dimensional material coe�cients a and b are, respectively, given by:

a =
�̄p2

p

2⇣0
and b =

p
2⇡⇣0

pp
(4.4)

One can now use this frame-invariant definition of Helmholtz free energy density  i (4.3) and Clausius-Duhem in-
equality (3.27) to obtain the Cauchy stress tensor �, which, takes the form (see Appendix C) of a hyper-elastic
material:

� =
2
Je

@ i

@µ
µ =

2
Je

"
@ i

@I1
µ +

@ i

@I3
I3I

#
(4.5)

Substituting  i from eqn. (4.3) in the above results in our constitutive relation:

�(I1, I3; ⇣i) = 2�0⇣i

"
1
2

⇣
⇣0

p
I3 � 1

⌘
I + ab

 
b � 1p

I1

!
µ̄

#
(4.6)

where recall that µ̄ = µ/Je is the isochoric part of µ. The result in eqn. (4.6) is in a way similar to that of Ishihara et al.
(2017) where the first term models isotropic pressure due to area elasticity and the second term represents cell-shape
dependent stress due to junction tensions. The di↵erences, though, lie in the inclusion of a state variable ⇣i, repre-
senting inelastic cell expansion, and an additional material property ⇣0, characterizing the volumetric residual elastic
strain in solid-state tissues. Also, the current model is valid only when adhesion dominates i.e. ⇤̄ < 0 or pp > 0,
which explains the negative contribution to stress from µ in eqn. (4.6). This range of material property values (pp > 0)
is comprehensive enough and encompasses the entire spectrum of solid-state tissues except for a small range where
contractility dominates ⇤̄ >⇡ 0 before the response of tissue becomes inconsistent with observations as per the vertex
models (Bi et al., 2015).

The previously unknown residual deformation ⇣0 can now be determined by solving for � = 0 when µ = I signi-
fying stress-free tissue. The results for ⇣0 are plotted in Fig. 3 which shows that the model parameters �̄ and ⇤̄ greatly
influence the values of ⇣0. For instance, one observes that the cell’s internal pressure increases (i.e. ⇣0 decreases)
with the cortex contractility �̄ for a constant normalized tension ⇤̄. For the remainder of this study, we only consider
confluent tissues in their solid state, i.e. ⇣0 < 1, and pp < 2

p
⇡ (= 3.545). Also since ⇣0 depends only on material

properties �̄, ⇤̄, it remains constant as long as �̄ and ⇤̄ do not change.

4.2. Elastic response of cell network
To illustrate the prediction of the elastic model, we examine the elastic response of epithelial tissue under uni-axial
stretch and more specifically investigate the impact of the material properties �̄ and ⇤̄ on its Young’s modulus Y and
Poisson’s ratio ⌫. Indeed, while these parameters are usually defined for linearized elasticity, they can be extracted for
a non-linear model as follows:

Y =
�1

�1 � 1
and ⌫ =

�log(�2)
log(�1)

(4.7)

where �1 is the applied longitudinal Cauchy stress component and F = diag[�1, �2] is the resultant deformation
gradient. The numeric values of unknowns �1 and �2 are obtained by substituting µ = FFT in eqn. 4.6 and then
numerically solving for �(�1, �2) = diag[�1, 0]. Using these relations, Fig. 4 depicts how the tissue sti↵ness Y and
Poisson’s ratio ⌫ depend on cellular scale properties �̄, ⇤̄. These results indicate that the tissue properties change in
a nontrivial manner with cell junction tension and contractility. One can generally identify two main regions in then
�̄, ⇤̄

o
space. Near the jamming transition region (pp = 2

p
⇡), the tissue behaves more like an incompressible fluid

⌫ ⇡ 1 with vanishing sti↵ness Y ⇡ 0. Upon increasing �̄ and ⇤̄ the tissue becomes sti↵er as can be seen in region
1 in plot 4a. The model predicts a constantly decreasing Poisson’s ratio with increasing cell tension and contractility
within region 1 in plot 4b. Further increase in �̄ and ⇤̄ pushes the tissue to a new state (region 2, plot 4a.), where
the sti↵ness reaches a maximum before dropping fairly quickly (but remaining positive). This region (see plot 4b.) is
also characterized by a negative Poisson’s ratio ⌫. In a qualitative sense, these predictions are in good agreement with
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Figure 3: Continuum interpretation of vertex model equilibrium states in di↵erent phases: Left: A fluid regime where cells take elongated shapes
and are fully relaxed and the cell packing is highly irregular and degenerate. Statistics of the network will still correspond to some isotropic tensor
shown by confidence ellipse (dashed blue in (a.) and (b.)) with area and perimeter equal to AR(0) and pp

p
AR(0) respectively. Right: The cell

geometry in the solid-state condition corresponds to a regular n � sided polygon in vertex models. On a network level, this equilibrium state has
regular hexagonal packing (c.) which translates to an array of roundish cells in our continuum formulation (d.) as illustrated by the confidence
ellipse (dashed red) with area and perimeter as A(0) and 2⇡

p
A(0) respectively. Center: The magnitude of compression in cells (⇣0 = A(0)/AR(0))

in a solid tissue is plotted as a function of material properties (�̄, ⇤̄).

vertex model simulations conducted by Merzouki et al. (2016) using the same loading parameters. Again recall that
our model is invalid for cases where ⇤̄ > 0 (or pp < 0). The results for this region, therefore, can not be compared
with Merzouki et al. (2016).
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Figure 4: The tissue’s stress scaling factor is �0 = ⇡ and is loaded under un-axial tension with �1 = 0.0738�0 and �2 = 0. The material
parameters �̄ and ⇤̄ are selected to keep the tissue in the elastic regime, and iso-contours of Young’s modulus (a.) and Poisson’s ratio (b.) are
plotted accordingly. Note: The values presented here should not be considered elasticity constants for biological tissues. This is due to the non-
linear hyper-elastic nature of biological materials, which results in the dependence of their elastic properties on deformations.

5. Inelasticity model

With the tissue elasticity fully defined, we now turn to inelastic processes, starting with T1 transitions followed by
division and proliferation. While the constitutive laws derived for topological rearrangements eventually align with
(Ishihara et al., 2017),we accentuate that the current framework, in comparison to (Ishihara et al., 2017), is equipped
to di↵erentiate between di↵erent rearrangements and their macroscopic e↵ects. This is achieved by employing a novel
approach that links the flow rates to their microscopic descriptions. Subsequently, we will also thoroughly discuss
the mechanics of cell proliferation, a topic that is often overlooked in growth as well as coarse-grained continuum
theories.

5.1. T1 Transition
A T1 transition is a type of topological rearrangement where cells swap neighbors. A variety of such transitions may
occur (such as rosette formations (Fletcher et al., 2014)), but for convenience, we here limit ourselves to the case when
swapping involves a bond exchange between cells. Also, for the remainder of this study, we confine ourselves to the
case of passive T1 transitions.

Rate of passive T1 transition: T1 transitions modify the local topology of cellular networks as shown in Fig. 5,
without a↵ecting the total number of segment vectors. Following ideas from the experimental work of Marmottant
et al. (2009) and vertex model studies, we postulate that these transitions occur stochastically at a rate kT , which may
itself be a↵ected by the cell state. Thus, one may write general evolution laws for ⇠c and ⇠l (first appearing in eqn.
(3.13)) in the following form:

⇠c(r) = kT
z
2

Cp⇤(r) and ⇠l = kT
z
2

Cp(r) (5.1)

These expressions ensure that the rates at which segment vectors are created and deleted are the same and equal to the
base rate kT (z/2)C (Fig. 5(b.) and 5(d.)). Furthermore, the probability density functions (pdf’s) p⇤ and p characterize
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Figure 5: TNT illustration of cell intercalation: T1 transitions from the ground state (a.) with probability density p0 to state (d.) with probability
density p⇤ via transition state (c.) are fluctuation-induced. Once su�ciently deformed, they readily rearrange and go from the current deformed
state (b.) with probability density p to (d.) in which case we refer to them as stress-induced rearrangements. The source of stress could be passive
(external) as shown here or active (internal).

the conformations at which those segments are created and deleted respectively. Using the properties of pdf’s, the
overall rates of creation and loss are directly obtained from eqn. (3.15) as ⌅c = kT (z/2)C and ⌅l = kT (z/2)C. This
confirms that the overall change in cell number does not change during a T1 transition, i.e.:

⌘̇T =
2

zC(0)
(⌅c � ⌅l) = 0 (5.2)

Depending on the state of the tissue, T1 transitions may occur at constant rates (more notably for fluid-like tissues) or
maybe energy activated (for solid-like tissues). Following the transition state theory (Eyring, 1936), we postulate the
existence of activation energy �u (see Fig. 5) such that the rate of T1 transitions, given by kT , follows an Arrhenius-
type relation (Bi et al., 2014):

kT = A exp
"
��u
✏

#
(5.3)

where A is the inherent attempt frequency of junction rearrangement and ✏ is the energy that can be used by cells
to explore their other possible equilibrium configurations by overcoming any energy obstacles. This energy could
be provided either by active mechanisms (i.e. ATP driven) or by passive mechanisms (i.e. elastic energy stored in
junctions due to external deformation). Thus, in the case of a fluid tissue, the energy barrier is low and T1 transitions
occur in a permanent fashion, while in a solid tissue, cells do not intercalate until they are been su�ciently deformed
(Marmottant et al., 2009). Following (Butler et al., 2009), the deformation energy (�u) is here expressed in terms of
the deviation of a cell from circularity. This can be measured by a dimensionless quantity � =

p
Ī1/2 where Ī1 is the

first invariant of µ̄ such that � = 1 for a circular geometry. We here postulate that the energy �u is a quadratic function
of � in the form:

�u = �u0 �
%T

2
(� � �c)2 if � > �c (5.4)

where�u0 is the ground-state energy barrier, %T is a sti↵ness-like parameter and �c is the critical value of cell distortion
that sets the yield criteria. Below the yield, we have �u = �u0 and hence cells rearrange with the rate k0

T given by
k0

T = A exp(�u0/✏). This rate is often called the fluctuation-induced rearrangement rate because the energy available
for overcoming the barrier comes from random junction fluctuations. The final rate of the T1 transitions, which now
are stress-induced, can be written as:

kT (�) = k0
T exp

%T

2✏
(� � �c)2

�
if � > �c (5.5)
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and kT = k0
T otherwise. Thus, when � < �c, cells are in a jammed state, while as � increases above its critical value of

�c, cell rearrangement occurs at an increasing rate.

Inelastic deformation rate from T1 transitions We are now in a position to express the rate of inelastic defor-
mation that arises from T1 transitions. For this, we substitute expressions for ⇠c, ⇠l,⌅c,⌅l into eqn. (3.20) in the
absence of cell proliferation (i.e. ⇣̇i = 0) and quickly obtain the following expressions:

dT = kT (�) (µ � µT ) where µT =
1

m0

1
⇣i

Z

⌦

p⇤ r ⌦ r d⌦ (5.6)

is the normalized covariance of the segment conformation following a T1 transition. Generally, a T1 transition occurs
such that it allows distorted cells to recover a more isotropic state. This isotropic state corresponds to the isotropic
tensor µT = µT I, with I the two-dimensional identity tensor and µT a (still) unknown quantity. Using the fact that
T1 transitions do not produce any permanent changes in volume, we demonstrate in Appendix D.1 that the tensor µT
must verify the relation Tr (µTµ�1) = 2. Using this relation, we find that µT = 2/Tr(µ�1), and thus the rate of plastic
flow becomes:

dT = kT (�)
 
µ � 2

I
Tr(µ�1)

!
(5.7)

Notice that dT remains non-zero i.e. cells continue to intercalate until they fully recover the isotropic state given by
µ = 2/Tr(µ�1)I. As shown in Appendix D.1, this expression (5.7) enforces that the inelastic deformation from the
T1 transition is purely deviatoric. Therefore, when the tensor µ is isotropic, the stress (eqn. (4.6)) state is hydrostatic
and T1 transitions do not influence the macroscopic configuration of the tissue (since in such a case dT = 0). The
stress state only changes if cells are deformed anisotropically, i.e. µ̄ , I.

Dissipation due to passive T1 transitions: As mentioned earlier, T1 transitions can result from active cellular pro-
cesses, in which case they can generate stresses and drive tissue deformation such as in convergent extension (Tetley
and Mao, 2018; Popović et al., 2017; Duclut et al., 2022). Conversely, intercalation in response due to external defor-
mation can be a purely passive process. In the latter case, T1 transitions contribute to the relaxation of elastic stresses
(Ishihara et al., 2017) and should be thermodynamically dissipative. To determine the thermodynamic admissibility
of constitutive equation dT (5.7) for passive T1 transitions we again refer to the Clausius-Duhem inequality (3.27) to
derive an equation for dissipation DT as (see Appendix D.2):

DT =
1
Je

@ i

@I1
kT Tr

 
µ � 2

Tr(µ�1)
I
!
=

1
Je

@ i

@I1
Tr(dT ) (5.8)

which should satisfy DT � 0. It can be shown that the term kT Tr(µ� 2/Tr(µ)�1I), which is same as Tr(dT ), is always
non-negative for any general case of µ. Furthermore, for DT to remain greater than or equal to zero at all times, the
derivative elastic energy density  i with respect to the first invariant of µ tensor should also satisfy @ i/@I1 � 0. This
condition yields an interesting constraint on the extent of elastic deformation where I1 must always be greater than
or equal to p2

p/(2⇡⇣0). We hypothesize that this limit, which completely depends on material parameters �̄ and ⇤̄
ensures tissue integrity due to the interplay between the mechanics of adhesion (⇤̄) and contractility (�̄). The physical
meaning of I1 can be translated as inter-cellular distance ratio r(t)2/ri(t)2 where r(t) is the current average value of
segment length (same as average inter-cellular distance) and ri(t) is its reference value in the stress-free state Bi(t).
Attempting to reduce this r with respect to ri via elastic deformation, below a certain limit, will violate the stress
equilibrium between the tensile residual stresses in junctions and the residual compressive stresses in the cell bulk.
This condition is therefore an outcome of using the particular energy functional (3.5) as used in vertex models and
related continuum models (Staddon et al., 2023) and which is built upon the mechanics of junction tension (⇤̄) and
cell contractility �̄. Overall the equation. (5.8) ensures that passive T1 transitions result in positive entropy production
as long as tissue compatibility is maintained.

5.1.1. Illustrations
Let us now illustrate the model’s prediction in two simple cases: (a.) the stress relaxation and (b.) the shear rheology
of confluent tissues. Results are then qualitatively compared to those obtained from vertex simulations and other
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related studies.

(a.) Passive stress relaxation. Our first example examines the role of cell intercalation on the long-term stress-
relaxation of confluent tissues. Ishihara et al. (2017) demonstrated the passive stress relaxation due to T1 transitions
in an epithelial tissue that was loaded under bi-axial isochoric deformation. For our illustration, we will perform a
uni-axial-stretch test in which the tissue is free to deform along the transverse direction. Consider a homogeneous
domain whose motion is recorded in a 2D Cartesian coordinate system with unit basis vectors {e1, e2} (Fig. 6a.). In
this frame, the sample is subjected to a spatially uniform uni-axial stretch ratio �1 along e1. The deformation is applied
at a constant true strain rate `1 such that the velocity gradient becomes

` = diag [`1, `2] where `1 = �̇1/�1 and `2 = �̇2/�2

Considering that the sample is free in the lateral direction (i.e. the Cauchy stress component �2 vanishes), the resulting
transverse strain rate, `2 (and associated stretch ratio �2) remains undetermined and needs to be solved for. In these
conditions, the evolution of the elastic tensor µ = diag[µ1, µ2] (as per eqns. (3.21) and (5.7)) is dictated by the coupled
system of equations:

µ̇ � `µ � µ`T + kT

 
µ � 2

I
Tr(µ�1)

!
= 0 and �2 = 0 (5.9)

These equations, combined with a time integrator, may then be solved numerically for the unknowns: µ1, µ2, and `2.
Refer to Appendix D.3 for more details. With this, it is then possible to reconstruct the stress tensor using eqn. (4.6).

Using the above procedure, we consider a loading history where the original domain is deformed, starting at time
t = 0 up to a stretch ratio �1 = 2, at which point it becomes longitudinally constrained (`1 = 0) to allow for relaxation.
Fig. 6a. shows the longitudinal stress �1 vs time for di↵erent values of the normalized strain rate (or Weissenberg
number) W = `1/k0

T . For fast loading case W = 10, tissue relaxes quickly initially due to an increased rearrangement
rate (kT >> k0

T ). The model further predicts that as the strain rate decreases, the tissue is able to relax stress during
the loading phase, which results in a reduction of the e↵ective tissue sti↵ness. In the relaxation stage, the model
further predicts a non-exponential stress decay with time. This non-linear viscoelastic response is a signature of the
dependence of the overall relaxation rate (dT ) on the cell shape anisotropy � (whose evolution is depicted in Fig. 6b.)
and current cell state µ.

(b.) Nonlinear rheology. The rheology of viscoelastic media (i.e. its flow under shear stress) is usually charac-
terized by the relationship between shear stress and shear strain rate measured in rheometry creep experiments. In
confluent tissues, this ability to creep is enabled by cell intercalation. In this context, Duclut et al. (2021) used
vertex-based simulations to explore the rheological response of confluent cells with heterogeneous and fluctuating
line tensions ⇤IJ(t). In this example, we reproduce the loading conditions considered in the above study as follows.
We again consider a homogeneous domain whose motion is recorded in a 2D Cartesian coordinate system with unit
basis vectors {e1, e2}. This domain is subjected to the deformation- and velocity-gradients:

F =
"
1 �
0 1

#
and ` = ḞF�1 =

"
0 �̇
0 0

#
, (5.10)

respectively where � is the shear deformation. In this case, the velocity gradient is entirely determined and the time
evolution of the elastic tensor µ is given by the first equation in eqn. (5.9). As before, this equation can be numerically
integrated to determine the elastic tensor and stress over time. Fig. 6c. depicts the steady-state cell elongation µss

12 vs
strain rate �̇ for di↵erent rearrangement rates k0

T . The inset of Fig. 6d. shows that the steady state is usually preceded
by a transient evolution of the elastic tensor during which the shear rate (�̇) and the internal rearrangements rate dT
are not equal. As the system reaches a dynamical equilibrium, the steady state µss

12 shows a decrease in the slope
of the curves, which is a hallmark of tissue fluidization (Krajnc et al., 2018). One may also interpret this result as
shear thinning whereby the shear viscosity � = ⌧ss/�̇ decreases with an increase in shear rate. The steady-state shear
stress ⌧ss can be determined from µss

12 using eqn. (4.6). This change in viscosity with strain rate is illustrated in Fig.
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6d. These predictions are qualitatively in line with the vertex model results from (Duclut et al., 2021). We also note
that the e↵ect of bond-tension fluctuations (represented here by a rise in the rearrangement rate k0

T ) is significant as it
results in a more fluidized cell network, again in general agreement with (Duclut et al., 2021).

Figure 6: (a.) Passive stress relaxation due to cell rearrangements for di↵erent loading rates (W): Tensile stress �1/�0 vs time t. (b.) Anisotropic
strains � plotted against time t, induce T1 transitions which drive the relaxation response. Time t is measured in units of k0

T = 1 for the relaxation
problem. (c.) 12 component of steady state cell elongation tensor µss vs. shear rate �̇ and (d.) shear viscosity � vs shear rate �̇ (Inset: µ12 vs time
t for k0

T = 5). k0
T , �̇ and � are measured in units of frequency A = 1 which sets the time scale for rheology problem. (Simulation parameters:

�̄ = 0.14, ⇤̄ = �0.4. T1 parameters: �c = 1.1 and controlling parameter %T
2✏ = 1)

5.2. Cell division
Similar to T1 transitions, the process of cell division induces topological rearrangement that drives tissue rheology as
they grow. Unlike T1 transitions, however, cell division is associated with an increase in the nominal cell density C and
hence cell number ratio ⌘. As the area A of the parent cell is increased (via growth or external deformation), it divides
into two daughter cells, each with area A/2. Fig. 7a. illustrates how new connections amongst daughter cells are
created as older ones are destroyed resulting in an overall increase in the nominal segment density c = (z/2)C.

Division criterion. The process of cell division can usually be described by a simple first-order kinetic model with a
division rate kD, such that

⌘̇D = kD⌘D (5.11)

Experimental observations (Tzur et al., 2009) suggest that the rate of cell division is not constant, but a function
of cell size. To capture this mechanism, vertex models employ a probability-based criterion (Xu et al., 2016) to
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determine when a specific cell enters mitosis. With this formalism, a cell is allowed to divide only if its current area
A(t) = ⇣(t)A(0) is greater than some threshold area A⇤ = ⇣⇤A(0). This criterion, therefore, sets the yield behavior
for division as observed in Xu et al. (2015). On the continuum level, this criterion can be expressed in terms of the
dimensionless cell area ⇣ = A/A(0) as a probability function PD for cell division:

PD(⇣) = 1 � exp
⇥�%D⇣0 (⇣ � ⇣⇤)⇤ if ⇣ > ⇣⇤ (5.12)

and PD(⇣) = 0 otherwise. The unit-less parameter %D controls the rate at which cell division is a↵ected as the cell
area approaches its threshold value. Following this probabilistic model (see Fig. 7b.), it is now possible to define a
variable representing division rate as:

kD(⇣) = k0
DPD(⇣) (5.13)

where the rate k0
D sets the limit on multiplication rate when the cell area far exceeds the division criterion (i.e. PD ! 1).

Figure 7: TNT illustration of Cell division: (a.) Cell division results in a net gain of segment vectors. Kinetics of cell division where a cell with
⇣ > ⇣⇤ divides with probability PD as plotted in (b.)

Rate of inelastic deformation from cell division. The governing equations for cell division involve both a rate-
dependent plastic flow dD and an evolution equation for the cell number ratio (represented by the rate ⌘̇D). For this,
we start by defining evolution laws for the rates of creation and loss of segment vectors. Supposing the division criteria
is satisfied, the rates ⇠l (for segment loss) and ⇠c (for segment creation) are given by:

⇠l(r) = kD

 z
2

C
�

p(r) and ⇠c(r) = kD [zC] p⇤(r) (5.14)

In the above expressions, the parameter kD (eqn. (5.13)) represents the rate of division while the product (z/2)C counts
the number of segments lost during the division of C cells per area. Since during division, a single cell (parent cell) is
replaced by two new cells (daughter cells), the number of created segments is given by zC (as it appears in the term
⇠c). Finally, the probability densities p and p⇤ describe the conformation of the segments before and after division,
respectively. With these expressions, we find that the overall rates of segment loss and creation are ⌅l = kD(z/2)C and
⌅c = kDzC, respectively. Thus, as expected, the conservation equation (3.14) degenerates to equation (5.11). The
associated plastic flow may also be derived from equation (3.20) to find (see Appendix E.1 for details):

dD = kD (µ � 2µD) where µD =
1

m0

1
⇣i

Z

⌦

p⇤ r ⌦ r d⌦ (5.15)
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Equation (5.15) thus entirely determines the plastic flow that originates from cell division, on the condition that the
pd f p⇤ is well defined. We note that to derive this result, we used the fact that cell division must occur without
inelastic changes in volume (i.e. J̇i = 0). Since Ji = ⌘⇣i, this means that:

⇣̇i = �kD⇣i (5.16)

In other words, as cells divide, their average preferred area ⇣iAR(0) decreases at rate kD. This finding is interpreted as
a reduction of the average cell size during division. We also show in Appendix E.1 that the condition J̇i = 0 during
division requires that:

Tr(µDµ
�1) = 1 (5.17)

This condition will be critical to obtain an approximation for the tensor µD.

Random and Directed Cell Division. While the pd f p(r) implies that before division, cells are found in the current
conformation (described by the current pd f p), the form of the pd f p⇤ after division relates to the orientation at
which cells preferably divide. In this context, Xu et al. (2016) used a vertex model to investigate the e↵ect of the
division axis on the stress response of stretched tissue mono-layer. They found that cells dividing along their major
axis resulted in cell configurations that were more random and isotropic. By contrast, the average aspect ratio of
cells dividing randomly without bias was found to be greater. Motivated by these observations, we now consider two
possible situations:

• Unbiased division occurs when cells divide randomly without any preference for the division axis. In this case,
we do not observe any change in the average cell shape during division at the level of the population. This
implies that we can write µD = (a1/Je)µ, where a1 is a coe�cient to be determined. Using the condition in eqn.
(5.17), we find a1 = Je/2 and the plastic flow becomes:

dD = 0 (5.18)

We, therefore, predict that besides increasing the cell number (and decreasing ⇣i), random cell division has no
e↵ect whatsoever on the elastic behavior (i.e. µ) of the cell population. In this case, when cells divide in a
random fashion, the change in distribution M due to topological changes is canceled out by changes in the
reference cell area. Interestingly enough, cells can still relax stresses owing to decreasing ⇣i as we will see later.

• Directed division occurs when cells preferentially divide along their principal axis. In this case, the elastic
tensor after deformation tends to converge back to an isotropic state and we can write µD = a2I, where the
coe�cient a2 is determined to be a2 = 1/Tr(µ�1) using condition (5.17). The plastic flow in the event of
oriented or biased cell division becomes:

dD = kD(⇣)
 
µ � 2

I
Tr(µ�1)

!
(5.19)

In this case, we see that the process of division has the same overall e↵ect as T1 transition on the elastic response
of tissue i.e. it does not change the elastic energy of isotropic cells (when µ = JeI). However, once the cells are
deformed anisotropically then they can relax both pressure and deviatoric stresses.

Dissipation due to cell division: Just like T1 transitions, cell divisions can be active or passive depending on the
driving forces, whether external or internal. In this section, we will look at passive cell divisions, for which the
corresponding dissipation DD will be derived, and later in section 5.3, we will explore the active nature of divisions
stemming from growth induced forces. Passive cell divisions, just like T1 transitions, are also known to relax stresses
in tissues. Assuming a fraction ⇠ of cells divide in a directed manner and the rest (1 � ⇠) in random fashion, the
dissipation DD for such a general case can be derived (see Appendix E.2) as:

DD =
1
Je

@ i

@I1
kD⇠ Tr

 
µ � 2

Tr(µ�1)
I
!
+

kD

Je
 i (5.20)
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Where the first term, akin to T1 transition, accounts for stress relaxation by restoring the isotropic shape of cells. The
second contribution, on the other hand, is what di↵erentiates both the topological transitions - T1 and division, from
one another. Passive cell divisions have an additional source of energy dissipation that comes from the change in the
inelastic expansion ratio ⇣i. This additional contribution is always greater than or equal to zero and increases with
increases in the rate of cell division rate, implying the validity of constitutive relations for cell divisions. Note that
when ⇠ = 0 i.e. cells divide along randomly chosen axes, the tissue is still able to relax via cell division owing to this
second term. To illustrate this, let us now explore how both of these dissipation sources, one governed by µ and the
other by ⇣i, unfold.

5.2.1. Illustrations
In this section, we will study division-driven stress relaxation in two simple cases: (i) Uni-axial tension and (ii) Purely
volumetric deformation (dilation). Again, results are qualitatively compared to those obtained from experimental
studies and vertex simulations.

Division-driven stress relaxation. Experiments by Wyatt et al. (2015) suggested that the process of cell division
can be the source of stress relaxation in stretched epithelial tissues. This was later confirmed by Xu et al. (2016) using
vertex simulations. To illustrate the cell division component of our model, we first explore the division-driven stress
relaxation problem using the same uni-axial stretch test as in example 5.1.1(a). Depending on whether divisions are
random (⇠ = 0) or oriented (⇠ = 1), the governing equation (5.9) is rewritten using eqn. (5.19) that has the final form:

µ̇ = `µ + µ`T � ⇠kD

 
µ � 2

I
Tr(µ�1)

!
and �̇2 = 0 (5.21)

and solved for the unknowns (µ1, µ2, `2) using the same numerical procedure as illustrated for example 5.1.1a. For
clarity, we here consider only a high loading rate (i.e. the tissue remains elastic in this phase) and concentrate our
discussion on the stress-relaxation results. Figs. 8a. and 8b. depict numerical results for the evolution of stress,
cell density, and inelastic expansion ratio ⇣i as a function of time in the second stage of the loading history (`1 = 0).
Results are obtained for three values of the threshold ⇣⇤ appearing in the division criterion (5.12). The model predicts
that in contrast to the T1 transitions, cell division results in partial stress relaxation, i.e. the stress plateaus to a finite
value at infinite time. This plateau corresponds to the stress at which the volumetric deformation of cells, i.e. ⇣, equals
the threshold value ⇣⇤.

Moreover, we also investigate the impact of random cell division (see inset of Fig. 8a.). In this case, we find that
stresses relax at a slower rate and cells dissipate less energy. Xu et al. (2016) also observed a similar response, which
can be explained by the driving factors of stress relaxation as per our model. In random cell division, the change in
⇣i becomes the only reason for stress reduction since µ = FFT , whereas directed divisions augment dissipation via a
reduction in elastic strain µ.

From a micro-mechanical perspective, the model suggests that stress relaxation is inextricably linked to cell divi-
sion and the cells’ inelastic volumetric expansion ⇣i (through eqns. (5.11) and (5.16) respectively). These measures
are illustrated in Fig. 8b., confirming tissue stretch induces two mechanisms. First, a quick rise in cell area at constant
density during the fast loading stage, and second, an increase in cell number accompanied by a decrease in their area.

Cell division vs T1 transition. To exemplify the di↵erence between di↵erent modes of passive cell rearrangements:
T1 transition and cell division, we solve for another boundary value problem in which the tissue is loaded quickly
under isotropic deformation gradient F = diag[�, �] and then constrained along both the principal axes. In this case,
since the cell deformation is purely volumetric (µ̄ = I), the inelastic flow rates dD = dT = 0 at all times. Despite
this, the tissue is able to relax stresses via cell divisions. The source of this relaxation (see Fig. 8c.,d.) is the resetting
of the preferred cell area according to AR(t) = ⇣iAR(0), by cell division. Note that T1 transitions are unable to relax
such a hydrostatic stress state (� = diag[�, �]). This illustrates how cell divisions di↵er from T1 transitions, even
though both are represented by similar flow rules: dD and dT . We also refer to dissipation DD (5.20) which in this case
becomes DD =  ikD/Je while for T1 transitions we have DT = 0. Thus the inclusion of state-variable ⇣i in our stress
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tensor (4.6) enables us to predict the di↵erences in the inelastic behavior attributed to these rearrangements, both of
which on a macroscopic level satisfy J̇i = 0. In T1 transitions where the condition is satisfied by ⌘̇ = ⇣̇i = 0, the same
condition for cell division is validated through ⌘̇/⌘ = kD and ⇣̇i/⇣i = �kD.

Figure 8: Passive stress relaxation followed by uni-axial stretching: (a.) �1/�0 vs time t (Inset: �1/�0 vs t for oriented vs random division) (b.)
Cell number ratio ⌘ and inelastic expansion ratio ⇣i vs time t. Passive stress relaxation followed by dilational loading: (c.) �/�0 vs t (d.) Cell
number ratio ⌘ and inelastic expansion ratio ⇣i vs time t. (Simulation parameters: �̄ = 0.14, ⇤̄ = �0.4, %D = 0.63 and k0

D = 1, which also sets the
time scale for this problem.)

5.3. General cell proliferation
The growth of a confluent cell population typically involves a combination of cell expansion (or an increase in cell
volume) and cell division. For this reason, we here split the proliferation plastic flow dP into a contribution from cell
expansion (subscript G) and a contribution from cell division (subscript D):

dP = dG + dD and ⌘̇ = ⌘̇D (5.22)

We have already looked at cell division (dD and ⌘̇D) in the previous section. Let us now understand cell growth or cell
expansion which corresponds to a steady increase in a cell’s volume over time.

Cell expansion law. Within the vertex model framework, cell expansion is achieved by increasing the preferred
area AR of randomly chosen cells according to a linear kinetic law. Without loss of generality, we here follow the
exponential growth law inspired by the work of Barton et al. (2017) in the form ȦR = kGAR where kG is the growth
rate. Note that this law describes a change in the cell’s reference area (rather than the current area A), which eventually
translates into a change in the elastic state and pressure experienced by growing cells. At the continuum scale, the
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above relation can thus also be expressed in terms of the inelastic expansion ratio ⇣i (introduced in eqn. (3.8)) as

⇣̇i = kG⇣i (5.23)

With this relation, we are now in a position to write the inelastic plastic strain rate resulting from cell expansion. For
this, we first note that cell expansion is not associated with any change in network topology (i.e. the last two terms in
eqn. (3.20) must vanish). It is then straightforward to substitute the growth law (5.23) into eqn. (3.20) to extract the
inelastic strain rate owing to cell expansion as:

dG = kGµ (5.24)

Furthermore, cell expansion does not involve any changes in cell number and hence ⌘̇G = 0.

E↵ect of stress on cell expansion. The assumption of a constant expansion rate is usually inaccurate when cells are
mechanically constrained. In fact, the expansion of mechanically constrained cell aggregate systems (tumor spheroids
for instance) has been found to be inhibited by stress (Helmlinger et al., 1997). This mechanotransduction e↵ect can
be accounted for in the vertex model by adjusting the rate kG to the hydrostatic pressure �̄ = Tr(�) felt by cells,
yielding (Ambrosi and Mollica, 2004):

kG(�̄) = k0
Gexp

2
666664�

 
�̄

�̄0

!23777775 (5.25)

where k0
G is the pressure-free rate of growth and �̄0 is a constant that acts as a threshold pressure beyond which the

growth rate decreases rapidly.

Note on ⇣0: Recall that while deriving the above equations, we assumed that the residual elastic deformation ⇣0
remains constant. Although cell proliferation may a↵ect it, we simplified our analysis by disregarding any influence
of dP on ⇣0. What this implies is that cell proliferation does not change normalized cell properties �̄ and ⇤̄. As a result
of which the preferred shape index pp = �⇤̄/2�̄ remains unchanged as well. In fact, our assumption on constant �̄
and ⇤̄ imply that absolute values of contractility � and junction tension ⇤ evolve with ⇣i according to:

�(t) = �̄K⇣i(t)AR(0) and ⇤(t) = ⇤̄K (⇣i(t)AR(0))3/2 (5.26)

General response: For the sake of completeness, we will now consider a case where cells grow, divide, and inter-
calate simultaneously. Moreover, the multi-cellular system may be under the application of external forces due to
mechanical confinement. Let us now see how di↵erent continuum-level quantities and ISVs evolve under this situa-
tion:

We start by inelastic cell expansion ratio ⇣i, whose general evolution law can be written by combining eqns. (5.23)
and (5.16) as:

⇣̇i =
⇥
kG(�̄) � kD(⇣)

⇤
⇣i (5.27)

Using the above, the volumetric inelastic deformation Ji = ⌘⇣i can be found to evolve as:

J̇i = kG Ji (5.28)

where again we have used the fact that only cell division results in a change in ⌘ according to ⌘̇/⌘ = kD. Relation (5.28)
underlines that it is the cell expansion term kG that drives inelastic volumetric deformation at the macroscopic level.
Additionally, kG, which characterizes an active phenomenon at the cell level, can be linked to the system’s macroscopic
rate of mass increase as well as growth deformation tensor Fg. For the sake of consistency with existing literature,
particularly in continuum growth mechanics, we decompose the total velocity gradient into two components: growth
`g and non-growth ¯̀. The growth velocity gradient `g captures the rate at which tissue expands due to volumetric
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growth. Tissue can also grow through densification, which involves an increase in mass density ⇢i. The non-growth
component ¯̀ would then encapsulate elastic deformation as well as topological rearrangements, both of which do not
contribute to altering the system’s mass. Following this decomposition of ` and flow rates dT , dD, dG, the complete
form of L (µ) can now be explicitly written as:

µ̇ = ¯̀µ + µ ¯̀T � dT � dD � dG + `gµ + µ`
T
g (5.29)

In such a general scenario, we observe that while inelastic processes occur concurrently and interact with one another,
they remain independent, and hence all the equations derived in this study continue to hold true. One example of the
mechanotransduction e↵ect where one inelastic process a↵ects another is the possibility of topological rearrangements
relaxing stresses (�) which in turn facilitates growth kG as per eqn. (5.25). Using this and eqn. (3.28), the general
form of Clausius-Duhem inequality can be written as:

D =

 
� � 2

Je

@ i

@µ
µ

!
: ¯̀ + 1

Je

@ i

@µ
: dT +

1
Je

@ i

@µ
: dD +

1
Je

@ i

@µ
:
⇣
dG � 2`g

⌘
+
 i

Je

⇢̇i

⇢i
�  i

Je

⇣̇i

⇣i
+� : `g � 0 (5.30)

Here, the first term represents tissue elasticity and does not contribute towards dissipation. The second and third terms
account for viscous dissipation arising from T1 transitions and cell division, respectively. The fourth term allows
for a constitutive relation that connects macroscopic volumetric growth `g with cell-level growth dG. The fifth term
characterizes growth resulting from densification. The sixth term depends on the rate of inelastic expansion ⇣i and
includes cell growth as well as division. On the one hand, where no active processes are present (kG = 0, ⇢̇i = 0), this
term contributes to dissipation as we can see from eqn. (5.20). On the other hand, where there is no elastic deformation
(i.e. during free homogeneous growth), this term combines with the densification term to provide another constitutive
relation between both ⇢i and ⇣i. We will explore this in more detail in the next section. The final term can be expressed
as a Mandel stress (Huang et al., 2021), depicting the work done by internal forces due to growth.

5.3.1. Illustration
We now use the proliferation model to explore the mechanics of confluent cell population in a simple case of free
proliferation or stress-free growth.

Free proliferation dynamics. In this example, we evaluate the model’s prediction for mechanically unconstrained
tissue proliferation. We analyze the time-dependent behavior of geometrical tissue expansion, cell density, and size as
per the model’s equations (5.19), (5.24) and (5.27). We observe that, in stress-free conditions, the hydrostatic pressure
�̄ = 0 and, as a result, the cell expansion rate remains constant (kG = k0

G) as per eqn. (5.25). However, the rate of
cell division is altered due to changes in cell size ⇣. Even though cells are dividing, the inelastic flow dD = 0 due to
the isotropy of cells. Similarly dT = 0 as well. To determine the growth-induced velocity gradient ` = `g we now
substitute dP = 0, dT = 0 and dG = k0

G I in equation (3.21) to evaluate the overall tissue expansion. Moreover, since
there is no elastic deformation during stress-free growth, the elastic tensor µ remains equal to the identity I, and we
can use the condition µ̇ = 0 to derive:

`g =
k0

G

2
I =) Fg = exp

0
BBBB@

k0
G

2
t
1
CCCCA I (5.31)

Here, the resulting isotropic growth-induced deformation gradient Fg was obtained by straightforward integration
of `g. We, therefore, predict an exponential increase in tissue size, whose growth rate is entirely determined by the
expansion rate of individual cells, but not their division rate.

To follow the evolution of the average cell area during growth, we now invoke eqn. 5.27 whose solution is deter-
mined through a classical time integration scheme. Figure 9a. presents the evolution of cell area ⇣ in time, where it is
clear that the solution converges to a steady state (that is a solution of ⇣̇ = 0) provided k0

G < k0
D. Using eqns. (5.13)

and (5.12), the steady state value of dimensionless cell size ⇣ = A/A(0) has the closed form:

⇣eq = ⇣⇤ � 1
%D⇣0

ln
0
BBBB@1 �

k0
G

k0
D

1
CCCCA (5.32)
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Further since ⇣e = 1, we have ⇣ = ⇣i and hence ⇣eq
i = ⇣

eq. The relation (5.32) shows how various model parameters
a↵ect cell area. For instance, the division threshold ⇣⇤ tends to delay the division process, resulting in a higher steady-
state cell area. However, once the division process starts then homeostasis is achieved more rapidly. Finally, knowing
the area of the grown tissue (from J = Ji = Jg = |Fg|), the evolution law for cell number ratio (3.8) quickly gives the
solution:

⌘ =
1
⇣i

exp(k0
Gt) (5.33)

Note that this exponential growth is consistent with the evolution of Fg at steady state. Indeed, for a constant size
of cells, the only means to produce volumetric growth is to increase cell number. Thus volumetric growth and cell
count must follow similar dynamics. Generally, these results can be compared to the quasi-static vertex model study
by Farhadifar et al. (2007) that considered tissue proliferation where the zero stress condition was maintained by
minimizing energy at every time step. While the dominant mode of stress relaxation in their vertex model study was
local cell rearrangements (T1 and T2), on a continuum level this relaxation can be attributed to changes in cellular
properties � and ⇤, as given by eqn. (5.26), that ensure that tissue remains stress-free. In line with the outcomes
of vertex model results, we found that unconstrained proliferating tissues achieve homeostasis concerning cell area,
leading to a steady state energy per cell (E/⌘), as kD eventually converges to k0

G (see Fig. 9b.). However, if k0
G > k0

D,
no homeostasis can be attained since, in this scenario, cell growth is unlimited due to ⇣̇i > 0 consistently. We now
use the general form of Clausius-Duhem inequality (5.30) to gain further insights. Since in this illustration we model
stress-free growth where � = 0, µ = I, and `g = dG/2 = k0

G/2, the dissipation D in eqn. (5.30) should vanish which
results in:

⇢̇i

⇢i
=

⇣̇i

⇣i
(5.34)

The model predicts an intriguing scenario where the overall growth (i.e. increase in mass) during the transient phase
encompasses not only a volumetric aspect but also incorporates a densification component. Only after homeostasis is
achieved the growth becomes completely volumetric. Conventional continuum growth theories founded on F = FeFg
ignore densification and assume just volumetric growth. Our cell-proliferation-based model e↵ectively captures both
volumetric and densification contributions to free growth, as demonstrated by this illustration.

Figure 9: (a.) The transient as well as steady-state response of dimensionless cell area ⇣ where the numerical solutions in steady-state coincide
with their corresponding analytical values of ⇣eq (corresponding dashed lines). (b.) Cell multiplication rate kD vs time t. (Simulation parameters:
�̄ = 0.14, ⇤̄ = �0.4, %D = 0.63, k0

G = 0.75 and k0
D = 1, which also sets the time scale for this problem.)
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6. Summary and Conclusion

To summarize, we developed a statistically-based continuum model for the rheology and growth of confluent cell
monolayers based on cell-based rules from the vertex model. The model is thus able to describe the macroscopic
evolution laws for a tissue whose dynamics is driven by cell deformation, intercalation, expansion, and division.
Eventually, the formulation is expressed in terms of the elastic tensor µ that represents the average elastic deformation
of cells in the tissue. We showed that the time evolution of this tensor is dictated by the competition between several
kinetic processes: the rate of tissue deformation, the rate of cell expansion, the rate of cell division, and the rate of
T1 transition. Notably, the last three rates are not only governed by biological processes but they are also an implicit
function of the physical state of cells and their level of hydrostatic pressure. Thus, cell expansion decreases with the
level of hydrostatic pressure, cell division occurs for large cell areas while T1 transition drastically increases when
cells experience shear deformation. These dependencies create an interplay between each process, in which each
mechanism communicates with the other via the development of tissue stress and deformations. Each e↵ect in iso-
lation was illustrated in simple problems, ranging from the nonlinear rheology of tissues to the relationship between
tissue growth and cell proliferation.

The proposed approach can be distinguished from existing continuum growth models by its close proximity with
cellular-level mechanisms, enabling deeper exploration of the role of microscopic features on overall growth. We note
here that even though the mathematical structure of the model is close to that formulated by Ishihara et al. (2017),
the main focus here lies on understanding the consequences of proliferation rules, like those employed in vertex mod-
els, on the principles of growth physics. We also highlight that these types of models are only valid when a large
number of cells comprise the tissue, such that the concept of an average field remains meaningful. It also assumes
that the deformation field remains continuous across the tissue. In other words, the continuum model cannot capture
finite-size e↵ects such as the localization of events (growth, division, intercalation) in regions containing a limited
number of cells. In this situation, discrete models like vertex simulations would be more appropriate. For clarity, we
here only included the most salient features that are considered in vertex simulations and more accurate models may
be considered to describe both the elasticity and the inelastic processes in these tissues. For instance, the nonlinear
elasticity (strain sti↵ening) elasticity of cells could also be considered following previous work on polymer mechan-
ics (Vernerey, 2018). Regarding inelastic processes, additional mechanisms can be included such as cell apoptosis
(commonly called T2 Transitions in vertex models) and other types of cell rearrangements such as rosette formation
(Fletcher et al., 2014). Furthermore, the intrinsic viscoelasticity of the cell cytoskeleton (Jansho↵, 2021) and that of
junctions (Clément et al., 2017) as well as extracellular matrix were not considered here, but could be included in
future studies if they become an important player to the tissue’s time dependence. The extension of this model to
three-dimensional confluent tissues is also desirable for its application to spheroids (Kulwatno et al., 2021) and other
types of 3D organoids (Rozman et al., 2020). This will entail simply redeveloping elastic energy for three-dimensional
cells, whose average shape would be represented by an ellipsoid (in contrast to an ellipse in 2D). The constitutive laws
for the inelasticity model can also be extended in a straightforward manner.

As a final remark, the development of refined continuum models will be essential to understand both qualitatively
and quantitatively the feedback between mechanics and biology during disease and development (Friedl and Gilmour,
2009). Today there is a significant e↵ort to understand these dynamics from an experimental perspective with the
development of techniques that are increasingly accurate in measuring features at the cell level (Fernandez-Gonzalez
et al., 2009; Harris et al., 2012). In parallel, it is now possible to better control the mechanical environment of these
cells, their dynamics, and collective interactions through the external stimulus to explore organoid development in
vitro (Rossi et al., 2018). Combined with finite element simulations, the proposed model could be valuable in assist-
ing and guiding these e↵orts.
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Appendix A. Mean cell conformation

Appendix A.1. Coarse-graining
The mean cell area (A) and perimeter (L) can be estimated from confidence ellipse as shown in Fig. A1

Figure A1: Schematic of approximating mean cell geometry from confidence ellipse

Let a general covariance matrix M be given by a symmetric tensor: M =
"
a11 a12
a12 a22

#
or in principal coordinates M =

"
�1 0
0 �2

#
where �1 and �2 are the eigen values of M. Area of confidence ellipse E is = ⇡

p
�1�2 = ⇡

q
a11a22 � a2

12 =

⇡
p|M| and the corresponding perimeter is = 2⇡

q
�1+�2

2 = 2⇡
q

a11+a22
2 = 2⇡

q
Tr(M)

2 . The area A and perimeter L of
mean cell can then be estimated as:

A / ⇡
p
|M| and L / 2⇡

r
Tr(M)

2
(A.1)

As we will develop our constitutive laws in terms of normalized quantities, the proportionality constants in eqn. (A.1)
do not impact the model in any way. Thus, for the sake of facilitating equations, they are taken to be equal to 1.

Appendix A.2. Compatibility constrained condition
Consider a general elliptical cell with semi-major axes a and b. The area and perimeter for this ellipse are given by:

A = ⇡ ab and L = 2⇡

r
a2 + b2

2
(A.2)

If A = AR and L = LR, then Using the above relation (A.2), the target/preferred shape index pp can be calculated as:

pp =
LRp
AR
= 2
p
⇡

r
a/b + b/a

2
(A.3)

Since a and b are always positive, hence, a/b + b/a � 2 which results in the required condition:

pp � 2
p
⇡ (A.4)
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Appendix B. Evolution of cell network statistics

Appendix B.1. Time evolution of nominal segment distribution density
In order to derive an expression for �̇, we will draw parallels from the equations frequently used in fluid dynamics. We
will see how the treatment of segment vectors within ⌦ is very similar to that of fluid flow. The main di↵erence will
be instead of formulating equations in some physical Cartesian coordinate system (x, y, z) as we do in fluid dynamics,
we will focus on our conformation space ⌦ which has (rx, ry) as its basis vectors. Fundamental physical principles
such as mass conservation and momentum conservation can be expressed in various forms depending on the approach
we employ to study fluid flow. Here we will implement the fixed finite control volume approach that results in an
integral and conservative form of the governing equation. We then follow the given steps:

1. Let us first define a finite control volume (CV) given by V and its corresponding control surface (CS) given by
S as shown in Fig. A2. This CV is fixed in the space and fluid is flowing past through it. A similar analogy can
be made in the case of TNT where finite domain !, equivalent to V , is fixed in the conformation space ⌦ and
bounded by boundary b, equivalent to control surface S .

Figure A2: Comparison of fluid dynamics with transient network theory for cells. A fixed control volume approach in fluid dynamics is used
to find the governing equation for the conservation laws of fundamental physical principles. Here we will apply the methodology based on the
continuity equation (conservation of mass) to derive the Fokker-Planck equation which is basically the conservation equation for the number of
segment vectors within !.

2. Let the fluid velocity field be given by V = [Vx(x, y, z, t),Vy(x, y, t),Vz(x, y, z, t)]. This is basically the velocity
of a fluid particle flowing through the point (x, y, z) at any time t. In conformation space, the flow velocity can
be interpreted as the rate of deformation of segment vectors, ṙ = [ṙx, ṙy]. Each point in !, that corresponds to
the head of vector r, can be thought of as a fluid particle that is moving at velocity ṙ. Hence vectors can enter
and leave the domain ! as a result of deformation.

3. Applying conservation of mass for the fluid within V , we can write:

Net mass of fluid flow through S into V (Q) = time rate of increase of mass inside V (R)

We can write a similar conservation equation for the number of segment vectors within !:

Net influx of segment vectors through b into ! (Q) = time rate of increase of segment vectors inside ! (R)
(B.1)

4. The mass flow of fluid crossing a fixed surface per unit of time is given by ⇢V · ndS where ⇢(x, y, z, t) is the
mass density and n is the outward normal to elementary surface area dS . By convention when fluid enters the
CV, the flux is negative and vice-versa in case the fluid leaves the domain. Hence:

Q = �
ZZ

S

⇢V · ndS =) Q = �
ZZZ

V

r · (⇢V) dV (B.2)
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Since in our TNT, the density of segment vectors in conformation space is given by �, we can write an equivalent
form of eqn. B.2 as:

Q = �
Z

b
�ṙ · ndb =) Q = �

Z

!
r · (�ṙ) d! (B.3)

5. The total mass of fluid within CV (V ) is given by:
RRR

V
⇢ dV and the corresponding rate of increase, R, will be

@
@t

RRR

V
⇢ dV . Analogously, the time rate of increase of the number of segment vectors within ! is:

R =
@

@t

Z

!
� d! =) R =

Z

!

@�

@t
d! (B.4)

6. The conservation in the number of segment vectors can now be written (R = Q) as:
Z

!

@�

@t
d! = �

Z

!
r · (�ṙ) d! (B.5)

which is equivalent to the mass conservation equation of fluid. But unlike CV for the fluid case where extra
mass can not be created within V , nor any mass can get destroyed, new segment vectors can appear in our !
as a result of topological transitions. At the same time, some segment vectors can get lost or annihilated from
the domain. Hence eqn. B.5. will be valid only in networks where cell rearrangements are absent. In order to
account for these rearrangements we simply add the sink and source terms:

Z

!

@�

@t
d! = �

Z

!
r · (�ṙ) d! +

Z

!
⇠c d! �

Z

!
⇠l d! (B.6)

7. The first term on the right-hand side (RHS ) of the above equation can be expressed in terms of macroscopic
velocity gradient ` = `i j using a�ne kinematics ṙi = `i jr j:

r · (�ṙ) = ṙi
@�

@ri
+ �

0
BBBBBBBBBBBB@
`ii + ri

◆
◆
◆◆7

0
@`i j

@r j

1
CCCCCCCCCCCCA

(B.7)

Since ` is uniform throughout the conformation space, its partial derivatives w.r.t r vanish. The first term on
RHS can be written in a tensor form as:

ṙi
@�

@ri
=

 
@�

@r
⌦ r

!
: ` (B.8)

8. Finally substituting eqns. (B.8) and (B.7) in eqn. (B.6) and localizing it we get the required time-evolution
equation for our Nominal segment density (�) as:

@�

@t
= �` :

 
@�

@r
⌦ r

!
� Tr(`) � + ⇠c (r) � ⇠l (r) (B.9)

Appendix B.2. Time evolution of nominal cell density C
Here we derive an expression for Ċ. We have already seen:

C =
2
z

Z

⌦

� d⌦ =) Ċ =
2
z

Z

⌦

@�

@t
d⌦ (B.10)

Substituting eqn. (B.9) in eqn. (B.10) we get:

Ċ = �2
z
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⌦

⇠l (r) d⌦ (B.11)
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Ċ = �2
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⌦
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⌦ r
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2
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Expanding the first term on RHS in index notation:

Ċ = �2
z
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`i j
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@ri
r j d⌦ � Tr(`)C +

2
z
⌅c(r) � 2
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The first integrand on RHS simply resembles r · (�r) which results in :

�2
z
`i j
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@(�r j)
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d⌦ = �2
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` :
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(�r)d� (using divergence theorem) (B.15)

The reason this integral goes to 0 is that the value of � at boundary @⌦, which theoretically lies at infinity, is zero,
simply because there would be no segment vectors with 1 lengths. The second term on RHS in eqn. (B.14) simply
becomes:

2
z
`i j
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⌦

�i j� d⌦ = `i j�i j
2
z

Z

⌦

� d⌦ = Tr(`)C where �i j = � ji is the Kronecker Delta (B.16)

Substituting eqns. (B.15) and (B.16) in eqn. (B.14) we eventually get:

Ċ =
2
z

(⌅c � ⌅l) (B.17)

Appendix B.3. Fokker-Planck equation
Substituting � = (z/2)Cp in eqn. (B.9), we can write:
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Dividing above by (z/2)C:
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Substitute eqn. (B.17) in (B.19):
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Since @
@r ⌦ r = I and ` : I = Tr(`) where I being the identity tensor, we get the evolution equation of probability

density, a.k.a, the Fokker-Planck equation as:
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Note that nominal cell density C = ⌘C(0).
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Appendix B.4. Relative deformation of mean cell
Recalling A(t), Ai(t) and A(0) are the mean cell areas in B(t), Bi(t), and B0, respectively, and using Ai(t) = ⇣0AR(t),
where AR(t) is the current preferred cell area, we can write:

A
Ai
= ⇣e =)

A
AR
= ⇣0⇣e (B.23)

Now for finding the perimeter, which is given by L = 2⇡
p

Tr(M)/2, we use eqn. (3.10) in the main text to write:

L = 2⇡

r
⇣im0I1

2
(B.24)

In the intermediate state Bi, we have perimeter Li = 2⇡
p
⇣im0 which yields:

L
Li
=

r
I1

2
(B.25)

Also since in the state Bi, the mean cell is isotropic, we can write Li = 2
p
⇡Ai. This Li can further be related to the

current value of preferred perimeter LR = pp
p

AR as:
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From eqns. (B.25) and (B.26) we get:
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Appendix C. Derivation for Cauchy stress tensor �

For a perfectly elastic case where µ̇ = `µ + µ`T and ⇢̇i = 0 and , Clausius-Duhem inequality in eqn. (3.27) becomes:

D = � : ` � 1
Je
 ̇i = 0 (C.1)

Since no inelastic mechanisms are operating,  ̇i = (@ i/@µ) : µ̇, which when substituted in above equation yields:

� : ` � 1
Je

@ i

@µ
: (`µ + µ`T ) = 0 =)

 
� � 2

Je

@ i

@µ
µ

!
: ` = 0 =) � =

2
Je

@ i

@µ
µ (C.2)

For isotropic elastic solids,  i can be expressed as a function of independent variables or invariants (I1, I2, I3) of our
second-order elastic deformation tensor µ. This results in:

@ i

@µ
=

@ i

@I1

@I1

@µ
+
@ i

@I2

@I2

@µ
+
@ i

@I3

@I3

@µ
(C.3)

where the derivatives of invariants are given by:
@I1

@µ
= I ;

@I2

@µ
= I1I � µ ;

@I3

@µ
= I3µ

�1 (C.4)

Using eqns. (C.4) and eqn. (C.3) we get the required expression for our Cauchy stress tensor as:

� =
2
Je

"
@ i

@I1
µ +

@ i

@I2
(I1µ � µ.µ) +

@ i

@I3
I3I

#
(C.5)

Since here we are modeling a two-dimensional tissue layer, therefore in our case I2 = I3 and  i(I1, I3). Consequently,
the stress equation becomes:

� =
2
Je

"
@ i

@I1
µ +

@ i

@I3
I3I

#
(C.6)
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Appendix D. Derivations for T1 transition

Appendix D.1. T1 Transition flow rate
An important aspect of T1 transitions in our model is that it does not contribute towards inelastic volume changes i.e.
⇣i remains una↵ected in the event of cell intercalations. We use this condition to derive µT as follows. In the absence
of any other inelastic process, dD, dG = 0, substituting dT from eqn. (5.6) in eqn. (3.21) yields:

µ̇ = `µ + µ`T � kT (µ � µT ) (D.1)

Multiplying above equation by µ�1 and taking the trace results in:

Tr(µ̇µ�1) = Tr(`) + Tr(µ`Tµ�1) � 2kT + kT Tr(µTµ
�1) (D.2)

Applying Jacobi’s law on the term on LHS and recognizing from the property of trace that Tr(µ`T ) = Tr(`) = J̇
J we

can write:

2
J̇e

Je
= 2

J̇
J
� 2kT + kT Tr(µTµ

�1) where
J̇
J
=

J̇e

Je
+
⌘̇

⌘
+
⇣̇i

⇣i
(D.3)

Now using the conditions of T1 transitions: ⌘̇/⌘ = 0 and ⇣̇i/⇣i = 0, we get J̇/J = J̇e/Je which when substituted in eqn.
(D.3) results in the required constrained condition on µT as:

Tr(µTµ
�1) = 2 (D.4)

which can then be used to find out µT using µT = µT I.

Appendix D.2. Dissipation DT

Considering T1 transition is the only inelastic mechanism operating, we have:  ̇i = (@ i/@µ) : µ̇ and ⇢̇i/⇢i = 0. Now
using these conditions and L (µ) = �dT in Clausius-Duhem inequality (3.27) , we get:

D =

 
� � 2

Je

@ i

@µ
µ

!
: ` + 1

Je

@ i

@µ
: dT

|        {z        }
DT

� 0 (D.5)

where the first term is the elastic term and vanishes whereas the second term models dissipation DT due to T1 transi-
tions. From this, we can write:

DT =
1
Je

@ i

@µ
: dT (D.6)

DT =
1
Je

Tr
 
@ i

@µ
dT

T

!
(D.7)

Using eqn. (C.4) and identifying dT is symmetric, we can write:

DT =
1
Je

Tr
" 
@ i

@I1
I +

@ i

@I3
I3µ
�1

!
dT

#
(D.8)

DT =
1
Je

"
@ i

@I1
Tr (dT ) +

@ i

@I3
I3 Tr

⇣
µ�1dT

⌘#
(D.9)

Substituting dT from eqn. (5.6) in above, we finally get:

DT =
kT

Je

@ i

@I1
Tr

 
µ � 2

Tr(µ�1)
I
!

(D.10)
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Appendix D.3. Numerical solution for example 5.1.1a.
Let the superscript n denote the value of the variable at nth time step. To determine the `n�1

2 and µn = diag[µn
1 µ

n
2], we

first employ a first-order forward-Euler integration scheme to obtain:

µn = µn�1 + µ̇n�1�t (D.11)

where µn�1 = diag[µn�1
1 µn�1

2 ] is known from previous time step and �t is the time increment. Next, we calculate the
current stress tensor �n = diag[�n

1 �
n
2] using eqn. (4.6) and then set �n

2 = 0, which allows the tissue to deform freely
transversely. This yields a non-linear system of three equations in three variables (`n�1

2 , µ
n
1, µ

n
2) given by:
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(D.12)

Having solved for these unknowns, we can then update the remaining quantities such as �n
1 and deformation gradient

Fn = diag[�n
1 �

n
2] accordingly.

Appendix E. Derivations for cell division

Appendix E.1. Cell division flow rate
Recall that;

L (µ) = � ⇣̇i

⇣i
µ � 2⇡

z
1
Ji

"Z

⌦

(⇠l � p⌅l) r ⌦ r d⌦ �
Z

⌦

(⇠c � p⌅c) r ⌦ r d⌦
#

(E.1)

Considering no other inelastic mechanism and substituting eqns. (5.14) and (5.16) in eqn. (E.1) we get:

L (µ) = �kDµ + 2kDµD =) dD = kD(µ � 2µD) (E.2)

Using this dD we can write the evolution equation for µ pertaining to cell division as:

µ̇ = `µ + µ`T � kD(µ � 2µD) (E.3)

Just like we did for T1 transitions, multiply by µ�1 and take the trace to finally obtain:

2
J̇e

Je
= 2

J̇
J
� 2kD + 2kD Tr(µDµ

�1) where
J̇
J
=

J̇e

Je
+
⌘̇

⌘
+
⇣̇i

⇣i
(E.4)

Now using the cell division conditions: ⌘̇/⌘ = kD and ⇣̇i/⇣i = �kD, the constrained condition on µD becomes:

Tr(µDµ
�1) = 1 (E.5)

which then can be used to derive µD for di↵erent cases depending on the biased or random nature of cell divi-
sion.
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Appendix E.2. Dissipation DD

To derive DD, which is mechanical dissipation due to passive cell divisions, we will follow the same steps as we did
for T1 transitions in Appendix D.2.

First we find  ̇i which now also includes the contribution from ISV ⇣i as:

 ̇i =
@ i

@µ
: µ̇ + ⇣̇i

⇣i
 i (E.6)

We can show then when cell division is the only inelastic process, then ⇢̇i/⇢i = 0. Suppose the mass of the system is,
say given by, M . ⇢i, in that case, is defined as:

⇢i =
M

ai
=

M

Jia(0)
=

M

⌘⇣ia(0)
(E.7)

The material time derivative of ⇢i, using chain rule becomes:

⇢̇i
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Ṁ

M
� J̇i
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Ṁ
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!
(E.8)

In the absence of tissue growth: Ṁ = 0. Also using condition from cell division: J̇i
Ji
=

⌘̇
⌘ +

⇣̇i
⇣i
= 0, the mass density

⇢i in intermediate configuration remains unchanged. Now using this condition and L (µ) = �dD in Clausius-Duhem
inequality (3.27) , we get:
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where again the first term vanishes whereas the second and third terms combine to model the dissipation DD due to
the passive cell divisions. Substituting dD from eqn. (E.2), we finally get:

DD =
kD

Je

@ i

@I1
Tr

 
µ � 2

Tr(µ�1)
I
!
� 1
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 i where recall that
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= �kD (E.10)
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URL http://arxiv.org/abs/2111.10327. arXiv:2111.10327 [cond-mat, physics:physics].

Gonca Erdemci-Tandogan and M. Lisa Manning. E↵ect of cellular rearrangement time delays on the rheology of vertex models for confluent
tissues. PLOS Computational Biology, 17(6):e1009049, June 2021. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1009049. URL https:
//dx.plos.org/10.1371/journal.pcbi.1009049.

Henry Eyring. Viscosity, Plasticity, and Di↵usion as Examples of Absolute Reaction Rates. The Journal of Chemical Physics, 4(4):283–291, April
1936. ISSN 0021-9606, 1089-7690. doi: 10.1063/1.1749836. URL https://pubs.aip.org/aip/jcp/article/4/4/283-291/207491.
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of tissue shear flow. New Journal of Physics, 19(3):033006, March 2017. ISSN 1367-2630. doi: 10.1088/1367-2630/aa5756. URL https:
//iopscience.iop.org/article/10.1088/1367-2630/aa5756.

L. Preziosi, D. Ambrosi, and C. Verdier. An elasto-visco-plastic model of cell aggregates. Journal of Theoretical Biology, 262(1):35–
47, January 2010. ISSN 00225193. doi: 10.1016/j.jtbi.2009.08.023. URL https://linkinghub.elsevier.com/retrieve/pii/
S0022519309003841.

Matteo Rauzi, Pascale Verant, Thomas Lecuit, and Pierre-François Lenne. Nature and anisotropy of cortical forces orienting Drosophila tissue
morphogenesis. Nature Cell Biology, 10(12):1401–1410, December 2008. ISSN 1465-7392, 1476-4679. doi: 10.1038/ncb1798. URL http:
//www.nature.com/articles/ncb1798.

Edward K. Rodriguez, Anne Hoger, and Andrew D. McCulloch. Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics, 27
(4):455–467, April 1994. ISSN 00219290. doi: 10.1016/0021-9290(94)90021-3. URL https://linkinghub.elsevier.com/retrieve/
pii/0021929094900213.

Daria S. Roshal, Marianne Martin, Kirill Fedorenko, Ivan Golushko, Virginie Molle, Stephen Baghdiguian, and Sergei B. Rochal. Random
nature of epithelial cancer cell monolayers. Journal of The Royal Society Interface, 19(190):20220026, May 2022. ISSN 1742-5662. doi:
10.1098/rsif.2022.0026. URL https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0026.

Giuliana Rossi, Andrea Manfrin, and Matthias P. Lutolf. Progress and potential in organoid research. Nature Reviews Genetics, 19(11):671–
687, November 2018. ISSN 1471-0056, 1471-0064. doi: 10.1038/s41576-018-0051-9. URL https://www.nature.com/articles/
s41576-018-0051-9.
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