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Abstract

Sparse coding, which refers to modeling a signal

as sparse linear combinations of the elements of

a learned dictionary, has proven to be a success-

ful (and interpretable) approach in applications

such as signal processing, computer vision, and

medical imaging. While this success has spurred

much work on provable guarantees for dictionary

recovery when the learned dictionary is the same

size as the ground-truth dictionary, work on the

setting where the learned dictionary is larger (or

over-realized) with respect to the ground truth is

comparatively nascent. Existing theoretical re-

sults in this setting have been constrained to the

case of noise-less data. We show in this work

that, in the presence of noise, minimizing the

standard dictionary learning objective can fail to

recover the elements of the ground-truth dictio-

nary in the over-realized regime, regardless of

the magnitude of the signal in the data-generating

process. Furthermore, drawing from the grow-

ing body of work on self-supervised learning, we

propose a novel masking objective for which re-

covering the ground-truth dictionary is in fact op-

timal as the signal increases for a large class of

data-generating processes. We corroborate our

theoretical results with experiments across several

parameter regimes showing that our proposed ob-

jective also enjoys better empirical performance

than the standard reconstruction objective.

1. Introduction

Modeling signals as sparse combinations of latent variables

has been a fruitful approach in a variety of domains, and

has been especially useful in areas such as medical imag-

ing (Zhang et al., 2017), neuroscience (Olshausen & Field,

2004), and genomics (Tibshirani & Wang, 2008), where
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learning parsimonious representations of data is of high

importance. The particular case of modeling data in some

high-dimensional space R
d as sparse linear combinations

of a set of p vectors in R
d (referred to as a dictionary) has

received significant attention over the past two decades,

leading to the development of many successful algorithms

and theoretical frameworks.

In this case, the typical assumption is that we are given

data yi generated as yi ∼ Azi + ϵi, where A ∈ R
d×p is

a ground truth dictionary, zi is a sparse vector, and ϵi is

some potentially non-zero noise. When the dictionary A
is known a priori, the goal of modeling is to recover the

sparse representations zi, and the problem is referred to as

compressed sensing. However, in many applications we do

not have access to the ground truth A, and instead hope to

simultaneously learn a dictionary B that approximates A
along with learning sparse representations of the data.

This problem is referred to as sparse coding or sparse dic-

tionary learning, and is the focus of this work. One of the

primary goals of analyses of sparse coding is to provide

provable guarantees on how well one can hope to recover

the ground truth dictionary A, both with respect to specific

algorithms and information theoretically. Prior work on

such guarantees has focused almost exclusively on the set-

ting where the learned dictionary B also belongs to R
d×p

(same space as the ground truth), which is in line with the

fact that recovery error is usually formulated as some form

of the Frobenius norm of the difference between B and A.

Unfortunately, in practice, one does not necessarily have

access to the structure of A, and it is thus natural to consider

what happens (and how to formulate recovery error) when

learning a B ∈ R
d×p′

with p′ ̸= p. Of particular interest is

the case where p′ > p, where it is possible to recover A as

a sub-dictionary of B.

The study of this over-realized setting was recently taken

up in the work of Sulam et al. (2020), in which the authors

showed (perhaps surprisingly) that a modest level of over-

realization can be empirically and theoretically beneficial.

However, the results of Sulam et al. (2020) are restricted

to the noise-less setting where data is generated simply as

yi ∼ Azi. We thus ask the following questions:
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Does over-realized sparse coding run into pitfalls

when there is noise in the data-generating pro-

cess? And if so, is it possible to prevent this by

designing new sparse coding algorithms?

1.1. Main Contributions and Outline

In this work, we answer both of these questions in the affir-

mative. After providing the necessary background on sparse

coding in Section 2, we show in Theorem 3.2 of Section 3

that, as intuition would lead one to suspect, using standard

sparse coding algorithms for learning over-realized dictio-

naries in the presence of noise leads to overfitting. In fact,

our result shows that even if we allow the algorithms access

to infinitely many samples and allow for solving NP-hard

optimization problems, the learned dictionary B can still

fail to recover A.

The key idea behind this result is that existing approaches

to sparse coding rely largely on a two-step procedure (out-

lined in Algorithm 1) of solving the compressed sensing

problem Bẑ = yi for a learned dictionary B, and then up-

dating B based on a reconstruction objective ∥yi −Bẑ∥2.

However, because we force ẑ to be sparse, by choosing B to

have columns that correspond to linear combinations of the

columns of A, we can effectively ªcheatº and get around the

sparsity constraint on ẑ. In this way, it can be optimal for re-

constructing the data yi to not recover A as a sub-dictionary

of B.

On the other hand, we show in Theorem 3.6 that for a large

class of data-generating processes, it is possible to prevent

this kind of cheating in B by performing the compressed

sensing step on a subset of the dimensions yi and computing

the reconstruction loss on the complement of that subset.

This is the idea of masking that has seen great success in

large language modeling (Devlin et al., 2019), and our result

shows that it can lead to provable benefits even in the context

of sparse coding.

Finally, in Section 4 we conduct experiments comparing

the standard sparse coding approach to our masking ap-

proach across several parameter regimes. In all of our ex-

periments, we find that the masking approach leads to better

ground truth recovery, with this being more pronounced as

the amount of over-realization increases.

1.2. Related Work

Compressed Sensing. The seminal works of Candes et al.

(2006), Candes & Tao (2006), and Donoho (2006) estab-

lished conditions on the dictionary A ∈ R
d×p, even in the

case where p ≫ d (the overcomplete case), under which

it is possible to recover (approximately and exactly) the

sparse representations zi from Azi + ϵi. In accordance

with these results, several efficient algorithms based on con-

vex programming (Tropp, 2006; Yin et al., 2008), greedy

approaches (Tropp & Gilbert, 2007; Donoho et al., 2006;

Efron et al., 2004), iterative thresholding (Daubechies et al.;

Maleki & Donoho, 2010), and approximate message passing

(Donoho et al., 2009; Musa et al., 2018) have been devel-

oped for solving the compressed sensing problem. There

has also been work on modifying these approaches to in-

clude a cross-validation step (Boufounos et al., 2007; Ward,

2009), which is similar to the idea of our masking objective.

For comprehensive reviews on the theory and applications

of compressed sensing, we refer the reader to the works of

Candes & Wakin (2008) and Duarte & Eldar (2011).

Sparse Coding. Different framings of the sparse coding

problem exist in the literature (Krause & Cevher, 2010; Bach

et al., 2008; Zhou et al., 2009), but the canonical formulation

involves solving a non-convex optimization problem. De-

spite this hurdle, a number of algorithms (Engan et al., 1999;

Aharon et al., 2006a; Mairal et al., 2010; Arora et al., 2013;

2014; 2015) have been established to (approximately) solve

the sparse coding problem under varying conditions, dating

back at least to the groundbreaking work of Olshausen &

Field (1997) in computational neuroscience. A summary

of convergence results and the conditions required on the

data-generating process for several of these algorithms may

be found in Table 1 of Gribonval et al. (2014).

In addition to algorithm-specific analyses, there also exists a

complementary line of work on characterizing the optimiza-

tion landscape of dictionary learning. This type of analysis

is carried out by Gribonval et al. (2014) in the general set-

ting of an overcomplete dictionary and noisy measurements

with possible outliers, extending the previous line of work

of Aharon et al. (2006b), Gribonval & Schnass (2010), and

Geng et al. (2011).

However, as mentioned earlier, these theoretical results rely

on learning dictionaries that are the same size as the ground

truth. To the best of our knowledge, the over-realized case

has only been studied by Sulam et al. (2020), and our work

is the first to analyze over-realized sparse coding in the

presence of noise.

Self-Supervised Learning. Training models to predict

masked out portions of the input data is an approach to

self-supervised learning that has led to strong empirical

results in the deep learning literature (Devlin et al., 2019;

Yang et al., 2019; Brown et al., 2020; He et al., 2022). This

success has spurred several theoretical studies analyzing

how and why different self-supervised tasks can be used to

improve model training (Tsai et al., 2020; Lee et al., 2021;

Tosh et al., 2021). The most closely related works to our

own in this regard have studied the use of masking objec-

tives in autoencoders (Cao et al., 2022; Pan et al., 2022) and

hidden Markov models (Wei et al., 2021).
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2. Preliminaries and Setup

We first introduce some notation that we will use throughout

the paper.

Notation. Given n ∈ N, we use [n] to denote the set

{1, 2, ..., n}. For a vector x, we write ∥x∥ for the L2-norm

of x and ∥x∥0 for the number of non-zeros in x. We say

a vector x is k-sparse if ∥x∥0 ≤ k and we use supp(x) to

denote the support of x. For a vector x ∈ R
d and a set

S ⊆ [d], we use [x]S ∈ R
|S| to denote the restriction of x

to those coordinates in S.

For a matrix A, we use Ai to denote the i-th column of A.

We write ∥A∥F for the Frobenius norm of A, and ∥A∥op for

the operator norm of A, and we write σmin(A) and σmax(A)
for the minimum and maximum singular values of A. For

a matrix A ∈ R
d×q and S ⊆ [q], we use AS ∈ R

d×|S| to

refer to A restricted to the columns whose indices are in

S. We use Id to denote the d × d identity matrix. Finally,

for M ⊆ [d], we use PM ∈ R
|M |×d to refer to the matrix

whose action on x is PMx = [x]M . Note that for a d × q
matrix A, PMA would give a subset of rows of A, which is

different from the earlier notation AS which gives a subset

of columns.

2.1. Background on Sparse Coding

We consider the sparse coding problem in which we are

given measurements y ∈ R
d generated as Az + ϵ, where

A ∈ R
d×p is a ground-truth dictionary, z ∈ R

p is a k-

sparse vector distributed according to a probability measure

Pz , and ϵ ∈ R
d is a noise term with i.i.d. entries. The goal

is to use the measurements y to reconstruct a dictionary B
that is as close as possible to the ground-truth dictionary A.

In the case where B has the same dimensions as A, one may

want to formulate this notion of ªclosenessº (or recovery

error) as ∥A−B∥2F . However, directly using the Frobenius

norm of (A−B) is too limited, as it is sufficient to recover

the columns of A up to permutations and sign flips. There-

fore, a common choice of recovery error (Gribonval et al.,

2014; Arora et al., 2015) is the following:

min
P∈Π
∥A−BP∥2F (2.1)

where Π is the set of orthogonal matrices whose entries are

0 or ±1.

In the over-realized setting, when B ∈ R
d×p′

with p′ > p,

Equation (2.1) no longer makes sense as A and B do not

have the same size. In this case, one can generalize Equation

(2.1) to measure the distance between each column of A and

the column closest to it in B (up to change of sign). This

notion of recovery was studied by Sulam et al. (2020), and

we use the same formulation in this work:

dR(A,B) ≜
1

p

p
∑

i=1

min
j∈[p′],c∈{−1,1}

∥Ai − cBj∥2 (2.2)

Note that Equation (2.2) introduced the coefficient 1/p in

the recovery error and thus corresponds to the average dis-

tance between Ai and its best approximation in B. Also,

Equation (2.2) only allows sign changes, even though for

reconstructing Az, it is sufficient to recover the columns of

A up to arbitrary scaling. In our experiments we enforce

A and B to have unit column norms so a sign change suf-

fices; in theory one can always modify the B matrix to have

correct norm so it also does not change our results.

Given access to only measurements y, the algorithm can-

not directly minimize the recovery error dR(A, ·). Instead,

sparse coding algorithms often seek to minimize the follow-

ing surrogate loss:

ℓ(B) = Ey

[

min
ẑ∈Rp′

∥y −Bẑ∥2 + h(ẑ)

]

(2.3)

where h is a sparsity-promoting penalty function. Typical

choices of h include hard sparsity (h(ẑ) = 0 if ẑ is k-sparse

and h(ẑ) =∞ otherwise) as well as the L1 penalty h(ẑ) =
∥ẑ∥1. While hard sparsity is closer to the assumption on the

data-generating process, it is well-known that optimizing

under exact sparsity constraints is NP-hard in the general

case (Natarajan, 1995). When h(ẑ) = ∥ẑ∥1 is used, the

learning problem is also known as basis pursuit denoising

(Chen & Donoho, 1994) or Lasso (Tibshirani, 1996).

Equation (2.3) is the population loss one wishes to minimize

when learning a dictionary B. In practice, sparse coding

algorithms must work with a finite number of measurements

y1, y2, . . . , yn obtained from the data-generating process

and instead minimize the empirical loss ℓ̃(B):

ℓ̃(B) =

n
∑

i=1

min
ẑ∈Rp′

∥yi −Bẑ∥2 + h(ẑ) (2.4)

2.2. Sparse Coding via Orthogonal Matching Pursuit

Most existing approaches for optimizing Equation (2.4) can

be categorized under the general alternating minimization

approach described in Algorithm 1. For simplicity we state

Algorithm 1 in terms of a single input signal y ∈ R
d, but in

practice the dictionary update in Algorithm 1 is performed

after batching over several input signals.

At iteration t, Algorithm 1 performs a decoding/compressed

sensing step using the current learned dictionary B(t) and

the input data y. As mentioned in Section 1.2, there are sev-

eral well-studied algorithms for this decoding step. Because

we are interested in enforcing a hard-sparsity constraint, we
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Algorithm 1 Alternating Minimization Framework

Input: Data y ∈ R
d, Dictionary B(t) ∈ R

d×p′

Decoding Step: Solve B(t)ẑ = y for k-sparse ẑ
Update Step: Update B(t) to B(t+1) by performing a

gradient step on loss computed using B(t)ẑ and y

restrict our attention to algorithms that are guaranteed to

produce a k-sparse representation in the decoding step.

We thus focus on Orthogonal Matching Pursuit (OMP) (Mal-

lat & Zhang, 1993; Rubinstein et al., 2008), which is a

simple greedy algorithm for the decoding step. The basic

procedure of OMP is to iteratively expand a subset T ⊂ [p′]
of atoms (until |T | = k) by considering the correlation be-

tween the unselected atoms in the current dictionary B(t)

and the residual

(

y −B
(t)
T argminẑ∈R|T |

∥

∥

∥
y −B

(t)
T ẑ

∥

∥

∥

2
)

(i.e., the least squares solution using atoms in T ). A

more precise description of the algorithm can be found

in Rubinstein et al. (2008). Moving forward, we will use

gOMP(y,B, k) to denote the k-sparse vector ẑ ∈ R
p′

ob-

tained by running the OMP algorithm on an input dictionary

B and a measurement y.

2.3. Conditions on the Data-Generating Process

For the data-generating process y ∼ Az + ϵ, it is in general

impossible to successfully perform the decoding step in

Algorithm 1 even with access to the ground-truth dictionary

A. As a result, several conditions have been identified in the

literature under which it is possible to provide guarantees

on the success of decoding the sparse representation z. We

recall two of the most common ones (Candes & Tao, 2005).

Definition 2.1. [Restricted Isometry Property (RIP)] We say

that a matrix A ∈ R
d×p satisfies (s, δs)-RIP if the following

holds for all s-sparse x ∈ R
p:

(1− δs)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δs)∥x∥2 (2.5)

Definition 2.2. [µ-Incoherence] A matrix A ∈ Rd×p with

unit norm columns is µ-incoherent if:

|⟨Ai, Aj⟩| ≤ µ for all i ̸= j (2.6)

These two properties are closely related. For example, as

a consequence of the Gershgorin circle theorem, (δs/s)-
incoherent matrices must satisfy (s, δs)-RIP.

Given the prominence of RIP and incoherence conditions in

the compressed sensing and sparse coding literature, there

has been a large body of work investigating families of

matrices that satisfy these conditions. We refer the reader

to Baraniuk et al. (2008) for an elegant proof that a wide

class of random matrices in R
d×p (i.e. subgaussian) satisfy

(k, δ)-RIP with high probability depending on δ, k, p, and

d. For an overview of deterministic constructions of such

matrices, we refer the reader to Bandeira et al. (2012) and

the references therein.

3. Main Results

Having established the necessary background, we now

present our main results. Our first result shows that minimiz-

ing the population reconstruction loss with a hard-sparsity

constraint can lead to learning a dictionary B that is far from

the ground truth. We specifically work with the loss defined

as:

L(B, k) = Ey

[

min
∥ẑ∥0≤k

∥y −Bẑ∥2
]

(3.1)

Note that in the definition of L(B, k), we are considering an

NP-hard optimization problem (exhaustively searching over

all k-sparse supports). We could instead replace this exhaus-

tive optimization with an alternative least-squares-based

approach (so long as it is at least as good as performing least

squares on a uniformly random choice of k-sparse support),

and our proof techniques for Theorem 3.2 would still work.

We consider this version only to simplify the presentation.

We now show that, under appropriate settings, there exists a

dictionary B whose population loss L(B, k) is smaller than

that of A, while dR(A,B) is bounded away from 0 by a

term related to the noise in the data-generating process.

Assumption 3.1. Let A ∈ R
d×p be an arbitrary matrix with

unit-norm columns satisfying (2k, δ)-RIP for k = o
(

d
log p

)

and δ = o(1), and suppose σ2
min(A) = Ω(p/d). We assume

each measurement y is generated as y ∼ Az + ϵ, where

z is a random vector drawn from an arbitrary probability

measure Pz on k-sparse vectors in R
p, and ϵ ∼ N (0, σ2Id)

for some σ > 0.

Theorem 3.2. [Overfitting to Reconstruction Loss] Con-

sider the data-generating model in Assumption 3.1 and de-

fine Λ(z) to be:

Λ(z) = inf{t | Pz(∥z∥ ≥ t) ≤ 1/d}. (3.2)

Then for q = Ω(p2 max(dσ2,Λ(z)2)/σ2), there exists a

B ∈ Rd×q such that L(B, k) ≤ L(A, k) − Ω(kσ2) and

dR(A,B) = Ω(σ2).

Proof Sketch. The key idea is to first determine how much

the loss can be decreased by expanding from k-sparse com-

binations of the columns of A to 2k-sparse combinations,

i.e., lower bound the gap between L(A, k) and L(A, 2k).
After this, we can construct a dictionary B whose columns

form an ϵ-net (with ϵ = σ2) for all 2-sparse combinations

of columns of A. Any 2k-sparse combination of columns in

A can then be approximated as a k-sparse combination of

columns in B, which is sufficient for proving the theorem.
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Remark 3.3. Before we discuss the implications of Theorem

3.2, we first verify that Assumption 3.1 is not vacuous, and

in fact applies to many matrices of interest. This follows

from a result of Rudelson & Vershynin (2008), which shows

that after appropriate rescaling, rectangular matrices with

i.i.d. subgaussian entries satisfy the singular value condition

in Assumption 3.1. Furthermore, such matrices will also

satisfy the RIP condition so long as k is not too large relative

to d and p, as per Baraniuk et al. (2008) as discussed in the

previous section.

Theorem 3.2 shows that learning an appropriately over-

realized dictionary fails to recover the ground truth indepen-

dent of the distribution of z. This means that even if we let

the norm of the signal Az in the data-generating process be

arbitrarily large, with sufficient over-realization we may still

fail to recover the ground-truth dictionary A by minimizing

L(B, k).

We also observe that the amount of over-realization neces-

sary in Theorem 3.2 depends on how well z ∼ Pz can be

bounded with reasonably high probability. If z is almost

surely bounded (as is frequently assumed), we can obtain

the following cleaner corollary of Theorem 3.2.

Corollary 3.4. Consider the same settings as Theorem 3.2

with the added stipulation that Pz(∥z∥ ≤ C) = 1 for a

universal constant C. Then for q = Ω(p2d), there exists a

B ∈ Rd×q such that dR(A,B) = Ω(σ2) and L(B, k) ≤
L(A, k)− Ω(kσ2).

The reason that we can obtain a smaller population loss than

the ground truth in Theorem 3.2 is because we can make

use of the extra capacity in B to overfit the noise ϵ in the

data-generating process. To prevent this, our key idea is

to perform the decoding step Bẑ = y on a subset of the

dimensions of y - which we refer to as the unmasked part of

y - and then evaluate the loss of B using the complement of

that subset (the masked part of y). Intuitively, because each

coordinate of the noise ϵ is independent, a dictionary B that

well-approximates the noise in the unmasked part of y will

have no benefit in approximating the noise in the masked

part of y.

We can formalize this as the following masking objective:

Lmask(B, k,M) = Ey

[

∥

∥[y][d]\M − [Bẑ][d]\M
∥

∥

2
]

(3.3)

where ẑ([y]M ) = gOMP([y]M , PMB, k) (3.4)

In defining Lmask, we have opted to use gOMP in the inner

minimization step, as opposed to the exhaustive argmin in

the definition of L. Similar to the discussion earlier, we

could have instead used any other approach based on least

squares to decode ẑ (including the exhaustive approach),

so long as we have guarantees on the probability of failing

to recover the true code z given access to the ground-truth

dictionary A. This choice of using OMP is mostly to tie our

theory more closely with our experiments.

Now we present our second main result which shows, in

contrast to Theorem 3.2, that optimizing Lmask prevents

overfitting noise (albeit in a different but closely related

setting).

Assumption 3.5. Let A ∈ R
d×p be an arbitrary matrix such

that there exists an M ⊂ [d] with PMA being µ-incoherent

with µ ≤ C/(2k − 1) for a universal constant C < 1. We

assume each measurement y is generated as y ∼ Az + ϵ,
where [z]supp(z) ∼ N (0, σ2

zIk) with supp(z) drawn from

an arbitrary probability distribution over all size-k subsets

of [d], and ϵ ∼ N (0, σ2Id) for some σ > 0.

Theorem 3.6. [Benefits of Masking] Consider the data-

generating model in Assumption 3.5. For any non-empty

mask M ⊂ [d] such that PMA satisfies the µ-incoherence

condition in the assumption, we have

lim
σz→∞

(

Lmask(A, k,M)−min
B

Lmask(B, k,M)
)

= 0

(3.5)

That is, as the expected norm of the signal Az increases,

there exist minimizers B of Lmask such that dR(A,B)→ 0.

Proof Sketch. The proof proceeds by expanding out

Lmask(B, k,M) and using the fact that [Bẑ∗][d]\M is in-

dependent of [ϵ][d]\M to obtain a quantity that closely re-

sembles the prediction risk considered in analyses of linear

regression. From there we show that the Bayes risk is lower

bounded by the risk of a regularized least squares solution

with access to a support oracle. We then rely on a result of

Cai & Wang (2011) to show that gOMP([y]M ) recovers the

support of z with increasing probability as σz → ∞, and

hence its risk converges to the aforementioned prediction

risk.

Remark 3.7. As before, so long as the mask M is not too

small (i.e. Ω(kpolylog(p))), matrices with i.i.d. subgaus-

sian entries will satisfy the assumptions on A in Assumption

3.5. In particular, the set of ground truth dictionaries satis-

fying Assumptions 3.1 and 3.5 is non-trivial, once again by

results in Rudelson & Vershynin (2008).

Comparing Theorem 3.6 to Theorem 3.2, we see that approx-

imate minimizers of Lmask can achieve arbitrarily small

recovery error, so long as the signal Az is large enough;

whereas for L, there always exist minimizers whose recov-

ery error is bounded away from 0. We note that having the

expected norm of the signal be large is effectively necessary

to hope for recovering the ground truth in our setting, as in

the presence of Gaussian noise there is always some non-

zero probability that the decoding step can fail. Full proofs

of Theorems 3.2 and 3.6 can be found in Section A of the

Appendix.
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4. Experiments

In this section, we examine whether the separation between

the performance of sparse coding with or without mask-

ing (demonstrated by Theorems 3.2 and 3.6) manifests in

practice. Code for the experiments in this section can be

found at: https://github.com/2014mchidamb/

masked-sparse-coding-icml.

For our experiments, we need to make a few concessions

from the theoretical settings introduced in Sections 2.1 and

2.3. Firstly, we cannot directly optimize the expectations

in L and Lmask as defined in Equations (3.1) and (3.3), so

we instead optimize the corresponding empirical versions

defined in the same vein as Equation (2.4). Another issue is

that the standard objective L requires solving the optimiza-

tion problem min∥ẑ∥0≤k ∥y −Bẑ∥2, which is NP-hard in

general. In order to experiment with reasonably large values

of d, p, and p′ and to be consistent with the decoding step

in Lmask, we thus approximately solve the aforementioned

optimization problem using OMP.

Algorithm 2 Algorithm for Optimizing L

Input: Data {y1, ..., yT }, Dictionary B(0) ∈ R
d×p′

,

Learning Rate η ∈ R
+

for t = 0 to T − 1 do

z ← gOMP(yt+1, B
(t))

B(t+1) ← B(t) − η∇B(t)

∥

∥yt+1 −B(t)z
∥

∥

2

B(t+1) ← ProjSd−1B(t+1)

end for

Algorithm 3 Algorithm for Optimizing Lmask

Input: Data {y1, ..., yT }, Dictionary B(0) ∈ R
d×p′

,

Learning Rate η ∈ R
+, Mask Size m ∈ [d]

for t = 0 to T − 1 do

M ← Uniformly random subset of size m from [d]
z ← gOMP([yt+1]M , B(t))

B(t+1) ← B(t) − η∇B(t)

∥

∥[yt+1]Mc − [B(t)z]Mc

∥

∥

2

B(t+1) ← ProjSd−1B(t+1)

end for

The approaches for optimizing L and Lmask given n sam-

ples from the data-generating process are laid out in Algo-

rithms 2 and 3, in which we use ProjSd−1B to denote the

result of normalizing all of the columns of B. We also use

M c as a shorthand in Algorithm 3 to denote [d] \M .

We point out that Algorithm 3 introduces some features

that were not present in the theory of the masking objec-

tive; namely, in each iteration, we randomly sample a new

mask of a pre-fixed size. This is because if we were to

run gradient descent using a single, fixed mask M at each

iteration, as we don’t differentiate through the OMP steps,

the gradient with respect to B(t) computed on the error

∥

∥[y][d]\M − [Bz][d]\M
∥

∥

2
would be non-zero only for those

rows of B corresponding to the indices [d]\M . To avoid this

issue, we sample new masks in each iteration so that each

entry of B can be updated. There are alternative approaches

that can achieve similar results; i.e. deterministically cycling

through different masks, but they have similar performance.

While we will analyze the performance of Algorithms 2 and

3 across several different experimental setups over the next

few subsections, we describe the following facets shared

across all setups. We generate a dataset of n = 1000 sam-

ples yi = Azi+ ϵi, where A ∈ R
d×p is a standard Gaussian

ensemble with normalized columns, the zi have uniformly

random k-sparse supports whose entries are i.i.d. N (0, 1),
and the ϵi are mean zero Gaussian noise with some fixed

variance (which we will vary in our experiments). We also

normalize the zi so as to constrain ourselves to the bounded-

norm setting of Corollary 3.4. In addition to the 1000 sam-

ples constituting the dataset, we also assume access to a

held-out set of p′ samples from the data-generating process

for initializing the dictionary B(0) ∈ R
d×p′

.

For training, we use batch versions of Algorithms 2 and 3

in which we perform gradient updates with respect to the

mean losses computed over {y1, ..., yB} with B = 200 as

the batch size. For the actual gradient step, we use Adam

(Kingma & Ba, 2014) with its default hyperparameters of

β1 = 0.9, β2 = 0.999 and a learning rate of η = 0.001, as

we found Adam trains significantly faster than SGD (and we

ran into problems when using large learning rates for SGD).

We train for 500 epochs (passes over the entire dataset) for

both Algorithms 2 and 3. For Algorithm 3, we always use

a mask size of d− ⌊d/10⌋, which we selected based off of

early experiments. We ensured that, even for this fairly large

mask size, the gradient norms for both L and Lmask were

of the same order in our experiments and that 500 epochs

were sufficient for training.

We did not perform extensive hyperparameter tuning, but

we found that the aforementioned settings performed better

than the alternative choices we tested for both algorithms

across all experimental setups. Our implementation is in

PyTorch (Paszke et al., 2019), and all of our experiments

were conducted on a single P100 GPU.

4.1. Scaling Over-realization

We first explore how the choice of p′ for the learned dic-

tionary B affects the empirical performance of Algorithms

2 and 3.6 when the other parameters of the problem re-

main fixed. Theorem 3.2 and Corollary 3.4 indicate that the

performance of Algorithm 2 should suffer as we scale p′

relative to d and p.

In order to test whether this is actually the case in prac-

tice, we consider samples generated as described above with

6
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(a) Sample init, p′ scaling (b) Sample init, d, p, k, p′ scaling (c) Sample init, noise scaling

(d) Local init, p′ scaling (e) Local init, d, p, k, p′ scaling (f) Local init, noise scaling

Figure 1. Comparison of Algorithm 2 (Baseline) and Algorithm 3 (Masking) under the settings of Sections 4.1, 4.2, and 4.3 (from left to

right). Each curve represents the mean of 5 training runs, with the surrounded shaded area representing one standard deviation.

A ∈ R
d×p for d = 100, p = 200, and ∥z∥0 = k = 5 fixed,

while scaling the number of atoms p′ in B from p′ = p
(exactly realized) to p′ = n (over-realized and overparame-

terized). We choose ϵi ∼ N (0, 1/d), which is a high noise

regime as the expected norm of the noise ϵi will be compa-

rable to that of the signal Azi. To make it computationally

feasible to run several trials of our experiments, we con-

sider the p′ values {200, 400, 600, 800, 1000} and do not

consider more fine-grained interpolation between p and n.

For the training process, we consider two different initial-

ization of B(0). In the first case, we initialize B(0) to have

columns corresponding to the aforementioned set of held-

out p′ (normalized) samples from the data-generating pro-

cess, as this is a standard initialization choice that has been

known to work well in practice (Arora et al., 2015). How-

ever, this initialization choice in effect corresponds to a

dataset of n+ p′ samples, and it is fair to ask whether this

initialization benefit is worth the sample cost relative to a

random initialization. Our initial experiments showed that

this was indeed the case, i.e. random initialization with

access to p′ additional samples did not perform better, so we

focus on this sample-based initialization. That being said,

we did not find the ordering of the performances of Algo-

rithms 2 and 3 sensitive to the initializations we considered,

only the final absolute performance in terms of dR(A,B).

In addition to this purely sample-based initialization, we

also consider a ªlocalº initialization of B(0) to the ground

truth A itself concatenated with p′ − p normalized samples.

This is obviously not intended to be a practical initialization;

the goal here is rather to analyze the extent of overfitting to

the noise ϵi in the dataset for both algorithms. Namely, we

expect that Algorithm 2 will move further away from the

ground truth than Algorithm 3.

The results for training using these initializations for both

algorithms and then computing the final dictionary recovery

errors dR(A,B) are shown in Figure 1(a, d). We use co-

sine distance when reporting the error dR(A,B) since the

learned dictionary B also has normalized columns, so Eu-

clidean distance only changes the scale of the error curves

and not their shapes.

For both choices of initialization, we observe that Algorithm

3 outperforms Algorithm 2 as p′ increases, with this gap

only becoming more prominent for larger p′. Furthermore,

we find that recovery error actually worsens for Algorithm

2 for every choice of p′ > p for both initializations in our

setting. While this is possibly unsurprising for initializing

at the ground truth, it is surprising for the sample-based

initialization which does not start at a low recovery error.

On the other hand, training using Algorithm 3 improves the

7
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recovery error from initialization when using sample-based

initialization for every choice of p′ except p′ = n, which

again corresponds to the overparameterized regime in which

it is theoretically possible to memorize every sample as an

atom of B.

Additionally, we also see that the performance of Algorithm

3 is much less sensitive to the level of over-realization in

B. When training from local initialization, Algorithm 3 re-

tains a near-constant level of error/overfitting as we scale p′.
Similarly, when training from sample initialization, perfor-

mance does not degrade as we scale p′, and in fact improves

initially with a modest level of over-realization.

This improvement up to a certain amount of over-realization

(in our case p′ = 2p) is seen even in the performance of

Algorithm 2 for sample initialization (although note that

while the recovery error is better for p′ = 2p compared to

p′ = p, training still makes the error worse than initialization

for Algorithm 2). A similar phenomenon was observed in

Sulam et al. (2020) in the setting where yi = Azi (no

noise), and we find it interesting that the phenomenon is

(seemingly) preserved even in the presence of noise. We

do not investigate the optimal level of over-realization any

further, but believe it would be a fruitful direction for future

work.

4.2. Scaling All Parameters

The experiments of Section 4.1 illustrate that for the fixed

choices of d, p, and k that we used, scaling the over-

realization of B leads to rapid overfitting in the case of

Algorithm 2, while Algorithm 3 maintains good perfor-

mance. To verify that this is not an artifact of the choices

of d, p, and k that we made, we also explore what happens

when over-realization is kept at a fixed ratio to the other

setting parameters while they are scaled.

For these experiments, we consider A ∈ R
d×p for d ∈

{100, 150, 200, 250} and scale p as p = 2d and k as

k = ⌊d/20⌋ to (approximately) preserve the ratio of atoms

and sparsity to dimension from the previous subsection.

We choose to scale p′ as p′ = 2p since that was the best-

performing setting (for the baseline) from the experiments

of Figure 1. We keep the noise variance at 1/d to stay in the

relatively high noise regime.

As before, we consider a sample-based initialization as well

as a local initialization near the ground truth dictionary

A. The results for both Algorithms 2 and 3 under the de-

scribed parameter scaling are shown in Figure 1(b, e). Once

again we find that Algorithm 3 has superior recovery error,

with this gap mostly widening as the parameters are scaled.

However, unlike the case of fixed d, p, and k, this time the

performance of Algorithm 3 also degrades with the scaling.

This is to be expected, as increasing p leads to more ground

truth atoms that need to be recovered well in order to have

small dR(A,B).

4.3. Analyzing Different Noise Levels

The performance gaps shown in the plots of Figure 1(a, b,

d, e) are in the high noise regime, and thus it is fair to ask

whether (and to what extent) these gaps are preserved at

lower noise settings. We thus revisit the settings of Section

4.1 (choosing d, p, and k to be the same) and fix p′ = 1000
(the maximum over-realization we consider). We then vary

the variance of the noise ϵi from 1/d2 to 1/d linearly, which

corresponds to the standard deviations of the noise being

{0.01, 0.0325, 0.055, 0.0775, 0.1}.
Results are shown for the sample-based initialization as

well as the local initialization in Figure 1(c, f). Here we see

that when the noise variance is very low, there is virtually

no difference in performance between Algorithms 2 and

3. Indeed, when the variance is 1/d2 we observe that both

algorithms are able to near-perfectly recover the ground

truth, even from the sample-based initialization.

However, as we scale the noise variance, the gap between the

performance of the two algorithms resembles the behavior

seen in the experiments of Sections 4.1 and 4.2.

5. Conclusion

In summary, we have shown in Sections 3 and 4 that ap-

plying the standard frameworks for sparse coding to the

case of learning over-realized dictionaries can lead to over-

fitting the noise in the data. In contrast, we have also shown

that by carefully separating the data used for the decoding

and update steps in Algorithm 1 via masking, it is possible

to alleviate this overfitting problem both theoretically and

practically. Furthermore, the experiments of Section 4.3

demonstrate that these improvements obtained from mask-

ing are not at the cost of worse performance in the low noise

regime, indicating that a practitioner may possibly use Al-

gorithm 3 as a drop-in replacement for Algorithm 2 when

doing sparse coding.

Our results also raise several questions for exploration in

future work. Firstly, in both Theorem 3.6 and our experi-

ments we have constrained ourselves to the case of sparse

signals that follow Gaussian distributions. It is natural to

ask to what extent this is necessary, and whether our re-

sults can be extended (both theoretically and empirically)

to more general settings (we expect, at the very least, that

parts of Assumptions 3.1 and 3.5 can be relaxed). Addition-

ally, we have focused on sparse coding under hard-sparsity

constraints and using orthogonal matching pursuit, and it

would be interesting to study whether our ideas can be used

in other sparse coding settings.
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Beyond these immediate considerations, however, the intent

of our work has been to show that there is still likely much

to be gained from applying ideas from recent developments

in areas such as self-supervised learning to problems of a

more classical nature such as sparse coding. Our work has

only touched on the use of a single such idea (masking),

and we hope that future work looks into how other recently

popular ideas can potentially improve older algorithms.

Finally, we note that this work has been mostly theoretical

in nature, and as such do not anticipate any direct misuses

or negative impacts of the results.
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A. Full Proofs

A.1. Proof of Theorem 3.2

We first recall the setting of Theorem 3.2.

Assumption 3.1. Let A ∈ R
d×p be an arbitrary matrix with unit-norm columns satisfying (2k, δ)-RIP for k = o

(

d
log p

)

and δ = o(1), and suppose σ2
min(A) = Ω(p/d). We assume each measurement y is generated as y ∼ Az + ϵ, where z is a

random vector drawn from an arbitrary probability measure Pz on k-sparse vectors in R
p, and ϵ ∼ N (0, σ2Id) for some

σ > 0.

And now we prove:

Theorem 3.2. [Overfitting to Reconstruction Loss] Consider the data-generating model in Assumption 3.1 and define Λ(z)
to be:

Λ(z) = inf{t | Pz(∥z∥ ≥ t) ≤ 1/d}. (3.2)

Then for q = Ω(p2 max(dσ2,Λ(z)2)/σ2), there exists a B ∈ Rd×q such that L(B, k) ≤ L(A, k) − Ω(kσ2) and

dR(A,B) = Ω(σ2).

Proof. Our proof technique will be to first lower bound the gap L(A, k)− L(A, 2k), and then to construct a B matrix that

closely approximates the 2k-sparse combinations of the columns of A.

From the definition of L(B, k) we have that:

L(A, k)− L(A, 2k) = Ey

[

min
∥ẑ∥0=k

∥y −Aẑ∥2
]

− Ey

[

min
∥ẑ∥0=2k

∥y −Aẑ∥2
]

(A.1)

Now let ẑ∗(y) = argmin∥ẑ∥0=k ∥y −Aẑ∥ and S∗ = supp(ẑ∗), and further define:

z̃(y) = argmin
∥ẑ∥0=k

∥(y −Aẑ∗(y))−Aẑ∥ (A.2)

We will also use S̃ = supp(z̃(y)). For convenience, we will write ẑ∗ and z̃ when y is clear from context. Applying this

notation to Equation (A.1) gives:

L(A, k)− L(A, 2k) ≥ Ey[∥y −Aẑ∗∥2]− Ey[∥y −Aẑ∗ −Az̃∥2]
= Ey[2 ⟨y −Aẑ∗, Az̃⟩]− Ey[∥Az̃∥2]
= Ey[∥Az̃∥2] (A.3)

Where we obtained the last line above by using the fact that Az̃ is the orthogonal projection of y −Aẑ∗ on to the span of

AS̃ . Now using the fact that A is (2k, δ)-RIP we have that:

Ey[∥Az̃∥2] ≥ (1− δ)2Ey

[

∥z̃∥2
]

≥ (1− δ)2Ey

[

∥

∥

∥
A+

S̃
(y −Aẑ∗)

∥

∥

∥

2
]

≥ (1− δ)4Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

= (1− o(1))Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

(A.4)

Where above we used the fact that A+

S̃
= (AT

S̃
AS̃)

−1AT

S̃
and RIP to obtain

∥

∥

∥
(AT

S̃
AS̃)

−1
∥

∥

∥

op
≥ 1/(1 + δ), which led to the

penultimate step. It remains to compute (or lower bound) the expectation in Equation (A.4). Towards this end, we let S
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denote a (uniformly) random subset of size k from [p]. Then we have that (using Assumption 3.1):

Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

≥ Ey

[

ES

[

∥

∥AT
S (y −Aẑ∗)

∥

∥

2
]]

=
k

p
Ey

[

∥

∥AT (y −Aẑ∗)
∥

∥

2
]

≥ k

p
σ2
min(A)Ey

[

∥y −Aẑ∗∥2
]

= Ω

(

k

d
Ey

[

∥y −Aẑ∗∥2
]

)

(A.5)

Now the expectation in Equation (A.5) can be lower bounded in the same vein as Equation (A.4) (i.e. relying on the RIP

property). Below we use S∗
2k to denote the optimal support for the minimization problem.

Ey

[

∥y −Aẑ∗∥2
]

= Ez,ϵ

[

min
∥ẑ∥0=k

∥ϵ−A(ẑ − z)∥2
]

≥ Eϵ

[

min
∥ẑ∥0=2k

∥ϵ−Aẑ∥2
]

= Eϵ

[

∥ϵ∥2
]

− 2Eϵ

[〈

A+
S∗
2k
ϵ, ϵ

〉]

+ Eϵ

[

∥

∥

∥
A+

S∗
2k
ϵ
∥

∥

∥

2
]

≥ Eϵ

[

∥ϵ∥2
]

− (1 + o(1))Eϵ

[

∥

∥

∥
AT

S∗
2k
ϵ
∥

∥

∥

2
]

≥ dσ2 − (1 + o(1))2kEϵ

[

max
i∈[p]

(AT
i ϵ)

2

]

≥ dσ2 −O
(

kσ2 log p
)

= Ω(dσ2) (A.6)

Where above we used Lemma A.2 since the random variables (AT
i ϵ)

2 follows a scaled chi-square distribution with degree

of freedom 1, and for the last line we use k = o
(

d
log p

)

. Now putting Equations (A.3)-(A.6) together, we obtain:

L(A, k)− L(A, 2k) ≥ Ω(kσ2) (A.7)

Given the gap between L(A, k) and L(A, 2k) shown in Equation (A.7), our goal is now to construct a matrix B such that

we can approximate sufficiently large 2k-sparse combinations of the columns of A via Bẑ (where ẑ is k-sparse). We recall

from standard concentration of measure arguments (see Vershynin (2019) for details) that P(∥ϵ∥2 ≥ 2dσ2) ≤ exp(−Ω(d)).
Furthermore, by Assumption 3.1, ∥Az∥ ≤ Λ(z)(1+o(1)) with probability at least 1−1/d. Thus, we only need the columns

of B to approximate Ax for 2-sparse x (since we are interested in Bẑ and ẑ is k-sparse) and ∥Ax∥ ≤ γ1 max(σ
√
d,Λ(z))

for an appropriately large constant γ1 (as this will imply we get the same gap as Equation A.6).

To do this, we can construct ϵ-nets for each of the following sets (indexed by the different possible 2-sparse supports

S ⊂ [p]):

VS = {Ax | supp(x) = S, ∥Ax∥ ≤ γ1 max(σ
√
d,Λ(z))} (A.8)

Since A has p columns, we need Θ(p2) such ϵ-nets. As long as we choose ϵ = γ2σ
2 with γ2 a constant, we can approximate

2k-sparse combinations of the columns of A with error kγ2σ
2 using k-sparse combinations from these nets, which is

sufficient for our purposes given the result of Equation (A.7).

Now let the columns of B be the union of the ϵ-nets for the sets VS and define E = {∥Az∥+ ∥ϵ∥ ≤ γ1 max(σ
√
d,Λ(z))}.

After choosing γ2 to be sufficiently small, we then get from Equations (A.3)-(A.7) and the fact that P (E) ≥ 1− 1/d:

L(A, k)− L(B, k) ≥ Ey

[

∥Az̃∥2
∣

∣ E
]

P (E)− kγ2σ
2

= Ω(kσ2) (A.9)
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Noting that the ϵ-nets for each VS are of size O(max(dσ2,Λ(z)2)/σ2) from our choice of ϵ (once again, refer to Vershynin

(2019) for bounds on the size of ϵ-nets), this construction of B requires O(p2 max(dσ2,Λ(z)2)/σ2) columns. As we can

choose these columns to be different from those of A by γ2σ
2 (in norm), we obtain the desired result.

A.2. Proof of Theorem 3.6

Again, we first recall the setting of Theorem 3.6.

Assumption 3.5. Let A ∈ R
d×p be an arbitrary matrix such that there exists an M ⊂ [d] with PMA being µ-incoherent

with µ ≤ C/(2k − 1) for a universal constant C < 1. We assume each measurement y is generated as y ∼ Az + ϵ, where

[z]supp(z) ∼ N (0, σ2
zIk) with supp(z) drawn from an arbitrary probability distribution over all size-k subsets of [d], and

ϵ ∼ N (0, σ2Id) for some σ > 0.

In order to prove Theorem 3.6, we will need a result from Cai & Wang (2011), which we restate below.

Theorem A.1 (Theorem 9 in Cai & Wang (2011)). For y ∼ Az + ϵ with ϵ ∼ N (0, σ2I) and A ∈ R
d×p being µ-incoherent

with µ < 1/(2k − 1), let us define:

S =

{

Ai : i ∈ [p], |zi| ≥
2σ
√
k
√

2(1 + η) log p

1− (2k − 1)µ

}

(A.10)

Then OMP (as defined in Algorithm) selects a column from S at each step with probability at least 1− 1
pη

√
2 log p

for η ≥ 0.

Now we may prove:

Theorem 3.6. [Benefits of Masking] Consider the data-generating model in Assumption 3.5. For any non-empty mask

M ⊂ [d] such that PMA satisfies the µ-incoherence condition in the assumption, we have

lim
σz→∞

(

Lmask(A, k,M)−min
B

Lmask(B, k,M)
)

= 0 (3.5)

That is, as the expected norm of the signal Az increases, there exist minimizers B of Lmask such that dR(A,B)→ 0.

Proof. We have from the definition of Lmask that:

Lmask(B, k,M) = Ez,ϵ

[

∥

∥[Az][d]\M + [ϵ][d]\M − [Bẑ][d]\M
∥

∥

2
]

= Ez,ϵ

[

∥

∥[Az][d]\M − [Bẑ][d]\M
∥

∥

2
]

+ Eϵ

[

∥

∥[ϵ][d]\M
∥

∥

2
]

− Ez,ϵ

[〈

[Bẑ][d]\M , [ϵ][d]\M
〉]

= Ez,ϵ

[

∥

∥[Az][d]\M − [Bẑ][d]\M
∥

∥

2
]

+ (d− |M |)σ2

= Ez,ϵ

[

∥

∥P[d]\MAz − P[d]\MBẑ
∥

∥

2
]

+ (d− |M |)σ2 (A.11)

Since [Bẑ][d]\M is necessarily independent1 of [ϵ]d\M (by the construction of ẑ). Now the quantity in Equation A.11

depending on B looks almost identical to the prediction risk considered in linear regression.

With this in mind, let us define:

RM (ŷ) = Ez,ϵ

[

∥

∥P[d]\MAz − ŷ
∥

∥

2
]

(A.12)

Where ŷ is any estimator that depends only on [y]M (i.e. in the interest of brevity we are omitting writing ŷ([Az + ϵ]M )).
We can lower bound Equation (A.11) by analyzingRM (ŷ):

inf
ŷ
RM = inf

ŷ
Ez,ϵ

[

∥

∥P[d]\MAz − ŷ
∥

∥

2
]

= inf
ŷ
Ez,ϵ

[

Ez,ϵ

[

∥

∥P[d]\MAsupp(z)[z]supp(z) − ŷ
∥

∥

2
∣

∣

∣

∣

supp(z)

]]

(A.13)

1There is actually a slight technicality here; we need gOMP to be Borel measurable, which is the case because it consists of the
composition of Borel measurable functions.
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Equation (A.13) can be lower bounded by considering the infimum over the inner expectation with respect to estimators ŷ
that have access to [Az + ϵ]M and the support S∗ = supp(z). In this case, the Bayes estimator ŷ∗ is:

ŷ∗ = Ez,ϵ

[

P[d]\MAS∗ [z]S∗

∣

∣

∣

∣

PMAS∗ [z]S∗ + [ϵ]M

]

= P[d]\MAS∗Ez,ϵ

[

[z]S∗

∣

∣

∣

∣

PMAS∗ [z]S∗ + [ϵ]M

]

(A.14)

Since [z]S∗ ∼ N (0, σ2
zIk), we can explicitly compute the conditional expectation in Equation (A.14). Indeed, it is just the

ridge regression estimator:

ŷ∗ = P[d]\MAS∗

(

ΛT
S∗ΛS∗ +

1

σ2
z

Ik

)−1

ΛT
S∗(PMAS∗ [z]S∗ + [ϵ]M ) (A.15)

Where we have set ΛS∗ = PMAS∗ above to keep notation manageable. Thus, putting all of the above together we have:

Lmask(B, k,M) ≥ RM (ŷ∗) + (d− |M |)σ2 (A.16)

Now let ŷLS be the least squares estimator with access to the support supp(z):

ŷLS = P[d]\MAS∗Λ+
S∗(PMAS∗ [z]S∗ + [ϵ]M ) (A.17)

Then we have RM (ŷLS)→ RM (ŷ∗) as σ2
z →∞. If we can now show that RM (P[d]\MAẑ)→ RM (ŷLS), then we will

be done by Equation (A.16).

Showing this essentially boils down to controlling the error of ẑ when OMP fails to recover the true support S∗ (because

when it recovers the true support, P[d]\MAẑ is exactly ŷLS). We do this by appealing to Theorem A.1.

Recall that [ẑ]S = Λ+
S [y]M , where ΛS = PMAS with S = supp(ẑ) being the support predicted by OMP. Letting ẑLS

be the vector whose non-zero components correspond to [ẑLS ]S∗ = Λ+
S∗ [y]M , it will suffice to show ∥ẑLS − ẑ∥2 → 0 as

σz →∞, since then we will be done due to the fact that
∥

∥P[d]\MA
∥

∥

op
is constant with respect to σz .

Now letting z̃ = ẑ − Λ+
S [ϵ]M (i.e. z̃ represents the part of the signal z recovered by OMP), we have:

∥ẑLS − ẑ∥2 =
∥

∥z − z̃ + (Λ+
S∗ − Λ+

S )[ϵ]M
∥

∥

2

≤ ∥z − z̃∥2 +
∥

∥(Λ+
S∗ − Λ+

S )[ϵ]M
∥

∥

2
+ 2∥z − z̃∥

∥

∥(Λ+
S∗ − Λ+

S )[ϵ]M
∥

∥ (A.18)

We begin by first analyzing ∥z − z̃∥2. To do so, we introduce the notation [z]U,0 to represent the vector in R
k whose

non-zero entries correspond to [z]U for U ⊂ [d], |U | ≤ k. Then we can make use of the following decomposition of

ΛS∗ [z]S∗ :

ΛS∗ [z]S∗ = ΛS [z]S∗∩S,0 + ΛS∗ [z]S∗\S,0 (A.19)

From Equation (A.19) we get:

∥z − z̃∥2 =
∥

∥[z]S∗\S,0 − Λ+
SΛS∗ [z]S∗\S,0

∥

∥

2

≤
∥

∥[z]S∗\S,0
∥

∥

2
+
∥

∥(ΛT
SΛS)

−1ΛT
SΛS∗ [z]S∗\S,0

∥

∥

2
+ 2max

(

∥

∥[z]S∗\S,0
∥

∥

2
,
∥

∥Λ+
SΛS∗ [z]S∗\S,0

∥

∥

2
)

=
∑

i∈S∗\S
O(z2i ) (A.20)

where we passed from the penultimate to the last line by using the µ-incoherence of PMA to control the middle term in the

bound. With Equation (A.20) in hand, we are finally in a position to apply Theorem A.1. Let η = C ′ log σz for a sufficiently

large constant C ′. Now for convenience we define:

γ =
2σ
√
k
√

2(1 + η) log p

1− (2k − 1)µ
(A.21)
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which corresponds to the lower bound in Equation (A.10). Using Theorem A.1 with Equation (A.20) we obtain:

Ez,ϵ

[

∥z − z̃∥2
]

≤
∑

i∈S∗

P({|zi| ≥ γ} ∩ {i /∈ S})O(E[z2i ]) + P(|zi| < γ)O(γ2)

=
∑

i∈S∗

O

(

σ2
z

σC′

z

√
log p

+
γ3

σz

)

(A.22)

And clearly Equation (A.22) goes to 0 as σz → ∞. We can apply similar analysis techniques to the term
∥

∥(Λ+
S∗ − Λ+

S )[ϵ]M
∥

∥

2
in Equation (A.18) as well, but for this term we can afford to be less precise.

Namely, when S = S∗, this term is 0. The probability that S ̸= S∗ can be bounded as:

P(S ̸= S∗) ≤ O

(

k

σC′

z

√
log p

)

P(min
i∈S∗
|zi| ≥ γ)

= O

(

kγk

σC′+k
z

√
log p

)

(A.23)

where again above we used the naive bound for P(mini∈S∗ |zi| ≥ γ) (i.e. replacing the density with 1 and integrating from

±γ). Now we have:

Ez,ϵ

[

∥

∥(Λ+
S∗ − Λ+

S )[ϵ]M
∥

∥

2
]

≤ P(S ̸= S∗)Ez,ϵ

[

∥

∥Λ+
S∗ [ϵ]M

∥

∥

2
+
∥

∥Λ+
S [ϵ]M

∥

∥

2
+ 2max

(

∥

∥Λ+
S∗ [ϵ]M

∥

∥

2
,
∥

∥Λ+
S [ϵ]M

∥

∥

2
)]

≤ P(S ̸= S∗)O

(

kEϵ

[

max
i∈[p]

(AT
i ϵ)

2
]

)

≤ P(S ̸= S∗)O(kσ2 log p) (A.24)

Putting together Equations (A.22) and (A.24) shows that Equation (A.18) goes to 0 as σz →∞, which proves the result.

A.3. Auxiliary Lemmas

Lemma A.2. Let X1, · · · , Xn be n chi-square random variables with 1 degree of freedom, then

E

[

max
i∈[n]

Xi

]

= O(log n).

Proof. We bound the maximum via the moment-generating function.

From Jensen’s inequality, for t ∈ (0, 1
2 ), we have

exp

(

tE

[

max
i∈[n]

Xi

])

≤ E

[

exp

(

tmax
i∈[n]

Xi

)]

≤
n
∑

i=1

E
[

etXi
]

= n(1− 2t)−
1
2 .

Setting t = 1
3 gives us

E

[

max
i∈[n]

Xi

]

≤ 3 log n− 3

2
log

1

3
= O(log n).

16


