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In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower
bounds for both problems that are optimal up to logarithmic factors.

The first problem is approximating cuts in balanced directed graphs. In this problem, we want to build a
data structure that can provide (1 + ¢)-approximation of cut values on a graph with n vertices. For arbitrary
directed graphs, such a data structure requires Q(n?) bits even for constant ¢. To circumvent this, recent
works study f-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction
is at most f times the total weight in the other direction. We consider the for-each model, where the goal is
to approximate each cut with constant probability, and the for-all model, where all cuts must be preserved
simultaneously. We improve the previous Q(n\/m) lower bound in the for-each model to ﬁ(n\/B /¢) and we
improve the previous Q(nf/¢) lower bound in the for-all model to Q(nf/e?). !
questions of (Cen et al., ICALP, 2021).

The second problem is approximating the global minimum cut in a local query model, where we can only
access the graph via degree, edge, and adjacency queries. We prove an Q(min{m, ﬁ }) lower bound for this

This resolves the main open

problem, which improves the previous Q(%) lower bound, where m is the number of edges, k is the minimum
cut size, and we seek a (1 + ¢)-approximation. In addition, we show that existing upper bounds with minor
modifications match our lower bound up to logarithmic factors.
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1 INTRODUCTION

The notion of cut sparsifiers has been extremely influential. This was introduced by Benczar and
Karger [4] and is the following: given a graph G = (V, E, w) with n = |V| vertices, m = |E| edges,
and edge weights w, > 0, together with a desired error parameter ¢ > 0, a cut sparsifier of G is a
subgraph H on the same vertex set V with (possibly) different edge weights, such that the value
of every cut in G is (1 + ¢)-approximated by the corresponding cut in H. Benczar and Karger [4]
showed that every undirected graph has a (1 + ¢) cut sparsifier with only O(nlogn/e?) edges. This
was later extended to the stronger notion of spectral sparsifiers [19] and the number of edges was
improved to O(n/e?) [3]; see also related work with different bounds for both cut and spectral
sparsifiers [6, 10, 12, 14, 17, 18].

In the database community, a key result is the work of [1], which shows how to construct
a sparsifer using O(n)/e? linear measurements to (1 + ¢)-approximate all cut values. Sketching
massive graphs arises in various applications where there are entities and relationships between
the entities, such as webpages and hyperlinks between them, people and their friendships, and IP
addresses and data flows between them. As large graph databases are often distributed or stored on
external memory, sketching algorithms are useful for reducing communication or memory usage
in distributed and streaming models. We refer the readers to [15] for a survey of graph stream
algorithms in the database community.

For very small values of ¢, the 1/¢? dependence in known cut sparsifiers may be prohibitive.
Motivated by this, the work of [2] relaxed the problem to outputting a data structure D, obtained
by preprocessing the input graph G, such that given any fixed cut S € V = [n] = {1,2,...,n},
the value D(S) is within a (1 * ¢) factor of the cut value of S in G with probability at least 2/3,
which can be amplified to 1 — 1/n by independently repeating the data structure O(log n) times
and outputting the median estimate. Notice the order of quantifiers — the data structure need not
be correct on all cuts, but just any fixed cut (chosen independently of its randomness) with high
probability. This is referred to as the “for-each” model. Surprisingly, [2] showed that such a data
structure exists for undirected graphs with poly(n)-bounded integer edge weights of size O(n/e).
Notice that the dependence on ¢ is now only linear, and [2] also shows an Q(n/¢) lower bound
for this problem. One might ask if the improved dependence on ¢ is coming from the relaxation of
the original sparsification question to arbitrary data structures or to the relaxation to hold for a
fixed cut with high probability. In fact [2] show that for any data structure, there is an Q(n/&?) bit
lower bound if it is required to approximate all cuts simultaneously; the latter is referred to as the
“for-all" model. This lower bound was strengthened by a logarithmic factor in [6].

While the above results give a fairly complete picture for undirected graphs, a natural question
is if similar improvements are possible for directed graphs. Indeed, this is the main question posed
by [7]. That work observes that for directed graphs, even for the for-each model, there is an Q(n?)
lower bound without any assumptions on the graph. Motivated by this, [7, 9, 11] introduce the
notion of a f-balanced directed graph, meaning that for every directed cut (S,V \ S), the total
weight of edges from S to V' \ S is at most a f§ factor larger than that from V' \ S to S. This turned out
to be a very useful notion for directed graphs, as [7] was able to show that in the for-each model,
there isa O (n\/B /€) upper bound, while in the for-all model, there is a o (nf/€?) upper bound, thus
giving non-trivial bounds for both problems for small . The work of [7] also gave lower bounds:
they showed an Q(nm) lower bound in the for-each model, and they showed an Q(nf/¢) lower
bound in the for-all model. While their lower bounds are tight for constant ¢, there is a quadratic
gap in their bounds for both models in terms of the dependence on ¢. The main question left open
of [7] is to determine the optimal dependence on ¢, which we resolve in this work.
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As observed in [2], one of the main ways of using a data structure in the for-each model is to
solve the distributed minimum cut problem. Indeed, by using the fact that there are at most n®(©)
cuts with value within a factor of C of the minimum cut, it is possible to run a cut sparsifier with
constant ¢ in parallel with a data structure for general ¢ in the for-each model. Then, one can query
the data structure on each of the at most poly(n) O(1)-approximate minimum cuts output by the
sparsifier, resulting in an optimal linear in 1/¢ dependence in the communication.

Motivated by this connection to distributed minimum cut estimation, we also consider the
problem of directly approximating the minimum cut in the so-called Local Query Model, introduced
in [16] and studied for minimum cut in [5, 8]. The model is defined as follows.

Let G(V, E) be an unweighted and undirected graph, where the vertex set V is known but the
edge set E is unknown. In the local query model, we assume there is an oracle and we access an
edge through the following types of local queries:

(1) Degree query: given u € V, the oracle reports the degree of u.

(2) Edge query: given u € V and index i, the oracle reports the i-th neighbor of u. If the edge does
not exist, then it reports L.

(3) Adjacency query: given u,v € V, the oracle reports whether (u,v) € E.

In the MIN-CuUT problem, our goal is to estimate the size of minimum cut k up to a (1 + ¢)-factor

through a number of local queries. The complexity of the problem is measured using the number

of local queries, and we want to use as few queries as possible. In this case we focus on undirected

graphs.

Previous work [8] has shown an Q(7) lower bound and the main open question is what the
dependence on ¢ should be. There is also an upper bound in [5] of 5(@01—"}’,(5)) and a natural question
is to close this gap.

1.1 Our Results.

We resolve the main open questions above.

Cut Sketch for Balanced (Directed) Graphs. Given an n-node f-balanced (directed) graph, the
previous work of [7] gives an 5(nﬁ /€%) upper bound in the for-all model and an 5(n\/ﬁ /€) upper
bound for the for-each model, along with an Q(nf/¢) lower bound and an Q(n\/m) lower bound,
respectively, for these two models. In this work, we close these gaps and resolve the ¢ dependence,
improving the lower bounds to asymptotically match the upper bounds for all parameters n, 8, and
¢. Formally, we have:

THEOREM 1.1 (FOR-EACH CUT SKETCH FOR BALANCED GRAPHS). Let f > 1 and 0 < ¢ < 1 with
\/B/s < n/2. Any (1 + ¢) for-each cut sketching algorithm for f-balanced n-node graphs must be of

size ﬁ(n\/ﬁ/e) bits.

THEOREM 1.2 (FOR-ALL CUT SKETCH FOR BALANCED GRAPHS). Let f > 1 and 0 < ¢ < 1 with
B/e* < n/2. Any (1 + ¢) for-all cut sketching algorithm must be of size Q(nf/¢®) bits.

Query Complexity of Min-Cut in the Local Query Model.

We close the gap on the ¢ dependence in the query complexity of approximating |[MINCuT(G)|
up to a (1 + ¢)-factor in the local query model by providing a tight Q(min{m, -}) lower bound,
which improves the previous Q(%) lower bound in [8]. Formally, we have:

THEOREM 1.3 (APPROXIMATING MIN-CUT USING LoCAL QUERIES). Any algorithm that estimates
the size of the minimum cut of a graph G up to a (1 + ¢) factor requires Q(min{m, 7 }) queries in
expectation in the local query model, where k is the size of the minimum cut and m is the number of
edges in G.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 85. Publication date: May 2024.



85:4 Yu Cheng et al.

To show the tightness of our lower bound, we also show that after a simple modification, the
upper bound in [5] actually becomes O (gzﬂk) which means that our lower bound is tight up to

logarithmic factors.

1.2  Our Techniques.

A common technique we use for the different problems is communication complexity games that
involve the approximation parameter .

For-Each Cut Sketch Lower Bound. Let k = \/B /e. At a high level, we partition the n nodes
into n/(2k) sub-graphs, and each sub-graph is a bipartite graph with two parts L and R with
|L| = |R| = \/B/E. We then divide L and R into \/ﬁclusters |Li| = L] = ... = |L\/E| = 1/¢ and

Ri|=|R) =...=|R = 1/¢. For every cluster pair L; and R;, there are a total of 1/¢% edges.
| N/ Y p j g

Intuitively, we encode each entry in a string s € {~1,1}!/ ¢ into a forward edge with weight 1 and
a backward edge with weight % to make the graph S-balanced. If we could approximately decode

this string from our queries, then we would get an Q(n/k - (\/E)Z -1/€%) = Q(n\/E/E) lower bound.

However, if we follow a standard decoding method for undirected graphs where we encode one
bit s; into one edge, then due to the backward edges, the total weight of a cut query would be
Q(1/¢?), which results in an Q(1/¢) additive error and does not allow us to obtain the value s;. To
address this, we instead encode 1/¢? bits of information across 1/¢* edges simultaneously, that is,
we do not encode each bit s; into a single edge. When we want to decode a specific bit s;, we query
the (directed) cut values between two “carefully designed” subsets A € L; and B € R;. The key idea
of our construction is that, even though each edge in A X B is used to encode many bits of z, the
encoding of two different bits of z is never too correlated: while encoding other bits does affect the
total weight from A to B, this effect is similar to adding noise which only varies the total weight
from A to B by a small amount.

For-All Cut Sketch Lower Bound. We consider a similar construction for our for-all lower
bound but now each sub-graph has k = /% nodes. Each of the forward edges has weight 1 or
2 with equal probability and each backward edge has weight % We similarly partition R into f

clusters |[Ry| = |[Ry| = ... = |Rg| = 1/%. We then attempt to follow the same idea as in [2] for
undirected graphs, which reduces showing our lower bound to the following problem. Consider

one node ¢ € L and one random subset T of R; where |T| = @. Let N(¢;) denote the set of £;’s
neighbors v such that the weight from ¢; to v is equal to 2 (rather than equal to 1). Following a
similar procedure as in [2], we show that if from a (1 + c¢) for-all cut sketch we can distinguish
whether [IN(&)NT| > 4—12 +5-0r [N(6)NT| < ﬁ — 32, We can obtain the desired Q(np/e?) lower
bound.

However, the reduced problem is still problematic. The difference in the values for the two cases
is 1/¢ while a corresponding cut query has value /e, which yields a much larger /&> error than
the 1/¢ error needed to carry out the reduction. To overcome this, note that up until now we have
not utilized the property that the cut sketch preserves all cut values rather than a single cut. We
then make use of the following crucial observation in [2]. For each of the nodes in L, in expectation
there will be roughly a %—fraction of the ¢; satisfying [N (&) NT| > ﬁ +5-and [IN(6)NT| < ﬁ -5
If we enumerate over all the possible 8/(2¢%) subsets L then we will eventually be lucky enough to
find a set Q C L which contains almost all of the 8/(2¢?) nodes ¢; for which |[N() N T| > ﬁ + 5
and now since there are f/(2¢%) such nodes, the slight ¢/¢ bias will in total contribute c¢f/e>, which
is enough to be detected even under an O(f/¢*) additive error.
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We remark that unlike the undirected graph case where each sub-graph has O(1/¢?) nodes, for

the directed graph the size of each sub-graph is necessarily dependent on the value of j, as in our
construction the cut value of the backward edges has a linear dependence on the value S.
Query Complexity of Min-Cut in the Local Query Model. We use communication complexity,
but unlike in previous work, here we consider the following 2SUM problem [20]. Specifically, given
t L-length binary strings (x!,x%,...,x") and (v}, % ..., y"), we want to approximate the value of
2ielt] DISJ(x%, y*) up to a Vt additive error, with the guarantee that INT(x’, y") = 0 or a, as well
as at least a constant fraction of the (x%, y') satisfy INT(x, y') = &, where INT(x,y) = S5, x; A y;
is the number of indices where x and y are both 1, and DISJ(x, y) is the set-disjointness problem
defined to be 1 if INT(x,y) = 0 and 0 otherwise. Here L, t, and « are parameters that will be
determined later.

Motivated by the work of [8], we construct our graph in a similar way, based on the vectors
x' and y'. Then, we give a careful analysis of the size of the minimum cut of Gy, 5, and show that
under some conditions, the size of the minimum cut is exactly 2 Zie[t] INT(x%, yi), from which we
get that a (1 + ¢)-approximation of the Min-Cut yields an approximation of };c ;] DISJ(x%, y') up
to a /¢ additive error, from which we get the desired lower bound.

We remark that to our knowledge, there are generally not enough lower bounds in sublinear
algorithms that focus on the dependence on ¢, and we believe that the techniques here can be useful
for other problems as well.

2 PRELIMINARIES

Let G = (V,E, w) be a weighted (directed) graph with n vertices and m edges, where each edge
e € E has weight w, > 0. We write G = (V, E) if G is unweighted and leave out w. For two sets of
nodes S,T C V,let E(S,T) = {(u,v) € E : u € S,v € T} denote the set of edges in E that go from
StoT.Let w(S,T) = X cp(s,) We denote the total weight of edges from S to T. For anode u € V
and a set of nodes S C V, we write w(u, S) for w({u}, S).

Given two n-dimensional vectors u,v € R"”, defineu ® v € R" to be the tensor product of u and
0. Given a matrix A € R™9_ we use A; to denote the i-th row of A.

Directed Cut Sketches. We start with definitions of f-balanced graphs, for-all and for-each cut
sketches [2, 4, 7, 19].

Definition 2.1 (f-Balanced). A strongly connected directed graph G = (V, E, w) is -balanced if,
forall @ c S c V, it holds that w(S,V\ S) < - w(V'\ S,S).

We say sk(G) is a for-all cut sketch if the value of all cuts can be approximately recovered from
it. Note that sk(G) is not necessarily a graph and can be an arbitrary data structure.

Definition 2.2 (For-All Cut Sketch). Let 0 < ¢ < 1 and let G = (V, E, w) be a weighted directed
graph. We say sk(G) is a (1 + ¢) for-all cut sketch of G if there exists a function f such that, for all
@cScV:

(1—=¢)-w(S,V\S) < f(S,sk(G)) < (1+¢)-w(S,V\S).

Another notion of cut approximation is the notion of “for-each” cut sparsifiers and sketches.
Instead of approximating the value of all cuts simultaneously, we only require that the value of any
individual cut is preserved with high constant probability.

Definition 2.3 (For-Each Cut Sketch). Let 0 < ¢ < 1 and let G = (V, E, w) be a weighted directed
graph. We say sk(G) is a (1 + ¢) for-each cut sketch of G if there exists a function f such that, for
each @ c S c V, with probability at least 2/3 (over the randomness in f),

(1-¢)-w(S,V\S) < f(S,sk(G)) < (1+¢)-w(S,V\S).
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3 FOR-EACH CUT SKETCH

In this section, we prove an Q(n\/ﬁ /¢) lower bound on the size of a (1 + ¢)-approximate for-each
sketch.

THEOREM 3.1. Let f > 1 and 0 < ¢ < 1 with \/ﬁ/e < n/2. Any (1 + ¢) for-each cut sketching
algorithm for f-balanced n-node graphs must output ﬁ(n\/B/E) bits.

Our result uses the following communication complexity lower bound for a variant of the Index
problem.

LEmMA 3.2 ([13]). Suppose that Alice has a random string s € {—1,1}" and Bob has a random index
i € [n]. If Alice sends a single message to Bob from which Bob can recover s; with probability at least
2/3, then Alice must send Q(n) bits to Bob.

Our lower-bound construction relies on the following technical lemma.

_1)2x22k

LEMMA 3.3. For any integer k > 1, there exists a matrix M € {-1, 1}(2k such that:

(1) (M, 1) = 0 forall t € [(2F - 1)?].

(2) (M;, M) =0 forall1 <t <t < (2F-1)2

(3) For every t € [(2¥ — 1)?], M; can be written as M; = u ® v where u,v € {_1,1}z’< and
(u,1) = (v,1) = 0. Here M, is the t-th row of M.

PrOOF. Our construction is based on the Hadamard matrix H = Hy € {1, 1}2"2°, Recall that
the first row of H is the all-ones vector and (H;, H;) = 0 for all i # j. Forevery 2 <i,j < 2k we
add H; ® H; € {-1, 1}22k as a row of M, so M has (2% — 1) rows.

Condition (3) holds because (H;,1) = (H;,1) = 0 for all i, j > 2. For Conditions (1) and (2), note
that for any vectors u, v, w, and z, we have (u® v, w® z) = (u, w)(v, z). Using this fact, Condition (1)
holds because (M;,1) = (H; ® H;,1 ® 1) = (H;,1)(H;,1) = 0, and Condition (2) holds because
(l,]) * (i/,j/) and therefore <Mt, Mt/> = <Hl ®Hj, Hil ®Hj'> = <Hi,H,'/><Hj, Hjl> =0. [m}

We first prove a lower bound for the special case when n = @(\/B /¢€). Our proof for this special
case introduces important building blocks for proving the general case (Theorem 3.1).

LEMMA 3.4. Suppose n = O(+/B/e). Any (1 + ¢) for-each cut sketching algorithm must output
Q(ny/B/e) = Q(B/€?) bits.

At a high level, we will reduce the Index problem to the for-each cut sketching problem. Suppose
Alice has a string s € {-1,1}°/ ¢). We will construct a graph G to encode s such that Bob can
recover s; with constant probability from a (1=+¢) cut sketch of G. By the communication complexity
lower bound of the Index problem (Lemma 3.2), the cut sketch must use Q( B/€?) bits.

PROOF OF LEMMA 3.4. We reduce from the Index problem. Let s € {-1,1}# (:=1? denote Alice’s
random string,.
Construction of G. We use a complete bipartite graph G to encode s. Let L and R be the left and
right nodes of G where |L| = |R| = \/B/g We partition L into \/B disjoint blocks Ly, .. "L\/E of
the same size, and similarly, we partition R into Ry, ..., R N We divide s into f disjoint strings
si,j € {-1, 1}@_1)2 of the same length. We will encode s; ; using the edges from L; to R;. Note that
the encoding of each s; ; is independent since E(L;, R;) N E(Ly, Rjr) = @ for (i, j) # (i, j'). We fix i
and j and focus on the encoding of's; ;.
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Recall that |L;| = [Rj| = 1/eand z = s;; € {~1, 1}(%_1)2. We refer to the edges from L; to R; as
forward edges and the edges from R; to L; as backward edges. Let w € RY/ denote the weights of
the forward edges, which we will choose soon. Every backward edge has weight 1/8.

We assume w.l.o.g. that 1/¢ = 2X for some integer k. Consider the vector x = ZS;DZ z:M; € RY<
where M is the matrix in Lemma 3.3 with 25 = 1/¢. Because z; € {1, 1} is drawn uniformly at
random, each coordinate of x is a sum of O(1/¢?) i.i.d. random variables of value +1. By standard
application of the Chernoff bound and the union bound, we know that with probability at least
99/100, ||x||, < c1log(1/e)/e for some universal constant ¢; > 0. If this event happens, we set
w = ex + ¢1 log(1/¢)1. Otherwise, we set w = 1 to indicate that the encoding failed. Note that in
either case, w is a non-negative vector.

We first verify that G is O(f log(1/¢))-balanced. This is because every edge e has a reverse edge
whose weight is O(flog(1/¢)) times the weight of e. For every u € L and v € R, the edge (u,v) has
weight ©(elog(1/¢)/e) = ©(log(1/¢)) or 1, while the edge (v, u) has weight 1/p.

We will show that givena (1+ log(cﬁ) cut sketch for some universal constant ¢, Bob can recover a

specific bit of z using O(1) cut queries, which implies an Q(f’/¢’?) lower bound for f’ = flog(1/¢)
and ¢’ = ce/log(1/e).

Recovering a bit in s from a for-each cut sketch of G. Suppose Bob wants to recover a specific
bit of s, which belongs to the sub-string z = s; ; and has an index t in z. We assume that z is
successfully encoded by the subgraph between L; and R;.

For simplicity, we index the nodes in L; as 1,...,1/¢ and similarly for R;. We index the forward
edges (u, v) in alphabetical order, first by u € L; and then by v € R;. Under this notation, (w, 14®1p)
gives the total weight w(A, B) of forward edges from A to B, where 14, 15 € {0, 1}1/ € are the indicator
vectors of A C L; and B C R;.

The crucial observation is that, given a cut sketch of G, Bob can approximate (w, M;) using O(1)
cut queries. More specifically, by Lemma 3.3, M; = hs ® hp for some ha, hg € {~1,1}"/¢. Let A C L;
be the set of nodes u € L; with hs(u) = 1. Let B C R; be the set of nodes v € R; with hg(v) = 1. Let
Z:Li\Aandﬁsz\B.

(w, My) = (w, ha ® hg) = (w, (14 — 1) ® (15 — 1))
=w(A,B) — w(A, B) — w(A, B) + w(A, B) .

To approximate the value of w(A, B) (and similarly w(A, B), w(A, B), w(A, B)), Bob can query
w(S, V\S) for S = AU(R\B). Consider the edges from S to (V'\S): the forward edges are from A to B,

each with weight O(log(1/¢)); and the backward edges are from (R\ B) to (L \ A), each with weight
Ll _ IRl _ 1
Ll =

1/p, see Figure 1 as an example. By Lemma 3.3, (ha, 1) = (hp, 1) =0, s0 |A| = |B| = = 5
The total weight of the forward edges is O(log(1/¢)/e?), and the total weight of the backward edges

is (@ - 2_15)2% = 0(1/€?), so the cut value w(S,V \ S) = O(log(1/¢)/€?). The cut sketch returns a
(1% logfﬁ) multiplicative approximation of w(S, V \ S), which has O(c/¢) additive error. After
subtracting the total weight of backward edges, which is fixed, Bob has an estimate of w(A, B)
with O(c/¢) additive error. Consequently, Bob can approximate (w, M;) with O(c/¢) additive error
using 4 cut queries. Now consider the value of (w, M;). By Lemma 3.3, (M;, 1) = 0 and the rows of

M are orthogonal,

z
(w. My} = (ex, My) = () 20 My, My) = ez Ml = =
z

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 85. Publication date: May 2024.



85:8 Yu Cheng et al.

@ @

A B
O\O
Q‘,‘

LNA oR\8

Fig. 1. For S = AU (R B), the edges from S to (V '\ S): the forward edges are from A to B, each with weight
O(log(1/¢)); and the backward edges are from (R \ B) to (L \ A), each with weight 1/p.

We can see that, by choosing a sufficiently small constant ¢, Bob can distinguish whether z; = 1 or
z; = —1 based on an O(c/¢) additive approximation of (w, M;). o

We next consider the case with general values of n, 8, and ¢, and prove Theorem 3.1.

Proor oF THEOREM 3.1. Let k = \/B /€. We assume w.lo.g. that k is an integer, n is a multiple of
k, and (1/¢) is a power of 2. Suppose that Alice has a random string s € {1, 1}*("®) We will show
that Alice can encode s into a graph G such that

(i) G has n nodes and is O(f log(1/¢))-balanced, and
(ii) Given a (1 + logfﬁ) for-each cut sketch of G and an index t, where c is a universal constant,
Bob can recover s; with probability at least 2/3.

Then, by Lemma 3.2, the cut sketch must use Q(nk) = Q(n\/B/e) = ﬁ(nx/ﬁ/e’) bits for ' =
PBlog(1/e) and ¢ = ce/log(1/e).

We first describe the construction of G. We partition the n nodes into £ = n/k > 2 disjoint
sets Vi,...,V;, each with size k. Let s be Alice’s random string with length ,B(l -1)2%(r-1) =
Q(k?t) = Q(nk). We partition s into (¢ — 1) strings (s;)‘}!, each with k? bits. We then follow the
same procedure as in Lemma 3.4 to encode s; into a complete bipartite graph between V; and V.
Notice that we have |s;| = IB(% - 1% and |Vj| = |Viy| = \/B/E, which is the same setting as in
Lemma 3.4.

We can verify that G is O(flog(1/¢))-balanced. This is because every edge e has a reverse edge
whose weight is O(flog(1/¢)) times the weight of e. For every u € V; and v € V4, the edge (u,0)
has weight ©(log(1/¢)) or 1, and the edge (v, u) has weight 1/p.

We next consider the recovery process. Suppose Bob’s index belongs to the sub-string s; which
is encoded by the sub-graph between V; and V;,. As in the proof of Lemma 3.4, Bob only needs to
approximate w(A, B) for 4 pairs of (A, B) with O(1/¢) additive error, where A C V;, B C Vi1, and
|A| = |B| = . To achieve this, Bob can query the cut value w(S, V\S) for S = AU(Vy; \ B) U’
Consider the edges from S to (V' \ S). There are

é forward edges from A to B, each with weight O(log(1/¢)).

Jj= l+2

. (ﬂ - —) back edges from (V;4; \ B) to (V; \ A), each with Welght 1

&

\/_ backward edges from A to V;_; when i > 2, each with Welght

Consequently, the cut value w(S,V \ S) = O(log(1/¢)/€?). Given a (1 + bgfﬁ) cut sketch, after
subtracting the total weight of the backward edges, Bob can approximate w(A, B) with O(c/¢)
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additive error. By repeating this 4 times for different (A, B) and choosing a sufficiently small
constant ¢, Bob can recover s; € {—1, 1}. O

4 FOR-ALL CUT SKETCH

In this section, we prove an Q(nf3/¢?) lower bound on the size of a (1 + ¢) for-all sketch.

THEOREM 4.1. Let f > 1and0 < ¢ < 1 with f/e* < n/2. Any (1+¢) for-all cut sketching algorithm
for B-balanced n-node graphs must output Q(nf/e?) bits.

Our proof is inspired by [2] and uses the following lower bound for an n-fold version of the
Gap-Hamming problem.

LEmMA 4.2 ([2]). Consider thefollowing distributional communication problem: Alice has as input
h strings sy, . .., sp € {0, 1}/ ofHammlng weight -
t € {0, 1}/¢ ofHammlng weight 35,
(1) i is chosen uniformly at random;
(2) s; and t are chosen uniformly at random but conditioned on their Hamming distance A(s;, t)
being, with equal probability, either > 5 e + £ or < 55 — £ for some universal constant c;

2£Z
(3) the remaining stringss; fori’ # i are chosen uniformly at random.

7.7> and Bob has an index i € [h] and a string

drawn as follows:

Consider a (possibly randomized) one-way protocol, in which Alice sends Bob a message and then Bob
determines, with success probability at least 2/3, whether A(s;, t) is > 5 L + Cor< 2—2 — %. Then Alice
must send Q(h/e®) bits to Bob.

Before proving Theorem 4.1, we first consider a special case when n = f§/¢%.

LEMMA 4.3. Suppose n = ©(B/e%). Any (1 + ¢) for-all cut sketching algorithm must output
Q(nB/e) = Q(B?/e*) bits.

At a high level, we reduce the distributional Gap-Hamming problem (Lemma 4.2) to for-all cut
sketching. Suppose Alice has h strings s1, sy, . .., s € {0, 1}1/52 where h = %/, We will construct
a graph G to encode sy, S, . .., sy such that given an index i and a string t € {0, 1}1/52, Bob can

1

determine whether A(s;, t) > ﬁ + ¢ or A(s;,t) < 57 — ¢ with high constant probability from a

(1 + ¢) for-all cut sketch of G. Consequently, by Lemma 4.2, the cut sketch must use ﬁ(ﬂ2/£4) bits.
Construction of G. We construct a 2n-node complete bipartite graph G with two parts L and R
where |L| = |R| = B/¢®. We partition R into f disjoint sets [Ry| = ... = |Rg| = 1/€%. Consider the
distributional Gap-Hamming problem in Lemma 4.2 with h = /&2, For simplicity, we re-index
the /¢ strings as s;; where 1 < i < /¢ and 1 < j < B. Suppose that the n nodes in L are
01,4, ..., ;. We encode s; ; into the edges from the node ¢ to R;. Specifically, for node ¢; and the
o-th node in R;, we add a forward edge (£;,v) with weight s; ;(v) + 1 and a backward edge (v, £;)
with weight 1/f. Note that the encoding of each s; ; is independent since E(f;, R;) N E(¢y,Rj) = @
for (i, j) # (i, j').

Determining A(s; j, t) from a for- all cut sketch of G. Suppose that Bob wants to know whether
the Hamming distance A(s; j, 1) > 5; e +£orA(sij,t) < 57 — ¢ Let N(£) denote the set of nodes
v € R; such that the forward edge from t’ to v has welght 2. Let T be the set of nodes v € R; such
that ¢(v) = 1. (Recall that ¢ € {0, 1}1/‘€2 .) We first consider the value of |[N(¢£;) N T|. We have

A(sijot) = IN(&)| +[T| = 2IN(&) N T| = l —2IN(&) N T .

Hence, to determine Whether A(s, b)) S gz—for A(sl Jt) > 252 + ¢, Bob only needs to determine
whether [IN(6) N T| > 4£z + 5o or IN(¢) m T| < E - Z—CE
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Let S = {£} U (R\ T). Consider the cut value w(S, V' \ S). It contains forward edges from ¢ to
T and backward edges from R\ T to L \ {¢;}. Ideally, if Bob knows w(S,V \ S), he can compute
w(t,T) = 612 +|N(#;) NT| and then recover [N (£;) N T|. However, the issue is that Bob can only get a
(1+¢)-approximation of w(S, V\S), which has Q (/&%) additive error because w(S, V\S) = ©(B/¢?).
Bob will not be able to distinguish the two cases as the difference between the two cases is only
O(c/e).

To overcome this We follow the idea of [2]. In expectation, roughly half of #; € L satisfies
IN(&) N T| > 52 + 5. If Bob enumerates all the possible subsets of L of size ﬁ/(2€2) he will
eventually find a set Q C L containing all 8/(2¢?) nodes ¢; such that [N(&) N T| > 452 + 5-. Now

since there are 8/(2¢2) nodes in Q, the additional 5> will contribute ; ﬁ

be detected even with O(f/¢*) additive error.

To prove Lemma 4.3, we will need the following two lemmas, which are essentially proved in [2].
The main difference is now |L| becomes f/¢? rather than 1/¢2. The same arguments will go through,
as the order statistics of the Binomial distribution continue to hold when the number of samples
increases.

in total, which is enough to

LEMMA 4.4 (CLaIM 3.5 IN [2]). Let Lhigh denote the set
_ . 1 c
Lhgh ={6 €L:|N(&) NT| > 4_€2+2_€} _

| Lhigh |
IL]

Then, with probability at least 0.98, we have % —10c < <3

o=

LEMMA 4.5 (LEMMA 3.4 IN [2]). Bob can enumerate all subsets U of L of size |U| = /2 and
approximate w(U, T) with additive error O(f/€%). Let Q C L be the subset that achieves the highest
value in this process. Then, with probability at least 0.96, Q contains at least %-fraction of the nodes in

Lhigh-

We are now ready to prove Lemma 4.3.

ProOOF OF LEMMA 4.3. Bob enumerates all U C L with |U| = |L| = 2’% Let S = U U (R\T).
Consider the cut value w(S,V \ S). It contains @ forward edges from U to T with weights 1 or
2, and (ﬁ - L)(ﬁ) = O(/gij) backward edges from (R \ T) to (L \ U) with weight % The total

2e2 )\ 2¢2
weight of the forward edges is O(f8/¢*) and the total weight of the backward edges is fixed and is
O(Be*).

Consequently, given a (1 + O(¢)) multiplicative approximation of w(S,V \ S), Bob can subtract
the weight of the backward edges and approximate w(U, T) with additive error O(f/¢?). That is,
Bob can obtain the subset Q described in Lemma 4.5. Finally, Bob decides IN(&)NT| = ﬁ + 5
and thus A(s;j, 1) < @ — £if ¢ € Q, and Bob decides A(s; ;. ) > 5. o +if 4 ¢ Q.

We assume the events in Lemmas 44 and 4.5 indeed happen. We next analyze the error probability
of Bob’s decision. Suppose A(s; j, t) < ? —<and [IN(6)NT| > ﬁ + i, then we have Pr[i € Q] >
lLth‘il:;lQl > 4 . Similarly, we can define Lo, = {¢; € L : [IN(£;) N T| < @ - 5.} and show that, when
A(sij,t) = 252 +%and [N(4) NT| < 452 - 5, we have Pr[i ¢ Q] > w

Thus, Bob can dlstlngulsh between the two cases with error probability at most 1/5, which means
that Bob can solve distributional Gap-hamming with error probability at most 1/5 + 0.1 < 1/3,
which implies an Q((f?/¢%) - (1/€%)) = Q(B%/e*) lower bound. m]

We next consider the case with general values of n, 8, and ¢, and prove Theorem 4.1.
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PrOOF OF THEOREM 4.1. Let k = /¢%. We assume w.l.o.g. that k is an integer and n is a multiple
of k. Consider the distributional Gap-Hamming problem in Lemma 4.2 with h = Q(nf). We will
show that Alice can encode an Q(nf)-length binary string into a graph G such that

(i) G has n nodes and is (2f)-balanced, and

(ii) After receiving a string ¢, an index i, and a (1 * c¢) for-all cut sketch of G, where ¢ is a
universal constant, Bob can distinguish whether A(s; j,t) < ﬁ - g or A(syj,t) > # + § with
probability at least 2/3.

Then, by Lemma 4.2, the for-all cut sketch must use Q(h/e?) = Q(nB/e?) = Q(np’ /&%) bits for
B =2fand ¢ = ce.

We first describe the construction of G. We partition the n nodes into £ = n/k > 2 disjoint

sets Vi, Vs, - -+, V,, each with size k. Let sy, 8o, -+ , s € {0, 1}1/52 be Alice’s random strings where
h=(t-1)(B?/e?) = Q((n/k)(B%/€?)) = Q(nf). We partition the h strings into (¢ — 1) disjoint sets
S1,82,+++,S:_1, each having (B%/€?) strings. We then follow the same procedure as in Lemma 4.3

to encode S; into a complete bipartite graph between V; and V;,,. Recall that S; has (2/¢?) strings
and |V;| = |Viy1| = k = B/, which is the same setting as in Lemma 4.3.

We first show that G is (2)-balanced. This is because every edge e has a reverse edge whose
weight is at most 23 times the weight of e. For every u € V; and v € V4, the edge (u,v) has weight
1 or 2, and the edge (v, u) has weight 1/.

We next show how Bob can distinguish between the two cases. Suppose Bob’s index specifies
a string encoded by the sub-graph between V; and Vji. As in the proof of Lemma 4.3, we only
need to show that given a (1 + c¢) for-all cut sketch, for every subset U c V; with |U| = %
and for T C Vi, Bob can approximate w(U, T) with additive error O(f/e®). To see this, let

S=UU(Vig \T) U;ZM V;. Consider the edges from S to (V' \ S). There are

° % forward edges from U to T, each with weight 1 or 2.
o (& - 22)(Z) backward edges from (Vis; \ T) to (Vi \ U), each with weight 4.
® % backward edges from U to V;_; when i > 2, each with weight %

Consequently, the cut value w(S, V'\ S) = O(/¢*). Given a (1 + c¢) cut sketch, after subtracting the
value of the backward edges, Bob can approximate w(U, T) with O(ce(B/e*)) = O(cB/¢®) additive
error. By the same arguments as in Lemma 4.3, Bob can distinguish between the two cases of A(s;, t)
with probability at least 2/3. O

5 LOCAL QUERY COMPLEXITY OF MIN-CUT

In this section, we present an Q( min{m, gzﬂk}) lower bound on the query complexity of approx-
imating the global minimum cut of an undirected graph G to a (1 * ¢) factor in the local query
model. Formally, we have the following theorem.

THEOREM 5.1. Any algorithm A that estimates the size of the global minimum cut of a graph G up
toa (1 +€) factor requires Q(min{m, - }) queries in expectation in the local query model where k is
the size of the minimum cut and m is the number of edges in G.

To achieve this, we define a variant of the 2-SUM communication problem in Section 5.1, show
a graph construction in Section 5.2, and show that approximating 2-SUM can be reduced to the
minimum cut problem using our graph construction in Section 5.3. In Section 5.4, we will show
that our lower bound is tight up to logarithmic factors.

5.1 2-SUM Preliminaries
Building off of the work of [20], we define the following variant of the 2-SUM(t, L, a) problem.
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Definition 5.2. For binary strings x = (x,...,x1) € {0, 1}* and y=(y,...,yr) € {0, 1} let
INT(x,y) = Xk, x; A y; denote the number of indices where x and y are both 1. Let DISJ(x, y)
denote whether x and y are disjoint. That is, DISJ(x, y) = 1 if INT(x, y) = 0, and DISJ(x,y) = 0 if
INT(x,y) > 1.

Definition 5.3. Suppose Alice has t binary strings (X', ..., X’) where each string X* € {0, 1}*
has length L and likewise Bob has ¢ strings (Y1, ..., Y’) each of length L. INT(X’, Y?) is guaranteed
to be either 0 or & > 1 for each pair of strings (X?, Y?). Furthermore, at least 1/1000 of the (X%, Y?)
pairs are guaranteed to satisfy INT(X?, Y') = a. In the 2-SUM(t, L, &) problem, Alice and Bob want
to approximate Y;c,) DISJ(X, Y*) up to additive error v/t with high constant probability.

LeEmMA 5.4. To solve 2-SUM(t, L, 1) with high constant probability, the expected number of bits
Alice and Bob need to communicate is Q(tL).

Proor. [20] proved an expected communication complexity of Q(¢L) for 2-SUM(t, L, 1) without
the promise that at least a 1/1000 fraction of the ¢ string pairs intersect. Adding this promise does

not change the communication complexity, because if (X1,...,X" and (Y,...,Y?) do not satisfy
the promise, we can add a number of new X’ and Y’ to satisfy the promise and later subtract their
contribution to approximate ;¢ [, DISJ(X i Y") with additive error ©(Vr). O

THEOREM 5.5. To solve 2-SUM(t, L, &) with high constant probability, the expected number of bits
Alice and Bob need to communicate is Q(tL/a).

Proor. Consider an instance of 2-SUM(t, L/a, 1) with Alice’s strings (X,...,X"?) and Bob’s
strings (Y1, ..., Y?) each with length L/a. For each of Alice’s strings X* with length L/, we produce
X% (with length L) by concatenating « copies of X', and likewise we produce Y*“ for each of Bob’s
strings Y. The setup where Alice has strings (X4, ..., X"%) and Bob has strings (Y'4,..., Y’%) is
an instance of 2-SUM(t, L, ¢). From Lemma 5.4, the communication complexity of 2-SUM(t, L/, 1)
is Q(tL/a). Thus, the communication complexity of 2-SUM(t, L, @) is Q(tL/a). O

5.2 Graph Construction

Inspired by the graph construction from [8], given two strings x, y € {0, 1}"V, we construct a graph
Gy,y(V, E) such that V is partitioned into A, A’, B and B’, where |A| = |A’| = |B| = |B'| = VN =¢.
Note that since £2 = N, we can index the bits in x by x; j, where 1 < i, j < £. We construct the
edges E according to the following rule:

(di, b;), (bl', a;) €E ifxi’j = yi,j =1
(ai, a}), (b;, b;) € E otherwise

Figure 2 illustrates an example of the graph G, ,(V, E) when x = 000000100 and y = 100010100.
We will show that under certain assumptions about N and INT(x, y), the number of intersections
in x, y is twice the size of the minimum cut in G, .

LEMMA 5.6. Givenx,y € {0, 1}V, if VN > 3 - INT(x,y), then MINCUT(Gy.) = 2 - INT(x, y).

Proor. To prove this, we use some properties about y-connectivity of a graph. A graph is y-
connected if at least y edges must be removed from G to disconnect it. In other words, if a graph G
is y-connected, then MINCUT(G) > y. Equivalently, a graph G is y-connected if for every u,v € V,
there are at least y edge-disjoint paths between u and v. Therefore, given INT(x,y) = y, if we
can show that Gy, is 2y-connected and there exists one cut of size exactly 2y, then we can show
MINCUT(Gy,y) = 2y. By the construction of the graph, it is easy to see that CUT(A U A’,BU B’)
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Fig. 2. Example of Gy, (V, E) where x = 000000100 and y = 100010100. The red edges represent the intersec-
tion at x31 = y31 = 1. The green edges represent all the non-intersections in x and y.

has size 2y, since each intersection of x, y produces two crossing edges in between. Therefore, all
we need to show here is that if VN > 3 - y, then Gy, y is 2y-connected.

Similar to [8], we prove this by looking at each pair of u,0 € V. Our goal is to show that for
every u,v € V, there exist at least 2y edge-disjoint paths from u to v.

CaskE 1. u,v € A (or symmetrically u,v € A’, B, B’). For each pairu,v € A, we have that there are
at least £ —y distinct common neighbors in A’. This is because one intersection at x;; and y;; implies
that the edge (a;, a;.) is not contained in E, and would remove at most one common neighbor in A’.
Since £ = VN > 3y, we have that there are at least { — y > 2y distinct common neighbors in A’, which
we denote by uf’, uf’, .. ug‘y Therefore, each pathu — ulA' — v is edge-disjoint, and we have at

least 2y edge-disjoint paths from u to v, as shown in Figure 3.

A

B/
Fig. 3. u,0 € A. We omit all the (a;, b;.), (b, b;.), and (bj, a}) edges.

Case 2. u € A,v € A’ (or symmetricallyu € B,v € B’). Since £ —y > 2y, we have that v has at
least 2y distinct neighbors in A, which we denote by uf, u‘z“, .. .,u‘z“y. From Case 1, we also have that

. . . . ’ ’ ’
each u? has at least 2y distinct common neighbors in A’. Therefore, we can choose U‘l“ , v‘z“ ey vfy
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such that each pathu — v;“' - uf
from u tov, as shown in Figure 4. Note that it may be the case where u
simply take the edge (u,v) to be one of the edge-disjoint paths.

— o is edge-disjoint, so we have at least 2y edge-disjoint paths
A
i

= u. In this case, we can

B/

Fig. 4. u € A,v € A’. We omit all the (a;, b}), (bj, b}), and (b;, a;.) edges. The green edges exist since v has at
A

least 2y neighbors in A. The orange edges exist since u{* and u have at least 2y common neighbors in A’.

CasE 3. u € A,v € B’ (or symmetricallyu € A’,v € B). In this case, we show two sets of edge-
disjoint paths, where each set has at least y edge-disjoint paths from u to v, and the two sets of paths
do not overlap. Overall, we have at least 2y edge-disjoint paths.

The first set of paths Sy uses the edges between A’ and B. Let (w1, x1), (W2, x2), ..., (wy,x,) € A’XB
be the edges between A’ and B. Each of these edges represents one intersection in x and y. Therefore,
there are exactly y of them. From Case 2, we have that for every w;, there are 2y edge-disjoint paths
fromu to w;. Hence, for every w;, we can choose a path from u to w; and these y paths are edge-disjoint.
Figure 5 illustrates the paths u — u; — u; — w; — x;. By symmetry, we can extend the paths from
x; tov. This gives us y edge-disjoint paths from u to v.

We now consider the second set of paths S,. Let

(y1.21), (Y2, 22), . . ., (Y, 2y) € AX B’

be the distinct edges between A and B'. Once again, it suffices to prove that there are 2y edge-disjoint
paths from u to y;, since the paths between v to z; would be symmetric. From Case 1, we have that
for every y;, there are at least 2y common neighbors between y; and u. Therefore, we can always find
distinct uy’,uy/, .. ., u)’,’ such that the pathsu — u;’ — y; are edge-disjoint, as shown in Figure 6. Once
we extend the paths from z; to v, we have y-edge disjoint paths in the second set.

Now we have two sets of paths Sy and S;, where both sets have at least y edge-disjoint paths. It
remains to show that the paths in Sy and S, can be edge-disjoint. Observe that the only possible edge
overlaps between the paths from u to the w; and paths from u to the y; areu — u;’ and u — u;, since
they are both neighbors of u. However, note that what we have shown is that for every w; ory;, there
are at least 2y edge-disjoint paths from u to w; ory;. Therefore, one can choose 2y edge-disjoint paths
fromu tow; and y; such that u; and u;’ do not overlap. And similarly one can choose 2y edge-disjoint
paths from v to the z; and the x;. Overall, we have 2y edge-disjoint paths from u tov.
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A’ B’

Fig. 5. u € A,v € B". The first set of paths S; goes from u — u; — u] — w; — x;. We omit the paths from
x; to v, as they are symmetric to the paths from w; to u. Once we extend the paths from x; to v, we have y
edge-disjoint paths from u to v. Note that the w; and x; may not be distinct.

A’ B’

Fig. 6. u € A,v € B’. The second set of paths Sz goes from u — u]’ — y; — z;. We omit the paths from
z; to v, as they are symmetric to the paths from y; to u. Once we extend the paths from x; to v, we have y
edge-disjoint paths from u to v. Note that the y; and z; may not be distinct.

CASE 4. u € A,v € B (or symmetricallyu € A’,v € B’). This case is similar to Case 3, where we
have two edge-disjoint sets S| and S;. Consider the set of paths S|, where we use the edges

(w1, x1), (W2, X2), ..., (wy,x,) € A" XB.

We can construct the paths from u to w; using the same way as for Sy in Case 3 (Figure 5). For the
paths from x; to v, however, we construct them using the same way as in S, in Case 3 (Figure 6). By
connecting these paths, we obtain at least y edge-disjoint paths in S. Similarly, we can also construct
at least y edge-disjoint paths in S;,, where we use the edges

(y1,21), (Y2, 22), ..., (yy. 2y) € AX B'.

We follow the same way of choosing the paths in S| and S, that are edge-disjoint. O
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5.3 Reducing 2-SUM to MINCUT

In this section, we use the graph constructions in Section 5.2 to reduce the 2-SUM(t, L, &) problem
to MINCUT and derive a lower bound on the number of queries in the local query model.

LEMMA 5.7. Given M,A > 0, and 0 < ¢ < 1, suppose that we have any algorithm A that can
estimate the size of the minimum cut of a graph up to a (1 + ) multiplicative factor with T ex-
pected queries in the local query model. Then there exists an algorithm B that can approximate
2-SUM(e72, €2M, max{e?A, 1}) up to an additive error Ve=2 = ¢! using at most O(T) bits of commu-
nication in expectation given VM > 3 max{A, ¢ 2}.

Proor. We will show that the following algorithm 8 satisfies the above conditions:

(1) Given Alice’s strings (X?,...,X¢ ) each of length %M, let x be the concatenation of Alice’s
strings having total length e=2(¢2M) = M. Similarly let y € {0, 1} be the concatenation of
Bob’s strings.

(2) Construct a graph Gy, as in Section 5.2 using the above concatenated strings as x, y.

(3) Run A(Gy,y) and output (% — %) as the solution to 2-SUM(e72, £2M, max{¢?A, 1}).

For the 2-SUM problem, let r = £ — 3¢ [,-2) DISJ(X i Y") be the number of string pairs with
intersections. Since there are £~2 pairs (X LYY, ris at most £72. From our definition of 2-SUM,
each intersecting string pair has max{?], 1} intersections. x, y are formed by concatenations, so
INT(x,y) = rmax{¢?1,1}. Since VM > 3max{A e 2} = 3¢ ?max{¢’A, 1} > 3rmax{e’A, 1} =
3-INT(x,y), Lemma 5.6 is applicable to Gy, so that

MINCUT(Gy.y) = 2r max{e?A, 1}.

Since A approximates MINCUT up to a (1 + ¢) factor, A(Gy,y) = 2r(1 + &) max{¢*A, 1}. Thus,
B’s output to the 2-SUM problem is within (¢ 72 —r) + re = 2ie[e?] DISJ(X?, Y?) + re. Recall that
r < £72. We can see that 8 approximates 2-SUM (&2, £2M, max{e?], 1}) up to additive error £~ 1.
To compare the complexities of A and B, recall A is measured by degree, neighbor, and pair
queries, whereas 8 is measured by bits of communication. Given the construction of Gy,y, as
shown in [8], degree, neighbor, and pair queries can each be simulated using at most 2 bits of

communication:

e Degree queries: each vertex in Gy, , has degree VM so Alice and Bob do not need to communicate
to simulate degree queries.

e Neighbor queries: assuming an ordering where a;’s j’th neighbor is either a’; or b7, Alice and
Bob can exchange x; ; and y; ; with 2 bits of communication to simulate a neighbor query.

o Pair queries: Alice and Bob can exchange x; ; and y; ; with 2 bits of communication to determine
whether edges (a;, b;) and (b;, a}) exist.

As each of A’s queries can be simulated using up to 2 bits of communication in B, B can use

O(T) bits of communication to simulate T queries in A. So we have established a reduction from

approximating 2-SUM(e72, e2M, max{e?, 1}) up to additive error £~! to approximating MINCUT

up to a (1 + ¢) multiplicative factor. O

We are now ready to prove Theorem 5.1.

ProoF oF THEOREM 5.1. Given an instance of 2-SUM(e2, e2m, max{e’k, 1}), consider the same
way of constructing the graph G, , in Lemma 5.7. From the construction of Gy, the number of
edges is 2m since each of pair (x;, y;) corresponds to 2 edges. Using the promise from 2-SUM, we get
that r > £72/1000, where r = 2iele?] DISJ(X?, Y?), which means that the size of the minimum cut
of Gy y is 2r - max{e’k, 1} > Q(max{k, e 2}). When k > ¢~%, we have that the size of the minimum
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cut of Gy, is Q(k), and from Lemma 5.7 we obtain that any algorithm A that satisfies the guarantee
on the distribution of Gy, must have Q(m/(e%k)) queries in expectation. When k < 72, the size
of the minimum cut of G, is Q(¢7%) and similarly we get that any algorithm A that satisfies the
guarantee on the distribution of G, , must use Q(m) queries in expectation. Combining the two,
we finally obtain an Q(min{m, -7-}) lower bound on the expected number of queries in the local
query model. O

5.4 Almost Matching Upper Bound

In this section, we will show that our lower bound is tight up to logarithmic factors. In the work
of [5], the authors presented an algorithm that uses O(%* - poly(log n, 1/¢)) queries, where k is the
size of the minimum cut. We will show that, despite their analysis giving a dependence of 1/¢*, a
slight modification of their algorithm yields a dependence of 1/¢2. Formally, we have the following
theorem.

THEOREM 5.8 (ESSENTIALLY [5]). There is an algorithm that solves the minimum cut query problem
up to a (1 + &)-multiplicative factor with high constant probability in the local query model. Moreover,
the expected number of queries used by this algorithm is O(ﬁ)

To prove Theorem 5.8, we first give a high-level description of the algorithm in [5]. The algorithm
is based on the following sub-routine.

LEMMA 5.9 ([5]). There exists an algorithm VERIFY-GUESS(D, t, €) which makes O(e™2m/t) queries
in expectation such that (here D is the degree of each node)

(1) Ift > % - k, then VERIFY-GUESS(D, t, €) rejects t with probability at least 1 — Wl(n)'
(2) If t < k, then VERIFY-GUESS(D, t, €) accepts t and outputs a (1 * ¢)-approximation of k with

o7 _1
probability at least 1 — oy (n) -

Given the above sub-routine, the algorithm initializes a guess ¢t = % for the value of the minimum
cut k and proceeds as follows:

o if VERIFY-GUEsS(D, t, €) rejects t, set t = t/2 and repeat the process.
e if VERIFY-GUESs(D, t, €) accepts t, set t = t/x where k = 200(2#. Let k = VERIFY-GUESS(D, t, €)
and return the value of k as the output.

To analyze the query complexity of the algorithm, notice that when VERIFY-GUESS first accepts t,
we have that ’5‘ < t < kk. which means that t/x < k and hence one call to VERIFY-GUESS(D, t/x, €)
will get the desired output. However, at a time in t = ©(k/x), the VERIFY-GUESs procedure needs
to make O (&%) queries in expectation.

To avoid this, the crucial observation is that, during the above binary search process, the error
parameter of VERIFY-GUEsS(D, t, ¢€) does not have to be set to ¢. Using a small constant S, is
sufficient. This way, when VERIFY-GUESsS(D, t, ffy) first accepts ¢, we have ’% <t < clog(n) -k,
where c is a constant. Consequently, the output of VERIFY-GUESs(D, t/(c log n), ¢€) will satisfy the
error guarantee. Using the analysis in [5], we can show that the query complexity of the new

algorithm is O( %)
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