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In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower

bounds for both problems that are optimal up to logarithmic factors.

The first problem is approximating cuts in balanced directed graphs. In this problem, we want to build a

data structure that can provide (1 ± 𝜀)-approximation of cut values on a graph with 𝑛 vertices. For arbitrary

directed graphs, such a data structure requires Ω(𝑛2) bits even for constant 𝜀. To circumvent this, recent

works study 𝛽-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction

is at most 𝛽 times the total weight in the other direction. We consider the for-each model, where the goal is

to approximate each cut with constant probability, and the for-all model, where all cuts must be preserved

simultaneously. We improve the previous Ω(𝑛
√︁
𝛽/𝜀) lower bound in the for-each model to Ω̃(𝑛

√︁
𝛽/𝜀) and we

improve the previous Ω(𝑛𝛽/𝜀) lower bound in the for-all model to Ω(𝑛𝛽/𝜀2). 1 This resolves the main open

questions of (Cen et al., ICALP, 2021).

The second problem is approximating the global minimum cut in a local query model, where we can only

access the graph via degree, edge, and adjacency queries. We prove an Ω
(
min{𝑚, 𝑚

𝜀2𝑘
}
)
lower bound for this

problem, which improves the previous Ω
(
𝑚
𝑘

)
lower bound, where𝑚 is the number of edges, 𝑘 is the minimum

cut size, and we seek a (1 + 𝜀)-approximation. In addition, we show that existing upper bounds with minor

modifications match our lower bound up to logarithmic factors.
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1 INTRODUCTION

The notion of cut sparsifiers has been extremely influential. This was introduced by Benczúr and

Karger [4] and is the following: given a graph 𝐺 = (𝑉 , 𝐸,𝑤) with 𝑛 = |𝑉 | vertices,𝑚 = |𝐸 | edges,
and edge weights𝑤𝑒 ≥ 0, together with a desired error parameter 𝜀 > 0, a cut sparsifier of 𝐺 is a

subgraph 𝐻 on the same vertex set 𝑉 with (possibly) different edge weights, such that the value

of every cut in 𝐺 is (1 ± 𝜀)-approximated by the corresponding cut in 𝐻 . Benczúr and Karger [4]

showed that every undirected graph has a (1 ± 𝜀) cut sparsifier with only𝑂 (𝑛 log𝑛/𝜀2) edges. This
was later extended to the stronger notion of spectral sparsifiers [19] and the number of edges was

improved to 𝑂 (𝑛/𝜀2) [3]; see also related work with different bounds for both cut and spectral

sparsifiers [6, 10, 12, 14, 17, 18].

In the database community, a key result is the work of [1], which shows how to construct

a sparsifer using 𝑂 (𝑛)/𝜖2 linear measurements to (1 + 𝜀)-approximate all cut values. Sketching

massive graphs arises in various applications where there are entities and relationships between

the entities, such as webpages and hyperlinks between them, people and their friendships, and IP

addresses and data flows between them. As large graph databases are often distributed or stored on

external memory, sketching algorithms are useful for reducing communication or memory usage

in distributed and streaming models. We refer the readers to [15] for a survey of graph stream

algorithms in the database community.

For very small values of 𝜀, the 1/𝜀2 dependence in known cut sparsifiers may be prohibitive.

Motivated by this, the work of [2] relaxed the problem to outputting a data structure 𝐷 , obtained

by preprocessing the input graph 𝐺 , such that given any fixed cut 𝑆 ⊆ 𝑉 = [𝑛] = {1, 2, . . . , 𝑛},
the value 𝐷 (𝑆) is within a (1 ± 𝜀) factor of the cut value of 𝑆 in 𝐺 with probability at least 2/3,
which can be amplified to 1 − 1/𝑛 by independently repeating the data structure 𝑂 (log𝑛) times

and outputting the median estimate. Notice the order of quantifiers — the data structure need not

be correct on all cuts, but just any fixed cut (chosen independently of its randomness) with high

probability. This is referred to as the “for-each" model. Surprisingly, [2] showed that such a data

structure exists for undirected graphs with poly(𝑛)-bounded integer edge weights of size 𝑂 (𝑛/𝜀).
Notice that the dependence on 𝜀 is now only linear, and [2] also shows an Ω(𝑛/𝜀) lower bound
for this problem. One might ask if the improved dependence on 𝜀 is coming from the relaxation of

the original sparsification question to arbitrary data structures or to the relaxation to hold for a

fixed cut with high probability. In fact [2] show that for any data structure, there is an Ω(𝑛/𝜀2) bit
lower bound if it is required to approximate all cuts simultaneously; the latter is referred to as the

“for-all" model. This lower bound was strengthened by a logarithmic factor in [6].

While the above results give a fairly complete picture for undirected graphs, a natural question

is if similar improvements are possible for directed graphs. Indeed, this is the main question posed

by [7]. That work observes that for directed graphs, even for the for-each model, there is an Ω(𝑛2)
lower bound without any assumptions on the graph. Motivated by this, [7, 9, 11] introduce the

notion of a 𝛽-balanced directed graph, meaning that for every directed cut (𝑆,𝑉 \ 𝑆), the total
weight of edges from 𝑆 to𝑉 \𝑆 is at most a 𝛽 factor larger than that from𝑉 \𝑆 to 𝑆 . This turned out

to be a very useful notion for directed graphs, as [7] was able to show that in the for-each model,

there is a𝑂 (𝑛
√︁
𝛽/𝜀) upper bound, while in the for-all model, there is a𝑂 (𝑛𝛽/𝜀2) upper bound, thus

giving non-trivial bounds for both problems for small 𝛽 . The work of [7] also gave lower bounds:

they showed an Ω(𝑛
√︁
𝛽/𝜀) lower bound in the for-each model, and they showed an Ω(𝑛𝛽/𝜀) lower

bound in the for-all model. While their lower bounds are tight for constant 𝜀, there is a quadratic

gap in their bounds for both models in terms of the dependence on 𝜀. The main question left open

of [7] is to determine the optimal dependence on 𝜀, which we resolve in this work.
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As observed in [2], one of the main ways of using a data structure in the for-each model is to

solve the distributed minimum cut problem. Indeed, by using the fact that there are at most 𝑛𝑂 (𝐶 )

cuts with value within a factor of 𝐶 of the minimum cut, it is possible to run a cut sparsifier with

constant 𝜀 in parallel with a data structure for general 𝜀 in the for-each model. Then, one can query

the data structure on each of the at most poly(𝑛) 𝑂 (1)-approximate minimum cuts output by the

sparsifier, resulting in an optimal linear in 1/𝜀 dependence in the communication.

Motivated by this connection to distributed minimum cut estimation, we also consider the

problem of directly approximating the minimum cut in the so-called Local Query Model, introduced

in [16] and studied for minimum cut in [5, 8]. The model is defined as follows.

Let 𝐺 (𝑉 , 𝐸) be an unweighted and undirected graph, where the vertex set 𝑉 is known but the

edge set 𝐸 is unknown. In the local query model, we assume there is an oracle and we access an

edge through the following types of local queries:

(1) Degree query: given 𝑢 ∈ 𝑉 , the oracle reports the degree of 𝑢.

(2) Edge query: given 𝑢 ∈ 𝑉 and index 𝑖 , the oracle reports the 𝑖-th neighbor of 𝑢. If the edge does

not exist, then it reports ⊥.
(3) Adjacency query: given 𝑢, 𝑣 ∈ 𝑉 , the oracle reports whether (𝑢, 𝑣) ∈ 𝐸.

In the Min-Cut problem, our goal is to estimate the size of minimum cut 𝑘 up to a (1 ± 𝜀)-factor
through a number of local queries. The complexity of the problem is measured using the number

of local queries, and we want to use as few queries as possible. In this case we focus on undirected

graphs.

Previous work [8] has shown an Ω(𝑚
𝑘
) lower bound and the main open question is what the

dependence on 𝜀 should be. There is also an upper bound in [5] of𝑂 ( 𝑚
𝑘poly(𝜀 ) ) and a natural question

is to close this gap.

1.1 Our Results.

We resolve the main open questions above.

Cut Sketch for Balanced (Directed) Graphs. Given an 𝑛-node 𝛽-balanced (directed) graph, the

previous work of [7] gives an 𝑂 (𝑛𝛽/𝜀2) upper bound in the for-all model and an 𝑂 (𝑛
√︁
𝛽/𝜀) upper

bound for the for-each model, along with an Ω(𝑛𝛽/𝜀) lower bound and an Ω(𝑛
√︁
𝛽/𝜀) lower bound,

respectively, for these two models. In this work, we close these gaps and resolve the 𝜀 dependence,

improving the lower bounds to asymptotically match the upper bounds for all parameters 𝑛, 𝛽 , and

𝜀. Formally, we have:

Theorem 1.1 (For-each Cut Sketch for Balanced Graphs). Let 𝛽 ≥ 1 and 0 < 𝜀 < 1 with√︁
𝛽/𝜀 ≤ 𝑛/2. Any (1 ± 𝜀) for-each cut sketching algorithm for 𝛽-balanced 𝑛-node graphs must be of

size Ω̃(𝑛
√︁
𝛽/𝜀) bits.

Theorem 1.2 (For-all Cut Sketch for Balanced Graphs). Let 𝛽 ≥ 1 and 0 < 𝜀 < 1 with

𝛽/𝜀2 ≤ 𝑛/2. Any (1 ± 𝜀) for-all cut sketching algorithm must be of size Ω(𝑛𝛽/𝜀2) bits.

Query Complexity of Min-Cut in the Local Query Model.
We close the gap on the 𝜀 dependence in the query complexity of approximating |MinCut(𝐺) |

up to a (1 ± 𝜀)-factor in the local query model by providing a tight Ω(min{𝑚, 𝑚
𝜀2𝑘

}) lower bound,
which improves the previous Ω

(
𝑚
𝑘

)
lower bound in [8]. Formally, we have:

Theorem 1.3 (Approximating Min-Cut using LocalQueries). Any algorithm that estimates

the size of the minimum cut of a graph 𝐺 up to a (1 ± 𝜀) factor requires Ω(min{𝑚, 𝑚
𝜀2𝑘

}) queries in
expectation in the local query model, where 𝑘 is the size of the minimum cut and𝑚 is the number of

edges in 𝐺.
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To show the tightness of our lower bound, we also show that after a simple modification, the

upper bound in [5] actually becomes 𝑂

(
𝑚
𝜀2𝑘

)
, which means that our lower bound is tight up to

logarithmic factors.

1.2 Our Techniques.

A common technique we use for the different problems is communication complexity games that

involve the approximation parameter 𝜀.

For-Each Cut Sketch Lower Bound. Let 𝑘 =
√︁
𝛽/𝜀. At a high level, we partition the 𝑛 nodes

into 𝑛/(2𝑘) sub-graphs, and each sub-graph is a bipartite graph with two parts 𝐿 and 𝑅 with

|𝐿 | = |𝑅 | =
√︁
𝛽/𝜀. We then divide 𝐿 and 𝑅 into

√︁
𝛽 clusters |𝐿1 | = |𝐿2 | = . . . = |𝐿√

𝛽
| = 1/𝜀 and

|𝑅1 | = |𝑅2 | = . . . = |𝑅√
𝛽
| = 1/𝜀. For every cluster pair 𝐿𝑖 and 𝑅 𝑗 , there are a total of 1/𝜀2 edges.

Intuitively, we encode each entry in a string 𝑠 ∈ {−1, 1}1/𝜀2 into a forward edge with weight 1 and

a backward edge with weight
1

𝛽
to make the graph 𝛽-balanced. If we could approximately decode

this string from our queries, then we would get an Ω(𝑛/𝑘 · (
√︁
𝛽)2 · 1/𝜀2) = Ω(𝑛

√︁
𝛽/𝜀) lower bound.

However, if we follow a standard decoding method for undirected graphs where we encode one

bit 𝑠𝑖 into one edge, then due to the backward edges, the total weight of a cut query would be

Ω(1/𝜀2), which results in an Ω(1/𝜀) additive error and does not allow us to obtain the value 𝑠𝑖 . To

address this, we instead encode 1/𝜀2 bits of information across 1/𝜀2 edges simultaneously, that is,

we do not encode each bit 𝑠𝑖 into a single edge. When we want to decode a specific bit 𝑠𝑖 , we query

the (directed) cut values between two “carefully designed” subsets 𝐴 ∈ 𝐿𝑖 and 𝐵 ∈ 𝑅 𝑗 . The key idea

of our construction is that, even though each edge in 𝐴 × 𝐵 is used to encode many bits of 𝑧, the

encoding of two different bits of 𝑧 is never too correlated: while encoding other bits does affect the

total weight from 𝐴 to 𝐵, this effect is similar to adding noise which only varies the total weight

from 𝐴 to 𝐵 by a small amount.

For-All Cut Sketch Lower Bound. We consider a similar construction for our for-all lower

bound but now each sub-graph has 𝑘 = 𝛽/𝜀2 nodes. Each of the forward edges has weight 1 or

2 with equal probability and each backward edge has weight
1

𝛽
. We similarly partition 𝑅 into 𝛽

clusters |𝑅1 | = |𝑅2 | = . . . = |𝑅𝛽 | = 1/𝜀2. We then attempt to follow the same idea as in [2] for

undirected graphs, which reduces showing our lower bound to the following problem. Consider

one node ℓ𝑖 ∈ 𝐿 and one random subset 𝑇 of 𝑅 𝑗 where |𝑇 | = |𝑅 𝑗 |
2
. Let 𝑁 (ℓ𝑖 ) denote the set of ℓ𝑖 ’s

neighbors 𝑣 such that the weight from ℓ𝑖 to 𝑣 is equal to 2 (rather than equal to 1). Following a

similar procedure as in [2], we show that if from a (1 ± 𝑐𝜀) for-all cut sketch we can distinguish

whether |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
or |𝑁 (ℓ𝑖 ) ∩𝑇 | ≤ 1

4𝜀2
− 𝑐

2𝜀
, we can obtain the desired Ω(𝑛𝛽/𝜀2) lower

bound.

However, the reduced problem is still problematic. The difference in the values for the two cases

is 1/𝜀 while a corresponding cut query has value 𝛽/𝜀4, which yields a much larger 𝛽/𝜀3 error than
the 1/𝜀 error needed to carry out the reduction. To overcome this, note that up until now we have

not utilized the property that the cut sketch preserves all cut values rather than a single cut. We

then make use of the following crucial observation in [2]. For each of the nodes in 𝐿, in expectation

there will be roughly a
1

2
-fraction of the ℓ𝑖 satisfying |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
and |𝑁 (ℓ𝑖 ) ∩𝑇 | ≤ 1

4𝜀2
− 𝑐

2𝜀
.

If we enumerate over all the possible 𝛽/(2𝜀2) subsets 𝐿 then we will eventually be lucky enough to

find a set 𝑄 ⊆ 𝐿 which contains almost all of the 𝛽/(2𝜀2) nodes ℓ𝑖 for which |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀

and now since there are 𝛽/(2𝜀2) such nodes, the slight 𝑐/𝜀 bias will in total contribute 𝑐𝛽/𝜀3, which
is enough to be detected even under an 𝑂 (𝛽/𝜀3) additive error.
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We remark that unlike the undirected graph case where each sub-graph has 𝑂 (1/𝜀2) nodes, for
the directed graph the size of each sub-graph is necessarily dependent on the value of 𝛽 , as in our

construction the cut value of the backward edges has a linear dependence on the value 𝛽 .

Query Complexity of Min-Cut in the Local Query Model. We use communication complexity,

but unlike in previous work, here we consider the following 2SUM problem [20]. Specifically, given

𝑡 𝐿-length binary strings (𝑥1, 𝑥2, . . . , 𝑥𝑡 ) and (𝑦1, 𝑦2, . . . , 𝑦𝑡 ), we want to approximate the value of∑
𝑖∈[𝑡 ] DISJ(𝑥𝑖 , 𝑦𝑖 ) up to a

√
𝑡 additive error, with the guarantee that INT(𝑥𝑖 , 𝑦𝑖 ) = 0 or 𝛼 , as well

as at least a constant fraction of the (𝑥𝑖 , 𝑦𝑖 ) satisfy INT(𝑥𝑖 , 𝑦𝑖 ) = 𝛼 , where INT(𝑥,𝑦) = ∑𝐿
𝑖=1 𝑥𝑖 ∧ 𝑦𝑖

is the number of indices where 𝑥 and 𝑦 are both 1, and DISJ(𝑥,𝑦) is the set-disjointness problem
defined to be 1 if INT(𝑥,𝑦) = 0 and 0 otherwise. Here 𝐿, 𝑡 , and 𝛼 are parameters that will be

determined later.

Motivated by the work of [8], we construct our graph in a similar way, based on the vectors

𝑥𝑖 and 𝑦𝑖 . Then, we give a careful analysis of the size of the minimum cut of 𝐺𝑥,𝑦 , and show that

under some conditions, the size of the minimum cut is exactly 2

∑
𝑖∈[𝑡 ] INT(𝑥𝑖 , 𝑦𝑖 ), from which we

get that a (1 ± 𝜀)-approximation of the Min-Cut yields an approximation of

∑
𝑖∈[𝑡 ] DISJ(𝑥𝑖 , 𝑦𝑖 ) up

to a

√
𝜀 additive error, from which we get the desired lower bound.

We remark that to our knowledge, there are generally not enough lower bounds in sublinear

algorithms that focus on the dependence on 𝜀, and we believe that the techniques here can be useful

for other problems as well.

2 PRELIMINARIES

Let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted (directed) graph with 𝑛 vertices and𝑚 edges, where each edge

𝑒 ∈ 𝐸 has weight𝑤𝑒 ≥ 0. We write 𝐺 = (𝑉 , 𝐸) if 𝐺 is unweighted and leave out𝑤 . For two sets of

nodes 𝑆,𝑇 ⊆ 𝑉 , let 𝐸 (𝑆,𝑇 ) = {(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 } denote the set of edges in 𝐸 that go from

𝑆 to 𝑇 . Let𝑤 (𝑆,𝑇 ) = ∑
𝑒∈𝐸 (𝑆,𝑇 ) 𝑤𝑒 denote the total weight of edges from 𝑆 to 𝑇 . For a node 𝑢 ∈ 𝑉

and a set of nodes 𝑆 ⊆ 𝑉 , we write𝑤 (𝑢, 𝑆) for𝑤 ({𝑢}, 𝑆).
Given two 𝑛-dimensional vectors 𝑢, 𝑣 ∈ R𝑛 , define 𝑢 ⊗ 𝑣 ∈ R𝑛2

to be the tensor product of 𝑢 and

𝑣 . Given a matrix 𝐴 ∈ R𝑛×𝑑 , we use 𝐴𝑖 to denote the 𝑖-th row of 𝐴.

Directed Cut Sketches. We start with definitions of 𝛽-balanced graphs, for-all and for-each cut

sketches [2, 4, 7, 19].

Definition 2.1 (𝛽-Balanced). A strongly connected directed graph 𝐺 = (𝑉 , 𝐸,𝑤) is 𝛽-balanced if,

for all ∅ ⊂ 𝑆 ⊂ 𝑉 , it holds that𝑤 (𝑆,𝑉 \ 𝑆) ≤ 𝛽 ·𝑤 (𝑉 \ 𝑆, 𝑆).
We say sk(𝐺) is a for-all cut sketch if the value of all cuts can be approximately recovered from

it. Note that sk(𝐺) is not necessarily a graph and can be an arbitrary data structure.

Definition 2.2 (For-All Cut Sketch). Let 0 < 𝜀 < 1 and let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted directed

graph. We say sk(𝐺) is a (1 ± 𝜀) for-all cut sketch of𝐺 if there exists a function 𝑓 such that, for all

∅ ⊂ 𝑆 ⊂ 𝑉 :

(1 − 𝜀) ·𝑤 (𝑆,𝑉 \ 𝑆) ≤ 𝑓 (𝑆, sk(𝐺)) ≤ (1 + 𝜀) ·𝑤 (𝑆,𝑉 \ 𝑆).
Another notion of cut approximation is the notion of “for-each” cut sparsifiers and sketches.

Instead of approximating the value of all cuts simultaneously, we only require that the value of any

individual cut is preserved with high constant probability.

Definition 2.3 (For-Each Cut Sketch). Let 0 < 𝜀 < 1 and let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted directed

graph. We say sk(𝐺) is a (1 ± 𝜀) for-each cut sketch of 𝐺 if there exists a function 𝑓 such that, for

each ∅ ⊂ 𝑆 ⊂ 𝑉 , with probability at least 2/3 (over the randomness in 𝑓 ),

(1 − 𝜀) ·𝑤 (𝑆,𝑉 \ 𝑆) ≤ 𝑓 (𝑆, sk(𝐺)) ≤ (1 + 𝜀) ·𝑤 (𝑆,𝑉 \ 𝑆).
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3 FOR-EACH CUT SKETCH

In this section, we prove an Ω(𝑛
√︁
𝛽/𝜀) lower bound on the size of a (1 ± 𝜀)-approximate for-each

sketch.

Theorem 3.1. Let 𝛽 ≥ 1 and 0 < 𝜀 < 1 with

√︁
𝛽/𝜀 ≤ 𝑛/2. Any (1 ± 𝜀) for-each cut sketching

algorithm for 𝛽-balanced 𝑛-node graphs must output Ω̃(𝑛
√︁
𝛽/𝜀) bits.

Our result uses the following communication complexity lower bound for a variant of the Index

problem.

Lemma 3.2 ([13]). Suppose that Alice has a random string 𝑠 ∈ {−1, 1}𝑛 and Bob has a random index

𝑖 ∈ [𝑛]. If Alice sends a single message to Bob from which Bob can recover 𝑠𝑖 with probability at least

2/3, then Alice must send Ω(𝑛) bits to Bob.

Our lower-bound construction relies on the following technical lemma.

Lemma 3.3. For any integer 𝑘 ≥ 1, there exists a matrix𝑀 ∈ {−1, 1} (2𝑘−1)2×22𝑘 such that:

(1) ⟨𝑀𝑡 , 1⟩ = 0 for all 𝑡 ∈ [(2𝑘 − 1)2].
(2) ⟨𝑀𝑡 , 𝑀𝑡 ′⟩ = 0 for all 1 ≤ 𝑡 < 𝑡 ′ ≤ (2𝑘 − 1)2.
(3) For every 𝑡 ∈ [(2𝑘 − 1)2], 𝑀𝑡 can be written as 𝑀𝑡 = 𝑢 ⊗ 𝑣 where 𝑢, 𝑣 ∈ {−1, 1}2𝑘 and

⟨𝑢, 1⟩ = ⟨𝑣, 1⟩ = 0. Here𝑀𝑡 is the 𝑡-th row of𝑀 .

Proof. Our construction is based on the Hadamard matrix 𝐻 = 𝐻
2
𝑘 ∈ {−1, 1}2𝑘×2𝑘 . Recall that

the first row of 𝐻 is the all-ones vector and ⟨𝐻𝑖 , 𝐻 𝑗 ⟩ = 0 for all 𝑖 ≠ 𝑗 . For every 2 ≤ 𝑖, 𝑗 ≤ 2
𝑘
, we

add 𝐻𝑖 ⊗ 𝐻 𝑗 ∈ {−1, 1}22𝑘 as a row of𝑀 , so𝑀 has (2𝑘 − 1)2 rows.
Condition (3) holds because ⟨𝐻𝑖 , 1⟩ = ⟨𝐻 𝑗 , 1⟩ = 0 for all 𝑖, 𝑗 ≥ 2. For Conditions (1) and (2), note

that for any vectors𝑢, 𝑣,𝑤 , and 𝑧, we have ⟨𝑢 ⊗ 𝑣,𝑤 ⊗𝑧⟩ = ⟨𝑢,𝑤⟩⟨𝑣, 𝑧⟩. Using this fact, Condition (1)

holds because ⟨𝑀𝑡 , 1⟩ = ⟨𝐻𝑖 ⊗ 𝐻 𝑗 , 1 ⊗ 1⟩ = ⟨𝐻𝑖 , 1⟩⟨𝐻 𝑗 , 1⟩ = 0, and Condition (2) holds because

(𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′) and therefore ⟨𝑀𝑡 , 𝑀𝑡 ′⟩ = ⟨𝐻𝑖 ⊗ 𝐻 𝑗 , 𝐻𝑖′ ⊗ 𝐻 𝑗 ′⟩ = ⟨𝐻𝑖 , 𝐻𝑖′⟩⟨𝐻 𝑗 , 𝐻 𝑗 ′⟩ = 0. □

We first prove a lower bound for the special case when 𝑛 = Θ(
√︁
𝛽/𝜀). Our proof for this special

case introduces important building blocks for proving the general case (Theorem 3.1).

Lemma 3.4. Suppose 𝑛 = Θ(
√︁
𝛽/𝜀). Any (1 ± 𝜀) for-each cut sketching algorithm must output

Ω̃(𝑛
√︁
𝛽/𝜀) = Ω̃(𝛽/𝜀2) bits.

At a high level, we will reduce the Index problem to the for-each cut sketching problem. Suppose

Alice has a string 𝑠 ∈ {−1, 1}Θ(𝛽/𝜀2 )
. We will construct a graph 𝐺 to encode 𝑠 such that Bob can

recover 𝑠𝑖 with constant probability from a (1±𝜀) cut sketch of𝐺 . By the communication complexity

lower bound of the Index problem (Lemma 3.2), the cut sketch must use Ω̃(𝛽/𝜀2) bits.

Proof of Lemma 3.4. We reduce from the Index problem. Let 𝑠 ∈ {−1, 1}𝛽 ( 1𝜀 −1)2 denote Alice’s
random string.

Construction of𝐺 .We use a complete bipartite graph 𝐺 to encode 𝑠 . Let 𝐿 and 𝑅 be the left and

right nodes of 𝐺 where |𝐿 | = |𝑅 | =
√︁
𝛽/𝜀. We partition 𝐿 into

√︁
𝛽 disjoint blocks 𝐿1, . . . , 𝐿√𝛽

of

the same size, and similarly, we partition 𝑅 into 𝑅1, . . . , 𝑅√𝛽
. We divide 𝑠 into 𝛽 disjoint strings

𝑠𝑖, 𝑗 ∈ {−1, 1} ( 1𝜀 −1)2 of the same length. We will encode 𝑠𝑖, 𝑗 using the edges from 𝐿𝑖 to 𝑅 𝑗 . Note that

the encoding of each 𝑠𝑖, 𝑗 is independent since 𝐸 (𝐿𝑖 , 𝑅 𝑗 ) ∩ 𝐸 (𝐿𝑖′ , 𝑅 𝑗 ′ ) = ∅ for (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′). We fix 𝑖

and 𝑗 and focus on the encoding of 𝑠𝑖, 𝑗 .
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Recall that |𝐿𝑖 | = |𝑅 𝑗 | = 1/𝜀 and 𝑧 = 𝑠𝑖, 𝑗 ∈ {−1, 1} ( 1𝜀 −1)2 . We refer to the edges from 𝐿𝑖 to 𝑅 𝑗 as

forward edges and the edges from 𝑅 𝑗 to 𝐿𝑖 as backward edges. Let𝑤 ∈ R1/𝜀2 denote the weights of
the forward edges, which we will choose soon. Every backward edge has weight 1/𝛽 .
We assumew.l.o.g. that 1/𝜀 = 2

𝑘
for some integer 𝑘 . Consider the vector 𝑥 =

∑( 1
𝜀
−1)2

𝑡=1
𝑧𝑡𝑀𝑡 ∈ R1/𝜀

2

where 𝑀 is the matrix in Lemma 3.3 with 2
𝑘 = 1/𝜀. Because 𝑧𝑡 ∈ {−1, 1} is drawn uniformly at

random, each coordinate of 𝑥 is a sum of 𝑂 (1/𝜀2) i.i.d. random variables of value ±1. By standard

application of the Chernoff bound and the union bound, we know that with probability at least

99/100, ∥𝑥 ∥∞ ≤ 𝑐1 log(1/𝜀)/𝜀 for some universal constant 𝑐1 > 0. If this event happens, we set

𝑤 = 𝜀𝑥 + 𝑐1 log(1/𝜀)1. Otherwise, we set 𝑤 = 1 to indicate that the encoding failed. Note that in

either case,𝑤 is a non-negative vector.

We first verify that 𝐺 is 𝑂 (𝛽 log(1/𝜀))-balanced. This is because every edge 𝑒 has a reverse edge

whose weight is𝑂 (𝛽 log(1/𝜀)) times the weight of 𝑒 . For every 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝑅, the edge (𝑢, 𝑣) has
weight Θ(𝜀 log(1/𝜀)/𝜀) = Θ(log(1/𝜀)) or 1, while the edge (𝑣,𝑢) has weight 1/𝛽 .

We will show that given a (1± 𝑐𝜀
log(1/𝜀 ) ) cut sketch for some universal constant 𝑐 , Bob can recover a

specific bit of 𝑧 using𝑂 (1) cut queries, which implies an Ω̃(𝛽 ′/𝜀′2) lower bound for 𝛽 ′ = 𝛽 log(1/𝜀)
and 𝜀′ = 𝑐𝜀/log(1/𝜀).
Recovering a bit in 𝑠 from a for-each cut sketch of𝐺 . Suppose Bob wants to recover a specific

bit of 𝑠 , which belongs to the sub-string 𝑧 = 𝑠𝑖, 𝑗 and has an index 𝑡 in 𝑧. We assume that 𝑧 is

successfully encoded by the subgraph between 𝐿𝑖 and 𝑅 𝑗 .

For simplicity, we index the nodes in 𝐿𝑖 as 1, . . . , 1/𝜀 and similarly for 𝑅 𝑗 . We index the forward

edges (𝑢, 𝑣) in alphabetical order, first by𝑢 ∈ 𝐿𝑖 and then by 𝑣 ∈ 𝑅 𝑗 . Under this notation, ⟨𝑤, 1𝐴⊗1𝐵⟩
gives the total weight𝑤 (𝐴, 𝐵) of forward edges from𝐴 to𝐵, where 1𝐴, 1𝐵 ∈ {0, 1}1/𝜀 are the indicator
vectors of 𝐴 ⊂ 𝐿𝑖 and 𝐵 ⊂ 𝑅 𝑗 .

The crucial observation is that, given a cut sketch of𝐺 , Bob can approximate ⟨𝑤,𝑀𝑡 ⟩ using𝑂 (1)
cut queries. More specifically, by Lemma 3.3,𝑀𝑡 = ℎ𝐴 ⊗ ℎ𝐵 for some ℎ𝐴, ℎ𝐵 ∈ {−1, 1}1/𝜀 . Let 𝐴 ⊂ 𝐿𝑖
be the set of nodes 𝑢 ∈ 𝐿𝑖 with ℎ𝐴 (𝑢) = 1. Let 𝐵 ⊂ 𝑅𝑖 be the set of nodes 𝑣 ∈ 𝑅 𝑗 with ℎ𝐵 (𝑣) = 1. Let

𝐴 = 𝐿𝑖 \𝐴 and 𝐵 = 𝑅 𝑗 \ 𝐵.

⟨𝑤,𝑀𝑡 ⟩ = ⟨𝑤,ℎ𝐴 ⊗ ℎ𝐵⟩ = ⟨𝑤, (1𝐴 − 1
𝐴
) ⊗ (1𝐵 − 1

𝐵
)⟩

= 𝑤 (𝐴, 𝐵) −𝑤 (𝐴, 𝐵) −𝑤 (𝐴, 𝐵) +𝑤 (𝐴, 𝐵) .

To approximate the value of 𝑤 (𝐴, 𝐵) (and similarly 𝑤 (𝐴, 𝐵), 𝑤 (𝐴, 𝐵), 𝑤 (𝐴, 𝐵)), Bob can query

𝑤 (𝑆,𝑉 \𝑆) for 𝑆 = 𝐴∪(𝑅\𝐵). Consider the edges from 𝑆 to (𝑉 \𝑆): the forward edges are from𝐴 to 𝐵,

each with weight𝑂 (log(1/𝜀)); and the backward edges are from (𝑅 \𝐵) to (𝐿 \𝐴), each with weight

1/𝛽 , see Figure 1 as an example. By Lemma 3.3, ⟨ℎ𝐴, 1⟩ = ⟨ℎ𝐵, 1⟩ = 0, so |𝐴| = |𝐵 | = |𝐿𝑖 |
2

=
|𝑅 𝑗 |
2

= 1

2𝜀
.

The total weight of the forward edges is𝑂 (log(1/𝜀)/𝜀2), and the total weight of the backward edges
is

(√𝛽

𝜀
− 1

2𝜀

)
2 1

𝛽
= 𝑂 (1/𝜀2), so the cut value𝑤 (𝑆,𝑉 \ 𝑆) = 𝑂 (log(1/𝜀)/𝜀2). The cut sketch returns a

(1 ± 𝑐𝜀
log(1/𝜀 ) ) multiplicative approximation of𝑤 (𝑆,𝑉 \ 𝑆), which has 𝑂 (𝑐/𝜀) additive error. After

subtracting the total weight of backward edges, which is fixed, Bob has an estimate of 𝑤 (𝐴, 𝐵)
with 𝑂 (𝑐/𝜀) additive error. Consequently, Bob can approximate ⟨𝑤,𝑀𝑡 ⟩ with 𝑂 (𝑐/𝜀) additive error
using 4 cut queries. Now consider the value of ⟨𝑤,𝑀𝑡 ⟩. By Lemma 3.3, ⟨𝑀𝑡 , 1⟩ = 0 and the rows of

𝑀 are orthogonal,

⟨𝑤,𝑀𝑡 ⟩ = ⟨𝜀𝑥,𝑀𝑡 ⟩ = 𝜀⟨
∑︁
𝑡 ′

𝑧𝑡 ′𝑀𝑡 ′ , 𝑀𝑡 ⟩ = 𝜀𝑧𝑡 ∥𝑀𝑡 ∥22 =
𝑧𝑡

𝜀
.
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Fig. 1. For 𝑆 = 𝐴 ∪ (𝑅 \ 𝐵), the edges from 𝑆 to (𝑉 \ 𝑆): the forward edges are from 𝐴 to 𝐵, each with weight
𝑂 (log(1/𝜀)); and the backward edges are from (𝑅 \ 𝐵) to (𝐿 \𝐴), each with weight 1/𝛽 .

We can see that, by choosing a sufficiently small constant 𝑐 , Bob can distinguish whether 𝑧𝑡 = 1 or

𝑧𝑡 = −1 based on an 𝑂 (𝑐/𝜀) additive approximation of ⟨𝑤,𝑀𝑡 ⟩. □

We next consider the case with general values of 𝑛, 𝛽 , and 𝜀, and prove Theorem 3.1.

Proof of Theorem 3.1. Let 𝑘 =
√︁
𝛽/𝜀. We assume w.l.o.g. that 𝑘 is an integer, 𝑛 is a multiple of

𝑘 , and (1/𝜀) is a power of 2. Suppose that Alice has a random string 𝑠 ∈ {−1, 1}Ω (𝑛𝑘 )
. We will show

that Alice can encode 𝑠 into a graph 𝐺 such that

(i) 𝐺 has 𝑛 nodes and is 𝑂 (𝛽 log(1/𝜀))-balanced, and
(ii) Given a (1 ± 𝑐𝜀

log(1/𝜀 ) ) for-each cut sketch of𝐺 and an index 𝑡 , where 𝑐 is a universal constant,

Bob can recover 𝑠𝑡 with probability at least 2/3.
Then, by Lemma 3.2, the cut sketch must use Ω(𝑛𝑘) = Ω(𝑛

√︁
𝛽/𝜀) = Ω̃(𝑛

√︁
𝛽 ′/𝜀′) bits for 𝛽 ′ =

𝛽 log(1/𝜀) and 𝜀′ = 𝑐𝜀/log(1/𝜀).
We first describe the construction of 𝐺 . We partition the 𝑛 nodes into ℓ = 𝑛/𝑘 ≥ 2 disjoint

sets 𝑉1, . . . ,𝑉ℓ , each with size 𝑘 . Let 𝑠 be Alice’s random string with length 𝛽 ( 1
𝜀
− 1)2 (ℓ − 1) =

Ω(𝑘2ℓ) = Ω(𝑛𝑘). We partition 𝑠 into (ℓ − 1) strings (𝑠𝑖 )ℓ−1𝑖=1 , each with 𝑘2 bits. We then follow the

same procedure as in Lemma 3.4 to encode 𝑠𝑖 into a complete bipartite graph between 𝑉𝑖 and 𝑉𝑖+1.

Notice that we have |𝑠𝑖 | = 𝛽 ( 1
𝜀
− 1)2 and |𝑉𝑖 | = |𝑉𝑖+1 | =

√︁
𝛽/𝜀, which is the same setting as in

Lemma 3.4.

We can verify that 𝐺 is 𝑂 (𝛽 log(1/𝜀))-balanced. This is because every edge 𝑒 has a reverse edge

whose weight is 𝑂 (𝛽 log(1/𝜀)) times the weight of 𝑒 . For every 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑖+1, the edge (𝑢, 𝑣)
has weight Θ(log(1/𝜀)) or 1, and the edge (𝑣,𝑢) has weight 1/𝛽 .
We next consider the recovery process. Suppose Bob’s index belongs to the sub-string 𝑠𝑖 which

is encoded by the sub-graph between 𝑉𝑖 and 𝑉𝑖+1. As in the proof of Lemma 3.4, Bob only needs to

approximate𝑤 (𝐴, 𝐵) for 4 pairs of (𝐴, 𝐵) with 𝑂 (1/𝜀) additive error, where 𝐴 ⊂ 𝑉𝑖 , 𝐵 ⊂ 𝑉𝑖+1, and
|𝐴| = |𝐵 | = 1

2𝜀
. To achieve this, Bob can query the cut value𝑤 (𝑆,𝑉 \𝑆) for 𝑆 = 𝐴∪(𝑉𝑖+1 \ 𝐵)

⋃𝑡
𝑗=𝑖+2𝑉𝑗 .

Consider the edges from 𝑆 to (𝑉 \ 𝑆). There are
• 1

4𝜀2
forward edges from 𝐴 to 𝐵, each with weight 𝑂 (log(1/𝜀)).

•
(√𝛽

𝜀
− 1

2𝜀

)
2

back edges from (𝑉𝑖+1 \ 𝐵) to (𝑉𝑖 \𝐴), each with weight
1

𝛽
.

•
√
𝛽

2𝜀2
backward edges from 𝐴 to 𝑉𝑖−1 when 𝑖 ≥ 2, each with weight

1

𝛽
.

Consequently, the cut value𝑤 (𝑆,𝑉 \ 𝑆) = 𝑂 (log(1/𝜀)/𝜀2). Given a (1 ± 𝑐𝜀
log(1/𝜀 ) ) cut sketch, after

subtracting the total weight of the backward edges, Bob can approximate 𝑤 (𝐴, 𝐵) with 𝑂 (𝑐/𝜀)
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additive error. By repeating this 4 times for different (𝐴, 𝐵) and choosing a sufficiently small

constant 𝑐 , Bob can recover 𝑠𝑡 ∈ {−1, 1}. □

4 FOR-ALL CUT SKETCH

In this section, we prove an Ω(𝑛𝛽/𝜀2) lower bound on the size of a (1 ± 𝜀) for-all sketch.

Theorem 4.1. Let 𝛽 ≥ 1 and 0 < 𝜀 < 1 with 𝛽/𝜀2 ≤ 𝑛/2. Any (1±𝜀) for-all cut sketching algorithm
for 𝛽-balanced 𝑛-node graphs must output Ω(𝑛𝛽/𝜀2) bits.

Our proof is inspired by [2] and uses the following lower bound for an 𝑛-fold version of the

Gap-Hamming problem.

Lemma 4.2 ([2]). Consider the following distributional communication problem: Alice has as input

ℎ strings 𝑠1, . . . , 𝑠ℎ ∈ {0, 1}1/𝜀2 of Hamming weight
1

2𝜀2
, and Bob has an index 𝑖 ∈ [ℎ] and a string

𝑡 ∈ {0, 1}1/𝜀2 of Hamming weight
1

2𝜀2
, drawn as follows:

(1) 𝑖 is chosen uniformly at random;

(2) 𝑠𝑖 and 𝑡 are chosen uniformly at random but conditioned on their Hamming distance Δ(𝑠𝑖 , 𝑡)
being, with equal probability, either ≥ 1

2𝜀2
+ 𝑐

𝜀
or ≤ 1

2𝜀2
− 𝑐

𝜀
for some universal constant 𝑐 ;

(3) the remaining strings 𝑠𝑖′ for 𝑖
′ ≠ 𝑖 are chosen uniformly at random.

Consider a (possibly randomized) one-way protocol, in which Alice sends Bob a message and then Bob

determines, with success probability at least 2/3, whether Δ(𝑠𝑖 , 𝑡) is ≥ 1

2𝜀2
+ 𝑐

𝜀
or ≤ 1

2𝜀2
− 𝑐

𝜀
. Then Alice

must send Ω(ℎ/𝜀2) bits to Bob.

Before proving Theorem 4.1, we first consider a special case when 𝑛 = 𝛽/𝜀2.

Lemma 4.3. Suppose 𝑛 = Θ(𝛽/𝜀2). Any (1 ± 𝜀) for-all cut sketching algorithm must output

Ω(𝑛𝛽/𝜀2) = Ω(𝛽2/𝜀4) bits.

At a high level, we reduce the distributional Gap-Hamming problem (Lemma 4.2) to for-all cut

sketching. Suppose Alice has ℎ strings 𝑠1, 𝑠2, . . . , 𝑠ℎ ∈ {0, 1}1/𝜀2 where ℎ = 𝛽2/𝜀2. We will construct

a graph 𝐺 to encode 𝑠1, 𝑠2, . . . , 𝑠ℎ such that given an index 𝑖 and a string 𝑡 ∈ {0, 1}1/𝜀2 , Bob can

determine whether Δ(𝑠𝑖 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
or Δ(𝑠𝑖 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
with high constant probability from a

(1 ± 𝜀) for-all cut sketch of 𝐺 . Consequently, by Lemma 4.2, the cut sketch must use Ω̃(𝛽2/𝜀4) bits.
Construction of 𝐺 .We construct a 2𝑛-node complete bipartite graph 𝐺 with two parts 𝐿 and 𝑅

where |𝐿 | = |𝑅 | = 𝛽/𝜀2. We partition 𝑅 into 𝛽 disjoint sets |𝑅1 | = . . . = |𝑅𝛽 | = 1/𝜀2. Consider the
distributional Gap-Hamming problem in Lemma 4.2 with ℎ = 𝛽2/𝜀2. For simplicity, we re-index

the 𝛽2/𝜀2 strings as 𝑠𝑖, 𝑗 where 1 ≤ 𝑖 ≤ 𝛽/𝜀2 and 1 ≤ 𝑗 ≤ 𝛽 . Suppose that the 𝑛 nodes in 𝐿 are

ℓ1, ℓ2, . . . , ℓ𝑛 . We encode 𝑠𝑖, 𝑗 into the edges from the node ℓ𝑖 to 𝑅 𝑗 . Specifically, for node ℓ𝑖 and the

𝑣-th node in 𝑅 𝑗 , we add a forward edge (ℓ𝑖 , 𝑣) with weight 𝑠𝑖, 𝑗 (𝑣) + 1 and a backward edge (𝑣, ℓ𝑖 )
with weight 1/𝛽 . Note that the encoding of each 𝑠𝑖, 𝑗 is independent since 𝐸 (ℓ𝑖 , 𝑅 𝑗 ) ∩ 𝐸 (ℓ𝑖′ , 𝑅 𝑗 ′ ) = ∅
for (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′).
Determining Δ(𝑠𝑖, 𝑗 , 𝑡) from a for-all cut sketch of𝐺 . Suppose that Bob wants to know whether

the Hamming distance Δ(𝑠𝑖, 𝑗 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
or Δ(𝑠𝑖, 𝑗 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
. Let 𝑁 (ℓ𝑖 ) denote the set of nodes

𝑣 ∈ 𝑅 𝑗 such that the forward edge from ℓ𝑖 to 𝑣 has weight 2. Let 𝑇 be the set of nodes 𝑣 ∈ 𝑅 𝑗 such

that 𝑡 (𝑣) = 1. (Recall that 𝑡 ∈ {0, 1}1/𝜀2 .) We first consider the value of |𝑁 (ℓ𝑖 ) ∩𝑇 |. We have

Δ(𝑠𝑖, 𝑗 , 𝑡) = |𝑁 (ℓ𝑖 ) | + |𝑇 | − 2|𝑁 (ℓ𝑖 ) ∩𝑇 | = 1

𝜀2
− 2|𝑁 (ℓ𝑖 ) ∩𝑇 | .

Hence, to determine whether Δ(𝑠𝑖, 𝑗 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
or Δ(𝑠𝑖, 𝑗 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
, Bob only needs to determine

whether |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
or |𝑁 (ℓ𝑖 ) ∩𝑇 | ≤ 1

4𝜀2
− 𝑐

2𝜀
.
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Let 𝑆 = {ℓ𝑖 } ∪ (𝑅 \𝑇 ). Consider the cut value𝑤 (𝑆,𝑉 \ 𝑆). It contains forward edges from ℓ𝑖 to

𝑇 and backward edges from 𝑅 \𝑇 to 𝐿 \ {ℓ𝑖 }. Ideally, if Bob knows 𝑤 (𝑆,𝑉 \ 𝑆), he can compute

𝑤 (ℓ𝑖 ,𝑇 ) = 1

𝜀2
+ |𝑁 (ℓ𝑖 ) ∩𝑇 | and then recover |𝑁 (ℓ𝑖 ) ∩𝑇 |. However, the issue is that Bob can only get a

(1±𝜀)-approximation of𝑤 (𝑆,𝑉 \𝑆), which has Ω(𝛽/𝜀3) additive error because𝑤 (𝑆,𝑉 \𝑆) = Θ(𝛽/𝜀4).
Bob will not be able to distinguish the two cases as the difference between the two cases is only

Θ(𝑐/𝜀).
To overcome this, we follow the idea of [2]. In expectation, roughly half of ℓ𝑖 ∈ 𝐿 satisfies

|𝑁 (ℓ𝑖 ) ∩ 𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
. If Bob enumerates all the possible subsets of 𝐿 of size 𝛽/(2𝜀2), he will

eventually find a set 𝑄 ⊆ 𝐿 containing all 𝛽/(2𝜀2) nodes ℓ𝑖 such that |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
. Now

since there are 𝛽/(2𝜀2) nodes in𝑄 , the additional
𝑐
2𝜀

will contribute
𝑐𝛽

2𝜀3
in total, which is enough to

be detected even with 𝑂 (𝛽/𝜀3) additive error.
To prove Lemma 4.3, we will need the following two lemmas, which are essentially proved in [2].

The main difference is now |𝐿 | becomes 𝛽/𝜀2 rather than 1/𝜀2. The same arguments will go through,

as the order statistics of the Binomial distribution continue to hold when the number of samples

increases.

Lemma 4.4 (Claim 3.5 in [2]). Let 𝐿high denote the set

𝐿high = {ℓ𝑖 ∈ 𝐿 : |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
} .

Then, with probability at least 0.98, we have 1

2
− 10𝑐 ≤ |𝐿

high
|

|𝐿 | ≤ 1

2
.

Lemma 4.5 (Lemma 3.4 in [2]). Bob can enumerate all subsets 𝑈 of 𝐿 of size |𝑈 | = 𝛽/2𝜀2 and
approximate𝑤 (𝑈 ,𝑇 ) with additive error 𝑂 (𝛽/𝜀3). Let 𝑄 ⊂ 𝐿 be the subset that achieves the highest

value in this process. Then, with probability at least 0.96, 𝑄 contains at least
4

5
-fraction of the nodes in

𝐿high.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Bob enumerates all 𝑈 ⊆ 𝐿 with |𝑈 | = |𝐿 |
2

=
𝛽

2𝜀2
. Let 𝑆 = 𝑈 ∪ (𝑅 \ 𝑇 ).

Consider the cut value 𝑤 (𝑆,𝑉 \ 𝑆). It contains 𝛽

4𝜀4
forward edges from 𝑈 to 𝑇 with weights 1 or

2, and

( 𝛽
𝜀2

− 1

2𝜀2

) ( 𝛽

2𝜀2

)
= 𝑂

( 𝛽2
𝜀4

)
backward edges from (𝑅 \𝑇 ) to (𝐿 \𝑈 ) with weight

1

𝛽
. The total

weight of the forward edges is 𝑂 (𝛽/𝜀4) and the total weight of the backward edges is fixed and is

𝑂 (𝛽/𝜀4).
Consequently, given a (1 ±𝑂 (𝜀)) multiplicative approximation of𝑤 (𝑆,𝑉 \ 𝑆), Bob can subtract

the weight of the backward edges and approximate𝑤 (𝑈 ,𝑇 ) with additive error 𝑂 (𝛽/𝜀3). That is,
Bob can obtain the subset 𝑄 described in Lemma 4.5. Finally, Bob decides |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀

and thus Δ(𝑠𝑖, 𝑗 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
if ℓ𝑖 ∈ 𝑄 , and Bob decides Δ(𝑠𝑖, 𝑗 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
if ℓ𝑖 ∉ 𝑄 .

We assume the events in Lemmas 4.4 and 4.5 indeed happen. We next analyze the error probability

of Bob’s decision. Suppose Δ(𝑠𝑖, 𝑗 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
and |𝑁 (ℓ𝑖 ) ∩𝑇 | ≥ 1

4𝜀2
+ 𝑐

2𝜀
, then we have Pr[𝑖 ∈ 𝑄] ≥

|𝐿
high

∩𝑄 |
|𝐿

high
| ≥ 4

5
. Similarly, we can define 𝐿low = {ℓ𝑖 ∈ 𝐿 : |𝑁 (ℓ𝑖 ) ∩𝑇 | ≤ 1

4𝜀2
− 𝑐

2𝜀
} and show that, when

Δ(𝑠𝑖, 𝑗 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
and |𝑁 (ℓ𝑖 ) ∩𝑇 | ≤ 1

4𝜀2
− 𝑐

2𝜀
, we have Pr[𝑖 ∉ 𝑄] ≥ |𝐿

low
∩(𝐿\𝑄 ) |
|𝐿

low
| ≥ 4

5
.

Thus, Bob can distinguish between the two cases with error probability at most 1/5, which means

that Bob can solve distributional Gap-hamming with error probability at most 1/5 + 0.1 ≤ 1/3,
which implies an Ω((𝛽2/𝜀2) · (1/𝜀2)) = Ω(𝛽2/𝜀4) lower bound. □

We next consider the case with general values of 𝑛, 𝛽 , and 𝜀, and prove Theorem 4.1.
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Proof of Theorem 4.1. Let 𝑘 = 𝛽/𝜀2. We assume w.l.o.g. that 𝑘 is an integer and 𝑛 is a multiple

of 𝑘 . Consider the distributional Gap-Hamming problem in Lemma 4.2 with ℎ = Ω(𝑛𝛽). We will

show that Alice can encode an Ω(𝑛𝛽)-length binary string into a graph 𝐺 such that

(i) 𝐺 has 𝑛 nodes and is (2𝛽)-balanced, and
(ii) After receiving a string 𝑡 , an index 𝑖 , and a (1 ± 𝑐𝜀) for-all cut sketch of 𝐺 , where 𝑐 is a

universal constant, Bob can distinguish whether Δ(𝑠𝑖, 𝑗 , 𝑡) ≤ 1

2𝜀2
− 𝑐

𝜀
or Δ(𝑠𝑖, 𝑗 , 𝑡) ≥ 1

2𝜀2
+ 𝑐

𝜀
with

probability at least 2/3.
Then, by Lemma 4.2, the for-all cut sketch must use Ω(ℎ/𝜀2) = Ω(𝑛𝛽/𝜀2) = Ω(𝑛𝛽 ′/𝜀′2) bits for

𝛽 ′ = 2𝛽 and 𝜀′ = 𝑐𝜀.

We first describe the construction of 𝐺 . We partition the 𝑛 nodes into ℓ = 𝑛/𝑘 ≥ 2 disjoint

sets 𝑉1,𝑉2, · · · ,𝑉ℓ , each with size 𝑘 . Let 𝑠1, 𝑠2, · · · , 𝑠ℎ ∈ {0, 1}1/𝜀2 be Alice’s random strings where

ℎ = (𝑡 − 1) (𝛽2/𝜀2) = Ω((𝑛/𝑘) (𝛽2/𝜀2)) = Ω(𝑛𝛽). We partition the ℎ strings into (𝑡 − 1) disjoint sets
𝑆1, 𝑆2, · · · , 𝑆𝑡−1, each having (𝛽2/𝜀2) strings. We then follow the same procedure as in Lemma 4.3

to encode 𝑆𝑖 into a complete bipartite graph between 𝑉𝑖 and 𝑉𝑖+1. Recall that 𝑆𝑖 has (𝛽2/𝜀2) strings
and |𝑉𝑖 | = |𝑉𝑖+1 | = 𝑘 = 𝛽/𝜀2, which is the same setting as in Lemma 4.3.

We first show that 𝐺 is (2𝛽)-balanced. This is because every edge 𝑒 has a reverse edge whose

weight is at most 2𝛽 times the weight of 𝑒 . For every 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑖+1, the edge (𝑢, 𝑣) has weight
1 or 2, and the edge (𝑣,𝑢) has weight 1/𝛽 .
We next show how Bob can distinguish between the two cases. Suppose Bob’s index specifies

a string encoded by the sub-graph between 𝑉𝑖 and 𝑉𝑖+1. As in the proof of Lemma 4.3, we only

need to show that given a (1 ± 𝑐𝜀) for-all cut sketch, for every subset 𝑈 ⊂ 𝑉𝑖 with |𝑈 | = |𝑉𝑖 |
2

and for 𝑇 ⊂ 𝑉𝑖+1, Bob can approximate 𝑤 (𝑈 ,𝑇 ) with additive error 𝑂 (𝛽/𝜀3). To see this, let

𝑆 = 𝑈 ∪ (𝑉𝑖+1 \𝑇 )
⋃𝑡

𝑗=𝑖+2𝑉𝑗 . Consider the edges from 𝑆 to (𝑉 \ 𝑆). There are

• 𝛽

4𝜀4
forward edges from𝑈 to 𝑇 , each with weight 1 or 2.

•
( 𝛽
𝜀2
− 1

2𝜀2

) ( 𝛽

2𝜀2

)
backward edges from (𝑉𝑖+1 \𝑇 ) to (𝑉𝑖 \𝑈 ), each with weight

1

𝛽
.

• 𝛽2

2𝜀4
backward edges from𝑈 to 𝑉𝑖−1 when 𝑖 ≥ 2, each with weight

1

𝛽
.

Consequently, the cut value𝑤 (𝑆,𝑉 \𝑆) = 𝑂 (𝛽/𝜀4). Given a (1±𝑐𝜀) cut sketch, after subtracting the
value of the backward edges, Bob can approximate𝑤 (𝑈 ,𝑇 ) with 𝑂 (𝑐𝜀 (𝛽/𝜀4)) = 𝑂 (𝑐𝛽/𝜀3) additive
error. By the same arguments as in Lemma 4.3, Bob can distinguish between the two cases of Δ(𝑠𝑖 , 𝑡)
with probability at least 2/3. □

5 LOCAL QUERY COMPLEXITY OF MIN-CUT

In this section, we present an Ω
(
min{𝑚, 𝑚

𝜀2𝑘
}
)
lower bound on the query complexity of approx-

imating the global minimum cut of an undirected graph 𝐺 to a (1 ± 𝜀) factor in the local query

model. Formally, we have the following theorem.

Theorem 5.1. Any algorithm A that estimates the size of the global minimum cut of a graph𝐺 up

to a (1 ± 𝜖) factor requires Ω(min{𝑚, 𝑚
𝜀2𝑘

}) queries in expectation in the local query model where 𝑘 is

the size of the minimum cut and𝑚 is the number of edges in 𝐺.

To achieve this, we define a variant of the 2-SUM communication problem in Section 5.1, show

a graph construction in Section 5.2, and show that approximating 2-SUM can be reduced to the

minimum cut problem using our graph construction in Section 5.3. In Section 5.4, we will show

that our lower bound is tight up to logarithmic factors.

5.1 2-SUM Preliminaries

Building off of the work of [20], we define the following variant of the 2-SUM(𝑡, 𝐿, 𝛼) problem.
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Definition 5.2. For binary strings 𝑥 = (𝑥1, . . . , 𝑥𝐿) ∈ {0, 1}𝐿 and 𝑦 = (𝑦1, . . . , 𝑦𝐿) ∈ {0, 1}𝐿 , let
INT(𝑥,𝑦) =

∑𝐿
𝑖=1 𝑥𝑖 ∧ 𝑦𝑖 denote the number of indices where 𝑥 and 𝑦 are both 1. Let DISJ(𝑥,𝑦)

denote whether 𝑥 and 𝑦 are disjoint. That is, DISJ(𝑥,𝑦) = 1 if INT(𝑥,𝑦) = 0, and DISJ(𝑥,𝑦) = 0 if

INT(𝑥,𝑦) ≥ 1.

Definition 5.3. Suppose Alice has 𝑡 binary strings (𝑋 1, . . . , 𝑋 𝑡 ) where each string 𝑋 𝑖 ∈ {0, 1}𝐿
has length 𝐿 and likewise Bob has 𝑡 strings (𝑌 1, . . . , 𝑌 𝑡 ) each of length 𝐿. INT(𝑋 𝑖 , 𝑌 𝑖 ) is guaranteed
to be either 0 or 𝛼 ≥ 1 for each pair of strings (𝑋 𝑖 , 𝑌 𝑖 ). Furthermore, at least 1/1000 of the (𝑋 𝑖 , 𝑌 𝑖 )
pairs are guaranteed to satisfy INT(𝑋 𝑖 , 𝑌 𝑖 ) = 𝛼. In the 2-SUM(𝑡, 𝐿, 𝛼) problem, Alice and Bob want

to approximate

∑
𝑖∈[𝑡 ] DISJ(𝑋 𝑖 , 𝑌 𝑖 ) up to additive error

√
𝑡 with high constant probability.

Lemma 5.4. To solve 2-SUM(𝑡, 𝐿, 1) with high constant probability, the expected number of bits

Alice and Bob need to communicate is Ω(𝑡𝐿).

Proof. [20] proved an expected communication complexity of Ω(𝑡𝐿) for 2-SUM(𝑡, 𝐿, 1) without
the promise that at least a 1/1000 fraction of the 𝑡 string pairs intersect. Adding this promise does

not change the communication complexity, because if (𝑋 1, . . . , 𝑋 𝑡 ) and (𝑌 1, . . . , 𝑌 𝑡 ) do not satisfy

the promise, we can add a number of new 𝑋 𝑖
and 𝑌 𝑖

to satisfy the promise and later subtract their

contribution to approximate

∑
𝑖∈[𝑡 ] DISJ(𝑋 𝑖 , 𝑌 𝑖 ) with additive error Θ(

√
𝑡). □

Theorem 5.5. To solve 2-SUM(𝑡, 𝐿, 𝛼) with high constant probability, the expected number of bits

Alice and Bob need to communicate is Ω(𝑡𝐿/𝛼).

Proof. Consider an instance of 2-SUM(𝑡, 𝐿/𝛼, 1) with Alice’s strings (𝑋 1, . . . , 𝑋 𝑡 ) and Bob’s

strings (𝑌 1, . . . , 𝑌 𝑡 ) each with length 𝐿/𝛼. For each of Alice’s strings𝑋 𝑖
with length 𝐿/𝛼 , we produce

𝑋 𝑖,𝛼
(with length 𝐿) by concatenating 𝛼 copies of 𝑋 𝑖

, and likewise we produce 𝑌 𝑖,𝛼
for each of Bob’s

strings 𝑌 𝑖
. The setup where Alice has strings (𝑋 1,𝛼 , . . . , 𝑋 𝑡,𝛼 ) and Bob has strings (𝑌 1,𝛼 , . . . , 𝑌 𝑡,𝛼 ) is

an instance of 2-SUM(𝑡, 𝐿, 𝛼). From Lemma 5.4, the communication complexity of 2-SUM(𝑡, 𝐿/𝛼, 1)
is Ω(𝑡𝐿/𝛼). Thus, the communication complexity of 2-SUM(𝑡, 𝐿, 𝛼) is Ω(𝑡𝐿/𝛼). □

5.2 Graph Construction

Inspired by the graph construction from [8], given two strings 𝑥,𝑦 ∈ {0, 1}𝑁 , we construct a graph
𝐺𝑥,𝑦 (𝑉 , 𝐸) such that 𝑉 is partitioned into 𝐴, 𝐴′

, 𝐵 and 𝐵′
, where |𝐴| = |𝐴′ | = |𝐵 | = |𝐵′ | =

√
𝑁 = ℓ .

Note that since ℓ2 = 𝑁 , we can index the bits in 𝑥 by 𝑥𝑖, 𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ ℓ . We construct the

edges 𝐸 according to the following rule:{
(𝑎𝑖 , 𝑏′𝑗 ), (𝑏𝑖 , 𝑎′𝑗 ) ∈ 𝐸 if 𝑥𝑖, 𝑗 = 𝑦𝑖, 𝑗 = 1

(𝑎𝑖 , 𝑎′𝑗 ), (𝑏𝑖 , 𝑏′𝑗 ) ∈ 𝐸 otherwise

Figure 2 illustrates an example of the graph 𝐺𝑥,𝑦 (𝑉 , 𝐸) when 𝑥 = 000000100 and 𝑦 = 100010100.

We will show that under certain assumptions about 𝑁 and INT(𝑥,𝑦), the number of intersections

in 𝑥,𝑦 is twice the size of the minimum cut in 𝐺𝑥,𝑦 .

Lemma 5.6. Given 𝑥,𝑦 ∈ {0, 1}𝑁 , if
√
𝑁 ≥ 3 · INT(𝑥,𝑦), then MINCUT(𝐺𝑥,𝑦) = 2 · INT(𝑥,𝑦).

Proof. To prove this, we use some properties about 𝛾-connectivity of a graph. A graph is 𝛾-

connected if at least 𝛾 edges must be removed from 𝐺 to disconnect it. In other words, if a graph 𝐺

is 𝛾-connected, then MINCUT(𝐺) ≥ 𝛾 . Equivalently, a graph 𝐺 is 𝛾-connected if for every 𝑢, 𝑣 ∈ 𝑉 ,

there are at least 𝛾 edge-disjoint paths between 𝑢 and 𝑣 . Therefore, given INT(𝑥,𝑦) = 𝛾 , if we

can show that 𝐺𝑥,𝑦 is 2𝛾-connected and there exists one cut of size exactly 2𝛾 , then we can show

MINCUT(𝐺𝑥,𝑦) ≥ 2𝛾 . By the construction of the graph, it is easy to see that CUT(𝐴 ∪𝐴′, 𝐵 ∪ 𝐵′)
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Fig. 2. Example of 𝐺𝑥,𝑦 (𝑉 , 𝐸) where 𝑥 = 000000100 and 𝑦 = 100010100. The red edges represent the intersec-
tion at 𝑥31 = 𝑦31 = 1. The green edges represent all the non-intersections in 𝑥 and 𝑦.

has size 2𝛾 , since each intersection of 𝑥,𝑦 produces two crossing edges in between. Therefore, all

we need to show here is that if

√
𝑁 ≥ 3 · 𝛾 , then 𝐺𝑥,𝑦 is 2𝛾-connected.

Similar to [8], we prove this by looking at each pair of 𝑢, 𝑣 ∈ 𝑉 . Our goal is to show that for

every 𝑢, 𝑣 ∈ 𝑉 , there exist at least 2𝛾 edge-disjoint paths from 𝑢 to 𝑣 .

Case 1. 𝑢, 𝑣 ∈ 𝐴 (or symmetrically 𝑢, 𝑣 ∈ 𝐴′, 𝐵, 𝐵′
). For each pair 𝑢, 𝑣 ∈ 𝐴, we have that there are

at least ℓ − 𝛾 distinct common neighbors in 𝐴′
. This is because one intersection at 𝑥𝑖 𝑗 and 𝑦𝑖 𝑗 implies

that the edge (𝑎𝑖 , 𝑎′𝑗 ) is not contained in 𝐸, and would remove at most one common neighbor in 𝐴′
.

Since ℓ =
√
𝑁 ≥ 3𝛾 , we have that there are at least ℓ −𝛾 ≥ 2𝛾 distinct common neighbors in 𝐴′

, which

we denote by 𝑢𝐴
′

1
, 𝑢𝐴

′
2
, . . . , 𝑢𝐴

′
2𝛾 . Therefore, each path 𝑢 → 𝑢𝐴

′
𝑖 → 𝑣 is edge-disjoint, and we have at

least 2𝛾 edge-disjoint paths from 𝑢 to 𝑣 , as shown in Figure 3.

Fig. 3. 𝑢, 𝑣 ∈ 𝐴. We omit all the (𝑎𝑖 , 𝑏′𝑗 ), (𝑏𝑖 , 𝑏
′
𝑗
), and (𝑏𝑖 , 𝑎′𝑗 ) edges.

Case 2. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴′
(or symmetrically 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵′

). Since ℓ − 𝛾 ≥ 2𝛾 , we have that 𝑣 has at

least 2𝛾 distinct neighbors in 𝐴, which we denote by 𝑢𝐴
1
, 𝑢𝐴

2
, . . . , 𝑢𝐴

2𝛾 . From Case 1, we also have that

each 𝑢𝐴𝑖 has at least 2𝛾 distinct common neighbors in 𝐴′
. Therefore, we can choose 𝑣𝐴

′
1
, 𝑣𝐴

′
2
, . . . , 𝑣𝐴

′
2𝛾
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such that each path 𝑢 → 𝑣𝐴
′

𝑖 → 𝑢𝐴𝑖 → 𝑣 is edge-disjoint, so we have at least 2𝛾 edge-disjoint paths

from 𝑢 to 𝑣 , as shown in Figure 4. Note that it may be the case where 𝑢𝐴𝑖 = 𝑢. In this case, we can

simply take the edge (𝑢, 𝑣) to be one of the edge-disjoint paths.

Fig. 4. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴′. We omit all the (𝑎𝑖 , 𝑏′𝑗 ), (𝑏𝑖 , 𝑏
′
𝑗
), and (𝑏𝑖 , 𝑎′𝑗 ) edges. The green edges exist since 𝑣 has at

least 2𝛾 neighbors in 𝐴. The orange edges exist since 𝑢𝐴
𝑖
and 𝑢 have at least 2𝛾 common neighbors in 𝐴′.

Case 3. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵′
(or symmetrically 𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵). In this case, we show two sets of edge-

disjoint paths, where each set has at least 𝛾 edge-disjoint paths from 𝑢 to 𝑣 , and the two sets of paths

do not overlap. Overall, we have at least 2𝛾 edge-disjoint paths.

The first set of paths 𝑆1 uses the edges between𝐴
′
and 𝐵. Let (𝑤1, 𝑥1), (𝑤2, 𝑥2), . . . , (𝑤𝛾 , 𝑥𝛾 ) ∈ 𝐴′×𝐵

be the edges between 𝐴′
and 𝐵. Each of these edges represents one intersection in 𝑥 and 𝑦. Therefore,

there are exactly 𝛾 of them. From Case 2, we have that for every𝑤𝑖 , there are 2𝛾 edge-disjoint paths

from 𝑢 to𝑤𝑖 . Hence, for every𝑤𝑖 , we can choose a path from 𝑢 to𝑤𝑖 and these 𝛾 paths are edge-disjoint.

Figure 5 illustrates the paths 𝑢 → 𝑢𝑖 → 𝑢′
𝑖 → 𝑤𝑖 → 𝑥𝑖 . By symmetry, we can extend the paths from

𝑥𝑖 to 𝑣 . This gives us 𝛾 edge-disjoint paths from 𝑢 to 𝑣 .

We now consider the second set of paths 𝑆2. Let

(𝑦1, 𝑧1), (𝑦2, 𝑧2), . . . , (𝑦𝛾 , 𝑧𝛾 ) ∈ 𝐴 × 𝐵′

be the distinct edges between 𝐴 and 𝐵′
. Once again, it suffices to prove that there are 2𝛾 edge-disjoint

paths from 𝑢 to 𝑦𝑖 , since the paths between 𝑣 to 𝑧𝑖 would be symmetric. From Case 1, we have that

for every 𝑦𝑖 , there are at least 2𝛾 common neighbors between 𝑦𝑖 and 𝑢. Therefore, we can always find

distinct 𝑢′′
1
, 𝑢′′

2
, . . . , 𝑢′′

𝛾 such that the paths 𝑢 → 𝑢′′
𝑖 → 𝑦𝑖 are edge-disjoint, as shown in Figure 6. Once

we extend the paths from 𝑧𝑖 to 𝑣 , we have 𝛾-edge disjoint paths in the second set.

Now we have two sets of paths 𝑆1 and 𝑆2, where both sets have at least 𝛾 edge-disjoint paths. It

remains to show that the paths in 𝑆1 and 𝑆2 can be edge-disjoint. Observe that the only possible edge

overlaps between the paths from 𝑢 to the𝑤𝑖 and paths from 𝑢 to the 𝑦𝑖 are 𝑢 → 𝑢′′
𝑖 and 𝑢 → 𝑢𝑖 , since

they are both neighbors of 𝑢. However, note that what we have shown is that for every𝑤𝑖 or 𝑦𝑖 , there

are at least 2𝛾 edge-disjoint paths from 𝑢 to𝑤𝑖 or 𝑦𝑖 . Therefore, one can choose 2𝛾 edge-disjoint paths

from 𝑢 to𝑤𝑖 and 𝑦𝑖 such that 𝑢′
𝑖 and 𝑢

′′
𝑖 do not overlap. And similarly one can choose 2𝛾 edge-disjoint

paths from 𝑣 to the 𝑧𝑖 and the 𝑥𝑖 . Overall, we have 2𝛾 edge-disjoint paths from 𝑢 to 𝑣 .
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Fig. 5. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵′. The first set of paths 𝑆1 goes from 𝑢 → 𝑢𝑖 → 𝑢′
𝑖
→ 𝑤𝑖 → 𝑥𝑖 . We omit the paths from

𝑥𝑖 to 𝑣 , as they are symmetric to the paths from𝑤𝑖 to 𝑢. Once we extend the paths from 𝑥𝑖 to 𝑣 , we have 𝛾
edge-disjoint paths from 𝑢 to 𝑣 . Note that the𝑤𝑖 and 𝑥𝑖 may not be distinct.

Fig. 6. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵′. The second set of paths 𝑆2 goes from 𝑢 → 𝑢′′
𝑖

→ 𝑦𝑖 → 𝑧𝑖 . We omit the paths from
𝑧𝑖 to 𝑣 , as they are symmetric to the paths from 𝑦𝑖 to 𝑢. Once we extend the paths from 𝑥𝑖 to 𝑣 , we have 𝛾
edge-disjoint paths from 𝑢 to 𝑣 . Note that the 𝑦𝑖 and 𝑧𝑖 may not be distinct.

Case 4. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 (or symmetrically 𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′
). This case is similar to Case 3, where we

have two edge-disjoint sets 𝑆 ′
1
and 𝑆 ′

2
. Consider the set of paths 𝑆 ′

1
, where we use the edges

(𝑤1, 𝑥1), (𝑤2, 𝑥2), . . . , (𝑤𝛾 , 𝑥𝛾 ) ∈ 𝐴′ × 𝐵.

We can construct the paths from 𝑢 to 𝑤𝑖 using the same way as for 𝑆1 in Case 3 (Figure 5). For the

paths from 𝑥𝑖 to 𝑣 , however, we construct them using the same way as in 𝑆2 in Case 3 (Figure 6). By

connecting these paths, we obtain at least 𝛾 edge-disjoint paths in 𝑆 ′
1
. Similarly, we can also construct

at least 𝛾 edge-disjoint paths in 𝑆 ′
2
, where we use the edges

(𝑦1, 𝑧1), (𝑦2, 𝑧2), . . . , (𝑦𝛾 , 𝑧𝛾 ) ∈ 𝐴 × 𝐵′ .

We follow the same way of choosing the paths in 𝑆 ′
1
and 𝑆 ′

2
that are edge-disjoint. □
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5.3 Reducing 2-SUM to MINCUT

In this section, we use the graph constructions in Section 5.2 to reduce the 2-SUM(𝑡, 𝐿, 𝛼) problem
to MINCUT and derive a lower bound on the number of queries in the local query model.

Lemma 5.7. Given 𝑀, 𝜆 > 0, and 0 < 𝜀 < 1, suppose that we have any algorithm A that can

estimate the size of the minimum cut of a graph up to a (1 ± 𝜀) multiplicative factor with 𝑇 ex-

pected queries in the local query model. Then there exists an algorithm B that can approximate

2-SUM(𝜀−2, 𝜀2𝑀,max{𝜀2𝜆, 1}) up to an additive error

√
𝜀−2 = 𝜀−1 using at most 𝑂 (𝑇 ) bits of commu-

nication in expectation given

√
𝑀 ≥ 3max{𝜆, 𝜀−2}.

Proof. We will show that the following algorithm B satisfies the above conditions:

(1) Given Alice’s strings (𝑋 1, . . . , 𝑋 𝜀−2 ) each of length 𝜀2𝑀 , let 𝑥 be the concatenation of Alice’s

strings having total length 𝜀−2 (𝜀2𝑀) = 𝑀 . Similarly let 𝑦 ∈ {0, 1}𝑀 be the concatenation of

Bob’s strings.

(2) Construct a graph 𝐺𝑥,𝑦 as in Section 5.2 using the above concatenated strings as 𝑥,𝑦.

(3) Run A(𝐺𝑥,𝑦) and output

(
1

𝜀2
− A(𝐺𝑥,𝑦 )

2max{𝜀2𝜆,1}
)
as the solution to 2-SUM(𝜀−2, 𝜀2𝑀,max{𝜀2𝜆, 1}) .

For the 2-SUM problem, let 𝑟 = 𝜀−2 −∑
𝑖∈[𝜀−2 ] DISJ(𝑋 𝑖 , 𝑌 𝑖 ) be the number of string pairs with

intersections. Since there are 𝜀−2 pairs (𝑋 𝑖 , 𝑌 𝑖 ), 𝑟 is at most 𝜀−2. From our definition of 2-SUM,

each intersecting string pair has max{𝜀2𝜆, 1} intersections. 𝑥,𝑦 are formed by concatenations, so

INT(𝑥,𝑦) = 𝑟 max{𝜀2𝜆, 1}. Since
√
𝑀 ≥ 3max{𝜆, 𝜖−2} = 3𝜀−2 max{𝜀2𝜆, 1} ≥ 3𝑟 max{𝜀2𝜆, 1} =

3 · INT(𝑥,𝑦), Lemma 5.6 is applicable to 𝐺𝑥,𝑦 so that

MINCUT(𝐺𝑥,𝑦) = 2𝑟 max{𝜀2𝜆, 1}.
Since A approximates MINCUT up to a (1 ± 𝜀) factor, A(𝐺𝑥,𝑦) = 2𝑟 (1 ± 𝜀)max{𝜀2𝜆, 1}. Thus,
B’s output to the 2-SUM problem is within (𝜀−2 − 𝑟 ) ± 𝑟𝜀 =

∑
𝑖∈[𝜀−2 ] DISJ(𝑋 𝑖 , 𝑌 𝑖 ) ± 𝑟𝜀. Recall that

𝑟 ≤ 𝜀−2. We can see that B approximates 2-SUM(𝜀−2, 𝜀2𝑀,max{𝜀2𝜆, 1}) up to additive error 𝜀−1.
To compare the complexities of A and B, recall A is measured by degree, neighbor, and pair

queries, whereas B is measured by bits of communication. Given the construction of 𝐺𝑥,𝑦 , as

shown in [8], degree, neighbor, and pair queries can each be simulated using at most 2 bits of

communication:

• Degree queries: each vertex in𝐺𝑥,𝑦 has degree

√
𝑀 so Alice and Bob do not need to communicate

to simulate degree queries.

• Neighbor queries: assuming an ordering where 𝑎𝑖 ’s 𝑗 ’th neighbor is either 𝑎′𝑗 or 𝑏
′
𝑗 , Alice and

Bob can exchange 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 with 2 bits of communication to simulate a neighbor query.

• Pair queries: Alice and Bob can exchange 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 with 2 bits of communication to determine

whether edges (𝑎𝑖 , 𝑏′𝑗 ) and (𝑏𝑖 , 𝑎′𝑗 ) exist.
As each of A’s queries can be simulated using up to 2 bits of communication in B, B can use

𝑂 (𝑇 ) bits of communication to simulate 𝑇 queries in A. So we have established a reduction from

approximating 2-SUM(𝜀−2, 𝜀2𝑀,max{𝜀2𝜆, 1}) up to additive error 𝜀−1 to approximating MINCUT

up to a (1 ± 𝜀) multiplicative factor. □

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Given an instance of 2-SUM(𝜀−2, 𝜀2𝑚, max{𝜀2𝑘, 1}), consider the same

way of constructing the graph 𝐺𝑥,𝑦 in Lemma 5.7. From the construction of 𝐺𝑥,𝑦 , the number of

edges is 2𝑚 since each of pair (𝑥𝑖 , 𝑦𝑖 ) corresponds to 2 edges. Using the promise from 2-SUM, we get

that 𝑟 ≥ 𝜀−2/1000, where 𝑟 = ∑
𝑖∈[𝜀−2 ] DISJ(𝑋 𝑖 , 𝑌 𝑖 ), which means that the size of the minimum cut

of𝐺𝑥,𝑦 is 2𝑟 ·max{𝜀2𝑘, 1} ≥ Ω(max{𝑘, 𝜀−2}). When 𝑘 ≥ 𝜀−2, we have that the size of the minimum
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cut of𝐺𝑥,𝑦 is Ω(𝑘), and from Lemma 5.7 we obtain that any algorithmA that satisfies the guarantee

on the distribution of 𝐺𝑥,𝑦 must have Ω(𝑚/(𝜀2𝑘)) queries in expectation. When 𝑘 < 𝜀−2, the size
of the minimum cut of 𝐺𝑥,𝑦 is Ω(𝜀−2) and similarly we get that any algorithm A that satisfies the

guarantee on the distribution of 𝐺𝑥,𝑦 must use Ω(𝑚) queries in expectation. Combining the two,

we finally obtain an Ω(min{𝑚, 𝑚
𝜀2𝑘

}) lower bound on the expected number of queries in the local

query model. □

5.4 Almost Matching Upper Bound

In this section, we will show that our lower bound is tight up to logarithmic factors. In the work

of [5], the authors presented an algorithm that uses 𝑂 (𝑚
𝑘
· poly(log𝑛, 1/𝜀)) queries, where 𝑘 is the

size of the minimum cut. We will show that, despite their analysis giving a dependence of 1/𝜀4, a
slight modification of their algorithm yields a dependence of 1/𝜀2. Formally, we have the following

theorem.

Theorem 5.8 (essentially [5]). There is an algorithm that solves the minimum cut query problem

up to a (1 ± 𝜀)-multiplicative factor with high constant probability in the local query model. Moreover,

the expected number of queries used by this algorithm is 𝑂
(
𝑚
𝜀2𝑘

)
.

To prove Theorem 5.8, we first give a high-level description of the algorithm in [5]. The algorithm

is based on the following sub-routine.

Lemma 5.9 ([5]). There exists an algorithm Verify-Guess(𝐷, 𝑡, 𝜀) which makes 𝑂 (𝜀−2𝑚/𝑡) queries
in expectation such that (here 𝐷 is the degree of each node)

(1) If 𝑡 ≥ 2000 log𝑛

𝜀2
· 𝑘 , then Verify-Guess(𝐷, 𝑡, 𝜀) rejects 𝑡 with probability at least 1 − 1

poly(𝑛) .

(2) If 𝑡 ≤ 𝑘 , then Verify-Guess(𝐷, 𝑡, 𝜀) accepts 𝑡 and outputs a (1 ± 𝜀)-approximation of 𝑘 with

probability at least 1 − 1

poly(𝑛) .

Given the above sub-routine, the algorithm initializes a guess 𝑡 = 𝑛
2
for the value of the minimum

cut 𝑘 and proceeds as follows:

• if Verify-Guess(𝐷, 𝑡, 𝜀) rejects 𝑡 , set 𝑡 = 𝑡/2 and repeat the process.

• if Verify-Guess(𝐷, 𝑡, 𝜀) accepts 𝑡 , set 𝑡 = 𝑡/𝜅 where𝜅 =
2000 log𝑛

𝜀2
. Let 𝑘̃ = Verify-Guess(𝐷, 𝑡, 𝜀)

and return the value of 𝑘̃ as the output.

To analyze the query complexity of the algorithm, notice that when Verify-Guess first accepts 𝑡 ,

we have that
𝑘
2
< 𝑡 < 𝜅𝑘 . which means that 𝑡/𝜅 < 𝑘 and hence one call to Verify-Guess(𝐷, 𝑡/𝜅, 𝜀)

will get the desired output. However, at a time in 𝑡 = Θ(𝑘/𝜅), the Verify-Guess procedure needs
to make 𝑂

(
𝑚
𝜀4𝑘

)
queries in expectation.

To avoid this, the crucial observation is that, during the above binary search process, the error

parameter of Verify-Guess(𝐷, 𝑡, 𝜀) does not have to be set to 𝜀. Using a small constant 𝛽0 is

sufficient. This way, when Verify-Guess(𝐷, 𝑡, 𝛽0) first accepts 𝑡 , we have 𝑘
2
< 𝑡 < 𝑐 log(𝑛) · 𝑘 ,

where 𝑐 is a constant. Consequently, the output of Verify-Guess(𝐷, 𝑡/(𝑐 log𝑛), 𝜀) will satisfy the

error guarantee. Using the analysis in [5], we can show that the query complexity of the new

algorithm is 𝑂 ( 𝑚
𝜀2𝑘

).
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