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1 INTRODUCTION

Equilibrium computation is one of the most important topics in algorithmic game theory. Decades
of effort has painted a fairly complete landscape for the computational complexity of various
equilibrium concepts in normal-form games: Roughly speaking, computing an (optimal) equilibrium
is computationally tractable, if either correlation is allowed between both players’ actions, or one of
the two players has the power to commit to a strategy. In other words, in normal-form games, there
are polynomial-time algorithms for computing an optimal (i.e., maximizing a convex combination
of the two players’ utilities) correlated equilibrium, and for computing a Stackelberg equilibrium
(see, e.g., [Papadimitriou, 2007]).

The situation is subtler for games in dynamic environments, where the two players iteratively
take actions, each affecting the state of the world, and together determining the overall payoff
of each player. Such games are conventionally modeled as stochastic games or extensive-form
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games (we will discuss the differences between the two formulations momentarily). In these games,
neither correlation nor commitment power guarantees tractability. In fact, it is NP-hard to compute
a Stackelberg equilibrium in these games, even if normal-form correlation — meaning a mediator
recommends a whole strategy, consisting of an action to be played in each possible information
set of the game, to each player at the beginning of the play — is allowed [Letchford and Conitzer,
2010]. In light of such hardness results, it has been argued that the right notion of correlation in
extensive-form games is extensive-form correlation, where the mediator reveals a recommended
action to be played in an information set only when a player has reached that information set.

The notion of extensive-form correlation leads to a number of natural solution concepts, which
generalize correlated equilibria in normal-form games and are computationally more tractable.
Among them, the most important and well-studied ones are extensive-form correlated equilibria
(henceforth EFCE) and Stackelberg extensive-form correlated equilibria (henceforth SEFCE) [von
Stengel and Forges, 2008]. While significant effort has been made on designing efficient algorithms
for computing (optimal) EFCE and SEFCE, most existing algorithms are designed for extensive-form
games in the tree form (for exceptions, see Section 1.2): The input to such an algorithm is by default
a tree capturing all possibilities in a game, where each leaf corresponds to a possible way for the
game to play out, and the time complexity of the algorithm is polynomial in the size of this game
tree. Such a game tree is often not the most succinct representation of a game. For example, consider
the following adapted version of the game Nim [Bouton, 1901]: Initially there are k matches on
the table. Alice and Bob take turns removing matches, where in each turn, the acting player can
remove either 1 or 2 matches. The player who removes the last match wins. The natural state space
of the game is quite succinct: The state is fully determined by the number of matches left and the
identity of the player to act next, so the state space is of size O(k). However, the tree form of the
game must encode the entire history through which a state is reached (e.g., “Alice removes 1 match;
Bob removes 2 matches; Alice removes 2 matches; Bob removes 1 match; ...”), which means the
game tree has 22(%) nodes. In such cases, an algorithm that runs in time polynomial in the size of
the game tree would not appear particularly efficient. In this paper, we address the above issue
by designing efficient algorithms for optimal EFCE and SEFCE that work with stochastic games,
which are by default represented in the graph form that succinctly encodes a game.

1.1 Our Results

Throughout the paper, we focus on two-player, finite-horizon, turn-taking stochastic games. Put in
different words, we focus on two-player, perfect-information extensive-form games in the graph
form. Our main results are twofold:

e We give an algorithm for computing an SEFCE, which runs in time polynomial in the size of
the game, as well as the number of bits required to encode each input number.

o We give an efficient algorithm for computing an approximately optimal approximate EFCE up
to machine precision, i.e., the algorithm achieves approximation error ¢ in time polynomial
in the size of the game, as well as log(1/¢).

Our algorithm for SEFCE is, to our knowledge, the first polynomial-time algorithm for equilibrium
computation with commitment in such a general class of stochastic games (the main assumption
being that the game is turn-taking). As discussed in Section 1.2, existing algorithms for SEFCE
typically make stronger assumptions such as no chance moves, and are designed for extensive-form
games in the less succinct tree form. Our algorithm for approximately optimal EFCE is, to our
knowledge, the first algorithm that achieves 3 desiderata simultaneously: approximate optimality,
polylogarithmic dependency on the approximation error, and compatibility with stochastic games
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in the graph form. As discussed in Section 1.2, existing algorithms typically achieve at most 2 of
these desiderata, often also relying on additional technical assumptions.

Technically, our algorithms are built on ideas fundamentally different from the most commonly
seen techniques in equilibrium computation, i.e., linear programming and no-regret dynamics. We
take a semi-combinatorial approach centered around the notion of Pareto frontier curves. Roughly
speaking, the Pareto frontier curve for a state-action pair captures the optimal tradeoff between
the two players’ onward utilities subject to equilibirum conditions, in the subgame induced by
the state-action pair. These curves can be viewed as a multidimensional generalization of the
Q-function commonly used in planning and reinforcement learning. Given the right equilibrium
conditions, computing an SEFCE or an optimal EFCE reduces to evaluating Pareto frontier curves,
which at first sight appears to be a numerical problem in nature. In order to perform the necessary
evaluations efficiently, we establish combinatorial properties of the Pareto frontier curves, including
recursive relations between curves for different state-action pairs, as well as lower bounds on the
numerical “resolution” of the curves (i.e., how close two turning points can be on a curve). The
curves for SEFCE exhibit particularly nice properties, based on which we are able to design an
essentially combinatorial procedure for evaluating the Pareto frontier curves recursively. This
involves binary searching over “directions of evaluation” up to a carefully chosen precision, as well
as a memorization technique that avoids redundant recursive calls. For EFCE, the Pareto frontier
curves are less structured, and in particular, the curves can be very (i.e., doubly exponentially) fine
in terms of their numerical resolution. It thus becomes infeasible to exactly evaluate the curves,
and our algorithm instead performs evaluations up to any desired precision in polylogarithmic
time. For a more detailed overview of our algorithms, see Section 3.1.

1.2 Further Related Work

Equilibrium computation in normal-form games has been extremely well-studied. For example,
without commitment, Daskalakis et al. [2009] and Chen et al. [2009] show that computing a Nash
equilibrium is PPAD-complete in two-player normal-form games, and computing optimal Nash
equilibria is generally NP-hard [Conitzer and Sandholm, 2008, Gilboa and Zemel, 1989]. In contrast,
when correlation is allowed, one can compute an optimal correlated equilibrium efficiently (see,
e.g., [Papadimitriou, 2007]). With commitment, Conitzer and Sandholm [2006] give an efficient
algorithm for computing a Stackelberg equilibrium in two-player normal-form games (see also von
Stengel and Zamir [2010]), and that this becomes hard with 3 players; however, if the committing
player can also send signals to the other players, thereby effectively taking over the role of the
mediator in correlated equilibrium, then the problem is again efficiently solvable with any number
of players [Conitzer and Korzhyk, 2011]. So in short, efficient equilibrium computation is possible
if either correlation or commitment is allowed.

Equilibrium computation becomes more difficult in dynamic environments, such as extensive-
form games and stochastic games. There, commitment does not imply efficient computation any-
more: Letchford and Conitzer [2010] show that it is NP-hard to compute a Stackelberg equilibrium
in two-player extensive-form games, even with perfect information. Moreover, their hardness result
holds even if normal-form correlation (as opposed to extensive-form correlation to be discussed
momentarily) is allowed. Similar hardness results hold for various structured families of stochastic
games [Letchford et al., 2012]. To circumvent such hardness results, von Stengel and Forges [2008]
introduce the notion of extensive-form correlation, where conceptually, recommended actions
are revealed on the fly. They give an efficient algorithm for computing an optimal extensive-form
correlated equilibrium (EFCE) when the game has no chance moves, and show that with chance
moves, the same problem is NP-hard. Notably, their hardness result assumes imperfect information,
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which turn-taking stochastic games do not have. In short, extensive-form correlation is generally
necessary for efficient computation in dynamic environments.

Subsequently, there has been a long line of research on the computation of optimal EFCE, as
well as its Stackelberg version, Stackelberg EFCE (henceforth SEFCE). However, as far as we know,
all existing positive results, i.e., efficient algorithms, are for extensive-form games in the tree form.
To name a few examples, Cermak et al. [2016] give a polynomial-time algorithm for computing
an SEFCE in extensive-form games without chance moves. Relatedly, Bosansky et al. [2017] show,
among other results, that it is possible to compute an SEFCE in perfect-information extensive-form
games in polynomial time. Farina et al. [2019] give a saddle-point formulation for optimal EFCE
and design gradient-based algorithms that scale better in practice. Farina and Sandholm [2020]
give a polynomial-time algorithm for computing optimal EFCE when chance moves are public.
Zhang et al. [2022c] give fixed-parameter algorithms for computing optimal EFCE, as well as related
solution concepts. Zhang and Sandholm [2022] give a polynomial-time algorithm for a general
class of equilibrium computation problems that involve a mediator, which in particular generalize
the results by Zhang et al. [2022c]. The type of computational problem considered in these results
is “easier” than ours, in the sense that the graph form that we consider can be much more succinct
(and never less succinct) than the tree form of the same game, and in such cases, an algorithm that
runs in time that is polynomial in the size of the graph form is much more efficient. Conversely,
an algorithm that runs in time that is polynomial in the size of the tree form is not necessarily
polynomial-time in the graph form.

Another line of research studies no-regret dynamics that converge to an arbitrary (i.e., not neces-
sarily optimal) EFCE. This translates to polynomial-time algorithms in 1/¢ for e-EFCE. Compared
to these algorithms, our algorithm for approximately optimal EFCE (1) guarantees approximate
optimality, (2) runs in polynomial time in log(1/¢) instead of 1/¢, and (3) works with the more
succinct graph form of the game, instead of the tree form. Huang and von Stengel [2008] show
how to compute an arbitrary EFCE exactly in polynomial time. However, their algorithm does not
guarantee optimality, nor is it compatible with the graph form.

Technically, computing optimal or Stackelberg equilibria generalizes the problem of planning
in Markov decision processes under constraints. Particularly related to our results is “planning
with participation constraints” [Zhang et al., 2022a,b]: Roughly speaking, in that problem, the
principal (corresponding to the leader in a Stackelberg game) chooses which action to take in each
state, subject to the constraint that the agent (corresponding to the follower) is always willing to
participate, i.e., the agent’s onward utility in each state is always nonnegative. This can be viewed
as a highly restricted class of turn-taking stochastic games, where the agent’s (follower’s) only
actions in each state are to stay and to quit. Zhang et al. [2022a,b] show that even in these restricted
environments, an optimal policy (i.e., a Stackelberg equilibrium) may have to be history-dependent,
and give a polynomial-time algorithm for planning with participation constraints. However, their
algorithm is tailored to the essentially non-strategic setting where the agent’s power is extremely
limited. In contrast, we consider general game-theoretic settings where the two players are generally
equally powered, except that in the Stackelberg setting, one player in addition has commitment
power.

Pareto frontier curves have also been (implicitly) considered in prior work in equilibrium com-
putation, e.g., [Bosansky et al., 2017, Letchford and Conitzer, 2010]. In particular, Letchford and
Conitzer [2010] and Bosansky et al. [2017] present algorithms that essentially keep track of the
entire Pareto frontier curves, by computing and storing all turning points on each curve. In the
settings that we study, doing so would generally require exponential computation — in fact, the
key idea behind our algorithms is to avoid computing and storing all turning points, and only focus
on the important ones.
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2 PRELIMINARIES

Stochastic games. We focus on two-player finite-horizon turn-taking stochastic games in this
paper. There is a finite set of states S = [n], and a finite set of actions A = [m]. sy = 1 and
Sterm = N are the initial and terminal states, respectively. For each state s € S, there is an acting
player ap(s) € {1, 2}, who unilaterally decides which action to play in state s. For each player
i € {1,2}, there is a reward function r; : S X A — R, which specifies the immediate reward
ri(s, a) that player i receives when action a is played in state s. We assume rewards are normalized,
ie., ri(s,a) € [0,1] for each i € {1,2},s € S and a € A. A transition operator P : S Xx A — A(S)
specifies the distribution P(s, a) of the next state when action a is played in state s, where for each
s’, P(s, a,s") is the probability that the next state is s’.

Unless otherwise specified, we assume the transition operator is acyclic, i.e., P(s, a,s") > 0 only
if s' > sors =s’ = n. For the terminal state Sierm = n in particular, we assume r;(n,a) = 0 and
P(n,a,n) =1 for each action a € A. In other words, there is no meaningful action in the terminal
state sierm = n. These assumptions essentially mean the game is finite-horizon. In particular, note
that in the finite-horizon case, the acyclicity assumption is without loss of generality, as the state
could include the index of the current period (with a blowup proportional to the time horizon T).

Histories, strategies, and utilities. Fix a stochastic game (S, A, ap, ry, r, P). A history h of length ¢
is a sequence of ¢ states and t actions h = (s1, a1, S2, 4z, . . ., S, a;) which fully describes t consecutive
steps of a play. Let H be the collection of all histories of all lengths not exceeding n (so H is finite).
For brevity, we also let |h| denote the length of A, and h+ (s, a) be the history obtained by appending
(s, a) to the end of h.

A deterministic (history-dependent) strategy 7 : H X S — A maps each history-state pair
(h,s) to the action to be played in s given history h. Note that we do not explicitly partition a
strategy into two parts corresponding to the two players, since such a partition is induced by
the mapping ap from each state to the corresponding acting player. A randomized strategy II is
a distribution over deterministic strategies. For any deterministic strategy x, we say a history
h = (s1,a1,. .., a;) is admissible if the action played in each step is the one specified by 7, i.e., for
each t’ € [t], ((s1,a1,...,Sr—1,ar-1), S¢) = ap. For any randomized strategy II, we say a history
h is admissible under IT if h is admissible under some 7 in the support of IL. Let H™ (resp. H™) be
the set of admissible histories under 7 (resp. IT). For a randomized strategy II and an admissible
history h € H under 11, let IT | h denote the conditional version of IT given that the states reached
and actions played in the first |h| steps are h.

For each i € {1,2}, the onward utility u] (h, s) of a player i, under a deterministic strategy z, in
state s, given history h, is

ul(hs)= E Z ri(sp,ar)|,
St el
where s; = s, hy = h, a; = n(hy, s;) foreach t € [n], hy = hy—1 + (s;—1,a;—1) foreach t € {2,...,n},
and s; ~ P(s;—1,a;-1) for each t € {2,...,n}. Here we only need to consider n steps, since the
maximum meaningful length of a play is n — after n steps, we must have reached the state n, and
any extra steps would give reward 0 to both players. The unconditional onward utility o' (h, s) of

player i, under a randomized strategy II, in state s, given history A, is
oll(h,s) = EH [u] (h,s)].

Note that this unconditional onward utility is not the actual expected onward utility; we need it
mostly for notational simplicity. Conceptually, it is the utility that player i expects to receive in the
future if they believe the posterior strategy is II. Given the unconditional onward utility, for each
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i € {1,2}, the actual onward utility u}' (h, s) of player i, under strategy II, in state s, given history h,
is simply

u?(h, s) = z)inlh(h, s).

Extensive-form correlated equilibria. Extensive-form correlated equilibria (EFCE) and their Stack-
elberg version (Stackelberg EFCE, or SEFCE) are the natural generalizations of correlated equilibria
and Stackelberg equilibria to dynamic settings such as stochastic games and extensive-form games.
In the original definition of EFCE for extensive-form games by von Stengel and Forges [2008], a
mediator specifies a distribution over deterministic strategies (i.e., a randomized strategy according
to our definition above), where each deterministic strategy specifies a recommended action in each
node of the game tree (corresponding to a history-state pair in our formulation). A deterministic
strategy is drawn and fixed at the beginning of the play, but the recommended action in each node
given by this strategy is revealed to the acting player only when the node is actually reached. If
a player decides to not follow a recommended action, that player will not receive recommended
actions in the rest of the play.

For any ¢ > 0, we say a player is e-best responding under a randomized strategy if that player
cannot increase their onward utility by more than ¢ by deviating from the recommended action
at any point of a recommended path of play, i.e., an admissible history. A randomized strategy is
an ¢-EFCE if both players are e-best responding. Moreover, consider a Stackelberg setting where
player 1 is the leader and player 2 is the follower. Then, a randomized strategy is an SEFCE if player
1’s utility is maximized subject to the constraint that player 2 is 0-best responding (or simply best
responding).

Put in our language, a player i € {1, 2} is e-best responding under a randomized strategy IT iff
for any admissible history h € HU state s where ap(s) = i, action a where h + (s,a) € HY and
deterministic strategy 7’ where 7’ (h,s) # a:

I.I|<h+(s’a)) h > e 4 E [ '(i:ir',3—i:7r) h
Ul ( ’S) 2 € 7[~H|(h+(s,a)) ul ( ,5) .

Here, (i : 7/,3 — i : ) denotes a strategy obtained by combining 7’ restricted to player i’s actions
and 7 restricted to (3 — i)’s actions (note that 3 — i = 2 when i = 1, and vice versa; 3 — i simply
means the other player than i). That is,

(i:,3—i:m)(hs)= {” (hs), ifap(s) =1

n(h,s), otherwise.
We will use this notation repeatedly in the rest of the paper. The left hand side is the utility i expects
to receive if both players keep following the recommendations, where in particular, i’s belief for
the strategy is IT | (h + (s, a)) because i has already received the recommended action a. The right
hand side is the utility i expects to receive if i unilaterally deviates to 7" and the other player keeps
following the recommendations, which should never be larger than the left hand side. Recall that
a randomized strategy II is an ¢-EFCE iff both players are ¢-best responding under II. One can
check this is in fact equivalent to the definition by von Stengel and Forges [2008] when ¢ = 0. A
randomized strategy II is an SEFCE (with player 1 being the leader) iff

ITe argmax u{l (0, sinit).
player 2 is best responding under IT
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3 STACKELBERG EXTENSIVE-FORM CORRELATED EQUILIBRIA
3.1 Overview of Our Approach

Maximum punishment without loss of generality. Our algorithm is based on the standard obser-
vation that in an SEFCE, it is without loss of generality to maximally punish the follower when
they deviate from the prescribed path of play, regardless of how that would affect the leader’s
utility at that point. In fact, for any SEFCE, there exists an effectively equivalent SEFCE where
deviation always immediately triggers maximum punishment, so once the follower deviates, the
game immediately becomes effectively zero-sum. This is because intuitively, the sole purpose of the
leader’s equilibrium strategy in parts of the game where the follower has deviated is to threaten
the follower and cancel out any potential incentive to deviate. In particular, such a threat would
never be actually executed, because in equilibrium no player would deviate in the first place. As
such, it never hurts to threaten with the worst punishment possible. This greatly simplifies the
problem from a computational perspective, since computing a strategy for maximum punishment
is no harder than solving turn-taking zero-sum stochastic games, which can be done by simple
backward induction.

Reducing to constrained planning. Once the punishment strategy is fixed, we only need to optimize
over strategies where the follower never faces worse utility than what they would face after deviating
in the optimal way and being maximally punished thereafter. One key observation here is that
in any state, regardless of the recommended action, the optimal way to deviate is always the
same. So, to prevent the follower from deviating, we only need to guarantee that conditioned on
the recommended action, the onward utility of the follower is at least the utility resulting from
deviating optimally. In particular, the latter utility depends only on the state (which is only true in
turn-taking stochastic games). Given this observation, the problem becomes a constrained planning
problem, where we want to find an optimal strategy subject to the constraint that in each state
where the follower is the acting player, the onward utility of the follower (conditioned on the
recommended action) is at least some state-dependent quantity that can be efficiently pre-computed.
This is very similar to planning in constrained MDPs, except for one key difference: In constrained
MDPs, typically there are a constant number of feasibility constraints over the cumulative reward
vector, whereas in our constrained planning problem, there are separate feasibility constraints on
the follower’s onward utility in each state of the game where the follower is the acting player.

Pareto frontier curves and pivotal points. The way we approach the constrained planning problem
is by considering the Pareto frontier curves for each state-action pair. Roughly speaking, the Pareto
frontier curve f; , for a state-action pair (s, a) captures the Pareto-optimal way to trade off between
the two players’ onward utilities after the acting player takes action a in state s, subject to feasibility
constraints in the future. This can be viewed as a generalization of the Q-function that is commonly
considered in reinforcement learning that captures the tradeoff between the two players’ utilities.
For technical reasons, we intentionally disregard the constraint (if there is one) in the (current) state
s. With this definition, the problem of constrained planning (or at least, the problem of computing
the maximum objective value therein) becomes the problem of evaluating the Pareto frontier curves
subject to feasibility constraints. In particular, as illustrated in Figure 1, given an objective direction
(which can be any combination of the two player’s utilities), the maximum objective value onward
for each state-action pair is simply the farthest point on (the feasible part of) the Pareto frontier
curve along that direction.

Observe that under our definition, Pareto frontier curves are always concave, since from each
state-action pair onward, the convex combination of two feasible strategies is also feasible — this is
true because we consider extensive-form correlation, so when we take a convex combination
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"2 Pareto frontier "
curve for pair (s, @)
feasible part
of the curve
pivotal point m pivotal point
feasible utility
depends on s >
acting player = player 2 L3 acting player = player 2 LT

Fig. 1. Illustration of Pareto frontier curves.

through randomization, players are not allowed to know the realization before reaching the
state where the randomization happens. Given this observation, finding this point involves two
conceptual steps: One first finds the unconstrained optimum on the curve. If that point turns out
to be infeasible, then one “rounds” that point to the nearest feasible point, which is always the
pivotal point (hollow points in Figure 1), i.e., the unique point on the curve where the feasibility
constraint is binding. This highlights the importance of pivotal points, which play a central role in
our algorithm.

Evaluating Pareto frontier curves. Now the problem becomes efficiently evaluating Pareto frontier
curves subject to feasibility constraints. At a high level, this can be done in a recursive fashion:
Suppose we want to evaluate the curve f;, for (s, a) in a certain direction & € R?, subject to the
feasibility constraint in state s. Moreover, suppose we can efficiently evaluate the constrained
curves for all later state-action pairs. Then we can perform the evaluation using the following
procedure:

(1) For each later state s” > s:
(a) For each action a’, evaluate the constrained curve fir »» along direction a.
(b) Let the farthest point along o found in the above evaluation be the partial result for state s’.

(2) Aggregate the partial results for all later states s’ according to the transition probabilities

P(s,a,s"), and shift the aggregated result by the immediate rewards (1 (s, a), r2(s, a)) induced
by (s, a).

(3) If the shifted result above is feasible, return it; otherwise, return the pivotal point on f; ,.

There is one gap in the above procedure: In step 3, when we “round” an infeasible shifted result, it
is assumed that we already know the pivotal point on the curve f; , — in fact, without this rounding
step, we would be evaluating the curve f;, without the feasibility constraint in s. In reality we
need to compute this pivotal point efficiently. In what follows we discuss how this can be done up
to machine precision.

Again assume we can evaluate the curves for all later state-action pairs. To approximate the
pivotal point, we only need to find two points on f;, that are close enough, to the left and the
right of the pivotal point respectively. Then a particular convex combination of the two points will
be a good approximation of the pivotal point. Suppose we want to find a point to the left of the
pivotal point that is close enough, and for concreteness, suppose the acting player is player 2, as
in the left subfigure in Figure 1. There, a point is to the left of the pivotal point if and only if it is
feasible. Conceptually, the pivotal point can be found using a “moving direction” procedure: We
start with direction (0, 1), and perform an evaluation of f; , in that direction without the feasibility
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constraint in s. Such an unconstrained evaluation can be done recursively without knowing the
pivotal point (using the procedure above without step 3). If the evaluation returns a point to the
left of the pivotal point (i.e., a feasible point), we rotate the direction of evaluation to the right,
and evaluate the unconstrained curve again. The rotation stops as soon as the point found makes
the feasibility constraint binding, which means we have found the pivotal point. To make this
conceptual procedure practical, we replace the rotation with a binary search, which finds a point
to the left of the pivotal point that is at most ¢ away (in terms of the polar angle) in O(log(1/¢))
iterations. When the constrained planning problem corresponds to the computation of SEFCE,
we show that any two turning points on a Pareto frontier curve must be well separated, by some
quantity that is at most exponentially small in the size of the game. So, if we make ¢ exponentially
small (which means there are polynomially many iterations in the binary search), the binary search
is guaranteed to find the closest turning point to the left of the pivotal point. We can then compute
the pivotal point by finding the closest point to the right in the same way, and taking a convex
combination of the two points found.

Bounding the number of evaluations. The above gives a recursive algorithm for evaluating Pareto
frontier curves, but executed in the naive way, the procedure may take exponential time in the
size of the game. We need one final observation to make the algorithm polynomial time in these
parameters: For each (s, a) pair, the pivotal point on the curve f; , only needs to be evaluated once.
Given this, the total number of recursive evaluations triggered must be polynomial in the size of
the game. This is because new directions of evaluation emerge only when we binary search for
a pivotal point. Each binary search may create polynomially many new directions, and since we
binary search for each pivotal point only once, there are O(mn) binary searches in total, which
means the total number of relevant directions is polynomial. Moreover, each direction can only
appear in O(mn) evaluations (one for each state-action pair), since we never need to perform the
same evaluation twice. This means the total number of evaluations for all relevant directions is
polynomial.

3.2 Reduction to Constrained Planning

We first provide a formal reduction from computing an SEFCE to the constrained planning problem.

The punishment amplifier. Fixing a stochastic game (S, A, ap, r1, r2, P), our reduction involves the
punishment amplifier pa, which maps each deterministic strategy to its maximally punishing version
against a subset of players — for SEFCE this subset is {2}, and as we will see later, for EFCE this
subset is {1, 2}. For each player i € {1, 2}, consider the zero-sum stochastic game (S, A, ap, r;, 13, P),
where r] = r; and r;_; = —r;. Let 71; be a deterministic subgame-perfect equilibrium strategy in this
zero-sum game — here, i is the player being punished, but note that z; comprises both players’
actions. Such a strategy can be found by backward induction. Note that without loss of generality,
7; is history-independent, so we write 7;(s) for simplicity. If there are multiple candidates for s;,
we pick an arbitrary one among them (the choice does not affect our results).

Given a deterministic strategy & and a subset of players S C {1, 2}, the punishment-amplified
version 7/ = pa(r, S) of x is given by: For each h = (s1,a1,...,8:,a;) € H ands € S,

e If h € H”™ (ie., his feasible under ), then 7’ (h,s) = n(h, s).
o If ap(s) ¢ S, then ' (h,s) = n(h,s).
e Otherwise, 7’ (h, s) = m;(s), where b’ = (s, ay, ..., sy ) is the longest feasible prefix of h, and
i = ap(sy) (i-e., i is the first player who deviated, in state s;/).
The punishment amplifier can be naturally extended to randomized strategies: For a randomized
strategy IT and a subset of players S, pa(IL, S) is obtained by mapping every deterministic strategy
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7 in the support of IT to pa(s, S), and assign the latter the same probability mass in II” as  has in
IL.

We first prove maximum punishment is without loss of generality, which is formally captured
by the following lemma:

LEmMA 1. Fix a stochastic game (S, A, ap, r1, r2, P). For any I under which the follower is best
responding, the follower is also best responding under pa(Il, {2}), and moreover,

ul (0, sinic) = ufa(n’{2}) (0, sinit)-

We defer the proof of Lemma 1, as well as all other missing proofs, to Appendix A. The lemma
suggests that when optimizing over strategies where the follower is best responding, we can focus
on those with the maximum punishment structure as described above. Next we show this gives us
a reduction to the constrained planning problem.

LEMMA 2. Fix a stochastic game (S, A, ap, 1, ra, P). For any randomized strategy I1, the follower is
best responding under pa(I1, {2}) if the following condition holds: For each admissible history h € H™,
state s € S where ap(s) = 2, and action a € A such that h+ (s,a) € H,

vgl(}”(s’“))(h,s)Zmaxa'eﬂ ra(s,a’) + PI(E )[u;rz(h+(s,a’),s’)] ,
s'~P(s,a’

where 1, is the subgame perfect equilibrium when the leader tries to minimize the follower’s utility, as
defined above.

Observe that in the above lemma, the right-hand side of the inequality does not depend on II.
Moreover, since 7; is history-independent, it does not depend on h either. So the right hand-side is
a constant that depends only on the state s. From now on, we call this quantity the utility under
punishment in state s, defined as

uP(s) =maxgeaq |ri(s,a)+ E  [u(h+(s,d),s)]],
s’~P(s,a’)

where i = ap(s) (note that although we define the utility under punishment for both players, for
SEFCE we only need it for the follower, i.e., player 2). The utility under punishment u” (s) can be
efficiently computed in all states.

Lemmas 1 and 2 together imply the following claim, which states that finding an SEFCE is
equivalent to constrained planning.

THEOREM 1. Fix a stochastic game (S, A, ap, r1,ra, P). For any x > 0, there exists a strategy I1
under which the follower is best responding such that ul'(0, sini) > x, if and only if there exists a
strategy IT" such that uP'((b, Sinit) = X, and for each admissible history h € H™, state s € S where
ap(s) = 2, and action a € A such that h + (s,a) € HY,

Ug/l(m(s’a))(h, s) > uP(s).

Feasible strategies. We say a strategy II is feasible if it satisfies the condition in the theorem
which involves the utility under punishment, i.e., for each h € H I s € S where ap(s) = 2,and
a € A such that h + (s, a) € H,

oy D) (h5) > ub (s).

We say a strategy II is feasible after state s, if for each h € H™, s’ > s where ap(s’) = 2, and a € A
such that h + (s’, a) € H',
Ugu(m(s D) sy > b ().

Our problem now becomes finding a feasible strategy that maximizes player 1’s utility.
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3.3 Pareto Frontier Curves

Before proceeding to the full description of our algorithm, we first quickly (and somewhat infor-
mally) define Pareto frontier curves and discuss some useful properties. Intuitively, the Pareto
frontier curve f; , for a state-action pair (s, a) is the curve capturing all Pareto-optimal pairs of
onward utilities (assuming an empty history) for both players after playing action a in state s,
induced by strategies that are feasible after s. Another way to view f; ; is it is the top right boundary
of the region of pairs of onward utilities (say Fs,) induced by strategies that are feasible after s. We
call F; 4 the feasible region for (s, a), which can be defined in the following way:

Foa= {(o?l“’“)((i), s),v?l(s’“)((/), s)) |11 is feasible after s, (s, a) € 7'(1-[} .
We first argue that both F ; and f; , are well behaved:

LEmMA 3. Fix a stochastic game (S, A, ap, r1, ra, P). For any state s € S and actiona € A, F; 4 is
always a convex region and f; o is always a concave curve.

Given Lemma 3, f; , in fact specifies a bijection between the two players’ utilities under feasible
strategies, corresponding to the two coordinates of a point. In the rest of the paper, we will abuse
notation, and use f; , in 4 ways:

e For x € Ry, f; 4(x) € Ry denotes the y-coordinate of the point on f; , whose x-coordinate is
x. When used in this way, the argument to f; , will always be x, possibly with subscripts or
superscripts.

e Fory € Ry, f;.4(y) € R, denotes the x-coordinate of the point on f; , whose y-coordinate is
y. When used in this way, the argument to f; , will always be y, possibly with subscripts or
superscripts.

e For p € R2, we say p € f; 4 if p isin f; 4 as a set of points (i.e., the graph of f; , as a mapping).

e For a € R2, f; ,(a) € R? denotes the farthest point on f; , along direction a. That is,

fsa(a) = argmax a - p.
pE€fia

3.4 Evaluating the Pareto Frontier Curves

Observe that if we can evaluate f; , o for each a € A, then it is not hard to find the optimal utilities
of the two players induced by a feasible strategy, given a particular objective direction a € R? (for
an SEFCE in particular, we want « = (1, 0)): Without loss of generality, an optimal strategy picks a
deterministic action in the initial state sj,j;, so we only need to try every one of the actions. For
each action a € A, the optimal utilities induced by a strategy that is feasible after sinit is fsqo(@). If
ap(sinit) = 1 01 f5a(®)ap(spy) = 4P (Sinit), then this strategy is a feasible strategy, and f; ,(a) gives
the optimal utilities if the first action is a. Otherwise, since f;, is concave, the optimal utilities
induced by a feasible strategy must correspond to the point on f; , where the constraint in s; is
binding. More specifically, suppose ap(sinit) = 2, and let ys, , = u” (sinit). Then the optimal utilities
when the first action is a must be (f; q (Ys;)> Usini)-

Pivotal points. The above discussion suggests that the point (f; 4(Ys,,,)> Usiy) Plays a particularly
important role in finding the optimal utilities. More generally, we define the pivotal point pp(s, a)
on f; 4 for each (s, a) where ap(s) = 2 to be the rightmost point (if there is one) on f;, such that
pP(s, @ap(s) = uP (s). If such a point does not exist, then we let pp(s,a) = (—n, —n) (here, —n is
without loss of generality — any quantity that is small enough would be consistent with our results).
For notational convenience, if ap(s) = 1, we let pp(s, a) = f;4((1,0)). Below we demonstrate how
to evaluate the Pareto frontier curves recursively with the help of the pivotal points.
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LEMMA 4. Fix a stochastic game (S, A, ap, r1,r, P). Foranys € S,a € A, and a € Ri,
fsa(@) = (r1(s,a),r2(s,a)) + E ) [ps],

s’~P(s,a

where for eachs’ > s anda’ € A,

Do = {]‘srﬂ/(a), ifap(s’) =1or fy o (a), = uP(s’)

pp(s’,a’), otherwise,

and for each s’ > s,
ps = argmax p-a.
Pelpy.ataren

In words, the lemma says that once the pivotal points for all later state-action pairs have been
computed, evaluating f; , can be reduced to at most mn evaluations of curves for later state-action
pairs. This reduction plays a central role in our algorithm. Moreover, it also provides a way for
bounding the numerical resolution of the Pareto frontier curves, which is captured by the following
lemma.

LEMMA 5. Fix a stochastic game (S, A, ap, r1, r2, P). Suppose all parameters of the game can be
encoded using L bits, i.e., for eachs,s’ € S anda € A, r1(s,a), r2(s, a) and P(s, a,s") are all multiples
of 27L. Then for each s € S\ {Swerm} = [1n — 1], there exists some integer C; < 2("=9) (DL "syych that
foreacha € A:

e For any a € R2, the y-coordinate of f; 4(a) is a multiple of 2~("~9)X and the x-coordinate is a
multiple of 1/C;.
e Ifap(s) = 2, then the y-coordinate of pp(s, a) is a multiple of 2~ "9, and the x-coordinate is
a multiple of 1/Cs.
Moreover, for each's € [n — 2], Cs is a multiple of Cs.1.

We will use the following direct corollary of Lemma 5:

CoROLLARY 1. Fix a stochastic game (S, A, ap, 1, r2, P). Suppose all parameters of the game can
be encoded using L bits. Then there exists an integer C < 2°L such that for eachs € S anda € A,
both coordinates of pp(s, a) are multiples of 1/C, and for each a € R2, both coordinates of f; ,() are
multiples of 1/C.

3.5 Algorithm and Analysis

Now we are ready to formally describe and analyze our full algorithm, Algorithm 1, which calls
Algorithm 2 as a subroutine.

Below we analyze our algorithm. First we show that the binary search in Algorithm 1 is exact, in
the sense that in line 18, g, and g, are adjacent turning points to each other on f; ,.

LEMMA 6. Fix a stochastic game (S, A, ap, r1, ra, P), where all parameters of the game can be encoded
using L bits. In every execution of line 18 of Algorithm 1, assuming q; = fso(£) and q, = fs.a(r) (we
will prove this later), q, and q, are adjacent turning points to each other on f; q.

Now we are ready to prove the key property of the algorithm, which is captured by the following
lemma.

LEMMA 7. Fix a stochastic game (S, A, ap, r1, r2, P), where all parameters of the game can be
encoded using L bits. The following statements regarding Algorithms 1 and 2 hold:

e Foreachs € S,a€ A anda € R2, if (s,a, @) € D then D(s,a,a) = f;q(a).
e Foreachs € S and a € A, ps, computed in Algorithm 1 is the same as pp(s, a).
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ALGORITHM 1: A polynomial-time algorithm for computing an SEFCE in turn-taking stochastic games.

Input: a turn-taking stochastic game (S = [n], A, ap, r1, r2, P).
Output: the leader’s utility under an SEFCE, together with an implicit representation of an SEFCE in the
input game.
1 create a data structure D that stores the results of all evaluations (used by eval);

2 for each states=n—-1,n-2,...,1do

3 if ap(s) = 1 then

4 for each action a € A do

5 ‘ let psq « eval(s,a, (1,0));

6 end

7 end

8 else

9 for each action a € A do

10 let £ < (0,1), r < (1,0), g¢ < eval(s,a,t), qr <« eval(s,a,r);

11 if (qe)2 < uP(s), let psq — (—n,—n);

12 if (qr)2 = uP(s), let psq — qr;

13 if (qr)2 > uP(s) and (gr)2 < uP (s) then

1 while [|£ ||y > —L—- do
3n-22n°L

15 let g <« eval(s,a, (£ +7r)/2) (see Algorithm 2);

let £ «— (£+r)/2if q2 > uP(s),and r « (£ +r)/2 otherwise;

16
17 end
18 let ¢ « eval(s,a,t), qr < eval(s,a,r), bsq — £, rsq < 1;

(qe)2—uP(s) . uP (s)—(qr)2 . P .
e let Psa < ((Qr)z—(%)z (Qr)l + (qr)2—(qr)2 (q[)l’u (s))’

20 end
21 end

22 end

23 end

24 let opt <~ maxge A (Psi.a)is

25 return opt, {psa}s.a {s,a}s,a {rsaltsaq and D;

Proor. Apply induction on s. When s = n — 1, it is easy to check ps, = pp(s,a) and D(s,a, @) =
fs.a(a@). Now suppose the statements hold for all s > s. Consider the first bullet point. For each
acAanda e Ri, observe that if (s, a, @) € D, then it is computed precisely in the way given in
Lemma 4. Given the induction hypothesis, this implies D(s, a, @) = fsqa(a).

As for the second bullet point, consider 4 cases:

o ap(s) = 1. The first bullet point immediately implies ps, = pp(s, a).

e ap(s) = 2and (q;)2 < uP(s) inline 11. Given the first bullet point, this means there is no point
on f; , whose y-coordinate is at least u”(s), and by definition, pp(s, a) = (=n, —n) = ps4.

e ap(s) = 2 and (g,)2 > uP(s) in line 12. Given the first bullet point, this means the entire f;,
is above y = uP (s), and by definition, pp(s, a) = f5.4(0,1) = psq.

e ap(s) = 2, (qr)2 > uP(s), and (g,)2 < uP(s). This is the case where the binary search is
executed. By Lemma 6 (and also given the first bullet point), g, and g, are adjacent turning
points on f; .. Moreover, (q;)z > u”(s) and (g,)2 < u(s). Then pp(s) must be the unique
convex combination of ¢, and g, whose y-coordinate is precisely u” (s), which is p; , computed
in line 19.

]
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ALGORITHM 2: eval: A subroutine of Algorithm 1 that performs recursive evaluations as needed.
Input: a state s, an action q, a direction of evaluation «, all variables in Algorthm 1.
Output: f; 4(a).
if $ = Sterm = n then return (0,0);
if (s,a,@) ¢ D (ie, if D(s,a,a) does not exist) then
fors’ =s+1,...,ndo
for a’ € A do

let s or «— eval(s’,d’, a);

if ap(s’) = 2 and (g5, )2 < uP(s’) then

‘ let qs’.a’ < Ps’.a’s

end

end
let g+ «— argmax

qe{qs’,a’ }a'Eﬂ a-q
end

let D(s,a,a) « (ri(s,a),r2(s,a)) + By p(5.a) [5];

end
return D(s, a, a);

Now we can put everything together and prove the correctness and efficiency of Algorithm 1
(we will discuss how to decode the output of Algorithm 1 momentarily).

THEOREM 2. Algorithm 1 computes the leader’s (player 1’s) utility in an SEFCE in time polynomial
inn, m, and L.

Proor. For correctness: By Lemma 7, for each a € A, ps, .« = PP (Sinit» @), S0 opt = maxy (ps,;.a)1 =
max, pp(Sinit, @)1 is player 1’s optimal utility induced by a feasible strategy (where player 2 is best
responding), which is player 1’s utility in an SEFCE.

For efficiency: We only need to bound the number of times that eval is called. Observe that
the number of times that eval is called in Algorithm 1 is O(nm log(nZ”ZL)) = O(n*mLlogn) =
poly(n,m,L). As for recursive calls, observe that eval makes O(nm) recursive calls only when
(s, a, @) is not in D yet. So each tuple (s, a, @) may trigger O(nm) calls in eval(s,a, @). Let A = {« |
(s,a, ) € D}. Then the total number of recursive calls is at most |{(s,a,a) | s € S,a € A,a €
A}| = O(nm]Al), so we only need to bound |A|. To this end, observe that for each a € A, there
must be some s € S and a € A such that the binary search for (s, a) involves a. Each binary search
involves O(log(nZ"zL)) = poly(n, L) directions, so the total number of directions involved in these
binary searches is poly(n, m, L). The latter is an upper bound of |A|. O

3.6 Decoding the Output Strategy

Now we discuss the final missing piece of our algorithm: extracting the strategy encoded in the
output of Algorithm 1. We present a procedure, Algorithm 3, which, given the output of Algorithm 1,
computes a random action for any given history-state pair. We will prove that the strategy implicitly
given by Algorithm 3 is the one encoded in the output of Algorithm 1. In particular, it is feasible,
and achieves the leader’s utility in an SEFCE computed by Algorithm 1.

THEOREM 3. Algorithm 3 outputs a feasible strategy Il (restricted to admissible histories), which
satisfies ull (0, sinit) = opt, where opt is the leader’s utility in an SEFCE computed by Algorithm 1.

Proor. First observe that Algorithm 3 does output a strategy restricted to admissible histories.
In fact, it specifies a random action for each history-state pair, which can be viewed as a Bayesian
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ALGORITHM 3: A procedure that decodes the output of Algorithm 1.

Input: A turn-taking stochastic game (S, A, ap, r1, r2, P), the output of Algorithm 1, a history
h = (s1,a1,...,ss ar), and a state s.
Output: 7 (h,s), where & ~ I | h, and II is the strategy encoded in the output of Algorithm 1; —1 if h is
not an admissible history under II.
let a « argmax ¢ 4(ps.a’)1, @ < (1,0), ¢ < ps.a;
if |h| = 0 return a;

if a1 # a, return —1;

fori=12,...,t—1do

if ap(s;) = 2 and q = ps, q; then

let £ « b, 0, 7 < Ts,q;» Gp < AXgMAXy ¢ 5 £ - Max>{ps,,; 0 D(siv1, @, )},

ay < argmaxg a7 - maxz{psm,a/, D(sit1,a’,0)};

/* for two points q1 and g2, maxk{ql, q2} denotes the point with the larger k-th
coordinate between the two %/

let @ « ¢ if aj41 = ag;

let a « rifaj+1 = ay;

if aj+1 € {a¢, ar}, return —1;

end

else

let a « argmaxy ¢ 4 @ - max’{ps,,, ', D(si+1,a’, @) };

if aj+1 # a return —1;

end

let ¢ — max®{ps,,, ai> D(Sist, ais1, @) };

end

if ap(s;) = 2 and q = ps, 4, then

let £ < fs;.q;, ap < argmax, c g £ - maxz{psyar, D(s,a’, )}, qr « maXz{Ps,ap D(s,arp,)}; let
T I's;q; Gr < argmax, c g r- maxz{ps’ar,ﬂ(s, a,nt,qr < maxz{pssar, D(s,ar,7)};

let a « a, with probability ;::;!, a < a, with probability ;r iqq‘;;
end
else
‘ let a « argmax, c 4 o - maxz{pssar, D(s,a’,a)};
end
return a;

description of a randomized strategy II. We need to show that u?(@, sinit) = opt, and for each
he H", s € S where ap(s) = 2, and a such that h + (s, a) € H",

vg|h+(s’a)(h, s) > uP(s).

To this end, observe that the output strategy faithfully implements the corresponding point on the
corresponding Pareto frontier curve. That is, for each i € {1,2}, h € HU s € S where ap(s) =2,
and a such that h + (s, a) € H',

v?thr(s’a)(h, s) = maxz{ps,a, D(s,a,a)} = maxz{pp(s, a), fs.a(a)}.

(Recall that for two points g; and g, max?{qi, q»} denotes the point with the larger y-coordinate
between the two.) This can be proved inductively, and we omit the details (which are already
quite repetitive at this point). Given the above correspondence, for the first condition, ul (@, sinit) =
maxy e 4 (ps.ar)1, Which is equal to opt. For the second condition, observe that max?{pp(s, a), fs.q ()}
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is always a feasible point whose y-coordinate is at least u” (s), whenever ap(s) = 2. This completes
the proof. O

Finally, note that Algorithm 3 only specifies actions for admissible histories. For inadmissible
histories, both players should follow the equilibrium 7, that maximally punishes player 2 defined
earlier.

4 APPROXIMATELY OPTIMAL EXTENSIVE-FORM CORRELATED EQUILIBRIA

Now we proceed to the computation of approximately optimal EFCE. We present a bi-criteria
algorithm that, given an objective direction (i.e., a combination of the two players’ utilities),
computes an e-EFCE whose objective value is at least that of the optimal EFCE minus ¢, in time
log(1/¢). The idea and structure of our algorithm for approximately optimal EFCE is overall quite
similar to that for SEFCE. There are two key differences:

e Recall that for SEFCE, we optimize over strategies where player 2 is best responding. This
reduces to optimizing over feasible strategies, where feasibility means that when player 2
is the acting player, their onward utility must be at least the utility under punishment. For
e-EFCE, both players need to be e-best responding, which leads to a different definition for
feasible strategies. The definition and structural properties of Pareto frontier curves also
need to be modified accordingly. Such modifications lead to minor changes in the proofs of
the structural properties and the algorithm.

e A more substantial difference is in the numerical resolution of the Pareto frontier curves.
For SEFCE, the feasibility constraints are all in the same direction, i.e., parallel to the x-axis.
This is no longer true for e-EFCE, where the direction of the feasibility constraint in a state
depends on the acting player. Such alternating constraints break the asymmetry between
the two axes, which was crucial in the analysis of the numerical resolution of the Pareto
frontier curves. As a result, a binary search with polynomially many iterations is no longer
guaranteed to find the pivotal point exactly. Instead, the guarantee we have is that the error
diminishes exponentially fast as the number of iterations grows. Importantly, this means
inaccuracy in terms of both the objective value and the feasibility constraints. A careful
analysis shows that the inaccuracy does not blow up too much as we approximately evaluate
the Pareto frontier curves recursively.

4.1 Useful Facts

Before stating the full algorithm, we quickly state the new reduction from e-EFCE to constrained
planning, as well as modified definitions and properties of Pareto frontier curves. The proofs of
these properties are similar to those of their counterparts for SEFCE.

Reduction to constrained planning.

LEmMA 8. Fix a stochastic game (S, A, ap, r1, r, P). For any € > 0 and I1 under which both players
are ¢-best responding, both players are also e-best responding under pa(Il, {1, 2}), and moreover, for
eachi € {1,2},

{1,
ul (0, sinit) = ufa( s 20, singt)-

LEMMA 9. Fix a stochastic game (S, A, ap, r1, rz, P). For any € > 0 and randomized strategyI1, both
players are e-best responding under pa(IL, {1, 2}) if the following condition holds: For each admissible
history h € HY, state s € S, and action a € A such that h + (s,a) € H,

II| (h+(s,a))

2p(s) (h,s) > maxgeq (Taps)(s,a)+ E [uﬂap(s) (h+(s,a’),s")]]| — ¢

s’'~P(s,a’) ap(s)
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where 7T, () is the subgame perfect equilibrium when player 3 —ap(s) tries to minimize player ap(s)’s
utility, as defined above.

THEOREM 4. Fix a stochastic game (S, A, ap,ry,r2, P). For any ¢ > 0 and (x,y) € R2, there
exists a strategy I1 under which both players are e-best responding such that ul'(0, sii) > x and
ull(0, sinit) > y, if and only if there exists a strategy II" such that uIII’((Z), Sinit) = X, ugl (0, sinit) = v,
and for each admissible history h € H™ , state s € S, and action a € A such that h + (s,a) € HY,

II' | (h+(s,a)) D _
Van(s) (h,s) = uP(s) —e.

Feasible strategies. We say a strategy II is e-feasible (we will omit ¢ when it is clear from the
context) if it satisfies the condition in the corollary which involves the utility under punishment,

ie, foreach h € HU, s € S, and a € A such that h + (s,a) € HY,

1| (h+(s,
S 43 ()
We say a strategy II is e-feasible after state s, if for each h € HI s > s, and a € A such that
h+ (s, a) e HY,

H(h(5'.@) () A o ()
Vap(s") (h,s") 2 uP(s") —e.

Pareto frontier curves. Again, we define the Pareto frontier curve f;, (dependence on ¢ omitted)
for a state-action pair (s, a) to be the curve capturing all Pareto-optimal pairs of onward utilities
(assuming an empty history) for both players after playing action a in state s, induced by strategies
that are feasible after s.

LEMMA 10. Fix a stochastic game (S, A, ap, r1, 1z, P). For any state s € S and action a € A, f; 4 is
always a concave curve.

Pivotal points. Given an objective direction o, we define the pivotal point pp(s, a) on f; , for
each (s, a) to be the farthest point (if there is one) along a,p; on f; , such that pp(s, a)ap(s) = u?(s).
If such a point does not exist, then we let pp(s, a) = (—n, —n) (again, —n is without loss of generality,
and any quantity that is small enough would be consistent with our results).

LEMMA 11. Fix a stochastic game (S, A, ap,r1, 12, P). Foranys € S,a € A, and a € Ri,
fsa(a) = (r1(s,a),r2(s,a)) + E : [ps],

s’~P(s,a
where for each s’ > s anda’ € A,
Psa = f;’,a’(a), iff;’,a’(a)ap(s’) > up(s/)
4 pp(s’,a’), otherwise,
and for each s’ > s,

psy = argmax p-a.
pelpsyataen

For EFCE, we need an approximate version of Lemma 11, which roughly says if we can approxi-
mately compute the pivotal points for all later state-action pairs, then approximately evaluating
fs.a can be reduced to at most mn evaluations of curves for later state-action pairs. This is captured
by the following claim, which is a direct corollary of Lemma 11.

COROLLARY 2. Fix a stochastic game (S, A, ap, 1,72, P). Foranys € S,a € A, and a € R2,

a-fsala) <a-|(ri(s,a)r2(s,a)+  E - [qo]]+e

s'~P(s,a)

1177



EC ’23, July 9-12, 2023, London, United Kingdom Hanrui Zhang, Yu Cheng, and Vincent Conitzer

u, (s) uP(s) u,

: : Pareto frontier
._.curve for pair (s, a)

acting player 4 pllayer 1 L3 acting player 4 player 1 LT

Fig. 2. Illustration of the proof of Lemma 12.

where for each s’ > s, qy satisfies
o py < a-qy +e.

Here, py is defined in the same way as in Lemma 11.

4.2 Algorithm and Analysis

Now we are ready to present and analyze our algorithm for approximately optimal EFCE, Al-
gorithm 4, which uses Algorithm 5 as a subroutine. We defer both these algorithms, as well as
Algorithm 6 to be mentioned later, to Appendix B, since these algorithms are similar to their
counterparts in Section 3.

The key differences between Algorithms 4 and 5, and Algorithms 1 and 2, are:

e Now we need to satisfy feasibility constraints in all states, whereas for SEFCE constraints
exist only in states where the acting player is the follower.

e The binary search stops when the two directions are ¢/n-close to each other, and in general,
it only finds an approximate pivotal point as opposed to an exact one. Accordingly, we also
allow inaccuracy in the feasibility constraints.

In order to analyze the algorithm, we first show that the binary search finds a point that is close

to the actual pivotal point. We defer the proof of Lemma 12, as well as that of Lemma 13 below, to
Appendix B. For an illustration of the proof of Lemma 12, see Figure 2.

LEMMA 12. Fix a stochastic game (S, A, ap, r1, 2, P). In Algorithm 4, assuming for each s € S,
a € A and a € R% where ||all; < 1, D(s,a,a) satisfiesa - D(s,a,a) > a - fyala) - 2= - ¢, pyq

n-—s

computed in line 15 satisfies (Ps.a)3—ap(s) = PP(S: @)3-ap(s) — 5 * €.

We then establish the key properties of Algorithm 4 — essentially an approximate version of
Lemma 7.

LEMMA 13. Fix a stochastic game (S, A, ap, r1, 2, P). The following statements regarding Algo-
rithms 4 and 5 hold: For each's € S, a € A and a € R where ||al|; = 1,

o if(s,a,a) € D, thena-D(s,a,a) = a- fsq(a) - "_fl_l £
® a-(psa) Za-pp(s,a) — 22 e

Given Lemma 13, it is not hard to prove the correctness and efficiency of Algorithm 4.

THEOREM 5. Algorithm 4 runs in time polynomial in n, m, andlog(1/¢) (assuming all arithmetic
operations take constant time), and the output opt satisfies:
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e opt is smaller than the optimal objective value of any EFCE by at most ¢, i.e.,

i i
Opt > MAXx js an EFCE Xobj * (U1 (D, Sinit), U5 (0, Sinit)) — €.
o There exists an e-EFCE whose objective value is opt.

The proof of the above theorem is similar to that of Theorem 2, with one exception: We prove
the second bullet point by giving an algorithm that constructs an ¢-EFCE whose objective value is
opt. The algorithm (Algorithm 6 in Appendix B) is overall quite similar to Algorithm 3. As such,
Algorithm 6 only specifies actions for admissible histories. For inadmissible histories, both players
should follow the equilibrium 7; that maximally punishes player i defined earlier, where i is the
player who first deviates. The proof of the following claim is similar to that of Theorem 3.

THEOREM 6. Algorithm 6 outputs a feasible strategyI1 (restricted to admissible histories), which
satisfies o - (u?(@, Sinit)» u?(@, Sinit)) = opt, where opt is the approximately optimal objective value
computed by Algorithm 4.
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A  OMITTED PROOFS IN SECTION 3

Proor oF LEMMA 1. For brevity let I’ = pa(Il, {2}). We first prove IT and IT" induce the same
utility for the leader. Observe that IT and IT” share the same set of admissible histories, i.e., HI = T,
Moreover, for any h € H™, pa(IT | h, {2}) = I | h. Given the above, we have a stronger claim: For
eachie€ {1,2},hand »’ € H", ands € S,

oM s) = o ().

This can be verified by expanding both sides using the definition of v;, coupling & ~ II | A with
' = pa(m, {2}) ~ 1" | h, and checking 7 and 7’ always induce the same play given h’ and s since
h’ is admissible. Setting h = b’ = 0 and s = sjn;, this immediately implies that both players have
the same utilities under IT and IT".

We now prove that the follower is best responding under II’. Consider any admissible history
h € HY state s where ap(s) = 2, action a where h + (s,a) € H" and deterministic strategy "’
where 7/ (h,s) # a (we reserve n’ for later use). Since player 2 is best responding under II, by
definition we have

II| (h+(s, 2:" 1t
v, I( +(sa))(h, s) > 71'~H\(E(Sa)) ué 7 ﬂ)(h,s) )

We already know that
Z)gll(h+(s,a)) (h,s) = Ugl’\(lﬁ(s,a)) (hs).

So we only need to prove that

u(Z:n”,l:ﬂ) (h, S) > E u(Z:n”,l:ﬂ’) (h, S) )

7~ (ht(s,a)) L 2 7~ | (Rt (s,a)) | 2

Again we couple 7 ~ IT | (h + (s,a)) with 7’ = pa(x) ~ II" | (h+ (s,a)), so we only need to
compare uézm//’lzn) (h,s) and uz(z:ﬂ”’:”/) (h, s). Both quantities involve summing over the rewards in
up to n steps and taking expectations over random transitions. To this end, observe that the first
steps in both quantities are always the same (player 2 playing z’ (h, s)), so we further couple them.
Now we only need to prove in the subgame induced by h + (s, 7" (h,s)) and s" ~ P(s, 7" (h,s)),
player 2’s utility when the other player follows 7 is at least player 2’s utility when the other player
follows ’. This follows almost directly from the definition of 7’: Restricted to this subgame and
player 1, 7’ behaves identically as 7, which is a subgame-perfect equilibrium when the other
player tries to minimize player 2’s utility. In other words, fixing player 2’s strategy (which is z”’),
player 2’s utility in this subgame against 7 is no smaller than player 2’s utility against 7. Now
taking the expectations over =, 7', and s’ gives the desired inequality. O

Proor oF LEMMA 2. Let IT" = ap(I1, {2}). We only need to verify that if IT satisfies the condition
in the lemma, then for any admissible history h € H | state s where ap(s) = 2, action a where

1180



Efficiently Solving Turn-Taking Stochastic Games EC °23, July 9-12, 2023, London, United Kingdom

h+(s,a) e H " and deterministic strategy 7”’ where 7"’ (h,s) # a,

U;I|(h+(s,a))(h’ s) > . ‘2% . u;z:n”,lzn') (h, S)] )
'~ |(h+(s,a

In particular, we only need to show that the right hand side of the above inequality is upper bounded
by

maxgeq (r2(s,a’)+ E [uérz(h+(s,a’),3’)])-
s’~P(s,a’)

Again, this follows almost directly from the definition of z’: Restricted to this subgame and player
1, 7’ behaves identically as 7, which is a subgame-perfect equilibrium when the other player tries
to minimize player 2’s utility. In other words, player 2’s utility in this subgame against 7" is at most

r(s,d’)+ B [ut(h+(s,d”),s")],
s”"~P(s,a")

where @'’ = 7"’ (h, s). This is clearly upper bounded by
maxgen (r2(s,a’ )+ E  [v)2(h+(s,d),s)]],
s’~P(s,a")

since the latter is obtained by taking the maximum over a’. This finishes the proof. O

ProoF oF LEMMA 3. We only need to prove F , is convex. Consider any two points (x1,y;) and
(x2,y2) in the feasible region F;,, and feasible-after-s strategies II; and II, that induced these
points. Without loss of generality, suppose II; = II; | (s, a) (otherwise let IT; « II; | (s,a)) and
I, =11, | (s,a). For any « € (0, 1), the strategy IT = « - IT; + (1 — a) - II; obtained by running II;
with probability & and I, with probability 1 — « gives utilities « - (x1,y1) + (1 — @) - (x2, y2) in state
s after playing action a. We only need to argue that I = « - IT; + (1 — «) - I1, is feasible after s.

Consider any h € HY = HT Y HT2 ¢ > s where ap(s’) =2,and @’ € A such that h+(s',d’) €
HI = H™ U H™2. We only need to show

U?l(h-'-(s/’a/))(h, S,) > up(s/).
Observe that there is some f € [0, 1] such that
I (h+(s"a)=p- (I | (h+(s,a))+ (1= p) (I | (h+(s',a))),
where f is not necessarily equal to a due to conditioning. This means
Ugll(’H(S’,a’))(h’ sS)=p- vgll(’ﬁ(s/,a'))(h, )+ (1-p)- Uglzl(lﬁ(S’,a’))(h, s).
Since II; and II, are both feasible after s, we have
B- 0?1\(h+(5’,a/))(h’ s)+(1-p) .vglll(h+(8’,a’))(h’ )= Bul(s)+ (1= p)-uP(s') = uP(s).

This finishes the proof. O

Proor oF LEmma 4. We first prove Eg _p(s.q) [ps'] € fi.a, and
a-fsala) Za-[(ri(s,a).r(s,a)+ E [ps]
s’~P(s,a)

Let Iy and ay be the strategy and action corresponding to py for each s” > s, respectively. Clearly
I is feasible after s’, and by construction the constraint in s’ (if there is one) is also satisfied by
ITy. Moreover, for each i € {1, 2},

W12 (9 57y = (o).
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Now we only need to construct a strategy II satisfying: (1) II is feasible after s, and (2) for each
i€{1,2},
U UDE- SR (CONE

s'~P(s,a
This is achieved by the following construction: Draw 7y ~ II¢ | (s’,as) for each s’ > s. Let
7(0,s) = a. For each (h,s”) where h = (sy,ay,...,s: a;), let
7(h,s) = 75, ((s2, Az, . - ., St, ar), s”").

Let IT be the distribution of iz. One can check II satisfies the two desired conditions.
Now we prove

s'~P(s,a)
Suppose otherwise. Let IT be a strategy that is feasible after s that implements f; ;(@). There must
be some s’ > s such that

a- fsala) <a- ((ﬁ(s, a),ra(s,a))+ B [ps']).

a- (Ull'll(s,a)(@, s'),U?l(s’a)((D, ) > a Dy
This means there exists a strategy Iy = IT | (s, a) such that

a- E (v?yl(s',ﬂs' (0.5")) 0,5, vgls'l(s',ﬂs' (0.s")) @.5)| > a-p,

Trgr ~Igr
which means there exists some a’ such that
a- (UII—IS/HS ,a )(0’ S’), Ugls/ |(s",a )(0’ s/)) >a- ps’,a’-
This contradicts the definition of py 4, since Ily is feasible after s. m]

Proor oF LEMMA 5. We prove the claim inductively. Consider s = n — 1 first. For each a € A,
fs.a consists of a single point (r1(s, a), 2(s, a), so the claim holds trivially.

Now fix some s € [n — 1] and suppose the claim holds for all s’ > s. Fix an action a € A and
consider the first bullet point. By Lemma 4, for any « € Ri,
fsal@) = (ri(s,a) +ra(s,@)) + B [py] = (ri(s,a) +r2(s,a)) + Z P(s,a,s") - ps.

s’~P(s,a) =
Here, for each s’ > s, (ps )2 is a multiple of 2=(n=s=DL and (ps)1 is a multiple of C,.1 because of
the induction hypothesis. Since (s, a), r2(s, a) and P(s, a, s") are multiples of 27, (f; o(a)), must
be a multiple of 27" and (f; ,(«)); must be a multiple of 1/(2LCgy1).

Now if ap(s) = 2, we need to further consider the second bullet point. When there is no point on
fs.a Wwhose y-axis is precisely u” (s), we know pp(s, a) is either (—n, —n) or some turning point on
fi.a- In both cases, (pp(s, a)); is a multiple of 2~ (*=9)L and (pp(s, a)); is a multiple of 1/(2-Cqy1).
Alternatively, when there is a point on f;, whose y-axis is precisely u? (s), this point must be
pp(s, a). Moreover, there exist two turning points p; and p, on f; 4 such that pp(s, a) is the unique
convex combination of p; and p, whose y-axis is u” (s). That is,

(p1)2 — uP (s) uf(s) = (p2)2
(p1)2 = (p2)2 (p1)2 = (p2)2
Here, u” (s) is a multiple of 2~ ("~$)L (we will prove this later), so (pp(s, a))z) is a multiple of 2~ (*=5)L,
(p1)1 and (pz); are multiples of 1/(2LCy;1). As for the coefficients of (p;); and (p2);, observe that
(p1)2 and (p3), are multiples of 2~("~$)L and they are between 0 and n — s. So there must be some
integer k < 2("=9L . (n — s5) such that both coefficients are multiples of 1/k. As a result, (pp(s, a));
is a multiple of 1/(2%Cg41k), and we can let Cy = 2L Cy, 1k, which satisfies
Cs < 2L . 2(n—s—l)(n+1)L . z(n—s)L A (n _ S) < z(n—sfl)(n+1)L . 2(n+1)L < 2(n—s)(n+1)L.

pp(s,a) = “(p2)1 + ~(pD)1uP(s)].

1182



Efficiently Solving Turn-Taking Stochastic Games EC °23, July 9-12, 2023, London, United Kingdom

Finally we quickly argue that when ap(s) = 2, u”(s) is a multiple of 2~ ("~$)L, Recall that u”(s) is
player 2’s maximum onward utility in the subgame induced by s when the other player tries to
minimize player 2’s utility. Without loss of generality, the equilibrium strategy is deterministic
and history-independent (such a strategy can be computed by backward induction, for example).
Again we can bound player 2’s onward utility inductively. In state n — 1, player 2’s onward utility
must be ry(n — 1, a) for some action a, which means it is a multiple of 27L In state n — 2, player
2’s onward utility can be written as the sum of r;(n — 2, a) for some action g, and the product
of P(n — 2,a,n — 1) and player 2’s utility in state n — 1. So this utility must be a multiple of 272
Repeating this argument for each s, we can show that player 2’s utility in each state s is a multiple
of 2(n=9)L This concludes the proof. O

ProOF OF LEMMA 6. Without loss of generality suppose £ < 3 (otherwise we can flip the two
axes and apply the same argument). Since ||£ —r||; < 1/(3n - ZZ"ZL), we also have r; < % Suppose

otherwise, i.e., there is another point q € f; , between g, and g,, such that q is strictly above the
line defined by g, and g, i.e.,

92 = (qe)2 S (gr)2 — q2
= (geh ()1 -
Recall that max{|q,/|, |gr|, |g|} < n. Moreover, by Corollary 1, all quantities in the above inequality
are multiples of 1/C, where C < 2"’L Observe that

92 — (qe)2 _ (gr)2 — 2 _ C*((g2 = (9)2) ((gr)1 = q1) = ((gr)2 = g2) (g1 = (go): ))
— (@)1 (g - C*(q1 = (90)1)((gr)1 = q1)

Here, both the numerator and the denominator are integers, and the denominator is no larger than

C%.n < n-22°L Since the fraction is strictly positive, we must have
2-(q)2 _(Gr)2=q2 1
- (g1 (g)i—qi  n-22r°L
On the other hand, since q; = f; 4(¢) and g, = f; 4(r), we have

_1>qz—(fJf)z and _r_1<(qr)z—CIz

& q1—(qeh rs (g1 —
This implies
n_by 1
ro & n-22nL
So we have
r - r t
le—rlli=2(r—8) = 2r, ——2L >2r,- L -2 - L
r2 ra l
4]
=20 — +2(r2 - fg) — =20
4
2[ rl
z L —le—rll- '

Recall that without loss of generality, £ < 1 (so &, > 3)and r; < 2 (sor; > 1). Plugging these in
and rearranging terms, the above inequality implies
20, 1 1

> — > —
.zznzL = n~22”2L = ”f 7’”1 = 3n-22”2L’

3l —rlly 2 (1€ =rlly + —-llt=rllh 2

a contradiction. ]
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B OMITTED ALGORITHMS AND PROOFS IN SECTION 4

ProoF oF LEMMaA 12. Without loss of generality suppose ap(s) = 1. We show this in two steps.
First imagine the “minimum” curve possible given approximate evaluations satisfying the condition
stated in the lemma. This is the curve that the binary search actually operates on in the worst case.
As illustrated in the left subfigure of Figure 2, this minimum curve is the blue one, which is lower
than the actual (black) curve at most by "_;_1 - ¢ in every direction. Also recall that the blue dashed

line is obtained by shifting the black dashed line to the left by *= =1 . ¢. These facts imply that the
x-coordinate of the blue hollow point is smaller than that of the pivotal point (the black hollow
point) by at most 2=2=1 . ¢,

Now consider how well the binary search approximates the blue hollow point. Suppose ¢, r, g,
and g, are as illustrated in the right subfigure of Figure 2. We need to bound the distance between
the blue hollow point and the red one. Recall that || —r||; < 37—, which means the angle 6 between
¢ and r is smaller than ;. Moreover, observe that 6 upper bounds the sum of the two acute angles
in the triangle containing the red segment, so the angle at q; is at most 6 < 3%;. This implies that the
distance between the two points we care about is at most the length of the segment to the left of g,
times sin 6. The length of the segment is at most V2-n,andsin6 < 6 < #, so the distance is at most

¢/n. Putting the two parts together, we conclude that (ps.a)3-ap(s) = PP(S, @)3-ap(s) = *°(5). O

Proor oF LEMMA 13. Apply induction ons = n —1,...,1. When s = n — 1, the first bullet
point holds because eval(s, a, @) is alwaus exact. Lemma 12 then implies the second bullet point.
Now fix some s and suppose the two bullet points hold for all s > s. Consider lines 3-12 in

Algorithm 5, where D (s, a, @) is recursively computed. Let q;, ,, = ArgMaXycp, g supr(s) € G
and g, = argmax,. (., @ - q. By the induction hypothesis, we have

n—s’ . n—-s—1
e Ay

*
A qea 20 Gy g — €.

n

As aresult, wehavea-qy > a - g}, — "’fl’l - ¢, and therefore ¢ - D(s,a,a) > a - fiq(a) - ”’Ts’l - €.
Lemma 12 then implies the second bullet point.
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ALGORITHM 4: An algorithm for computing an approximately optimal ¢-EFCE in turn-taking stochastic
games, in time poly(n, m,log(1/¢)).

Input: a turn-taking stochastic game (S = [n], A, ap, r1, r2, P), an objective direction obj where
llaobjlls < 1, a desired accuracy e.
Output: an approximately optimal objective value under EFCE, together with an implicit representation
of an e-EFCE achieving the approximate objective value in the input game.
create a data structure D that stores the results of all evaluations (used by eval);
for each state s € S, let uAP(s) —uP(s) - %_1 A
for each states=n—-1,n-2,...,1do
for each actiona € A do
let (£,r) « ((1,0), aop;) if ap(s) = 1, and (£, 7) < ((0,1), aop;) if ap(s) = 2;
let ¢ <« eval(s,a,f), g < eval(s,a,r);
if (ge)ap(s) < uP(s). let ps.a = (=n,—n);
if (qr)ap(s) = uAP(s), let ps.a < gqr;
if (qe)ap(s) 2 uP(s) and (gr)ap(s) < uP(s) then
while [|£ - 7|1 > = do
let g < eval(s,a, (¢ +r)/2) (see Algorithm 5);
let ¢ — (£+71)/2if gap(s) > uAP(s), and r « (£ +r)/2 otherwise;
end
let ¢ <« eval(s,a,f), g < eval(s,a,r), bsq «— {,rsq < T1;
(96)ap(s) ~uP (5) uP (5) = (qr)ap(s)
@apts) =@ apts) I @aps)= (@ apts)

let psq «—

5

end
end

end

let Opt ¢ mMaXge A (ijmt,a)l;
return opt, {ps.a}tsa {€s.a}tsa {rsa}s.a and D;

ALGORITHM 5: eval: A subroutine of Algorithm 4 that performs approximate recursive evaluations as
needed.

Input: a state s, an action a, a direction of evaluation «, all variables in Algorthm 4.
Output: an approximation of f; ().
if $ = Sterm = n then return (0,0);
if (s,a,@) ¢ D (ie, if D(s,a,a) does not exist) then
fors’ =s+1,...,ndo
fora’ € Ado
let ¢ o2 «— eval(s’,d’, a);
if (q.i’,a’)ap(s') < (PS’,a’)ap(s’) then
let gs',00 < ps',a's
end
end

let gsr ArgMaXe oy oq @ G

end
let D(s,a,a) « (r1(s,a),r2(s,a)) + Ey_p(sa) [95];

end
return D(s, a,a);
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ALGORITHM 6: A procedure that decodes the output of Algorithm 4.

Input: A turn-taking stochastic game (S, A, ap, r1, r2, P), an objective direction Aobjs the output of
Algorithm 4, a history h = (s1, a1, ..., St ar), and a state s.
Output: 7 (h,s), where & ~ I | h, and II is the strategy encoded in the output of Algorithm 4; —1 if h is
not an admissible history under II.
let @ «— agpj, a «— argmaxyc 4 @ - Ps,a’s < Ps,as

if |h| = 0 return a;

if a1 # a, return —1;

fori=1,2...,t—1do

if ¢ = ps, q; then

let £ < s, .q;, 7 < Ts;a;, Gp < argmax, c g £ - max?P(si+1) {Psprars D(sisr,a’, )},

ar < argmax, c g 7" maxap(s”l){psm,ug D(sit1,a’,t)};

/* for two points q; and g2, maxk{ql, q2} denotes the point with the larger k-th
coordinate between the two */

let @ « fif aj41 = ay;

let @ « rif aj41 = ar;

if ajy1 € {a¢, ar}, return —1;

end

else

let a « argmax, ¢ 7 o - max?P (Si+1) {Psir.a> D(sivr,a’, )}

if aj+1 # a return —1;
end

let g — max® ) {pg, o, D(sie, aiss, @)}

end

if ¢ = ps,,q, then

let £ < fs; q;, Gp < argmax, c g £ - maxap(s){ps’a/,i)(s, a,0)}, qr — maxap(s){ps,a[,i)(s, ap, t)};
letr « rg; q;, ar < argmax, c 41 - max?P(s) {ps.a. D(s.a'. 1)}, qr — max?P(s) {Ps.a,» D(s,ar,1)};

let a « a; with probability ‘;Ir’__c;]l , a « a, with probability qq, __c{;{;
end
else
let a « argmax, . g @ - max2P(s) {ps,a» D(s,d’,a)};
end
return a;
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