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Rayleigh–Taylor instability, RTI, occurs at the interface separating two fluids subjected to acceleration when the density
gradient and the acceleration are in opposite directions. Previous scientific research primarily considered RTI under
the incompressible assumption, which may not be valid in many high-energy-density engineering applications and
astrophysical phenomena. In this study, the compressibility effects of the background isothermal stratification strength
on multi-mode two-dimensional RTI are explored using fully compressible multi-species direct numerical simulations.
Cases under three different isothermal Mach numbers –Ma = 0.15, 0.3, and 0.45– are investigated to explore weakly,
moderately, and strongly stratified compressible RTI, respectively, at an Atwood number of 0.04. Unlike incompressible
RTI, an increase in the flow compressibility through the strength of the background stratification can suppress the RTI
growth and can lead to a termination of the RTI mixing layer growth with a highly molecularly mixed state. Our findings
suggest that even at the chosen relatively low Atwood number, variable-density effects can be significantly enhanced due
to an increase in the background stratification for the compressible RTI as different spatial profiles become noticeably
asymmetric across the mixing layer for the strongly stratified case. In addition, this study compares the chaotic behavior
of the cases by studying the transport of the turbulent kinetic energy as well as the vortex dynamics. Reynolds number
dependence of the results is also examined with three different Reynolds numbers, and the findings for the large-scale
mixing and flow quantities of interest are shown to be universal in the range of the Reynolds numbers studied.

I. INTRODUCTION

Rayleigh–Taylor (RT) instability, or RTI, is an instability
at the interface between two fluids subjected to acceleration
when the directions of the density gradient and the accelera-
tion have opposite signs1,2. RTI is observed in nature from at-
mospheric, oceanic, and geologic flows to astrophysical phe-
nomena, such as supernova explosions. It also occurs in en-
gineering applications with high-energy-density (HED) pro-
cesses such as inertial confinement fusion (ICF)3. As a re-
sult, RTI is of great interest in the mixing community, and it
has been the subject of many experimental and numerical re-
search studies4–8. Although the flow instability is observed
between the highly compressible flows in many natural phe-
nomena and engineering systems, most of the numerical stud-
ies benefited from using the incompressible assumption to re-
duce computational expenses. In this study, we present the
flow compressibility effects due to the background stratifica-
tion on the multi-species two-dimensional (2D) multi-mode
RTI with results from direct numerical simulations (DNS).

Using linear stability analysis, RTI has exponential growth
at early times when the initial perturbation is small. At
later times, the height of the multi-mode incompressible RTI
mixing layer, h, under constant acceleration has self-similar
growth that is defined as9:

h ≈ αAgt2, (1)

where t is the time, g is the acceleration, α is the growth rate
parameter, and A is the Atwood number representing the den-
sity contrast between the two mixing fluids. By assuming that

both fluids are ideal gases, A is defined as:

A =
Wh −Wl

Wh +Wl

=
ρh −ρl

ρh +ρl

, (2)

where Wh and Wl are the molecular weights of the heavy
and light fluids, respectively, while ρh and ρl are the ini-
tial species densities of the heavy and light fluids. How-
ever, Equation (1) may not be applicable for approximating
the RTI growth which is observed in HED applications and
astrophysics phenomena. For example, when the acceleration
is not constant and varies as a function of time, the validity
of Equation (1) is still an open question10–13. The equation
is also derived based on a similarity analysis that ignores any
compressibility effects, so the validity of the equation is lost
in the compressible regime14.

There have been several investigations on single-mode and
multi-mode compressible RTI in previous literature. Wieland
et al. 15 carried out 2D single-mode compressible RTI DNS
using adaptive wavelet-based mesh refinement. It was shown
that an increase in the background stratification strength,
which determines the flow compressibility of the mixing flu-
ids, leads to the ceasing of the mixing layer growth for the
single-mode RTI. Simulations of 2D single-mode compress-
ible RTI with compact finite difference scheme and hyper-
viscosity model were also performed by Luo et al. 16 to ex-
amine the stabilizing and destabilizing effects of the instabil-
ity under different Mach and Atwood numbers. The work
is further extended to study the effects of the Atwood num-
ber and stratification parameter on 2D compressible RTI with
multi-mode perturbations17. Mellado, Sarkar, and Zhou 18

conducted three-dimensional (3D) large-eddy simulations of
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compressible RTI and found that intrinsic compressibility ef-
fects were limited as the turbulent Mach number is bounded
in the range of 0.25–0.6. A DNS of 3D multi-mode compress-
ible RT turbulence at a moderate Atwood number, A = 0.25,
was conducted using the auto-adaptive multidomain Cheby-
shev–Fourier–Fourier numerical method by Gauthier 19 , and
the simulation results were compared to cases with either a
lower Reynolds number or a lower Atwood number within
the Boussinesq approximation. In a recent work by Luo and
Wang 20 , the mixing and energy transfer of 3D compressible
RT turbulence indicates that the direct and reverse subgrid-
scale (SGS) fluxes can be strengthened by compression and
expansion motions, respectively.

Multi-species mixing is also of great interest in the scien-
tific community as it is observed in broader engineering appli-
cations, and it has been shown that the flow dynamics could
be significantly different than single fluid flows21. In addi-
tion to RTI, there is also a wide study on multi-species mix-
ing induced by Richtmyer–Meshkov instability (RMI)22–24,
which is an interfacial instability similar to RTI but induced
by impulsive accelerations, such as shock waves. While
the mixing of fluids induced by RMI is commonly studied
with compressible simulations due to the compressibility ef-
fects of shock waves, high-resolution RMI simulations25 show
that under a normal configuration, the flows within the RMI
mixing layers are quasi-incompressible except around times
of shock-interface interactions. The incompressible multi-
species variable-density mixing dynamics of the turbulence
aiming to mimic the core regions of the RTI and RMI mixing
layers have been studied using several different homogeneous
flow configurations as well 21,26–30. These studies lack infor-
mation about compressibility effects, such as those from the
background stratification, which can potentially play a signif-
icant role in the multi-species mixing processes.

For the compressible RTI, instability and multi-species
mixing can be largely affected by many factors, such as
background stratification, fluid properties, and acoustic ef-
fects. The mixing process can also generate strong shock
waves through the piston-like motions of the bubbles and
spikes31. The growth of compressible RTI can be affected ei-
ther through fluid compressibility or flow compressibility32.
Fluid compressibility is governed by the fluids’ properties,
such as the ratios of specific heat capacities, while flow com-
pressibility is associated with the thermodynamic states inde-
pendent of the fluid properties, such as the interface pressure.
The former can be considered as dynamic or intrinsic, which
is an effect of the speed of sound; and the latter can be viewed
as static, as this compressibility effect results in a stable strat-
ification19,33.

The effects of compressibility originating from the flow
compressibility are investigated in this work using 2D DNS of
multi-mode RTI with different isothermal background strati-
fication strengths, where some of the cases are strongly strat-
ified. The flow compressibility can be controlled by the ini-
tial background stratification, which is characterized by the
isothermal Mach number, Ma15,34, defined as

Ma =

√

gλ0

c0
, (3)

where c0 =
√

pI/ρ I is the initial isothermal speed of sound
defined by the interface pressure, pI , and interface density,
ρ I , and λ0 is the characteristic length scale of the problem.
This isothermal Mach number definition decouples the fluid
compressibility characterized by the values of the ratios of
the specific heats and the flow compressibility characterized
by the thermodynamic state of the system as explained in the
work by Reckinger, Livescu, and Vasilyev 34 . It should be
pointed out that when the interface pressure tends to infin-
ity, i.e., pI → ∞, the RTI approaches the incompressible limit
as Ma → 0 3,32,35. The background stratification strength is
also commonly represented by the stratification parameter, Sr,
in previous literature16,17,19,20, where Sr = Ma2 if the same
characteristic length scale is used.

In many previous papers on multi-mode RTI, the domain
width is commonly used as the characteristic length scale
in the definition of the isothermal Mach number (see Equa-
tion (3) and/or stratification parameter). However, the charac-
teristic wavelength of the initial perturbation is a better length
scale to characterize the RTI problem, at least during the early
times of the flow evolution, which is similar to the incom-
pressible RTI study by Livescu et al. 36 . Hence, in the defini-
tion of Ma, we choose to use the characteristic wavelength
of the perturbations instead of the domain width, which is
different than many previous multi-mode compressible RTI
studies. For example, the largest background stratification 3D
RTI multi-mode cases have Sr = 6 reported based on the do-
main width in the work by Gauthier 19 . This, in fact, corre-
sponds to around Sr ≈ 0.04 or Ma ≈ 0.2 based on the char-
acteristic wavelength (assuming the problem domain width is
2π as they used a pseudo-spectral code). Similarly, Sr = 0.1
- Sr = 1.0 based on the shown domain width in the work
by Luo and Wang 17 is equivalent to Sr ≈ 0.013 - Sr ≈ 0.13,
or Ma ≈ 0.11 - Ma ≈ 0.35, if the characteristic wavelength
of the perturbations is used as the reference length. In addi-
tion, Luo and Wang 20 extended their 2D work to 3D for their
moderate Atwood number A = 0.5 by performing numerical
simulations up to Sr = 3.0 based on a domain width that corre-
sponds to around eight times smaller stratification parameter
when the characteristic wavelength is used in the definition
of Sr. Our study on the 2D multi-mode RTI includes cases
with Ma = 0.45 where the background stratification strength
is stronger than the problems in many previous multi-mode
compressible RTI studies.

Our choice of the characteristic length scale can also pro-
vide a more direct and fair comparison between our multi-
mode compressible RTI results with the single-mode com-
pressible RTI results in previous works, such as the Ma = 0.3
case in the work by Wieland et al. 15 . To confirm that there
is no re-growth at the late times of the flow evolution for
the moderately and strongly stratified cases, the ensemble-
averaged statistical results of the multi-mode cases in this
study are obtained with DNS performed up to much longer
non-dimensional times compared to the single-mode cases in
the aforementioned work. The findings of this study suggest
that in the case with a strong background stratification, Equa-
tion (1) loses its validity even for the RTI under constant ac-
celeration.
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The paper is structured as follows: in section II, we detail
the governing equations and numerical methods, followed by
the setup of DNS cases in section III. Then, we present the
analysis of the dynamics of the compressible mixing in sec-
tion IV. Section V shows and discusses the flow energetics
and small-scale vortical motions. Finally, in section VI, we
summarize the results of this study.

II. PROBLEM DESCRIPTION

A. Governing Equations

The governing equations are the compressible multi-
species Navier–Stokes equations:

∂ρYi

∂ t
+∇ · (ρuYi) =−∇ ·Ji, (4)

∂ρu

∂ t
+∇ · (ρuu+ pδ) = ∇ ·τ +ρg, (5)

∂E

∂ t
+∇ · [(E + p)u] = ∇ · (τ ·u−qc−qd)

+ρg ·u, (6)

where ρ is the mixture density, u = [u,v]T = [u1,u2]
T is the

velocity vector, p is the pressure, and E is the total energy
per unit volume of the fluid mixture. Yi is the mass fraction
of species i ∈ {1,2, ...,N}, with N the total number of species.
All Yi sum up to one by definition, and g is the body force vec-
tor per unit mass. In this work, g = [g,0]T is assumed, where
g is a constant parameter. Ji is the diffusive mass flux for
species i. τ , qc and qd, which, respectively, are viscous stress
tensor, conductive heat flux, and inter-species diffusional en-
thalpy flux. δ is the identity tensor.

The mixture is assumed to be ideal and calorically perfect,
with

E = ρ

(

e+
1

2
u ·u

)

, (7)

p = (γ −1)ρe, e = cvT, (8)

where e and T are the mixture specific internal energy and
temperature; and γ and cv are the ratio of specific heats and
specific heat at constant volume of the mixture.

In this work, a binary mixture with N = 2 is studied for each
case. The multi-component diffusive mass flux of species i is
given by Fick’s law:

Ji =−ρDi∇Yi, i = 1,2, (9)

where D1 = D2 = D is the binary diffusion coefficient. The
baro-diffusion and thermo-diffusion are not considered in this
work.

The mixture is also assumed to be Newtonian with viscous
stress tensor, τ , given by

τ = 2µS+

(

µv −
2

3
µ

)

δ (∇ ·u) , (10)

where µ and µv are the shear viscosity and bulk viscosity of
the mixture, respectively. The effects of the bulk viscosity is
neglected in this work. S is the strain-rate tensor given by

S =
1

2

[

∇u+(∇u)T
]

. (11)

The conductive flux and the inter-species diffusional en-
thalpy flux37 are given by

qc =−κ∇T, (12)

qd =
N

∑
i=1

hiJi, (13)

where κ is the thermal conductivity of the mixture. hi is the
specific enthalpy of species i:

hi = cp,iT, (14)

where cp,i is the specific heat at constant pressure of species i.
Assuming that all species are at pressure and temperature

equilibria, the mixing rules for the fluid properties γ , cv, µ ,
and κ are given by

γ =
cp

cv

, cp =
N

∑
i=1

Yicp,i, cv =
N

∑
i=1

Yicv,i, (15)

µ =
∑

N
i=1 µiYi/

√
Wi

∑
N
i=1 Yi/

√
Wi

, κ =
∑

N
i=1 κiYi/

√
Wi

∑
N
i=1 Yi/

√
Wi

, (16)

where cv,i, µi, κi, and Wi are the specific heat at constant vol-
ume, dynamic viscosity, thermal conductivity, and molecular
weight of species i, respectively. The specific gas constant Ri

of species i is given by

Ri =
Rg

Wi

, (17)

where Rg is the universal gas constant. The ratios of specific
heats of both species, γi, are assumed to be the same at the
value of 1.4 in this study. Thus, the mixture has a constant
and uniform mixture γ at the value of 1.4. In addition, the
heavier fluid with larger molecular weight is assigned as the
first species, with i = 1.

B. Non-Dimensional Problem Parameters

In the initial setup of the RTI problem, the heavier and
the lighter fluids have initial species densities ρ1,0 and ρ2,0,
respectively, at the interface, and the pressure is continuous
at the interface with the value pI . The kinematic viscosity,
νi, of both species are initially assumed to be identical at
the interface, i.e., νi,0 = ν0, while the dynamic viscosity of
each species is assumed to be constant in time and uniform in
space, which is given by

µi = ρi,0ν0. (18)

The RTI problem can be described by a few important non-
dimensional parameters. First of all, the initial Atwood num-
ber of A = 0.04 (defined by Equation (2)) is chosen for all
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cases in this study. The problem Reynolds number, Re0, is an-
other parameter used for the initialization of the problem and
is given by

Re0 =

√

gλ 3
0

ν2
0

, (19)

where λ0 is the characteristic wavelength of the initial per-
turbation. Three different problem Reynolds numbers–Re0 =
3187.5, Re0 = 6375.0, and Re0 = 12750.0–are chosen for
the multi-mode cases with different background stratifica-
tion strengths. In this work, the isothermal Mach number,
Ma =

√

gλ0/c0 (also defined by Equation (3) but repeated
here), that characterizes the background stratification strength,
is chosen to be 0.15, 0.30, and 0.45 which represent the
weakly stratified, moderately stratified, and strongly stratified
cases, respectively.

The fluid properties are described by the Schmidt number,
Sc, between the two fluids and the species Prandtl number,
Pri:

Sc =
ν0

D
, Pri =

cp,iµi

κi

, (20)

where Sc = 1, Pr1 = 0.92, and Pr2 = 1.08 for all cases in this
work.

C. Initial and Boundary Conditions

The computational domain has a size of [0,Lx]× [0,Ly),
where the y-direction is periodic. The aspect ratio of the do-
main is Lx/Ly = 4 for the Ma = 0.15 and Ma = 0.30 cases and
Lx/Ly = 2 for the Ma = 0.45 case. The interface between the
light and heavy fluid is located at x/λ0 = 0. The flow is ini-
tialized with a hydrostatic isothermal background state at the
initially uniform background temperature, T0, that satisfies

∂ pH

∂x
=−ρHg, (21)

where pH and ρH are the background hydrostatic pressure and
density, respectively.

In order to well resolve the initial mixing width between the
light and heavy fluids, the interface is initially diffused. The
interface is smoothed with the error function by following a
previous work34 to set the mass fraction of the lighter fluid,
Y H

2 , using a characteristic initial thickness of the interface δ
as

Y H
2 (x) =

1

2

[

1+ erf
( x

δ

)]

. (22)

Therefore, the background hydrostatic pressure, pH , is given
by

ln

(
pH(x)

pI

)

=

g

T0

∫ x

0

2

(R2 −R1)erf(ξ/δ )+(R1 +R2)
dξ ,

(23)

where pI is the pressure at the interface if the problem is ini-
tialized with a discontinuous interface. Similarly, the interface
density for a discontinuous RTI is defined as

ρ I =
pI

RIT0
, (24)

where RI is defined as

RI =
Rg

(W1 +W2)/2
. (25)

Narrow-band multi-mode perturbation with nine modes is
added to the initial location of the interface between the fluids
for the mass fraction fields. The perturbed displacement in the
x-direction, η , from the original interface location is given by

η(y) =
η0

3

20

∑
m=12

[

cos

(
2πmy

Ly

+φm

)]

, (26)

where m is the mode number and the middle mode number
md is 16 in this work. The characteristic wavelength, λ0, is
defined as λ0 = Ly/md . φm ∈ [0,2π) is the random phase shift
of mode m to add randomness over different realizations. As
a result, the perturbed mass fraction field of the lighter fluid is
given by

Y H
2 (x,y) =

1

2

[

1+ erf

(
x−η(y)

δ

)]

. (27)

The characteristic initial thickness of the interface δ is set to
be 4% of λ0 for all cases in this work.

Subsonic outflow boundary conditions are used at the left
and right boundaries with the Navier–Stokes characteristic
non-reflecting method34,38. The characteristic-based bound-
ary method makes use of the local one-dimensional inviscid
(LODI) relations to prevent any spurious inward-propagating
acoustic waves. The target pressure values for the non-
reflecting method are calculated from the hydrostatic equation
at the domain boundaries.

III. DETAILS OF DIRECT NUMERICAL SIMULATIONS

A. Numerical Methods

All multi-species simulations in this work are performed
using Hydrodynamics Adaptive Mesh Refinement Simula-
tor (HAMeRS)39. It is a hydrodynamics code with Carte-
sian adaptive mesh refinement and local time stepping (or
sub-cycling) capabilities. Conservative flux correction at
coarse-fine grid interfaces40 is implemented for any kind
of conservative fluxes in the telescoping form. The paral-
lelization of the code and the management of Cartesian grid
cells are facilitated by the Structured Adaptive Mesh Refine-
ment Application Infrastructure (SAMRAI) library41–45 from
Lawrence Livermore National Laboratory (LLNL). Feature-
based sensors are implemented to identify regions of inter-
est for adaptive mesh refinement (AMR). These include gra-
dient and wavelet sensors46 on different flow fields. The
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13-point fourth-order dispersion-relation-preserving (DRP)
scheme by Bogey and Bailly 47 re-cast in the conservative flux
difference form39,48 is used for the discretization of the con-
vective flux. Explicit tenth-order finite difference schemes are
used to discretize the diffusive and viscous terms as source
terms of the equations. Navier–Stokes non-reflecting char-
acteristic boundary conditions34,38 with the ghost cell ap-
proach49 are implemented for outflow domain boundaries.
A third-order total variation diminishing Runge–Kutta (RK-
TVD) scheme50 is adopted for time integration with the local
time stepping for each grid level.

B. Grid Settings and Realizations

Various cases with different combinations of background
stratification strength characterized by the isothermal Mach
number, Ma, and problem Reynolds number, Re0, are de-
signed for the DNS runs. Table I lists all of these cases for
the 2D multi-mode RTI problem. The index following the
first letter, Ma: 015, 030, and 045 denotes the Mach numbers,
0.15, 0.30, and 0.45, respectively; and the index following
the second letter, Re: 1, 2, and 3, represents Reynolds num-
ber, Re0: 3187.5, 6375.0, or 12750.0, respectively. We should
note that while the range of Re0 chosen in this work is lower
than that in the previous 2D single-mode compressible RTI
paper by Wieland et al. 15 (in the range of 25500-102000),
these multi-mode DNS are computationally more expensive,
as they are conducted in a much larger domain with each mode
number being repeated around 12 to 20 times in the periodic
dimension. Also note that if the domain width Ly instead of
λ0 is used in Equation (3) and Equation (19), similar to some
previous studies17,19,20 on multi-mode RTI, both the problem
isothermal Mach numbers and Reynolds numbers would be at
higher values. For instance, the case Ma045Re3 would have
an isothermal Mach number of 1.8 and a Reynolds number
of 816000. The isothermal Mach number based on Ly is also
included in Table I for each case for reference.

In addition, 16 realizations of simulations are performed
for each combination case of Re0 and Ma for better statis-
tical convergence. Three levels of meshes, with two levels
of adaptive mesh refinement, are used for the Ma = 0.15
and Ma = 0.30 cases, while the Ma = 0.45 case only has
two levels of meshes. For the realization simulations with
Re0 = 3187.5 and Re0 = 6375.0, base grids of the Ma = 0.15
and Ma = 0.30 cases have 256 grid points in the y-direction,
while that of the Ma = 0.45 case has 512 grid points. Finer
base grids are used for the highest Reynolds number simula-
tions with Re0 = 12750.0 to resolve smaller finest scales in
the simulations. At this highest Re0, the base grids of the
Ma= 0.15 and Ma= 0.30 cases have 512 grid points, and that
of the Ma = 0.45 case has 1024 grid points in the y-direction.
A constant refinement ratio of 1:2 is used across different grid
levels in each direction. A finer base grid is used in Ma= 0.45
cases as the flow experiences larger pressure and density gra-
dients even far away from the mixing layer width due to the
stronger background stratification. A value sensor based on
the mass fraction is used to identify mixing regions for AMR.

Acoustic Courant–Friedrichs–Lewy (CFL) number of 0.5 is
used for the Ma = 0.15 case, and 0.2 is used for the stronger
background stratification cases. The diffusive CFL number is
half of that of the acoustic CFL number for each case. Grid
convergence analysis is also performed on one of the realiza-
tions for each combination case of Re0 and Ma, and the results
are compared with those obtained from simulations with base
grids refined by a factor of 2 in each direction. Through grid
sensitivity analysis, it is verified that all quantities of interests
studied in the later sections are well grid converged for the
corresponding realization of each case. While only one real-
ization is used in the grid convergence analysis, all statistical
results presented in this work are ensemble-averaged results
over all realizations for each case.

IV. MIXING DYNAMICS

A. Flow Visualization of Mass Fraction

In Figure 1, the effects of stratification strength on the RTI
are illustrated by comparing the visualizations of the mass
fraction fields at three different non-dimensional time instants
at Re0 = 12750.0 which is the largest problem Reynolds num-
ber. The non-dimensional or normalized time, t∗ = t/tr, is
introduced using the characteristic time-scale defined as:

tr =
√

λ0/g, (28)

to facilitate direct comparison of the cases with different back-
ground stratification strengths, or Ma. As A is kept constant
in this study, we do not include A in the definition of tr to
account for the Atwood number effect, and the initial pertur-
bation wavelength is used as the characteristic length scale in
the definition of tr. The first-row panel of Figure 1 presents
contours of the mass fraction of the heavy fluid, Yh, at an
early time, t∗ = 10. The mass fraction contours are essen-
tially the same for all cases at this time. This indicates that the
effects of the background stratification strength are not dom-
inant at this early stage, at least for the mass fraction fields.
The second-row panel of Figure 1 presents Yh at t∗ = 20 dur-
ing the flow evolution. At this relatively late time, the dif-
ferences between the contours of the Yh start becoming no-
ticeable among the three cases where there is a slow-down in
the growth of the mixing layer for the moderate and high Ma

cases (Ma030Re3 and Ma045Re3). At a later time, t∗ = 60,
the low Ma number case (Ma015Re3) has the largest mixing
width compared to the other two cases. The bubbles (the pen-
etration of lighter fluid into heavier fluid) and spikes (the pen-
etration of heavier fluid into lighter fluid) are still penetrating
into the unmixed regions without getting considerably mixed
at t∗ = 60 (third row of the Figure 1). The figures also sug-
gest an enhanced mixing within the mixing layer for the high
Ma case (Ma045Re3) where the mass fraction variations, and
also the density gradients, within the mixing layer are less
sharp. Such reduction in the density gradients due to molec-
ular mixing is expected to further prevent any re-growth for
the high Ma case. An increase in the background stratifica-
tion strength also leads to shorter and more homogeneously
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Cases Ma Re0 Lx/Ly Base Grid Resolution, Nx ×Ny Number of Mesh Levels

Ma015Re1 0.15 (0.6) 3187.5 4 1024×256 3
Ma030Re1 0.30 (1.2) 3187.5 4 1024×256 3
Ma045Re1 0.45 (1.8) 3187.5 2 1024×512 2
Ma015Re2 0.15 (0.6) 6375.0 4 1024×256 3
Ma030Re2 0.30 (1.2) 6375.0 4 1024×256 3
Ma045Re2 0.45 (1.8) 6375.0 2 1024×512 2
Ma015Re3 0.15 (0.6) 12750.0 4 2048×512 3
Ma030Re3 0.30 (1.2) 12750.0 4 2048×512 3
Ma045Re3 0.45 (1.8) 12750.0 2 2048×1024 2

TABLE I. Parameters for the DNS cases. Nx and Ny are the numbers of grid cells in the x- and y-directions respectively for the base grid. For
reference, the values in the parentheses in the second column represent values for the alternative isothermal Mach number, Ma∗ =

√
gLy/c0,

defined by the domain width in some previous studies17,19,20 instead of the perturbation wavelength λ0.

mixed mixing layers for the moderately and strongly stratified
cases compared to the weakly stratified case. Such effects are
most noticeable for the strongly stratified case. In addition, as
the investigated Atwood number in this study is small, there is
no noticeable difference between the mass, volume, and mole
fraction visualizations in this study. A comparison of the spa-
tial profiles based on mass, volume, and mole fractions can be
found in Appendix A.

We also present the Reynolds number effects on the heavy
fluid mass fraction at three different problem Re0 for the three
different Ma cases at t∗ = 20 and t∗ = 50 in Figures 2 and 3,
respectively. It should be reminded that the problem Re0 is
mainly controlled by the initial interface kinematic shear vis-
cosity, ν0, of the flow. From the figures, it can be seen that
an increase in Re0 has a limited effect on the heights of the
bubbles and spikes for all Ma cases, while a higher Re0 leads
to finer structures in the mass fraction field. The small Re0 de-
pendence of the mixing layer thickness and other large scales
suggests that the slow-down in the growth of the mixing layer
under strong background stratification, i.e., for the higher Ma

cases, is at least valid in the range of Re0 investigated in
this study. This small Reynolds number dependence behav-
ior of the large scales is also consistent with the incompress-
ible and compressible single-mode RTI DNS results by Wei
and Livescu 51 and Wieland et al. 15 , respectively, where the
former and latter show insignificant Reynolds number depen-
dence behavior starting from Re = 7500.0 and Re = 25500.0,
respectively.

B. Time Evolution of Mixing Quantities

The time evolution of different mixing quantities is dis-
cussed in this subsection. To study the effects of the com-
pressibility through background stratification on the large-
scale mixing in the RTI flows, the growth of the mixing layer
width is presented in Figure 4(a) for different Ma cases at the
largest problem Re0. The mixing layer width, W , is defined
using the mass fractions of the heavy and light fluids, Yh and
Yl (Yl = 1−Yh), as52

W = 4
∫

Y h Y l dx, (29)

where · represents the averaging in all homogeneous direc-
tions, i.e., y-direction in this work, over all realizations. When
t∗ < 10, i.e., when the compressibility effect on W is not ob-
servable yet, the evolution of the mixing width collapses well
with the chosen tr for all three Ma cases. As shown in Fig-
ure 4(a), the non-dimensional mixing layer width, W/λ0, con-
tinuously grows for the lowest Ma case (Ma015Re3) at least
until the end of the simulation time, which is close to the in-
compressible RTI growth9. However, we observe a slower
growth than a self-similar quadratic growth described in Equa-
tion (1). Such slower growth is an additional evidence of the
suppression effects of the isothermal background stratifica-
tion on compressible RTI, even at relatively low Ma numbers.
RTI9. For the medium Ma case (Ma030Re3), the stronger
background stratification starts to show effects at t∗ ≈ 15 as
the growth of W slows down compared to the case Ma015Re3.
For the largest Ma case (Ma045Re3), the background stratifi-
cation kicks in at an even earlier time, t∗ ≈ 10, to suppress the
growth of W compared to the low and medium Ma cases at the
same Re0. For this case, the growth of the mixing layer satu-
rates at t∗ ≈ 30, where W remains stationary after that. A sim-
ilar slow-down of the mixing layer was also observed for the
2D single-mode compressible RTI cases under strong back-
ground stratifications in previous works15, which was per-
formed at least until t∗ ≈ 20. However, they did not observe
a complete cessation of the RTI growth for their Ma = 0.3
and Ma = 0.6 cases. This study not only extends the slow-
down observation to the multi-mode compressible RTI but
also shows much less possibility of re-growth for the mod-
erately and strongly stratified cases, as the DNS cases are per-
formed up to a very late time, t∗ = 100, when the values of
W well converge to constant values, and the mixing layers be-
come molecularly well mixed, as discussed below.

In addition to the integral mixing width, Figure 4(b) shows
the heights of the bubbles, hb, and spikes, hs, that are defined
with the 99% and 1% thresholds of Yh, respectively. Similar
to W , both quantities are normalized by λ0 in the figure. As
expected, the behavior of hb,s is similar to W , although hb,s

is more sensitive to the dynamics of the mixing layer edges,
especially at late times (t∗ > 60). Similar to W , hb,s also show
cessation in their growth rates for the moderately and strongly
stratified cases (Ma030Re3 and Ma045Re3) after t∗ ≈ 40 and
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(a) t∗ = 10.0, Ma = 0.15 (b) t∗ = 10.0, Ma = 0.30 (c) t∗ = 10.0, Ma = 0.45

(d) t∗ = 20.0, Ma = 0.15 (e) t∗ = 20.0, Ma = 0.30 (f) t∗ = 20.0, Ma = 0.45

(g) t∗ = 60.0, Ma = 0.15 (h) t∗ = 60.0, Ma = 0.30 (i) t∗ = 60.0, Ma = 0.45

FIG. 1. Effects of the isothermal background stratification strength on the heavy fluid mass fraction, Yh, of the Ma = 0.15 (Ma015Re3),
Ma = 0.30 (Ma030Re3), and Ma = 0.45 (Ma045Re3) cases at Re0 = 12750.0 from left to right at different times. Top row: t∗ = 10; middle
row: t∗ = 20; bottom row: t∗ = 60.

t∗ ≈ 30, respectively. Both hb and hs have almost the same
growth in time but in opposite directions for all cases, and this
quasi-symmetry in growth is consistent with the incompress-
ible single-mode RTI DNS results of Wei and Livescu 51 at the
same Atwood number before the reacceleration regime. Inter-
estingly, Wieland et al. 15 found that there is an asymmetry in
the growth of the bubble and spike heights for the single-mode
compressible RTI, where the spikes are consistently at larger
heights than the bubbles for cases at different Ma.

The mixedness parameter, Θ, is broadly used to estimate
the molecular mixing state of the mixing layer of the hydro-

dynamic instabilities25,52–54. Θ is defined as

Θ =

∫
Yh Yl dx

∫
Y h Y l dx

, (30)

which has a value between zero and unity for the cases from
the fully-unmixed to fully-mixed mixing layers, respectively.
Θ can also be viewed as the ratio of the amount of fluids
molecularly mixed to the amount of fluids entrained through
convection. Its asymptotic value for the 2D incompress-
ible RTI was reported54 to be around 0.55, which indicates
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(a) Ma = 0.15, Re0 = 3187.5 (b) Ma = 0.15, Re0 = 6375.0 (c) Ma = 0.15, Re0 = 12750.0

(d) Ma = 0.30, Re0 = 3187.5 (e) Ma = 0.30, Re0 = 6375.0 (f) Ma = 0.30, Re0 = 12750.0

(g) Ma = 0.45, Re0 = 3187.5 (h) Ma = 0.45, Re0 = 6375.0 (i) Ma = 0.45, Re0 = 12750.0

FIG. 2. Reynolds number effects on the heavy fluid mass fraction, Yh, of the Ma = 0.15 (top row), Ma = 0.30 (middle row), and Ma = 0.45
(bottom row) cases at Re0 = 3187.5, Re0 = 6375.0, and Re0 = 12750.0 from left to right at t∗ = 20.

a balance between molecular mixing and fluid entrainment
across the mixing layer at late times. For the low Ma case
(Ma015Re3), which has the weakest background stratifica-
tion, Θ tends asymptotically to this previously reported in-
compressible value, as shown in Figure 5(a). However, for the
larger Ma cases (Ma030Re3 and Ma045Re3), Θ approaches
the value of unity, which indicates a state with well-mixed flu-
ids in the mixing layer. The state of a well molecularly mixed
layer caused by the large scalar dissipation represents a sig-
nificant reduction of the hydrodynamically unstable density
variations. This leads to a very low possibility of re-growth

for the mixing layer, which is consistent with the observations
on the saturation of the growth rates of W and hb,s at late times
for the moderately and strongly stratified cases, as presented
in Figure 4.

The normalized domain-integrated scalar dissipation rate,
χ∗, is defined as the scalar dissipation rate, χ , integrated
across the mixing layer and normalized with the mixing width,
W , and the characteristic time scale, tr:

χ = D∇Yh ·∇Yh =−D∇Yh ·∇Yl , (31)

χ∗ =

∫
χ tr dx

W
. (32)



Isothermally Stratified Multi-mode Compressible RTI 9

(a) Ma = 0.15, Re0 = 3187.5 (b) Ma = 0.15, Re0 = 6375.0 (c) Ma = 0.15, Re0 = 12750.0

(d) Ma = 0.30, Re0 = 3187.5 (e) Ma = 0.30, Re0 = 6375.0 (f) Ma = 0.30, Re0 = 12750.0

(g) Ma = 0.45, Re0 = 3187.5 (h) Ma = 0.45, Re0 = 6375.0 (i) Ma = 0.45, Re0 = 12750.0

FIG. 3. Reynolds number effects on the heavy fluid mass fraction, Yh, of the Ma = 0.15 (top row), Ma = 0.30 (middle row), and Ma = 0.45
(bottom row) cases at Re0 = 3187.5, Re0 = 6375.0, and Re0 = 12750.0 from left to right at t∗ = 50.

χ is the dissipation rate of the scalar variance based on mass
fractions and is dominated by the small scales of the flows.
Figure 5(b) presents the time evolution of χ for all Ma cases
under investigation at the largest Re0. Initially, the normal-
ized scalar dissipation rate is high for each case due to large
mass fraction gradients within the mixing layer. The scalar
dissipation rate decreases as the molecular diffusion process
smooths out the sharp mass fraction variations at the instabil-
ity interface. At this early time, the flow experiences a large-
scale stirring from the hydrodynamic instability. Such stirring
leads to a large-scale entrainment of pure fluids at the mixing

layer. As the flow becomes very chaotic across the mixing
layer, the scalar dissipation rate again reaches a peak value at
around t∗ = 18 for each case. Although the normalized scalar
dissipation rate has a similar evolution for all three different
Ma cases being studied, it should be noted that the normal-
ization factor, W , continuously grows for the lowest Ma case
(Ma015Re3), and χ∗ stays slightly high. This suggests that
the domain-integrated scalar dissipation rate is always higher
than others for this weakly stratified case, as there is always
pure fluid penetration into the continuously growing mixing
layer. In addition, W/λ0, Θ, and χ∗ have smooth evolution
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FIG. 4. Time evolution of (a) the normalized mixing width, W/λ0,
and (b) the normalized bubble and spike heights, hb,s/λ0, at Re0 =
12750.0. Red solid line: Ma = 0.15 (Ma015Re3); green dashed
line: Ma = 0.30 (Ma030Re3); blue dash-dotted line: Ma = 0.45
(Ma045Re3). The lines for the spikes are marked with crosses, and
those for the bubbles are marked with circles.

that indicates a well statistical convergence for these param-
eters. We note that, as discussed above, hb and hs become
highly sensitive to the mixing layer edge dynamics and may
require more than 16 realizations to have smoother evolution
at t∗ > 60.

It is also important to explore the generality of the above
results by investigating the effects of Reynolds number on the
mixing statistical quantities. Figure 6 presents the Reynolds
number effects on W and hb,s for the cases with the weak-
est (Ma015Re1, Ma015Re2, and Ma015Re3) and strongest
(Ma045Re1, Ma045Re2, and Ma045Re3) background stratifi-
cation strengths using different Re0 . As seen from the figure,
Re0 has a very limited effect on the growth of the mixing layer
as the values of W approach similar heights for all three Re0

no matter whether Ma= 0.15 or Ma= 0.45. This is consistent
with the time evolution of the bubble and spikes as shown ear-
lier in the visualizations of the mass fraction field. This lack
of dependence of the large-scale characteristics, such as the
mixing width and the bubble/spike heights (not shown in the
figure), on the Reynolds number was also shown by Wieland
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0.4

0.6

0.8

1.0

Θ

(a) Mixedness
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χ
∗

(b) Normalized domain-integrated scalar dissipation rate

FIG. 5. Time evolution of (a) the mixedness, Θ, and (b) the normal-
ized domain-integrated scalar dissipation rate, χ∗, at Re0 = 12750.0.
Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma =
0.30 (Ma030Re3); blue dash-dotted line: Ma = 0.45 (Ma045Re3).

et al. 15 and Wei and Livescu 51 for the single-mode compress-
ible RTI and incompressible RTI, respectively. These findings
indicate that the cease of the mixing layer growth due to strong
background stratification is highly universal for the multi-
mode compressible RTI and independent of the Re0 at least
for the investigated range of Re0. While the other two mixing
metrics, Θ, and χ∗, show some sensitivities to Re0, in particu-
lar at early times when the flow is not chaotic and still devel-
oping. For example, χ∗ gets a slightly larger value for the case
Ma015Re1 compared to the case Ma015Re3 at t∗ ≈ 18 as the
diffusion transport coefficient is larger for the lower Reynolds
number cases with the same Ma. At later times of the flow
evolution, both Θ and χ∗ collapse as the flow becomes fully
developed. This further assures that the ceasing of the mix-
ing and the reduction of the mass fraction variations across
the mixing layer caused by strong background stratification
strength are quite universal behavior as they do not show much
Reynolds number dependence, at least for the range of Re0

chosen in this study. It should be noted that χ∗ does not have
significant Reynolds number dependence at late times. Al-
though the gradients of the mass fraction are smaller for the
lower Reynolds number cases, χ∗ is defined as a quantity that
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FIG. 6. Time evolution of (a) the normalized mixing width, W/λ0, (b) the mixedness, Θ, and (c) the normalized domain-integrated scalar
dissipation rate, χ∗, of the Ma = 0.15 cases (top row) and the Ma = 0.45 cases (bottom row) with different Reynolds numbers. Red solid line:
Re0 = 3187.5; green dashed line: Re0 = 6375.0; blue dash-dotted line: Re0 = 12750.0.

consists of the product of the squared mass fraction gradient
magnitude and the mass diffusivity, D, which scales with ν0

as Sc is kept constant and is larger for the low Reynolds num-
ber cases. As a result, at early times, such as t∗ ≈ 18, while
the flow is yet to be developed, χ∗ is slightly larger for the
low Re0 cases as these cases have larger mass diffusivity. At
later times, χ∗ becomes independent of the Reynolds number
as the flow has developed, and the larger mass fraction gradi-
ents compensate for the smaller mass diffusivity for the high
Reynolds number cases. This is also consistent with the flow
visualization of the heavy fluid mass fraction field, where a
higher value of Re0 leads to finer features and larger gradients
in the mass fraction field.

C. Spatial Profiles of Mixing Quantities

To further investigate the mixing behavior of the compress-
ible RTI, we present the mean spatial profiles of the heavy
fluid mass fraction, Ȳh, in Figure 7 for all Ma cases at the
largest Re0. At the very early time, t∗ = 5, the profiles of
all cases have a monotonic transition from heavy fluid region
to light fluid region. But at t∗ = 10, the profiles of Ȳh show
non-monotonic shapes as the pure fluids exchange locations
within the mixing layer due to fluid entrainment while the
molecular mixing is limited. When t∗ ≥ 20, the enhanced
molecular mixing smooths out the Ȳh profiles towards more
monotonic shapes again for all cases. It is important to note
that at these late times, increased strength of the background

stratification leads to larger gradients of the Ȳh profiles near
the edges of the mixing layer. This is also noticeable in the Ȳh

visualizations in Figure 1 for the higher Ma cases (Ma030Re3
and Ma045Re3), where there is a more distinct separation be-
tween the pure fluid regions and the mixing layers compared
to the low Ma case (Ma015Re3).

Next, we present the spatial profiles of the heavy fluid mass
fraction variance, Y ′

hY ′
h, at different time instants in Figure 8

where (·)′ represents the Reynolds fluctuation of a given quan-
tity. At t∗ = 5, there is a symmetric distribution with a single
peak for each case, and at t∗ = 10, there are double peaks
which are consistent with the results of the non-monotonic
Ȳh profiles. A more interesting behavior is observed at later
times, i.e., when t∗ ≥ 20, as the Y ′

hY ′
h profiles become asym-

metric even with our chosen very small Atwood number. Re-
sults of the incompressible numerical simulations9,21,29,30,36

and quasi-incompressible experiments55–57 of the buoyancy-
driven flows suggest highly symmetric flow evolution when
A < 0.2. Recently, the DNS results by Prine, Aslangil, and
Wong 58 showed that for single-mode compressible RTI at
A = 0.25, an increase in the background stratification strength
leads to a significant difference between the evolution of the
locations of the spikes and bubbles, as the former grows much
faster than the latter. In addition, they showed that an in-
crease in compressibility through the background stratifica-
tion strength (higher Ma) prevents the formation of vortical
structures at the bubble side of the flows, while the vortical
structures are more resistant to the effects of background strat-
ification at the spike side. In this study, the Atwood number
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FIG. 7. Effects of the isothermal background stratification strength on the mean spatial profiles of the heavy fluid mass fraction, Ȳh, at
Re0 = 12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-dotted line:
Ma = 0.45 (Ma045Re3).
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FIG. 8. Effects of the isothermal background stratification strength on the spatial profiles of the heavy fluid mass fraction variance, Y ′
h
Y ′

h
, at

Re0 = 12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-dotted line:
Ma = 0.45 (Ma045Re3).

is kept very small (A = 0.04), so one would not expect any
asymmetric behavior on the spatial profiles of the mass frac-
tion variance. Our results of the low Ma case, Ma015Re3,
are consistent with the earlier observations on incompressible
or quasi-incompressible RTI flows, as there is no significant
difference between the evolution of the hb and hs. However,
the mixing state of the flow surprisingly exhibits differences
between the heavier and lighter fluid regions when Ma is in-
creased, where the mass fraction variance is larger in the heav-
ier fluid regions compared to the lighter fluid regions. Figure 9
shows the normalized mean spatial profiles of the scalar dis-
sipation rate, χ tr, between the cases Ma015Re3, Ma030Re3,
and Ma045Re3. The scalar dissipation rate profiles stay quasi-
symmetric until the late times of the flow evolution as the
large-scale asymmetry in Y ′

hY ′
h has not been reflected in the

small-scale dissipation quantity. At t∗ = 50, the spatial profile
becomes asymmetric for the case Ma045Re3, which can be
attributed to the asymmetric Y ′

hY ′
h profile as the scalar dissipa-

tion rate would be enhanced in regions where the variance is
larger.

The normalized mean density profiles, ρ/ρ I , are shown in
Figure 10 for all Ma cases at the highest Re0. At t∗ = 0,
the mean density profiles near the interface at x/λ0 = 0 are
non-monotonic with inverse gradients for all cases because
of the initial conditions of unstable stratifications. In addi-
tion, due to the exponential-like relation between the density
field and the height of the domain for these isothermally strat-
ified cases, the initial density stratification is not symmetric,
and such asymmetry becomes dominant by an increase in the
isothermal background stratification strength. As a result, the
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FIG. 9. Effects of the isothermal background stratification strength on the normalized mean spatial profiles of the scalar dissipation rate, χ tr,
at Re0 = 12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-dotted
line: Ma = 0.45 (Ma045Re3).
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FIG. 10. Normalized mean spatial profiles of the density, ρ/ρ I , of cases with different Ma at Re0 = 12750.0 at different times. Cyan solid
line: t∗ = 5; red dashed line: t∗ = 10; green dash-dotted line: t∗ = 20; blue dotted line: t∗ = 50; thin gray dashed line: initial conditions at
t∗ = 0.

initial background stratification would also contribute to the
observed asymmetry in Y ′

hY ′
h (see Figure 8) for the high Ma

cases. For incompressible RTI under constant acceleration,
the unstable stratification persists indefinitely during the sim-
ulation or experiment as the pure fluids have constant densities
and the pure fluids continuously fill the growing mixing layer.
However, for the isothermally stratified compressible RTI, the
densities of the pure fluids are not uniform and are dependent
on location in the domain, as derived in Equation (21) and
shown in the initial conditions of Figure 10. As a result, as

seen from Figure 10(c), the density profile rapidly becomes
monotonic without any inverse gradient for the strongest Ma

case (Ma045Re3) after t∗ = 10 because of the coupled ef-
fects of mixing and background stratification. From the time
evolution of the mixing width, we can see that the mixing
layer continues to grow beyond t∗ = 10 until t∗ ≈ 30 for this
case. There is a similar observation for the moderately strati-
fied case Ma030Re3, where the mixing width temporarily still
increases after the mean density profile becomes monotonic
at around t∗ = 20. This may be due to the inertia of bub-
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bles/spikes, the existence of locally unstable density gradients
that are not represented by the mean density profile because
of the 2D chaotic motions, and also possibly the strong expan-
sion and compression motions20. It is also notable that even
in our weakest background stratification case, Ma015Re3, the
mean density profile eventually becomes monotonic without
inverse gradient at late time t∗ = 50. This suggests that the
mixing layer growth may also cease for this low Ma case as
well if the simulation is run for a longer time, which is signif-
icantly different than incompressible RTI evolution.

V. FLOW ENERGETICS

The RTI at the interface leads to a rapid and efficient con-
version of potential energy into kinetic energy21,36. For the in-
compressible case, the continuous growth of the mixing layer
of RTI is caused by this energy conversion. This section inves-
tigates the effects of background stratification strength on the
multi-mode compressible RTI evolution further through flow
energetics.

A. Time Evolution and Spatial Profiles of Turbulent Kinetic
Energy

Figure 11(a) presents the normalized domain-integrated tur-
bulent kinetic energy, TKE∗, which is the turbulent kinetic en-
ergy, TKE, integrated across the mixing layer and normalized
with the mixing width, W , and the reference turbulent kinetic
energy, TKEr. TKEr is defined with the interface density, ρ I ,
and the gravity wave speed,

√

gλ0. The normalized integrated
turbulent kinetic energy and the related quantities are given as

TKE =
1

2
ρu′′i u′′i , (33)

TKEr =
1

2
ρ I
√

gλ0

√

gλ0, (34)

TKE∗ =

∫
TKE dx

W ·TKEr

, (35)

where u′′ = u− ũ represents the Favre fluctuations of the ve-
locity field using the Favre mean (density-weighted) of the
velocity, ũ = ρu/ρ . As seen in Figure 11(a), TKE∗ ap-
proaches a constant value for the low Ma case (Ma015Re3)
that is similar to the incompressible RTI flows9. However, for
the cases with stronger background stratification (Ma030Re3
and Ma045Re3), TKE∗ decays when t∗ > 15. This decay is
consistent with the cessation of the growth of the RTI mixing
width, which is also an indication of the end of conversion
from potential energy to kinetic energy.

In a buoyancy-driven flow, the anisotropy of the Reynolds
normal stress is another important quantity to examine, as
the flow has directionality due to the constant accelera-
tion. Both incompressible numerical9,12,13,21,27 and quasi-
incompressible experimental measurements56,57 show that
buoyancy-driven flows are highly anisotropic in general. The

0 20 40 60 80 100

t∗
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
K
E

∗

(a) Normalized domain-integrated turbulent kinetic energy
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FIG. 11. Time evolution of (a) the normalized domain-integrated
turbulent kinetic energy, TKE∗, and (b) the Reynolds normal stress
anisotropy,

〈
R̃11

〉
/
〈
R̃22

〉
, at Re0 = 12750.0. Red solid line: Ma =

0.15 at the interface (Ma015Re3); green dashed line: Ma = 0.30
(Ma030Re3); blue dash-dotted line: Ma = 0.45 (Ma045Re3).

anisotropy of the 2D flows can be quantified with the use of
the Reynolds stress tensor, which is defined as

R̃i j =
ρu′′i u′′j

ρ̄
. (36)

The anisotropy of the Reynolds normal stress components can
be measured from

R̃11 + ε

R̃22 + ε
, (37)

where ε that is close to zero is added to the denominator to
prevent division by zero. The ratio increases when a larger
portion of TKE is contributed from ρ̄R̃11, while the ratio is
zero when there is no contribution to TKE from that compo-
nent. ε is also added to the numerator such that the ratio is
one not only when the Reynolds normal stress is isotropic but
also when TKE is zero, i.e., when the flows are laminar. For
simplicity, ε is not shown in any expression of anisotropy in
the following text. To measure the Reynolds normal stress
anisotropy over time, the anisotropy averaged in the central
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part of the mixing layer,
〈
R̃11

〉
/
〈
R̃22

〉
, can be used, where

〈 · 〉 donates a spatial averaging within the interior chaotic re-
gion of the mixing layer that satisfies

4Y hY l ≥ 0.9. (38)

At the early stage of the instability, it is shown in Figure 11(b)
that

〈
R̃11

〉
/
〈
R̃22

〉
attains its largest value where more than

90% of TKE is contributed from ρ̄R̃11 for all three Ma cases
at the highest Re0. This is expected as the potential energy
is first converted to this Reynolds normal stress component
before the energy is transferred to other components through
the pressure-strain redistribution. Later, the Reynolds normal
stress anisotropy in the central part of the mixing layer rapidly
decays when the flow develops for all three cases. However,
it stays larger than one for the low Ma case (Ma015Re3) as
the growth of the mixing layer and TKE continues. On the
other hand, our DNS results suggest that the flows become
quasi-isotropic for the higher Ma cases with stronger back-
ground stratification strengths (Ma030Re3 and Ma045Re3),
as the anisotropy metrics fluctuate around one. It is worth
mentioning that the isotropization of Reynolds normal stress
is also rare in RMI25,59,60 where the post-shocked flows stay
anisotropic in late times, even in the absence of any accelera-
tions. We believe the rapid isotropization of the Reynolds nor-
mal stress components for the higher Ma cases is an outcome
of the cease of the RTI growth caused by the compressible ef-
fects, where the pressure-strain redistribution term is more ef-
fective in equalizing TKE among the Reynolds normal stress
components when the production term of TKE becomes small
or is even no longer present.

Figure 12 presents the normalized mean spatial profiles of
turbulent kinetic energy, TKE/TKEr, at four distinct times for
all three Ma cases at the highest Re0. Although the compress-
ibility effects through background stratification on the mixing
layer growth are small at t∗ = 5, we can still observe that a
stronger background stratification strength leads to a smaller
peak of the spatial profile. Such reduction of the magnitude of
TKE/TKEr due to stronger background stratification strength
becomes more and more observable at later times. In addi-
tion, Figure 13 presents the spatial profiles of the Reynolds
normal stress anisotropy at different time instants for all cases
at the highest problem Re0. Initially, the peaks of R̃11/R̃22

around x/λ0 = 0 are greater than 10 for all cases, which indi-
cates that the Reynolds normal stress components are highly
anisotropic around the middle portion of the mixing layer.
Nevertheless, the Reynolds normal stress anisotropy of the
flow slightly decreases to the value of roughly 1.5 at the core
of the mixing layer at a later time, t∗ = 20. At a very late
time, t∗ = 50, the spatial profiles of the Reynolds normal stress
anisotropy fluctuates around unity for the higher Ma cases
(Ma030Re3 and Ma045Re3), whereas the flow stays larger
than one within a large portion of the mixing layer for the low
Ma case (Ma015Re3). This shows that the flows are more
isotropic for the higher Ma cases compared to that of the case
Ma015Re3, which is also consistent with the time evolution
of the anisotropy in Figure 11(b).

B. Transport of Turbulent Kinetic Energy

Researchers have extensively studied the kinetic energy
transport for turbulence induced by incompressible RTI and
buoyancy-driven turbulence 21,26,36,53,61,62. On the other hand,
the analysis of kinetic energy budgets for compressible RTI
is still limited except some very recent works20,63,64. In this
subsection, the budgets of the turbulent kinetic energy are an-
alyzed for the multi-mode compressible RTI under different
background stratification strengths.

The transport equation of the turbulent kinetic energy per
unit mass, k = R̃ii/2, of the studied problem has the following
one-dimensional (1D) mean form after taking the average in
the homogeneous y-direction over all realizations:

∂ ρ̄k

∂ t
︸︷︷︸

term (I)

+
∂ (ρ̄ ũk)

∂x
︸ ︷︷ ︸

term (II)

= a1

(
∂ p̄

∂x
− ∂ τ̄11

∂x

)

− ρ̄R̃11
∂ ũ

∂x
︸ ︷︷ ︸

term (III)

−1

2

∂
(

ρu′′i u′′i u′′
)

∂x
− ∂

(
u′p′

)

∂x
+

∂
(

u′iτ
′
i1

)

∂x
︸ ︷︷ ︸

term (IV)

+p′
∂u′i
∂xi

︸ ︷︷ ︸

term (V)

−τ ′i j

∂u′i
∂x j

︸ ︷︷ ︸

term (VI)

,

(39)

where the LHS consists of rate of change [term (I)] and con-
vection [term (II)]. The RHS consists of production [term
(III)], turbulent transport [term (IV)], pressure-dilatation
[term (V)], and dissipation [term (VI)]. a is the turbulent mass
flux velocity given by a = ρ ′u′/ρ where u′ and ρ ′ are the
Reynolds fluctuations of the velocity and density fields, re-
spectively. Also, note that ρ̄k = TKE.

The transport equation of k is closely related to that of the
Favre mean kinetic energy per unit mass, which is defined as
K̃ = ũ · ũ/2. The averaged transport equation of K̃ in the 1D
mean form is given by

∂ ρ̄K̃

∂ t
+

∂
(
ρ̄ ũK̃

)

∂x
= ρ̄ ũg− ∂ ρ̄ ũR̃11

∂x

−ũ
∂ p̄

∂x
+ ρ̄R̃11

∂ ũ

∂x
+ ũ

τ̄11

∂x
.

(40)

Unlike k and its transport equation, K̃ and its transport equa-
tion are dependent on the chosen reference frame. The term
ρ̄ ũg denotes the production to convert the potential energy
into the mean Favre mean kinetic energy. As ũ = ū+a, the
term can be split into two components:

ρ̄ ũg = ρ̄ ūg
︸︷︷︸

term (I)

+ ρ̄a1g
︸︷︷︸

term (II)

. (41)

While term (I) changes under the Galilean transformation,
term (II) does not. Similarly, ũ p̄,1 can also be decomposed
as

ũ
∂ p̄

∂x
= ū

∂ p̄

∂x
+a1

∂ p̄

∂x
. (42)
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FIG. 12. Effects of the isothermal background stratification strength on the normalized mean spatial profiles of turbulent kinetic energy,
TKE/TKEr, at Re0 = 12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue
dash-dotted line: Ma = 0.45 (Ma045Re3).
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FIG. 13. Effects of the isothermal background stratification strength on the spatial profiles of Reynolds normal stress anisotropy, R̃11/R̃22, at
Re0 = 12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-dotted line:
Ma = 0.45 (Ma045Re3).

By inspecting the transport equations of K̃ and k, it can be
seen that ρ̄a1g is an agent that is invariant under the Galilean
transformation of the reference frame to convert potential en-
ergy into Favre mean kinetic energy if both a1 and g have
the same signs (or a1 is positive for the problem being stud-
ied). Moreover, the transfer of energy between K̃ and k is only
contributed by a1 p̄,1 and ρ̄R̃11ũ,1. The turbulent mass flux ve-
locity component in the streamwise direction, a1, undoubt-
edly plays a critical role in the conversion of potential en-
ergy to mean and turbulent kinetic energies in the buoyancy-
driven flows. Due to its critical role in the flow energetics
of acceleration-driven multi-species flow instabilities, the tur-
bulent mass flux velocity is studied in many previous works
on incompressible RTI36,65, buoyancy-driven variable-density
turbulence21,26, and RMI60,66,67.

Figure 14 shows the time evolution of the normalized

streamwise turbulent mass flux velocity component, 〈a1〉∗,
which is a1 averaged in the middle part of the mixing layer
and normalized by the gravity wave speed for all Ma cases at
the highest Re0:

〈a1〉∗ =
〈a1〉
√

gλ0

. (43)

As seen in the figure, 〈a1〉∗ is the largest (and is always pos-
itive) for the lowest Ma case (Ma015Re3) as the mixing layer
continuously grows, which means the pure fluid motions al-
ways convert the potential energy to the kinetic energy. How-
ever, 〈a1〉∗ rapidly decays at t∗ ≈ 10 for the cases Ma030Re3
and Ma045Re3. More interestingly, 〈a1〉∗ becomes negative
for these higher Ma cases (see Figure 14(b)). A negative value
of the mean turbulent mass flux velocity indicates that there
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FIG. 14. Time evolution of the normalized mean of turbulent mass
flux velocity in the middle part of the mixing layer, 〈a1〉∗, at Re0 =
12750.0. Red solid line: Ma = 0.15 (Ma015Re3); green dashed
line: Ma = 0.30 (Ma030Re3); blue dash-dotted line: Ma = 0.45
(Ma045Re3).

are fluid motions in the reserve directions compared to the ear-
lier times in the middle portion of the domain where the heav-
ier fluid moves up in the negative x-direction, whereas lighter
fluid migrates down in the opposite direction. This motion is
consistent among different realizations and is evident after the
ensemble averaging. This behavior is attributed to the result of
the inertia of the flow when the stronger background stratifi-
cation terminates the growth of the mixing layer, which leads
to a rapid decay in 〈a1〉∗. Such rapid inertial motion causes
undershoot in the time evolution of 〈a1〉∗ to obtain a negative
value.

The time evolution of the normalized domain-integrated
production term, TKE∗

prod , and dissipation term, TKE∗
diss, of

k for different Ma cases at the highest Re0 are shown in Fig-
ure 15. The production and dissipation terms are given by
terms (III) and (VI), respectively, in Equation (39). These two
transport terms are normalized with TKEr ·W/tr. From the
figure, it can be seen that the time evolution of TKE∗

prod is very
similar to that of 〈a1〉∗, as the production is essentially only
contributed by the component a1 p̄,1 which is marked with cir-
cles in the plots. As a result, TKE∗

prod is also negative and acts
as an anti-production term, except at very early times for the

(a) Global view

(b) Zoomed view

FIG. 15. Time evolution of the normalized total production term
TKE∗

prod , the normalized production component associated with the
turbulent mass flux velocity, and the normalized dissipation term,
TKE∗

diss of the turbulent kinetic energy ρ̄k at Re0 = 12750.0. The
terms are given by Equation (39). Red solid line: Ma = 0.15
(Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-
dotted line: Ma = 0.45 (Ma045Re3). The lines for the normalized
total production are not marked with any symbols while the lines for
the normalized dissipation are marked with crosses. The normalized
production component associated with the turbulent mass flux veloc-
ity is represented by the circles only, and no lines.

higher Ma cases (Ma030Re3, Ma045Re3). On the other hand,
TKE∗

diss is always negative to dissipate ρ̄k.

The spatial profiles of the normalized budgets of the turbu-
lent kinetic energy, ρ̄k (or TKE), are shown in Figure 16 for
the three Ma cases at the highest problem Re0 at t∗ = 15 and
t∗ = 25. The budget terms given by Equation (39) are nor-
malized by TKEr/tr. From the figure, it can be seen that the
production, turbulent transport, and dissipation terms are the
only relevant terms in the budgets for different cases at the
chosen times, while other terms are negligible. At t∗ = 15, the
production and the turbulent transport terms are dominant in
the middle part of the mixing layer for the two lower Ma cases
(Ma015Re3 and Ma030Re3). In this core region of the mixing
layer, the turbulent transport terms are very negative. While
the production term is still positive for the case Ma045Re3 at
t∗ = 15 in the middle part of the layer, it is small compared
to the dissipation and the turbulent transport terms, and the
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1.0 0.5 0.0 0.5 1.0

x/W

0.003

0.002

0.001

0.000

0.001

0.002

(e) t∗ = 15, Ma = 0.45
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FIG. 16. Comparison of the normalized budget terms of turbulent kinetic energy, ρk, of Ma = 0.15 (Ma015Re3) (top row), Ma = 0.30
(Ma030Re3) (middle row), and Ma = 0.45 (Ma045Re3) (bottom row) cases at Re0 = 12750.0 at two different times. The terms are given
by Equation (39). Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green dash-dotted line: turbulent
transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection due to stream-
wise velocity component associated with turbulent mass flux; thin black dotted line: summation of all terms (rate of change in the simulation
frame).

overall rate of change of ρ̄k is very negative. At the edge
of the mixing layer, the turbulent transport term is the only
dominant term and is positive for each case. As a result, the
spatial profiles of ρ̄k continue to spread at this time for all
cases. At a later time, t∗ = 25, the budgets of the Ma015Re3

and Ma030Re3 cases are still quite similar compared to those
at t∗ = 15, except that there are more fluctuations in the spa-
tial profiles of the turbulent transport term. As the flows are
more chaotic at this time, more realizations may be needed
for smoother, or statistically better converged, profiles for this



Isothermally Stratified Multi-mode Compressible RTI 19

term. However, the general shape of this term at t∗ = 25 can
still be observed, which is quite similar to that at t∗ = 15 for
each case. Its effect is still to transfer ρ̄k from the core to
the edges of the mixing layers for all cases, including case
Ma045Re3. The production term of the cases Ma015Re3 and
Ma030Re3 remains largely positive to continuously convert
potential energy into kinetic energy, similar to the observation
that this term is large over a long period of time in other stud-
ies of incompressible RTI and buoyancy-driven mixing21,26,36.
Nevertheless, the production term has become negative across
a large portion of the mixing layer for case Ma045Re3 due to
negative turbulent mass flux velocity at this time. All relevant
terms are negative at the core of the mixing layer, and hence
the peak of ρ̄k (or TKE) decreases rapidly for this case around
this time instant.

C. Vortex Dynamics

The study of vortex dynamics, particularly the evolution of
the vorticity, can provide an additional dimension to exam-
ine the effects of background stratification on the multi-mode
compressible RTI. Gauthier 19 studied the vortex dynamics
through helicity for the multi-mode compressible RTI, but
only one background stratification strength was considered.
While the effects of background stratification on the vortic-
ity dynamics of compressible RTI were addressed by Wieland
et al. 15 , it was only limited to single-mode RTI. In this sec-
tion, the effects of background stratification strength on the
vorticity evolution for the multi-mode compressible RTI are
studied. Figure 17 shows a qualitative comparison of the con-
tours of the only nonzero component (z-component) of vortic-
ity for the 2D flows, ω = ∇×u, normalized by tr for all three
Ma cases at the largest Re0, i.e., Ma015Re3, Ma030Re3, and
Ma045Re3, at three different time instants: t∗ = 10, t∗ = 20,
and t∗ = 60. The first-row panel of the figure compares the
contours between the three cases at t∗ = 10. At this time, the
flows are still not very chaotic, as the roll-up of the bubbles
and spikes is still very coherent for all cases. In addition, the
shapes of the vortices are essentially the same for all cases,
similar to the mass fraction contour plots in Figure 1. How-
ever, it is also observed that an increase in the background
stratification strength through Ma decreases the magnitude of
the vorticity, as indicated by the minimum and maximum val-
ues of the colorbars. The reduced strength of vorticity with
Ma is an early indication of background stratification effects
on compressible RTI. At the later time, t∗ = 20, not only the
strength but also the shapes of the vortices have become dif-
ferent between the three cases. The slow-down in the growth
of the mixing layer due to the background stratification effect
is reflected in the vortical structures where the structures are
confined in a narrower region with higher Ma. At the much
later time, t∗ = 60 (shown by the third row of Figure 17),
the low Ma case (Ma015Re3) continues to show the largest
vorticity magnitude within the mixing layer. However, the
strength of the normalized vorticity is reduced compared to
its strength at the earlier time, t∗ = 20. Although the flow is
more chaotic at this time instant, the large-scale bubbles and

spikes are still distinguishable and continue to penetrate into
the unmixed regions. On the other hand, the flows have less
distinguishable large-scale structures for the higher Ma cases
(Ma030Re3 and Ma045Re3) due to larger levels of molecular
mixing, and this is consistent with the observation of Yh in Fig-
ure 1. The effects of the background stratification strength on
the evolution of the vorticity for these multi-mode compress-
ible RTI cases are similar to those found by Wieland et al. 15

for single-mode compressible RTI where the vorticity magni-
tude decreases and the propagation of the “fronts" of nonzero
vorticity is suppressed with a larger Ma.

The enstrophy, Ω, can be used to quantify the background
stratification effects through Ma on the small-scale vortical
structures. Ω is a measure of the vorticity strength within the
mixing layer and is largely contributed by the small scales of
the flows. It is defined as:

Ω = ρω ·ω. (44)

The normalized enstropy, Ω∗, is defined as the normalization
of the domain-integrated enstrophy by the mixing width, W ,
the interface density, ρ I , and the characteristic time scale, tr:

Ω∗ =
t2
r

∫
Ω dx

Wρ I
. (45)

Figure 19(a) presents the time evolution of Ω∗ for the three
different Ma cases at the highest Re0. At early times, t∗ < 10,
the time evolution of Ω∗ collapses well for the three differ-
ent cases. At later times, the strength of the vortical mo-
tions is the largest for the lowest Ma case (Ma015Re3), which
is consistent with the vorticity contour plots. At very late
times, t∗ > 40, while the Ω∗ is still the largest for the case
Ma015Re3, it decreases in this case, as well as other cases.
Note that at this time period, the normalization factor W is still
increasing for case Ma015Re3, while the growth of the mix-
ing layer widths has already slowed down for case Ma030Re3
and ceased for case Ma045Re3. Figure 18 presents the spatial
profiles of the enstrophy for the cases Ma015Re3, Ma030Re3,
and Ma045Re3. We observe the strongest enstrophy at the
center of the mixing layer for all three cases with quasi-
symmetric shapes. The decrease in the enstrophy strength
with stronger background stratification strength is consistent
with Figure 19(a).

In addition to the enstrophy, the baroclinic torque is also
studied as it is the production term of the vorticity, ω. For 2D
flows, this vector only has one non-zero component, which is
given by:

B3 = Bz =
1

ρ2
∇ρ ×∇p. (46)

The normalized domain-integrated root mean square (rms) of

the baroclinic torque,
√

B2
3

∗
, is given by:

√

B2
3

∗
=

t2
r

∫
√

B2
3 dx

W
. (47)

From Figure 19(b), it can be seen that the time evolution of
√

B2
3

∗
follows closely that of the enstrophy, which is expected
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(a) t∗ = 10.0, Ma = 0.15 (b) t∗ = 10.0, Ma = 0.30 (c) t∗ = 10.0, Ma = 0.45

(d) t∗ = 20.0, Ma = 0.15 (e) t∗ = 20.0, Ma = 0.30 (f) t∗ = 20.0, Ma = 0.45

(g) t∗ = 60.0, Ma = 0.15 (h) t∗ = 60.0, Ma = 0.30 (i) t∗ = 60.0, Ma = 0.45

FIG. 17. Effects of the isothermal background stratification strength on the normalized vorticity, ω/tr, of the Ma = 0.15 (Ma015Re3),
Ma = 0.30 (Ma030Re3), and Ma = 0.45 (Ma045Re3) cases from left to right at Re0 = 12750.0 at different times. Top row: t∗ = 10; middle
row: t∗ = 20; bottom row: t∗ = 60.

as this quantity is the source of vorticity. The strength of
baroclinic torque decreases with stronger background strat-
ification strength, which is similar to the single-mode com-
pressible RTI findings15. For the higher Ma cases Ma030Re3

and Ma045Re3,
√

B2
3

∗
asymptotically converges to a value

around 0.6-0.8, indicating that there is still a consistent en-
strophy production within the mixing layer until the end of
the simulations. This asymptotic behavior is mainly attributed
to the remaining highly unmixed fluids near the edges of the
mixing layers, which are indicated by the double peaks in the
spatial profiles of Y ′

hY ′
h in Figure 8 for the two cases at late

times.

Furthermore, the small-scale vortical motions of the flows
are sensitive to the Reynolds number, and more details are
discussed in Appendix B.

VI. CONCLUSION

In this study, we explored the background isothermal strat-
ification effects on the 2D multi-mode compressible RTI mix-
ing and energetics with fully compressible multi-species di-
rect numerical simulations. The RTI is driven by the initial in-
verse density gradient at the perturbed two-fluid interface un-
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FIG. 18. Effects of the isothermal background stratification strength on the normalized mean spatial profiles of enstrophy, Ω/Ωr, at Re0 =
12750.0 at different times. Red solid line: Ma = 0.15 (Ma015Re3); green dashed line: Ma = 0.30 (Ma030Re3); blue dash-dotted line:
Ma = 0.45 (Ma045Re3).
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FIG. 19. Time evolution of (a) the normalized domain-integrated
enstrophy, Ω∗, and (b) the normalized domain-integrated root-mean-

square of baroclinic torque,
√

B2
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∗
, at Re0 = 12750.0. Red solid line:

Ma= 0.15 (Ma015Re3); green dashed line: Ma= 0.30 (Ma030Re3);
blue dash-dotted line: Ma = 0.45 (Ma045Re3).

der constant acceleration. Although the background stratifica-
tion strength has a small effect on the magnitude of the initial
density jump at the interface compared with the Atwood num-
ber effect, it determines the background density gradient cou-
pled with the initial jump. The background density gradient
was found to largely affect the late-time mixing layer evolu-
tion using three cases under different strengths of background
stratification. In this study, the strength of the stratification is
controlled by the background isothermal Mach number, Ma,
and they are chosen as 0.15, 0.30, and 0.45 for weakly, moder-
ately, and strongly stratified cases, respectively. Similar to the
2D single-mode compressible isothermally stratified RTI15,
an increase in the background isothermal Mach number leads
to a suppression of the growth of the RTI mixing layer. Simu-
lations with durations that are substantially longer than those
of the previous single-mode compressible RTI study show that
the multi-mode RTI growth ceases even under relatively mod-
erate stratification strength (Ma = 0.30). When the mixing
layer grows, the non-monotonic behavior of the mean density
gradient disappears rapidly for the strongly stratified cases,
and the mixing layer growth slows down quickly. Eventually,
after reaching a certain mixing layer height, the flow becomes
well-mixed within the mixing layer as the pure fluid entrain-
ment is ceased, and the high degree of molecular dissipation
dominates the mixing process. In addition, the suppression
of the mixing layer growth due to strong background stratifi-
cation rapidly redistributes the energy within the two compo-
nents of Reynolds normal stress and leads to a quasi-isotropic
flow.

The flow energetics of the multi-mode compressible RTI
were also found to be significantly different than the incom-
pressible RTI scenario. The TKE reaches a self-similar grow-
ing behavior for the incompressible RTI, whereas the TKE
follows a non-linear evolution with rapid increase and de-
cay stages due to the background stratification effects for the
moderately and strongly stratified multi-mode compressible
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RTI cases. In contrast to the self-similar behavior of TKE in
incompressible RTI9, where the turbulent mass flux velocity
is always in the same direction of acceleration, the turbulent
mass flux velocity is in the opposite direction of the accelera-
tion (i.e., leads to a negative value of the turbulent mass flux
velocity if the acceleration is positive) at late times for these
two cases, so the production term behaves as a TKE sink,
rather than a source term as in incompressible RTI. The spatial
profiles of turbulent mass flux velocity also suggest that the
mass flux velocity plays a role in removing TKE at the core re-
gion of the mixing layer for the moderately and strongly strat-
ified cases at late times when the mixing layer growth ceases.
Finally, Reynolds number dependence was investigated using
three different problem Reynolds numbers for each isother-
mal Mach number case. Our results suggest that the findings
on the effects of isothermal background stratification through
Ma on most of the large-scale statistical quantities, such as
the mixing width, bubble/spike heights, and TKE, appear to
be universal as they do not show strong dependency on the
Reynolds number. In addition, even the scalar dissipation rate
was also found to be insensitive to the Reynolds number under
proper scaling.

The findings of this study suggest a more complex flow evo-
lution for the compressible RTI than the widely studied in-
compressible RTI. Future studies may investigate the effects
of background stratification strength on the more realistic 3D
compressible RTI and buoyancy-driven turbulence.
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Appendix A: Comparison of the Spatial Profiles based on
Mass Fraction and Volume Fraction

For flows with large density variations, the flow metrics
based on mass, volume, or mole fractions could lead to dif-
ferent conclusions. In this study, the Atwood number is kept
low, and we do not anticipate any sensitivity for a selection
of these three options. The comparison of the mean spatial
profiles of the heavy fluid mass fraction, Ȳh, and heavy fluid
volume fraction, Z̄h, at different time instants are presented
in Figure 20. The heavy fluid volume fraction is given by
Zh = ρYh/ρh, where ρh is the species density of the heavy

fluid. From the figure, it can be seen that the Ȳh profiles are
basically identical to the Z̄h profiles. Figures 21 and 22 show
that the variance and the normalized mean spatial profiles of
the scalar dissipation rate based on mass and volume fractions
are also essentially identical, respectively. We believe the spa-
tial profiles based on mass fraction and volume fraction are
basically the same because the Atwood number of the flow is
low. Note that the volume fraction is equivalent to the mole
fraction for species given by the ideal gas equation of state.

Appendix B: More Analysis on the Reynolds Number
Dependence

In contrast to large scales such as bubble/spike heights, the
vorticity has large sensitivity to the Reynolds number. In Fig-
ures 23 and 24, the contours of the normalized vorticity com-
ponent at different Re0 are compared at two different time
instants, t∗ = 20 and t∗ = 50. The magnitude of the vortic-
ity clearly increases with Re0. It was shown that baroclinic
torque and viscous diffusion are two major terms in the bud-
gets of vorticity15. As a result, as Re0 increases, the viscous
diffusion has a smaller effect due to reduced viscosity to off-
set the production effect of the baroclinic term, and thus the
vorticity is generated at a higher rate.

Figure 25 shows the time evolution of the Reynolds num-
ber dependence of the normalized turbulent kinetic energy

(TKE∗), enstrophy (Ω∗), and baroclinic torque (
√

B2
3

∗
). Sim-

ilar to the mixing width or bubble/spike heights, TKE∗ which
is also a large-scale quantity, shows limited sensitivity to Re0.

On the other hand, both Ω∗ and
√

B2
3

∗
are mainly contributed

by the smallest scales of the flow. Consistent with the large
Reynolds number dependence observed for the vorticity con-
tours, these vorticity-related small-scale quantities also show
a large dependency on Re0.
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(a) t∗ = 5 (b) t∗ = 10 (c) t∗ = 20 (d) t∗ = 50

FIG. 20. Comparison of the mean spatial profiles of the heavy fluid mass fraction, Ȳh, and volume fraction, Z̄h, at different times at Re0 =
12750.0. The mass fraction mean profiles are represented by lines and the volume fraction mean profiles are represented by symbols. Red solid
line (circles): mass fraction (volume fraction) of Ma015Re3; blue dash-dotted line (crosses): mass fraction (volume fraction) of Ma045Re3.

(a) t∗ = 5 (b) t∗ = 10 (c) t∗ = 20 (d) t∗ = 50

FIG. 21. Comparison of the spatial profiles of the heavy fluid mass fraction variance, Y ′
h
Y ′

h
, and volume fraction variance, Z′

h
Z′

h
, at different

times at Re0 = 12750.0. The mass fraction variance profiles are represented by lines and the volume fraction variance profiles are represented
by symbols. Red solid line (circles): mass fraction (volume fraction) of Ma015Re3; blue dash-dotted line (crosses): mass fraction (volume
fraction) of Ma045Re3.
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