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Abstract Several modes of tropical sea-surface temperature (SST) variability operate on year-to-year
(interannual) timescales and profoundly shape seasonal precipitation patterns across adjacent landmasses.
Substantial uncertainty remains in addressing how SST variability will become altered under sustained
greenhouse warming. Paleoceanographic estimates of changes in variability under past climatic states

have emerged as a powerful method to clarify the sensitivity of interannual variability to climate forcing.
Several approaches have been developed to investigate interannual SST variability within and beyond the
observational period, primarily using marine calcifiers that afford subannual-resolution sampling plans.
Amongst these approaches, geochemical variations in coral skeletons are particularly attractive for their
near-monthly, continuous sampling resolution, and capacity to focus on SST anomalies after removing an
annual cycle calculated over many years (represented as geochemical oscillations). Here we briefly review the
paleoceanographic pursuit of interannual variability. We additionally highlight recent research documented by
Ong et al., (2022, https://doi.org/10.1029/2022PA004483) who demonstrate the utility of Sr/Ca variations in
capturing SST variability using a difficult-to-sample meandroid coral species, Colpophyllia natans, which is
widespread across the Caribbean region and can be used to generate records spanning multiple centuries.

1. Main Text

Year-to-year fluctuations in tropical sea-surface temperatures (SST) trigger anomalous weather patterns and
long-lived extreme events over densely populated nations, resulting in severe socioeconomic distress (Cai
et al., 2019). SST variations causing these events are typically associated with natural modes of climate varia-
bility such as the El Nifio/Southern Oscillation (ENSO), the Atlantic Ocean Zonal mode, and the Indian Ocean
Dipole (Birkett et al., 1999; Ropelewski & Halpert, 1986; Thirumalai et al., 2017; Towner et al., 2020), and
exhibit distinct power spectral peaks within the interannual frequency band (1-9 year™!). Temporally peaking
during distinct seasons—that is, “phase-locked” to the annual cycle (Cane, 1986; Jin et al., 1994)—anomalous
SST patterns diagnostic of these phenomena facilitate anomalous seasonal precipitation patterns around the globe
(Cai et al., 2019; Ropelewski & Halpert, 1987). Accordingly, indices of SST variability characterizing these
modes factor into seasonal climate prediction in many parts of the world (Goddard et al., 2001). Monitoring
how year-to-year SST variability changes over time and examining its drivers and relationship with global and
regional climate forcing are fundamental objectives of current climate science.

How will natural modes of interannual climate variability change under ongoing and future global warming due
to increasing levels of greenhouse gases? Substantial uncertainties exist in addressing this question, partly due
to the lack of long-term SST observations before the influence of radiative forcing from modern anthropogenic
CO, emissions. Unfortunately, observational SST coverage was sparse before the 1960s, particularly in tropical
regions (Deser et al., 2010), after which greenhouse forcing had already impacted SST trends. Therefore, the
short and incomplete observational record precludes “out-of-sample” validations of simulated interannual varia-
bility using coupled general circulation models (GCMs)—our best available tools to anticipate future changes—
under vastly different boundary conditions and forcings, resembling projected scenarios or otherwise (DiNezio
et al., 2020). Fortunately, over the past six decades, geochemists, paleoceanographers, and paleoclimatologists
have developed and fine-tuned several viable approaches to gain insights into interannual marine paleovariability.

The shells and skeletons accreted by calcareous marine biomineralizers are commonly utilized archives of
seasonal and sub-seasonal temperature variations due to their ubiquity and preservation, relatively fast growth
rates, and geochemical propensity to reflect environmental parameters. To resolve seasonal and interannual vari-
ability, one must work with archives that grew appreciably enough to be sampled (based on the choice of proxy/
sensor) at subannual timescales (Fairbanks & Dodge, 1979; Shackleton, 1973), which include corals, mollusks,
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otoliths, sclerosponges, brachiopods etc. (collectively termed “sclerochronological” archives; e.g., Buddemeier
etal. (1974); Hudson et al. (1976)). Urey et al. (1951) first measured the stable oxygen isotope ratio (§'30) across
growth bands of a Jurassic belemnite and observed cyclic variations in 8'0 and interpreted them to be annual
cycles of temperature. Epstein et al. (1953) presented a reconstruction of 1-2 years of subannually resolved
880 variations in live-collected abalone shells from the California coast, validated using in situ temperature
observations. Twenty years later, Shackleton (1973) popularized this subannual sampling strategy in a pivotal
study on limpet shells and pressed other “paleotemperature laboratories” to apply this approach to problems in
archeology and paleoclimatology. Shackleton (1973) inferred the wintertime occupation of archeological sites in
coastal South Africa by contrasting subannual §'30 variations in recently dead limpet shells with those collected
from nearby mid-Holocene-aged middens (albeit with a caveat: “It is of course perfectly possible that during
the summer the inhabitants simply did not eat shellfish, but considering how much more pleasant the very wet
occupation of collecting shells at low water or below would be in summer than in winter, this seems improba-
ble.”) In another preliminary study of interannual marine variability, Killingley and Berger (1979) reconstructed
upwelling events offshore California using subannually sampled stable isotopes in accreted calcareous layers of
mussel shells.

Generally, approaches of past interannual marine investigations fall into two broad (and sometimes overlapping)
categories: (a) the generation of continuous subannually resolved geochemical measurements and estimating
changes in variability via time- and frequency domain analysis (termed here as the “femporal approach”) and
(b) by statistically contrasting changes in climate variance derived from subannually sampled archives between
disparate climate states (the “timeslice approach”). Early examples of the temporal approach include the afore-
mentioned study by Killingley and Berger (1979) and others resolving year-to-year variations using corals (E.
Druffel, 1982; Dunbar & Wellington, 1981; Emiliani et al., 1978) and mollusks (Jones et al., 1983; Wefer &
Killingley, 1980; Williams et al., 1982). Fast-accumulating sediments (primarily in anoxic settings) have also
been used to furnish estimates of past interannual variability using a variety of enclosed proxy indicators, includ-
ing foraminifera and biomarkers (Baumgartner et al., 1985; Hagadorn et al., 1995; Kennedy & Brassell, 1992;
Soutar & Crill, 1977). The use of the timeslice approach to discern variability between periods, akin to that
employed by Shackleton (1973), has been expanded to various archives—sclerochronological and otherwise
(Beck et al., 1997; Jones et al., 1983; Tang & Stott, 1993)—proving useful in ‘out-of-sample’ comparisons with
climate simulations (Emile-Geay et al., 2015), as envisioned by Crowley et al. (1986).

Both stable isotopes and trace metal ratios measured in carbonates are routinely used as proxies for past seawa-
ter temperatures. Covariation between temperature and the trace metal composition and mineralogy of marine
calcareous invertebrates was recognized by Clarke and Wheeler (1922) and Bgggild (1930), building on foun-
dational studies such as Silliman (1846), who first reported on the chemistry of corals. Studies addressing the
thermodynamical basis of elemental partitioning (such as Mg?* and Sr>*) during calcification provided break-
throughs for the emergence of trace metal paleothermometry (Chave, 1954; Dodd, 1967; Lowenstam, 1961).
Influential early studies in the 1970s also addressed the thermodynamics of stable isotope fractionation in
corals (Keith & Weber, 1965; Land et al., 1975; Weber & Woodhead, 1970, 1972). At this time, the annual
nature of banding in corals was confirmed by radionuclide geochemistry (Dodge & Thomson, 1974; Moore
et al., 1973), and several approaches to date modern and fossil corals began to be developed (Ku, 1976; E. M.
Druffel & Linick, 1978). Expanding on these lines of research, and using annual layer counting for chronology,
Goreau (1977) and Emiliani et al. (1978) generated the first continuous subannual 5'80 timeseries in slabs of
massive Atlantic corals. Fairbanks and Dodge (1979) additionally showed that subannual geochemical varia-
tions provide more robust chronological constraints than coral growth rates and outlined a model for chronology
and paleotemperature inference from coral archives. These and other studies (Brand & Veizer, 1980; Carriker
et al., 1980; Dodd & Crisp, 1982; Papadopoulou et al., 1980; Swart, 1981) laid the foundations for subannually
resolved paleotemperature applications throughout the Phanerozoic.

The “maverick” El Nifio event of 1982-1983—a strong Eastern Pacific event unprecedented in observational
coverage at the time—heralded significant progress in ENSO theory (Cane, 1983; Cane & Zebiak, 1985) and
stimulated paleo-ENSO research (E. Druffel, 1985; Rollins et al., 1987; Carriquiry et al., 1988; Shen, 1993).
Targeting paleo-ENSO reconstruction, several subannual-resolution coral records were generated from across
the Pacific Ocean in the 1990s (Cole & Fairbanks, 1990; Cole, Fairbanks, & Shen, 1993; E. Druffel et al., 1990;
Dunbar et al., 1994; Evans et al., 1998; Linn et al., 1990; Linsley et al., 1994; McCulloch et al., 1994; Quinn
et al., 1993; Shen, 1993; Shen et al., 1991; Tudhope et al., 1995). This led to key advances such as preliminary
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forays into isotope-enabled model-data comparisons (Cole, Rind, & Fairbanks, 1993) and the development of
coral-based SST field reconstructions (Evans et al., 2000). Additionally, the timeslice approach was extended to
a variety of archives including mollusks (Carré et al., 2005; Perrier et al., 1992; Rollins et al., 1987), corals (Cobb
et al., 2003; Gagan et al., 1998; McGregor & Gagan, 2004; Tudhope et al., 2001), and foraminifera (Koutavas
et al., 2006) to estimate past ENSO variability. Subsequently, it was recognized that both temporal and timeslice
approaches necessitated the isolation of the interannual (1-9 years) band of variability from subannual measure-
ments for accurate assessments of past changes (Charles et al., 1997; Cobb et al., 2001; Dunbar et al., 1994), as
ENSO and other natural modes are typically “phase-locked” to the annual cycle (Cane, 1986; Jin et al., 1994).
Whereas seasonality may be estimated accurately from mollusks (Ivany, 2012; Jones & Allmon, 1995; Judd
et al., 2018) and foraminifera (Tang & Stott, 1993; Thirumalai & Clemens, 2020; Thirumalai et al., 2013), the
ability to separate subannual anomalies from the annual cycle over several years of data (>a decade) renders coral
geochemistry as a particularly suitable approach for the pursuit of past interannual variability.

Numerous extinct and extant coral taxa have been employed in paleoclimate reconstructions, with most studies
of protracted interannual variability relying on massive stony corals. By our count, subannually resolved, contin-
uous geochemical records have been generated from upwards of 14 different extant hermatypic coral genera,
including Montastrea/Orbicella (Goreau, 1977), Pocillopora (Dunbar & Wellington, 1981), Porites (Schneider &
Smith, 1982), Pavona (E. Druffel, 1985), Platygyra (Quinn et al., 1993), Favia (Chakraborty & Ramesh, 1998),
Diploastrea (Watanabe et al., 2003), Acropora (Gallup et al., 2006), Diploria/Pseudodiploria (Hetzinger
et al., 2006), Siderastrea (Maupin et al., 2008), Isopora (Lemley, 2012), Stylophora (Ross et al., 2019), Turbi-
naria (Ross et al., 2019), and Cladocora (Spreter et al., 2020). More recent work has also attempted to develop
subannual geochemical records from ahermatypic and deep-sea corals (Montagna et al., 2005; Saenger et al., 2017,
Serrato Marks et al., 2017; Thresher et al., 2009). By far, the most popular choice for tropical SST reconstructions
has been the stony coral genus, Porites, partly owing to the regular growth patterns of certain species and their
ability to form massive structures over several decades to centuries. However, we note that coral species from other
genera also reliably fit these criteria and can also facilitate robust chronologies (Sadler et al., 2014). Porites spp.
commonly used for paleoclimate are found only in particular basins across the tropical oceans and only within
specific habitats; moreover, they are typically not as long-lived as corals with slower growth rates, the latter of which
have the potential to yield records spanning longer than 5—6 centuries (Sadler et al., 2014; Watanabe et al., 2003).
In addition, discrete pieces of coral collected from marine sediments and drill cores, outcrops, or storm deposits can
span several years and belong to multiple genera besides Porites (Brenner et al., 2017; Marshall & Davies, 1982).
Thus, paleothermometry developed across a plethora of coral taxa can improve our understanding of interannual
climate variability by exploring oceanic environments and time periods commonly out of reach for Porites.

Several studies have begun a pivot, refocusing on expanding the coral paleoclimate toolkit beyond Indo-Pacific
Porites spp., developing calibrations for non-massive as well as slower-growing massive coral species, for exam-
ple, Sadler et al. (2014), Sadler et al. (2016), Pereira et al. (2016, 2017), Brenner et al. (2017), Evangelista
et al. (2018), Ross et al. (2019), and Spreter et al. (2020). Here we highlight recent work by Ong et al. (2022)
who introduce a new genus to the toolkit: Colpophyllia. Specifically, these authors use Colpophyllia natans
(Houttuyn, 1772; Figure 1) samples collected from the island of Tobago in the southeastern Caribbean region
and demonstrate that its skeletal geochemistry can accurately record paleotemperature variations. Colpophyllia
natans is a meandroid (brain) coral that can form massive colonies and is found throughout the northern tropical—
subtropical Atlantic Ocean and Caribbean Sea (Goreau, 1959; Lewis, 1960; Roos, 1971). Linear growth rates for
C. natans are typically less than 1 cm year~! and reduce with increasing depth habitat of colonies (Huston, 1985).
After deciphering optimal pathways for sampling this species, Ong et al. (2022) measured Sr/Ca ratios in powders
continuously micro-milled from slabs of C. natans—a challenging task for corals with slow growth rates and
complicated, intricate morphologies (Figure 1b) (Giry et al., 2010; Goodkin et al., 2005; Maupin et al., 2008;
Watanabe et al., 2003)—achieving a resolution of around 40-50 samples year~! (see Fig. S3 in Ong et al. (2022),
for X-radiograph images of their sampling paths). They also measured Sr/Ca variations in a nearby Siderastrea
siderea specimen to compare their measurements with a more established coral species in paleoclimate literature
(DeLong et al., 2014; Flannery et al., 2017; Fowell et al., 2016; Maupin et al., 2008).

Ong et al. (2022) find strong correlations between observed surface-ocean temperature and Sr/Ca variations
in reconstructions using C. natans and S. siderea. Though offset from each other in their mean Sr/Ca values—
attributed to species-specific effects—variations reconstructed using both species significantly co-vary with each
other and with 5-km-resolution satellite SST observations from 1988 to 2015 (see Fig. 3 in Ong et al. (2022)).
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Figure 1. Colpophyllia natans (Houttuyn, 1772) through the ages. (a) Illustration of C. natans (originally listed as
“Madrepora gyrosa”) by Lamouroux (1816), (b) Photograph of C. natans and its morphology from Ong et al. (2022), (c)
Photograph of C. natans colony in reefal habitat with other stony coral species (labeled), taken by one of the authors (CRM)
in June 2023.

Debate persists regarding the exact mechanisms of temperature-mediated Sr>* incorporation into coral aragonite
and the size of nonthermal impacts on Sr/Ca variability related to growth kinetics (Allison, 1996; De Villiers
etal., 1994; Grove et al., 2013; Hart & Cohen, 1996; Inoue et al., 2007). Nevertheless, several studies have shown
that coral Sr/Ca has high reproducibility and skill in the retrieval of past paleotemperature variations (Smith
et al., 2006; Stephans et al., 2004) [see also recent review by Thompson (2022)]. Using a careful subsampling
strategy of corallites in slabs of C. natans, continuous Sr/Ca measurements performed by Ong et al. (2022) appear
to be significantly (~70%) explained by satellite-based SST variations. A ~30-year stack using both coral records
is fully consistent with observed seasonal and interannual SST variability—Ilocally and with broader Atlantic
Ocean climate indices. In essence, Ong et al. (2022) unlock the potential of C. natans Sr/Ca as a viable paleotem-
perature proxy in the tropical-subtropical Atlantic Ocean and Caribbean seas, with the ability to generate records
spanning multiple centuries from recent or (sub)fossil specimens in the region. Applications of both temporal and
timeslice approaches in the Indo-Pacific using non-traditional coral species may be targeted to address tempo-
ral gaps in available Porifes datasets. Future calibration studies and applications using various coral taxa will
furnish much-needed, long-term perspectives of tropical climate variability under various climatic regimes (Cai
et al., 2019; DiNezio et al., 2020).

In 1979, areport prepared for the US National Science Foundation Climate Dynamics Program entitled “Paleocli-
mate Research: Status and Opportunities” contained this (then, open) question: “Does the interannual variability
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of climate change with time?” (Hecht et al., 1979). The rhetoric has significantly advanced since then, thanks
to the persistence and curiosity of scientists across various disciplines and nations over the past 44 years. These
efforts have since brought seemingly Promethean leaps and bounds to our understanding of interannual climate
variability over Earth history, including testable theories for its nature of change.
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