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Abstract

Sparse coding, which refers to modeling a signal
as sparse linear combinations of the elements of
a learned dictionary, has proven to be a success-
ful (and interpretable) approach in applications
such as signal processing, computer vision, and
medical imaging. While this success has spurred
much work on provable guarantees for dictionary
recovery when the learned dictionary is the same
size as the ground-truth dictionary, work on the
setting where the learned dictionary is larger (or
over-realized) with respect to the ground truth is
comparatively nascent. Existing theoretical re-
sults in this setting have been constrained to the
case of noise-less data. We show in this work
that, in the presence of noise, minimizing the
standard dictionary learning objective can fail to
recover the elements of the ground-truth dictio-
nary in the over-realized regime, regardless of
the magnitude of the signal in the data-generating
process. Furthermore, drawing from the grow-
ing body of work on self-supervised learning, we
propose a novel masking objective for which re-
covering the ground-truth dictionary is in fact op-
timal as the signal increases for a large class of
data-generating processes. We corroborate our
theoretical results with experiments across several
parameter regimes showing that our proposed ob-
jective also enjoys better empirical performance
than the standard reconstruction objective.

1. Introduction

Modeling signals as sparse combinations of latent variables
has been a fruitful approach in a variety of domains, and
has been especially useful in areas such as medical imag-
ing (Zhang et al., 2017), neuroscience (Olshausen & Field,
2004), and genomics (Tibshirani & Wang, 2008), where
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learning parsimonious representations of data is of high
importance. The particular case of modeling data in some
high-dimensional space R? as sparse linear combinations
of a set of p vectors in R? (referred to as a dictionary) has
received significant attention over the past two decades,
leading to the development of many successful algorithms
and theoretical frameworks.

In this case, the typical assumption is that we are given
data y; generated as y; ~ Az; + €;, where A € R¥*P is
a ground truth dictionary, z; is a sparse vector, and ¢; is
some potentially non-zero noise. When the dictionary A
is known a priori, the goal of modeling is to recover the
sparse representations z;, and the problem is referred to as
compressed sensing. However, in many applications we do
not have access to the ground truth A, and instead hope to
simultaneously learn a dictionary B that approximates A
along with learning sparse representations of the data.

This problem is referred to as sparse coding or sparse dic-
tionary learning, and is the focus of this work. One of the
primary goals of analyses of sparse coding is to provide
provable guarantees on how well one can hope to recover
the ground truth dictionary A, both with respect to specific
algorithms and information theoretically. Prior work on
such guarantees has focused almost exclusively on the set-
ting where the learned dictionary B also belongs to R?*P
(same space as the ground truth), which is in line with the
fact that recovery error is usually formulated as some form
of the Frobenius norm of the difference between B and A.

Unfortunately, in practice, one does not necessarily have
access to the structure of A, and it is thus natural to consider
what happens (and how to formulate recovery error) when
learning a B € R¥*?" with p/ # p. Of particular interest is
the case where p’ > p, where it is possible to recover A as
a sub-dictionary of B.

The study of this over-realized setting was recently taken
up in the work of Sulam et al. (2020), in which the authors
showed (perhaps surprisingly) that a modest level of over-
realization can be empirically and theoretically beneficial.

However, the results of Sulam et al. (2020) are restricted
to the noise-less setting where data is generated simply as
y; ~ Az;. We thus ask the following questions:
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Does over-realized sparse coding run into pitfalls
when there is noise in the data-generating pro-
cess? And if so, is it possible to prevent this by
designing new sparse coding algorithms?

1.1. Main Contributions and Outline

In this work, we answer both of these questions in the affir-
mative. After providing the necessary background on sparse
coding in Section 2, we show in Theorem 3.2 of Section 3
that, as intuition would lead one to suspect, using standard
sparse coding algorithms for learning over-realized dictio-
naries in the presence of noise leads to overfitting. In fact,
our result shows that even if we allow the algorithms access
to infinitely many samples and allow for solving NP-hard
optimization problems, the learned dictionary B can still
fail to recover A.

The key idea behind this result is that existing approaches
to sparse coding rely largely on a two-step procedure (out-
lined in Algorithm 1) of solving the compressed sensing
problem Bz = y; for a learned dictionary B, and then up-
dating B based on a reconstruction objective ||y; — B2||>.
However, because we force 2 to be sparse, by choosing B to
have columns that correspond to linear combinations of the
columns of A, we can effectively “cheat” and get around the
sparsity constraint on 2. In this way, it can be optimal for re-
constructing the data y; to not recover A as a sub-dictionary
of B.

On the other hand, we show in Theorem 3.6 that for a large
class of data-generating processes, it is possible to prevent
this kind of cheating in B by performing the compressed
sensing step on a subset of the dimensions y; and computing
the reconstruction loss on the complement of that subset.
This is the idea of masking that has seen great success in
large language modeling (Devlin et al., 2019), and our result
shows that it can lead to provable benefits even in the context
of sparse coding.

Finally, in Section 4 we conduct experiments comparing
the standard sparse coding approach to our masking ap-
proach across several parameter regimes. In all of our ex-
periments, we find that the masking approach leads to better
ground truth recovery, with this being more pronounced as
the amount of over-realization increases.

1.2. Related Work

Compressed Sensing. The seminal works of Candes et al.
(2006), Candes & Tao (2006), and Donoho (2006) estab-
lished conditions on the dictionary A € R4*P, even in the
case where p > d (the overcomplete case), under which
it is possible to recover (approximately and exactly) the
sparse representations z; from Az; + ¢;. In accordance
with these results, several efficient algorithms based on con-

vex programming (Tropp, 2006; Yin et al., 2008), greedy
approaches (Tropp & Gilbert, 2007; Donoho et al., 2006;
Efron et al., 2004), iterative thresholding (Daubechies et al.;
Maleki & Donoho, 2010), and approximate message passing
(Donoho et al., 2009; Musa et al., 2018) have been devel-
oped for solving the compressed sensing problem. There
has also been work on modifying these approaches to in-
clude a cross-validation step (Boufounos et al., 2007; Ward,
2009), which is similar to the idea of our masking objective.
For comprehensive reviews on the theory and applications
of compressed sensing, we refer the reader to the works of
Candes & Wakin (2008) and Duarte & Eldar (2011).

Sparse Coding. Different framings of the sparse coding
problem exist in the literature (Krause & Cevher, 2010; Bach
etal., 2008; Zhou et al., 2009), but the canonical formulation
involves solving a non-convex optimization problem. De-
spite this hurdle, a number of algorithms (Engan et al., 1999;
Aharon et al., 2006a; Mairal et al., 2010; Arora et al., 2013;
2014; 2015) have been established to (approximately) solve
the sparse coding problem under varying conditions, dating
back at least to the groundbreaking work of Olshausen &
Field (1997) in computational neuroscience. A summary
of convergence results and the conditions required on the
data-generating process for several of these algorithms may
be found in Table 1 of Gribonval et al. (2014).

In addition to algorithm-specific analyses, there also exists a
complementary line of work on characterizing the optimiza-
tion landscape of dictionary learning. This type of analysis
is carried out by Gribonval et al. (2014) in the general set-
ting of an overcomplete dictionary and noisy measurements
with possible outliers, extending the previous line of work
of Aharon et al. (2006b), Gribonval & Schnass (2010), and
Geng et al. (2011).

However, as mentioned earlier, these theoretical results rely
on learning dictionaries that are the same size as the ground
truth. To the best of our knowledge, the over-realized case
has only been studied by Sulam et al. (2020), and our work
is the first to analyze over-realized sparse coding in the
presence of noise.

Self-Supervised Learning. Training models to predict
masked out portions of the input data is an approach to
self-supervised learning that has led to strong empirical
results in the deep learning literature (Devlin et al., 2019;
Yang et al., 2019; Brown et al., 2020; He et al., 2022). This
success has spurred several theoretical studies analyzing
how and why different self-supervised tasks can be used to
improve model training (Tsai et al., 2020; Lee et al., 2021;
Tosh et al., 2021). The most closely related works to our
own in this regard have studied the use of masking objec-
tives in autoencoders (Cao et al., 2022; Pan et al., 2022) and
hidden Markov models (Wei et al., 2021).
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2. Preliminaries and Setup

We first introduce some notation that we will use throughout
the paper.

Notation. Given n € N, we use [n] to denote the set
{1,2,...,n}. For a vector x, we write ||z|| for the L£o-norm
of x and ||z||, for the number of non-zeros in x. We say
a vector x is k-sparse if ||z, < k and we use supp(z) to
denote the support of x. For a vector x € R? and a set
S C [d], we use [z]s € RISI to denote the restriction of
to those coordinates in S.

For a matrix A, we use A; to denote the i-th column of A.
We write || A[|  for the Frobenius norm of A, and || A[ ,, for
the operator norm of A, and we write oyin (A4) and omax(A)
for the minimum and maximum singular values of A. For
amatrix A € R?% and S C [g], we use Ag € R¥*I5 o
refer to A restricted to the columns whose indices are in
S. We use I; to denote the d x d identity matrix. Finally,
for M C [d], we use Py; € RIMI*4 (o refer to the matrix
whose action on x is Py;z = [z]as. Note that fora d x ¢
matrix A, Py; A would give a subset of rows of A, which is
different from the earlier notation Ag which gives a subset
of columns.

2.1. Background on Sparse Coding

We consider the sparse coding problem in which we are
given measurements y € R generated as Az + ¢, where
A € R¥P is a ground-truth dictionary, z € RP? is a k-
sparse vector distributed according to a probability measure
P., and € € R? is a noise term with i.i.d. entries. The goal
is to use the measurements ¥ to reconstruct a dictionary B
that is as close as possible to the ground-truth dictionary A.

In the case where B has the same dimensions as A, one may
want to formulate this notion of “closeness” (or recovery
error) as || A — B||5.. However, directly using the Frobenius
norm of (A — B) is too limited, as it is sufficient to recover
the columns of A up to permutations and sign flips. There-
fore, a common choice of recovery error (Gribonval et al.,
2014; Arora et al., 2015) is the following:

in||[A — BP|> 2.1
min | Ir @D

where I1 is the set of orthogonal matrices whose entries are
0 or £1.

In the over-realized setting, when B € RIXP" with P > p,
Equation (2.1) no longer makes sense as A and B do not
have the same size. In this case, one can generalize Equation
(2.1) to measure the distance between each column of A and
the column closest to it in B (up to change of sign). This
notion of recovery was studied by Sulam et al. (2020), and

we use the same formulation in this work:

p

dr(A,B) £ }Z min

| 4i = cB;||”
P = j€lplee{-1.1}

2.2)

Note that Equation (2.2) introduced the coefficient 1/p in
the recovery error and thus corresponds to the average dis-
tance between A; and its best approximation in B. Also,
Equation (2.2) only allows sign changes, even though for
reconstructing Az, it is sufficient to recover the columns of
A up to arbitrary scaling. In our experiments we enforce
A and B to have unit column norms so a sign change suf-
fices; in theory one can always modify the B matrix to have
correct norm so it also does not change our results.

Given access to only measurements y, the algorithm can-
not directly minimize the recovery error dgr(A4, -). Instead,
sparse coding algorithms often seek to minimize the follow-
ing surrogate loss:

UB) =B, | min |ly - B2|]” + h(2) (2.3)

ZERP

where h is a sparsity-promoting penalty function. Typical
choices of & include hard sparsity (h(2) = 0 if Z is k-sparse
and h(2) = oo otherwise) as well as the £, penalty h(2) =
||Z]|;. While hard sparsity is closer to the assumption on the
data-generating process, it is well-known that optimizing
under exact sparsity constraints is NP-hard in the general
case (Natarajan, 1995). When h(2) = ||2]|; is used, the

learning problem is also known as basis pursuit denoising
(Chen & Donoho, 1994) or Lasso (Tibshirani, 1996).

Equation (2.3) is the population loss one wishes to minimize
when learning a dictionary B. In practice, sparse coding
algorithms must work with a finite number of measurements
Y1,Y2,-..,Y, obtained from the data-generating process
and instead minimize the empirical loss /(B):

UB) =) min [ly; - B> +h(2)  (24)
i—1 ~<R?

2.2. Sparse Coding via Orthogonal Matching Pursuit

Most existing approaches for optimizing Equation (2.4) can
be categorized under the general alternating minimization
approach described in Algorithm 1. For simplicity we state
Algorithm 1 in terms of a single input signal y € R?, but in
practice the dictionary update in Algorithm 1 is performed
after batching over several input signals.

At iteration ¢, Algorithm 1 performs a decoding/compressed
sensing step using the current learned dictionary B®*) and
the input data y. As mentioned in Section 1.2, there are sev-
eral well-studied algorithms for this decoding step. Because
we are interested in enforcing a hard-sparsity constraint, we
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Algorithm 1 Alternating Minimization Framework
Input: Data y € R%, Dictionary B®) ¢ R4*?’
Decoding Step: Solve B(Y); = y for k-sparse 2
Update Step: Update B®) to B(**1) by performing a
gradient step on loss computed using B(")2 and y

restrict our attention to algorithms that are guaranteed to
produce a k-sparse representation in the decoding step.

We thus focus on Orthogonal Matching Pursuit (OMP) (Mal-
lat & Zhang, 1993; Rubinstein et al., 2008), which is a
simple greedy algorithm for the decoding step. The basic
procedure of OMP is to iteratively expand a subset 7' C [p/]
of atoms (until |T'| = k) by considering the correlation be-
tween the unselected atoms in the current dictionary B(*)

2
‘y — Bg )2 )
(i.e., the least squares solution using atoms in 7). A
more precise description of the algorithm can be found
in Rubinstein et al. (2008). Moving forward, we will use
gomp(y, B, k) to denote the k-sparse vector 2 € RP ob-

tained by running the OMP algorithm on an input dictionary
B and a measurement y.

and the residual (y — Bg ) argmingcp|r|

2.3. Conditions on the Data-Generating Process

For the data-generating process y ~ Az + ¢, it is in general
impossible to successfully perform the decoding step in
Algorithm 1 even with access to the ground-truth dictionary
A. As aresult, several conditions have been identified in the
literature under which it is possible to provide guarantees
on the success of decoding the sparse representation z. We
recall two of the most common ones (Candes & Tao, 2005).

Definition 2.1. [Restricted Isometry Property (RIP)] We say
that a matrix A € R satisfies (s, &, )-RIP if the following
holds for all s-sparse x € RP:

(1= al” < [lAz|* < (1 +89)[|l=]* (2.5
Definition 2.2. [p-Incoherence] A matrix A € RY*P with
unit norm columns is p-incoherent if:

[(Ai, Aj)| < p foralli # j (2.6)

These two properties are closely related. For example, as
a consequence of the Gershgorin circle theorem, (d5/s)-
incoherent matrices must satisfy (s, d5)-RIP.

Given the prominence of RIP and incoherence conditions in
the compressed sensing and sparse coding literature, there
has been a large body of work investigating families of
matrices that satisfy these conditions. We refer the reader
to Baraniuk et al. (2008) for an elegant proof that a wide
class of random matrices in R¥*P (i.e. subgaussian) satisfy

(k, §)-RIP with high probability depending on 4, &, p, and
d. For an overview of deterministic constructions of such
matrices, we refer the reader to Bandeira et al. (2012) and
the references therein.

3. Main Results

Having established the necessary background, we now
present our main results. Our first result shows that minimiz-
ing the population reconstruction loss with a hard-sparsity
constraint can lead to learning a dictionary B that is far from
the ground truth. We specifically work with the loss defined
as:

L(B,k) =E, | min |y — B2|?

T Lizlo<k G-1)

Note that in the definition of L(B, k), we are considering an
NP-hard optimization problem (exhaustively searching over
all k-sparse supports). We could instead replace this exhaus-
tive optimization with an alternative least-squares-based
approach (so long as it is at least as good as performing least
squares on a uniformly random choice of k-sparse support),
and our proof techniques for Theorem 3.2 would still work.
We consider this version only to simplify the presentation.

We now show that, under appropriate settings, there exists a
dictionary B whose population loss L(B, k) is smaller than
that of A, while dr(A, B) is bounded away from 0 by a
term related to the noise in the data-generating process.

Assumption 3.1. Let A € R?*P be an arbitrary matrix with

d
(log )
and § = o(1), and suppose 02, (A) = Q(p/d). We assume
each measurement y is generated as y ~ Az + ¢, where
z is a random vector drawn from an arbitrary probability
measure P, on k-sparse vectors in R?, and € ~ N (0, 021,)

for some o > 0.

unit-norm columns satisfying (2k, §)-RIP for k = o

Theorem 3.2. [Overfitting to Reconstruction Loss] Con-
sider the data-generating model in Assumption 3.1 and de-
fine A(z) to be:

A(z) = inf{t | B,(|l]| > t) < 1/d}.  (3.2)

1
Then for ¢ = Q(p? max(do?, A(2)?)/0?), there exists a
B € R4 such that L(B,k) < L(A, k) — Q(ko?) and
dr(A, B) = Q(c?).

Proof Sketch. The key idea is to first determine how much
the loss can be decreased by expanding from k-sparse com-
binations of the columns of A to 2k-sparse combinations,
i.e., lower bound the gap between L(A, k) and L(A, 2k).
After this, we can construct a dictionary B whose columns
form an e-net (with € = ¢2) for all 2-sparse combinations
of columns of A. Any 2k-sparse combination of columns in
A can then be approximated as a k-sparse combination of
columns in B, which is sufficient for proving the theorem.
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Remark 3.3. Before we discuss the implications of Theorem
3.2, we first verify that Assumption 3.1 is not vacuous, and
in fact applies to many matrices of interest. This follows
from a result of Rudelson & Vershynin (2008), which shows
that after appropriate rescaling, rectangular matrices with
i.i.d. subgaussian entries satisfy the singular value condition
in Assumption 3.1. Furthermore, such matrices will also
satisfy the RIP condition so long as k is not too large relative
to d and p, as per Baraniuk et al. (2008) as discussed in the
previous section.

Theorem 3.2 shows that learning an appropriately over-
realized dictionary fails to recover the ground truth indepen-
dent of the distribution of z. This means that even if we let
the norm of the signal Az in the data-generating process be
arbitrarily large, with sufficient over-realization we may still
fail to recover the ground-truth dictionary A by minimizing
L(B,k).

We also observe that the amount of over-realization neces-
sary in Theorem 3.2 depends on how well z ~ [P, can be
bounded with reasonably high probability. If z is almost
surely bounded (as is frequently assumed), we can obtain
the following cleaner corollary of Theorem 3.2.

Corollary 3.4. Consider the same settings as Theorem 3.2
with the added stipulation that P,(||z|| < C) = 1 for a
universal constant C. Then for ¢ = Q(p*d), there exists a
B € R such that dr(A, B) = Q(0?) and L(B, k) <
L(A, k) — Q(ka?).

The reason that we can obtain a smaller population loss than
the ground truth in Theorem 3.2 is because we can make
use of the extra capacity in B to overfit the noise € in the
data-generating process. To prevent this, our key idea is
to perform the decoding step BZ = y on a subset of the
dimensions of y - which we refer to as the unmasked part of
y - and then evaluate the loss of B using the complement of
that subset (the masked part of y). Intuitively, because each
coordinate of the noise e is independent, a dictionary B that
well-approximates the noise in the unmasked part of y will
have no benefit in approximating the noise in the masked
part of y.

We can formalize this as the following masking objective:

Lyask(B,k, M) =E, [H[y][d]\M - [Bé]w]\MHQ} (3.3)

where 2([y]ar) = gomp([y]ar, Pr B, k) (34

In defining L,, 451, we have opted to use gomp in the inner
minimization step, as opposed to the exhaustive argmin in
the definition of L. Similar to the discussion earlier, we
could have instead used any other approach based on least
squares to decode Z (including the exhaustive approach),

so long as we have guarantees on the probability of failing
to recover the true code z given access to the ground-truth

dictionary A. This choice of using OMP is mostly to tie our
theory more closely with our experiments.

Now we present our second main result which shows, in
contrast to Theorem 3.2, that optimizing L,,,4s; prevents
overfitting noise (albeit in a different but closely related
setting).

Assumption 3.5. Let A € R?*P be an arbitrary matrix such
that there exists an M C [d] with Pys A being u-incoherent
with g < C/(2k — 1) for a universal constant C' < 1. We
assume each measurement y is generated as y ~ Az + e,
where [2]supp(2) ~ N (0, 021},) with supp(z) drawn from
an arbitrary probability distribution over all size-k subsets
of [d], and € ~ N(0, 021,) for some o > 0.

Theorem 3.6. [Benefits of Masking] Consider the data-
generating model in Assumption 3.5. For any non-empty
mask M C [d] such that Py A satisfies the u-incoherence
condition in the assumption, we have

lim (Lmask(A, k, M) — min Lynas (B, k, M)) —0
0, —00 B
(3.5)

That is, as the expected norm of the signal Az increases,
there exist minimizers B of Lyqsk such that dr(A, B) — 0.

Proof Sketch. The proof proceeds by expanding out
Linask(B, k, M) and using the fact that [B2*](g\ as is in-
dependent of [e](4\ as to obtain a quantity that closely re-
sembles the prediction risk considered in analyses of linear
regression. From there we show that the Bayes risk is lower
bounded by the risk of a regularized least squares solution
with access to a support oracle. We then rely on a result of
Cai & Wang (2011) to show that gomp([y]as) recovers the
support of z with increasing probability as o, — oo, and
hence its risk converges to the aforementioned prediction
risk.

Remark 3.7. As before, so long as the mask M is not too
small (i.e. Q(kpolylog(p))), matrices with i.i.d. subgaus-
sian entries will satisfy the assumptions on A in Assumption
3.5. In particular, the set of ground truth dictionaries satis-
fying Assumptions 3.1 and 3.5 is non-trivial, once again by
results in Rudelson & Vershynin (2008).

Comparing Theorem 3.6 to Theorem 3.2, we see that approx-
imate minimizers of L,,,s; can achieve arbitrarily small
recovery error, so long as the signal Az is large enough;
whereas for L, there always exist minimizers whose recov-
ery error is bounded away from 0. We note that having the
expected norm of the signal be large is effectively necessary
to hope for recovering the ground truth in our setting, as in
the presence of Gaussian noise there is always some non-
zero probability that the decoding step can fail. Full proofs
of Theorems 3.2 and 3.6 can be found in Section A of the
Appendix.
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4. Experiments

In this section, we examine whether the separation between
the performance of sparse coding with or without mask-
ing (demonstrated by Theorems 3.2 and 3.6) manifests in
practice. Code for the experiments in this section can be
found at: https://github.com/2014mchidamb/
masked-sparse—-coding—icml.

For our experiments, we need to make a few concessions
from the theoretical settings introduced in Sections 2.1 and
2.3. Firstly, we cannot directly optimize the expectations
in L and L, as defined in Equations (3.1) and (3.3), so
we instead optimize the corresponding empirical versions
defined in the same vein as Equation (2.4). Another issue is
that the standard objective L requires solving the optimiza-
tion problem minyz < ||y — Bz|?, which is NP-hard in
general. In order to experiment with reasonably large values
of d, p, and p’ and to be consistent with the decoding step
in L,,q5%, we thus approximately solve the aforementioned
optimization problem using OMP.

Algorithm 2 Algorithm for Optimizing L

Input: Data {y1,...,yr}, Dictionary B(O) e R4*?',
Learning Rate n € R™
fort =0to7T — 1do

z 4 gOMP(yH-la BW®)

BUD  BO — 0¥ o ||yess — BO2||”
B+ Projsd—lB(t+1)
end for

Algorithm 3 Algorithm for Optimizing L, 45k
Input: Data {yi,...,yr}, Dictionary B ¢ RIxP'
Learning Rate 7 € R, Mask Size m € [d]
fort=0to7T — 1do
M < Uniformly random subset of size m from [d]
Z 4= gOMP([yt-H]M B)

(t+1) < B — T]VB(f) H yf+1 Me — [B(t)Z]M
B+ PmJSdﬂB@H)
end for

The approaches for optimizing L and L, 45, given n sam-
ples from the data-generating process are laid out in Algo-
rithms 2 and 3, in which we use Projg.—: B to denote the
result of normalizing all of the columns of B. We also use
M¢ as a shorthand in Algorithm 3 to denote [d] \ M.

We point out that Algorithm 3 introduces some features
that were not present in the theory of the masking objec-
tive; namely, in each iteration, we randomly sample a new
mask of a pre-fixed size. This is because if we were to
run gradient descent using a single, fixed mask M at each
iteration, as we don’t differentiate through the OMP steps,
the gradient with respect to B®*) computed on the error

|| A\M — [Bz] [d]\ M H would be non-zero only for those
rows of B correspondlng to the indices [d]\ M. To avoid this
issue, we sample new masks in each iteration so that each
entry of B can be updated. There are alternative approaches
that can achieve similar results; i.e. deterministically cycling
through different masks, but they have similar performance.

While we will analyze the performance of Algorithms 2 and
3 across several different experimental setups over the next
few subsections, we describe the following facets shared
across all setups. We generate a dataset of n = 1000 sam-
plesy; = Az; +¢€;, where A € R4*P ig a standard Gaussian
ensemble with normalized columns, the z; have uniformly
random k-sparse supports whose entries are i.i.d. A(0, 1),
and the ¢; are mean zero Gaussian noise with some fixed
variance (which we will vary in our experiments). We also
normalize the z; so as to constrain ourselves to the bounded-
norm setting of Corollary 3.4. In addition to the 1000 sam-
ples constituting the dataset, we also assume access to a
held-out set of p’ samples from the data-generating process
for initializing the dictionary B(®) € R%x¥',

For training, we use batch versions of Algorithms 2 and 3
in which we perform gradient updates with respect to the
mean losses computed over {y1, ..., yp} with B = 200 as
the batch size. For the actual gradient step, we use Adam
(Kingma & Ba, 2014) with its default hyperparameters of
B1 = 0.9, B2 = 0.999 and a learning rate of n = 0.001, as
we found Adam trains significantly faster than SGD (and we
ran into problems when using large learning rates for SGD).
We train for 500 epochs (passes over the entire dataset) for
both Algorithms 2 and 3. For Algorithm 3, we always use
a mask size of d — |d/10], which we selected based off of
early experiments. We ensured that, even for this fairly large
mask size, the gradient norms for both L and L, were
of the same order in our experiments and that 500 epochs
were sufficient for training.

We did not perform extensive hyperparameter tuning, but
we found that the aforementioned settings performed better
than the alternative choices we tested for both algorithms
across all experimental setups. Our implementation is in
PyTorch (Paszke et al., 2019), and all of our experiments
were conducted on a single P100 GPU.

4.1. Scaling Over-realization

We first explore how the choice of p’ for the learned dic-
tionary B affects the empirical performance of Algorithms
2 and 3.6 when the other parameters of the problem re-
main fixed. Theorem 3.2 and Corollary 3.4 indicate that the
performance of Algorithm 2 should suffer as we scale p’
relative to d and p.

In order to test whether this is actually the case in prac-
tice, we consider samples generated as described above with
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Figure 1. Comparison of Algorithm 2 (Baseline) and Algorithm 3 (Masking) under the settings of Sections 4.1, 4.2, and 4.3 (from left to
right). Each curve represents the mean of 5 training runs, with the surrounded shaded area representing one standard deviation.

A € R¥*P for d = 100, p = 200, and ||z||, = k = 5 fixed,
while scaling the number of atoms p’ in B from p’ = p
(exactly realized) to p’ = n (over-realized and overparame-
terized). We choose ¢; ~ N(0,1/d), which is a high noise
regime as the expected norm of the noise €; will be compa-
rable to that of the signal Az;. To make it computationally
feasible to run several trials of our experiments, we con-
sider the p’ values {200, 400, 600, 800,1000} and do not
consider more fine-grained interpolation between p and n.

For the training process, we consider two different initial-
ization of B(?). In the first case, we initialize B(®) to have
columns corresponding to the aforementioned set of held-
out p’ (normalized) samples from the data-generating pro-
cess, as this is a standard initialization choice that has been
known to work well in practice (Arora et al., 2015). How-
ever, this initialization choice in effect corresponds to a
dataset of n + p’ samples, and it is fair to ask whether this
initialization benefit is worth the sample cost relative to a
random initialization. Our initial experiments showed that
this was indeed the case, i.e. random initialization with
access to p’ additional samples did not perform better, so we
focus on this sample-based initialization. That being said,
we did not find the ordering of the performances of Algo-
rithms 2 and 3 sensitive to the initializations we considered,
only the final absolute performance in terms of dg(A, B).

In addition to this purely sample-based initialization, we
also consider a “local” initialization of B() to the ground
truth A itself concatenated with p’ — p normalized samples.
This is obviously not intended to be a practical initialization;
the goal here is rather to analyze the extent of overfitting to
the noise ¢; in the dataset for both algorithms. Namely, we
expect that Algorithm 2 will move further away from the
ground truth than Algorithm 3.

The results for training using these initializations for both
algorithms and then computing the final dictionary recovery
errors dr(A, B) are shown in Figure 1(a, d). We use co-
sine distance when reporting the error d(A, B) since the
learned dictionary B also has normalized columns, so Eu-
clidean distance only changes the scale of the error curves
and not their shapes.

For both choices of initialization, we observe that Algorithm
3 outperforms Algorithm 2 as p’ increases, with this gap
only becoming more prominent for larger p’. Furthermore,
we find that recovery error actually worsens for Algorithm
2 for every choice of p’ > p for both initializations in our
setting. While this is possibly unsurprising for initializing
at the ground truth, it is surprising for the sample-based
initialization which does not start at a low recovery error.
On the other hand, training using Algorithm 3 improves the
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recovery error from initialization when using sample-based
initialization for every choice of p’ except p’ = n, which
again corresponds to the overparameterized regime in which
it is theoretically possible to memorize every sample as an
atom of B.

Additionally, we also see that the performance of Algorithm
3 is much less sensitive to the level of over-realization in
B. When training from local initialization, Algorithm 3 re-
tains a near-constant level of error/overfitting as we scale p’.
Similarly, when training from sample initialization, perfor-
mance does not degrade as we scale p’, and in fact improves
initially with a modest level of over-realization.

This improvement up to a certain amount of over-realization
(in our case p’ = 2p) is seen even in the performance of
Algorithm 2 for sample initialization (although note that
while the recovery error is better for p’ = 2p compared to
p’ = p, training still makes the error worse than initialization
for Algorithm 2). A similar phenomenon was observed in
Sulam et al. (2020) in the setting where y; = Az; (no
noise), and we find it interesting that the phenomenon is
(seemingly) preserved even in the presence of noise. We
do not investigate the optimal level of over-realization any
further, but believe it would be a fruitful direction for future
work.

4.2. Scaling All Parameters

The experiments of Section 4.1 illustrate that for the fixed
choices of d, p, and k that we used, scaling the over-
realization of B leads to rapid overfitting in the case of
Algorithm 2, while Algorithm 3 maintains good perfor-
mance. To verify that this is not an artifact of the choices
of d, p, and k that we made, we also explore what happens
when over-realization is kept at a fixed ratio to the other
setting parameters while they are scaled.

For these experiments, we consider A € R¥*P for d €
{100, 150,200,250} and scale p as p = 2d and k as
k = |d/20] to (approximately) preserve the ratio of atoms
and sparsity to dimension from the previous subsection.
We choose to scale p’ as p’ = 2p since that was the best-
performing setting (for the baseline) from the experiments
of Figure 1. We keep the noise variance at 1/d to stay in the
relatively high noise regime.

As before, we consider a sample-based initialization as well
as a local initialization near the ground truth dictionary
A. The results for both Algorithms 2 and 3 under the de-
scribed parameter scaling are shown in Figure 1(b, e). Once
again we find that Algorithm 3 has superior recovery error,
with this gap mostly widening as the parameters are scaled.
However, unlike the case of fixed d, p, and k, this time the
performance of Algorithm 3 also degrades with the scaling.
This is to be expected, as increasing p leads to more ground

truth atoms that need to be recovered well in order to have
small dr(A, B).

4.3. Analyzing Different Noise Levels

The performance gaps shown in the plots of Figure 1(a, b,
d, e) are in the high noise regime, and thus it is fair to ask
whether (and to what extent) these gaps are preserved at
lower noise settings. We thus revisit the settings of Section
4.1 (choosing d, p, and k to be the same) and fix p’ = 1000
(the maximum over-realization we consider). We then vary
the variance of the noise ¢; from 1/d? to 1/d linearly, which
corresponds to the standard deviations of the noise being
{0.01,0.0325,0.055,0.0775,0.1}.

Results are shown for the sample-based initialization as
well as the local initialization in Figure 1(c, f). Here we see
that when the noise variance is very low, there is virtually
no difference in performance between Algorithms 2 and
3. Indeed, when the variance is 1/ d? we observe that both
algorithms are able to near-perfectly recover the ground
truth, even from the sample-based initialization.

However, as we scale the noise variance, the gap between the
performance of the two algorithms resembles the behavior
seen in the experiments of Sections 4.1 and 4.2.

5. Conclusion

In summary, we have shown in Sections 3 and 4 that ap-
plying the standard frameworks for sparse coding to the
case of learning over-realized dictionaries can lead to over-
fitting the noise in the data. In contrast, we have also shown
that by carefully separating the data used for the decoding
and update steps in Algorithm 1 via masking, it is possible
to alleviate this overfitting problem both theoretically and
practically. Furthermore, the experiments of Section 4.3
demonstrate that these improvements obtained from mask-
ing are not at the cost of worse performance in the low noise
regime, indicating that a practitioner may possibly use Al-
gorithm 3 as a drop-in replacement for Algorithm 2 when
doing sparse coding.

Our results also raise several questions for exploration in
future work. Firstly, in both Theorem 3.6 and our experi-
ments we have constrained ourselves to the case of sparse
signals that follow Gaussian distributions. It is natural to
ask to what extent this is necessary, and whether our re-
sults can be extended (both theoretically and empirically)
to more general settings (we expect, at the very least, that
parts of Assumptions 3.1 and 3.5 can be relaxed). Addition-
ally, we have focused on sparse coding under hard-sparsity
constraints and using orthogonal matching pursuit, and it
would be interesting to study whether our ideas can be used
in other sparse coding settings.
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Beyond these immediate considerations, however, the intent
of our work has been to show that there is still likely much
to be gained from applying ideas from recent developments
in areas such as self-supervised learning to problems of a
more classical nature such as sparse coding. Our work has
only touched on the use of a single such idea (masking),
and we hope that future work looks into how other recently
popular ideas can potentially improve older algorithms.

Finally, we note that this work has been mostly theoretical
in nature, and as such do not anticipate any direct misuses
or negative impacts of the results.
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A. Full Proofs
A.1. Proof of Theorem 3.2

We first recall the setting of Theorem 3.2.

Assumption 3.1. Let A € R?¥? be an arbitrary matrix with unit-norm columns satisfying (2k, §)-RIP for k = o (%)
2

and 6 = o(1), and suppose o, (4) = Q(p/d). We assume each measurement y is generated as y ~ Az + ¢, where z is a
random vector drawn from an arbitrary probability measure P, on k-sparse vectors in R?, and ¢ ~ A (0, 0%1,) for some
o>0.

And now we prove:

Theorem 3.2. [Overfitting to Reconstruction Loss] Consider the data-generating model in Assumption 3.1 and define A(z)
to be:

A(z) = inf{t | P,(||2]| > t) < 1/d}. 3.2)

Then for ¢ = Q(p? max(do?, A(2)?)/0?), there exists a B € R such that L(B,k) < L(A,k) — Q(ko?) and
dr(A, B) = Q(c?).

Proof. Our proof technique will be to first lower bound the gap L(A, k) — L(A, 2k), and then to construct a B matrix that
closely approximates the 2k-sparse combinations of the columns of A.

From the definition of L(B, k) we have that:

L(A, k) — L(A,2k) =E, | min |y — Aéﬂ —-E, [ min |ly — Aé||2 (A1)
12]lo=F 121, =2k

Now let 2*(y) = argminz _ [ly — AZ|| and S* = supp(£*), and further define:

Z(y) = aﬁliﬁrlii,? Iy — AZ"(y)) — AZ]| (A2)

We will also use S = supp(2(y)). For convenience, we will write * and Z when y is clear from context. Applying this
notation to Equation (A.1) gives:

L(Ak) — L(A,2k) > B, [[ly — A2*|*] = E,[|ly — Az* — Az||’]
=E,[2(y — A2*, A2)] — B, [|AZ|%]
=E,[||AZ]’] (A3)

Where we obtained the last line above by using the fact that AZ is the orthogonal projection of y — AZ* on to the span of
Ag. Now using the fact that A is (2k, 0)-RIP we have that:

E, (142 > (1 - 9)°E, [I12)°]

> (-7, | |40 - 40|
2
]

= (1-0(1))E, U|A§(y—A2*)||2] (A4)

> (1-0)'E, ||| AL(y - A2")

Where above we used the fact that AL = (AL A5) " AT and RIP to obtain H (ATAg) H > 1/(1 + 6), which led to the
op

penultimate step. It remains to compute (or lower bound) the expectation in Equation (A.4). Towards this end, we let S

12
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denote a (uniformly) random subset of size k from [p]. Then we have that (using Assumption 3.1):
2 Ak |2
"] > &, [Es [ 45— 457

:gmymAmy_Afmﬂ

E, [[[A%(y - 42%)

> Zotiu (B, Iy - 42°|]
=Q<§%DM—A$WD (AS5)

Now the expectation in Equation (A.5) can be lower bounded in the same vein as Equation (A.4) (i.e. relying on the RIP
property). Below we use S5, to denote the optimal support for the minimization problem.

B, [lv - 45 ) = B [ min, e — 4G - 9

> E.| min ||6—A22}
Lzl =2k

—E. :IIEHQ} _9E, [<A§§ke,e>} +E. {H/ﬁ;ke
]
> do? — (14 0o(1))2kE, [max(AiTe)Q]

i€p]

]

> . [lle’] = (14 o(1) E. {HAggke

> do® — O (ko log p)
= Q(do?) (A.6)

Where above we used Lemma A.2 since the random variables (A7 '¢)? follows a scaled chi-square distribution with degree

of freedom 1, and for the last line we use k = o lo’é p). Now putting Equations (A.3)-(A.6) together, we obtain:
L(A, k) — L(A, 2k) > Q(ko?) (A7)

Given the gap between L(A, k) and L(A, 2k) shown in Equation (A.7), our goal is now to construct a matrix B such that
we can approximate sufficiently large 2k-sparse combinations of the columns of A via BZ (where Z is k-sparse). We recall
from standard concentration of measure arguments (see Vershynin (2019) for details) that P(|¢||> > 2do?) < exp(—Q(d)).
Furthermore, by Assumption 3.1, ||Az|| < A(z)(1+ o(1)) with probability at least 1 — 1/d. Thus, we only need the columns
of B to approximate Az for 2-sparse x (since we are interested in B2 and ? is k-sparse) and || Az < v max(ov/d, A(2))
for an appropriately large constant v, (as this will imply we get the same gap as Equation A.6).

To do this, we can construct e-nets for each of the following sets (indexed by the different possible 2-sparse supports

S C [p):
Vs = {Az | supp(z) = S, ||Az| < v max(ov/d,A(z))} (A.8)
Since A has p columns, we need ©(p?) such e-nets. As long as we choose € = Y202 with y, a constant, we can approximate

2k-sparse combinations of the columns of A with error kvy,02 using k-sparse combinations from these nets, which is
sufficient for our purposes given the result of Equation (A.7).

Now let the columns of B be the union of the e-nets for the sets Vg and define & = {||Az|| + ||¢]| < 1 max(ov/d, A(2))}.
After choosing 72 to be sufficiently small, we then get from Equations (A.3)-(A.7) and the fact that P (£) > 1 — 1/d:

L(A,K) = L(B.k) 2 B, [ 42]* | €] P(€) - krz0?
= Q(ko?) (A.9)

13
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Noting that the e-nets for each Vg are of size O(max(do?, A(z)?)/0?) from our choice of € (once again, refer to Vershynin
(2019) for bounds on the size of e-nets), this construction of B requires O(p? max(do?, A(2)?)/0?) columns. As we can
choose these columns to be different from those of A by 202 (in norm), we obtain the desired result. O]

A.2. Proof of Theorem 3.6

Again, we first recall the setting of Theorem 3.6.

Assumption 3.5. Let A € R¥? be an arbitrary matrix such that there exists an M C [d] with Py; A being pi-incoherent
with 4 < C/(2k — 1) for a universal constant C' < 1. We assume each measurement y is generated as y ~ Az + €, where
[ supp(z) ~ N(0,021),) with supp(z) drawn from an arbitrary probability distribution over all size-k subsets of [d], and
e ~ N(0,021,) for some o > 0.

In order to prove Theorem 3.6, we will need a result from Cai & Wang (2011), which we restate below.

Theorem A.1 (Theorem 9 in Cai & Wang (2011)). Fory ~ Az + e with € ~ N'(0,01) and A € RI*P being i-incoherent
with p < 1/(2k — 1), let us define:

5= {Al- R RN A Ve TER) logp} (A.10)

1— (2k—1)p

Then OMP (as defined in Algorithm) selects a column from S at each step with probability at least 1 — m forn > 0.

Now we may prove:

Theorem 3.6. [Benefits of Masking] Consider the data-generating model in Assumption 3.5. For any non-empty mask
M C [d] such that Py; A satisfies the p-incoherence condition in the assumption, we have

lim (Lmask(A, £, M) = min Lnask (B, k, M)) =0 (3.5)

0,00

That is, as the expected norm of the signal Az increases, there exist minimizers B of Lyqsk such that dg(A, B) — 0.
Proof. We have from the definition of L, that:
Linask(B,k, M) =E. [H [Az]japm + [€e]fapmr — [Bf][d]\MHZ}
=E.. [ | [A2]apar — [BE)ap e || } + E. [H[G][d]\MHz} —E.. [{[B&lja\m, [€ljap )]
=E.. {H [Az]fap s — (B2 || } +(d — |M|)o?
= Ee.c || PlaparAz = PaarB2[*] + (d = M)o? (A1)

Since [BZ]ig)\as is necessarily independent! of [e]a\ar (by the construction of 2). Now the quantity in Equation A.11
depending on B looks almost identical to the prediction risk considered in linear regression.

With this in mind, let us define:
N 12
Ry (9) =Ex [||P[d]\MAz =9 } (A.12)

Where ¢ is any estimator that depends only on [y]as (i.e. in the interest of brevity we are omitting writing §([Az + €]ar)).
We can lower bound Equation (A.11) by analyzing R (9):

inf Rys = infE. , [ Paaraz - g]|°]

. ~ 112
= ugf]Ez,e |:Ez,e |:HP[d]\MAsupp(z)[Z]supp(z) - yH Supp(z):” (A.13)

'There is actually a slight technicality here; we need gomp to be Borel measurable, which is the case because it consists of the
composition of Borel measurable functions.

14
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Equation (A.13) can be lower bounded by considering the infimum over the inner expectation with respect to estimators ¢
that have access to [Az + €] s and the support S* = supp(z). In this case, the Bayes estimator §* is:

7 =E,. [P[d]\MAS* [2] s~

Py Ag-[z]s- + [€] ]\/[:|

= P\ mAs-E; ¢ l:[Z]S*

Since [2]g+ ~ N(0,021}), we can explicitly compute the conditional expectation in Equation (A.14). Indeed, it is just the
ridge regression estimator:

—1
Ak 1
y" = P[d]\MAS* (Ag*Asx + 0'21k> Ag* (PMAS* [Z]Sx + [G]M) (A.15)

z

Where we have set Ag« = Py Ag+ above to keep notation manageable. Thus, putting all of the above together we have:
Linask(B, k, M) > Rar(§%) + (d — |[M|)o? (A.16)
Now let {15 be the least squares estimator with access to the support supp(z):
JLs = P[d]\MAS*A}(PMAS* [2] s+ + [€]a) (A.17)

Then we have R (js) — Rasr(§*) as 02 — oco. If we can now show that Rz (P v AZ) = R (L), then we will
be done by Equation (A.16).

Showing this essentially boils down to controlling the error of Z when OMP fails to recover the true support S* (because
when it recovers the true support, P\ as AZ is exactly 1,5). We do this by appealing to Theorem A.1.

Recall that [2]s = AZ[y]ar, where Ag = ParAg with S = supp(%) being the support predicted by OMP. Letting 215
be the vector whose non-zero components correspond to [21,5]s+ = AZ. [y]ar, it will suffice to show [|215 — 21> = 0as
o, — 00, since then we will be done due to the fact that HP[d]\ MAHop is constant with respect to .

Now letting z = 2 — Ag [e]ar (i-e. Z represents the part of the signal z recovered by OMP), we have:
5 12 - 2
I2os — 2|I° = Hz —Z+ (A; — A;)[e]MH
~n2 2 ~
<z =217 + [[(AS. = AD[en||” + 201z = 2| (AS- — AS) el | (A.18)
We begin by first analyzing ||z — Z||°. To do so, we introduce the notation [z]y¢ to represent the vector in R¥ whose

non-zero entries correspond to [z]y for U C [d], |U| < k. Then we can make use of the following decomposition of
AS* [Z]S* .

Ag+[z]s+ = As[z]s+ns,0 + As+[2]s+\ 5,0 (A.19)
From Equation (A.19) we get:
Iz = 2II* = [|[zls-\s.0 — A As- [e]s-\s.0]
< [[lsvsol® + (A5 As) T AFAs- [2]ssol|* + 2max ([ [2]svso*, [AF As- [2)s-vs0])
= Y o) (A.20)
i€S*\S

where we passed from the penultimate to the last line by using the p-incoherence of Py A to control the middle term in the
bound. With Equation (A.20) in hand, we are finally in a position to apply Theorem A.1. Let n = C’ log o, for a sufficiently
large constant C’. Now for convenience we define:

. 20vVk/2(1 + ) logp (A21)

1— (2k —1)p

15



On the Benefits of Masking for Sparse Coding

which corresponds to the lower bound in Equation (A.10). Using Theorem A.1 with Equation (A.20) we obtain:

E.. |l = 2I°] < 3 B({lsl = 7} 0 {i ¢ SHOEL) + (] < 1)0(+?)

i€S*
3
=Y o0 ( : +7> (A.22)
i€S* ogp 7z

And clearly Equation (A.22) goes to 0 as 0, — oo. We can apply similar analysis techniques to the term
(A — A e H2 in Equation (A.18) as well, but for this term we can afford to be less precise.

Namely, when .S = S*, this term is 0. The probability that S # S* can be bounded as:

k
*) < _ >
P(S¢S>0(ag,@) B(min =] > )

kA
_ 0( = ) (A23)

where again above we used the naive bound for P(min;e g+
+7). Now we have:

z;| > 7) (i.e. replacing the density with 1 and integrating from

E.c [|(A% = ADlela|*] < P(S # 50 e [[AF- [elaal|” + [ AF elaa]|” + 2 max (A% e |, [ AF el ]|”)

< P(S # §)0 (kE [max(AT ) D
i€[p]
< P(S # S*)O(ko? log p) (A.24)

Putting together Equations (A.22) and (A.24) shows that Equation (A.18) goes to 0 as o, — oo, which proves the result.
O

A.3. Auxiliary Lemmas

Lemma A.2. Let X1, .-, X, ben chi-square random variables with I degree of freedom, then

E [m?u}cXi] = O(logn).
e|n

Proof. We bound the maximum via the moment-generating function.

From Jensen’s inequality, for ¢ € (0, %), we have
1
exp | tE [maxX}) <E [exp (tmaxX-)} < E [e!%] = n(1 — 2t)" 2.
( i€[n] ! 1€[n] ¢ ; |: ] ( )
Setting t = % gives us

3 1
E |max X;| < 3logn — —log = = O(logn).
i€[n] 2 3
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