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a b s t r a c t

Glasses are promising candidates as solid electrolytes for all-solid-state batteries due to their isotropic
ionic conduction, formability, as well as high chemical, thermal and electrochemical stability. However,
their mechanical properties and ionic conductivity need to be improved. Here, based on molecular dy-
namics simulations and classification-based machine learning, we reveal that both fracture behavior and
ionic conduction in glassy lithium borophosphate electrolytes are encoded in their static structures. By
systematically varying the Li and B content, we demonstrate that the machine learning-based structural
descriptor termed “softness” can be used as an indicator for both fracture resistance and ionic con-
ductivity. The “softness” metric is calculated from the static local atomic environment, but well captures
the long-term dynamics of individual atoms. Notably, the propensities for B atoms to undergo bond-
switching (correlated with fracture) and for Li ions to migrate (correlated with ionic conductivity) in-
crease with an increase in atomic softness. Specifically, the out-of-equilibrium interaction of B and Li
with oxygen neighbors enhances the propensity for B and Li to undergo bond-switching or rearrange-
ment when experiencing stimuli. These results enable finding the optimum chemical compositions for
glassy solid electrolytes with high mechanical stability and high ionic conductivity.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development of renewable energy sources calls for more
efficient and safer batteries for electrification of transportation and
energy storage systems [1,2]. Lithium-ion batteries have received
significant attention not only as a power source for portable elec-
tronic devices but also for large-scale energy storage applications
due to their relatively high energy density, reliability, low cost, and
cyclability [3e5]. However, lithium-ion batteries often suffer from
safety issues and inadequate chemical and thermal stabilities [6].
Owing to these issues, the high performance all-solid-state batte-
ries need to be developed, in which liquid electrolytes should be
replaced with superior solid electrolytes [7].

Among the various solid electrolyte materials, glassy electro-
lytes typically present several advantages such as isotropic ionic

conduction, no grain-boundary resistance, compositional vari-
ability, and improved formability compared to crystalline coun-
terparts [8]. Generally, lithium-ion conductive glasses can be
classified according to their composition such as sulfide, halide, and
oxide glassy electrolytes [9e11]. Although sulfide glasses exhibit
higher ionic conductivity than oxide glasses, they are difficult to be
handled due to their chemical instability in air, high production
cost and proneness to react with lithium metal [8]. The halide-
based electrolytes can feature higher electrochemical oxidation
stability than sulfide electrolytes, but usually suffer from high
production cost and poor reduction stability [11,12]. In contrast,
oxide glasses feature good chemical stability, low production cost,
high recyclability and formability and have been intensively stud-
ied as the solid electrolyte in thin-film batteries [13,14]. The me-
chanical properties and ionic conductivity of oxide glasses are the
main properties that need to be improved for their applications as
solid electrolytes [15]. Specifically, the resistance to crack formation
and propagation is critical, since the electrolyte needs to accom-
modate deformation associated with the volume change of the
electrodes during charging and discharging. Cracking in the solid
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electrolyte phase will lead to an increased interface resistance and
decreased ionic conductivity in the battery, and eventually battery
failure.While themechanical properties of glassy oxide electrolytes
have not been well studied, numerous efforts have focused on
improving the ionic conduction of oxide glasses [16].

In order to design and fabricate oxide solid electrolytes with
improved mechanical properties and ionic conduction, the
structure-properties correlations need to be understood. However,
the structure of glassy electrolytes is intrinsically disordered. As a
prototype of glassy electrolytes, lithium borophosphate (LiBP)
glasses are promising candidates for thin-film solid batteries owing
to their thermal, chemical and electrochemical stability [13,17,18].
Previous research suggests that the mixed network former effect by
having both B and P units in LiBP glasses leads to improved thermal
durability and ionic conduction [19,20]. The lithium ion conduction
in LiBP glasses can be enhanced as the content of Li ions and thus
non-bridging oxygens increases [17]. As another issue of oxide
glasses, the crack behavior of glassy electrolytes has been rarely
characterized and remains poorly understood [21]. As found in our
recent study [22], the fracture behavior and Li transportation in
LiBP glasses are governed by the bond-switching propensity of B
atoms andmedium range structure features, respectively. To enable
the prediction of such properties, further work is needed to
pinpoint the atomic-scale structural features governing ionic con-
duction and crack behavior.

Machine learning offers a promising opportunity to discover the
hidden pattern in multidimensional data, which has made it
possible to predict the dynamics of disordered materials (including
cracking and diffusion behaviors) from their non-intuitive struc-
tural features [23e25]. To this end, a variety of machine learning
algorithms have been applied, including support vector machine
[24], logistic regression [26], graph neural network [27], convolu-
tional neural network [28], etc. Among these, the non-intuitive
structural fingerprint termed as “softness” proposed by Cubuk
et al. has been found to be strongly correlated with the propensity
of individual atoms to rearrange based on their local environment
[24,29]. For example, in our previous work on disordered Al2O3, we
found that the long-term dynamics of the atoms upon fracture is
hidden in their initial static structure [25]. In addition to the frac-
ture behavior, the ionic conduction is also strongly correlated with
the atomic rearrangement. Indeed, the most commonly used mean
squared displacement (MSD) metric to characterize ionic conduc-
tivity in atomistic simulations has been calculated based on atomic
movement [30]. Therefore, an improved understanding of the
structural features determining atomic rearrangement is essential
for predicting both the mechanical properties and ionic conduction
of glassy electrolytes.

In this work, we explore the structure-property correlation of
glassy LiBP electrolytes using the machine-learning based “soft-
ness” concept. We use molecular dynamics (MD) simulations,
validated by experiments, to obtain atomic scale information about
the fracture and conductivity mechanism. Specifically, we focus on
two series of glassy LiBP electrolytes, namely glasses with fixed
B2O3 content ((Li2O)40þx(B2O3)30(P2O5)30-x) and glasses with fixed
Li2O content ((Li2O)40(B2O3)30þx(P2O5)30-x) where x ¼#10, #5, 0, 5,
and 10. Each glass sample was named according to its composition,
e.g., Li40B30P30 represents the glass composition (Li2O)40(-
B2O3)30(P2O5)30 (see Supporting Table S1). By isolating the relative
effects of Li and B contents on the electrolyte performance, we
correlate the fracture behavior and ionic conductionwith the bond-
switching activities of B and mobility of Li atoms, respectively.
Given the simplicity and accuracy of the classification model, we
have used a logistic regression classifier for the “softness” calcula-
tion as it makes the model interpretable to the input structural
features. Based on this logistic regression classification model, we

show that the propensity to bond switch or atomic rearrangement
is encoded in the static structure of the electrolytes before any
external stress or thermal excitation is applied. Based on the
interpretable features of the applied logistic regression algorithm,
we identify the most influential structural parameter of the radial
order function controlling the atomic dynamic behaviors.

2. Results and discussion

2.1. Structural analysis of simulated glasses

We first characterize the atomic structures of glassy LiBP elec-
trolytes. As a representative composition in both series of glasses,
the atomic snapshot of a Li40B30P30 glassy electrolyte is shown in
Fig. 1a including its structural units: Li ions, [3]B triangles, and [4]B
and [4]P tetrahedra, where [n]X denotes the coordination state of the
element X. The short-range order (SRO) and medium-range order
(MRO) structures of the glassy electrolytes are characterized by
calculating D(r) and S(q), respectively, from the MD simulations
(see Methods section). We show the spectra for Li40B30P30 in
Fig. 1b, for which the experimental data are also available in liter-
ature for this composition. The simulated D(r) exhibits good
agreement with the experimental result in terms of the position
and relative intensity of the peaks based on our previous work [22].
Although there are some discrepancies regarding the second
intense peak of S(q) (the so-called principle peak), the main feature
of the MRO structure, i.e., the first sharp diffraction peak (FSDP) of
S(q) is well reproduced. These results highlight that the MD simu-
lations can reproduce the structural SRO and MRO features. The
density evolution of the simulated glasses also agree well with the
experiment values (see Supporting Fig. S1).

Fig. 1c shows the pair distribution function (PDF) g(r) of the
LiBP glasses for the different chemical compositions. All the LiBP
glasses exhibit three main peaks, corresponding to the BeO/PeO,
LieO, and OeO bonds. For the glasses with fixed B2O3 content, the
change in Li2O content systematically alters the intensities of these
peaks. In contrast, the first binary peak is mainly influenced by the
compositional change in the glasses with fixed Li2O content. From
the partial PDF shown in Supporting Fig. S2, both systems exhibit a
[4]B-to-[3]B conversion with an increased x value in (Li2O)40þx(-
B2O3)30(P2O5)30-x and (Li2O)40(B2O3)30þx(P2O5)30-x. This is evi-
denced by the leftward shift of the first peak in gB-O(r), i.e., the
decreased BeO distance. This finding agrees with the experi-
mental results from Ref. [31] In contrast, the PeO distance does
not exhibit significant changes with composition. The [4]B-to- [3]B
conversion can also be observed from the increased coordination
number (CN) of B and the increase in the OeBeO bond angle, as
shown in Supporting Figs. S3 and S4, respectively. Fig. 1d shows
the composition dependence of the MRO structure. The simulated
structures of the LiBP electrolytes exhibit a lack of long-range
order as observed from the diffusive scattering of the S(q). The
FSDP in S(q) corresponds to the representative medium-range
length scale. As the FSDP shifts to the higher q position with an
increase in x, the structure is gradually densified, which echoes the
molar volume changes shown in Supporting Fig. S5. That is, we
observe that both the values and the composition dependency of
density are well reproduced by the MD simulations. The increase
of x leads to a more ordered phosphate tetrahedra structure as the
OePeO bond angle distribution becomes narrower while it
maintains to be centered at 109$ (Supporting Fig. S6). The fractions
of different Qn species of phosphate units (see Supporting Fig. S7)
also exhibit the same dependence on composition as the previous
experimental results for similar compositions [31]. Here, Qn de-
notes a four-fold coordinated phosphorous unit connected by n
bridging oxygens.
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2.2. Mechanical properties

We analyze the mechanical response of the LiBP electrolytes
during a simulated uniaxial tensile process. The stress-strain (s-ε)
curves of the compositions with fixed B2O3 content are shown in
Fig. 2a. As expected, the increase in Li2O content depolymerizes the
network structure of the glass, thereby decreasing both strength
and ductility. In contrast, the mechanical response of the glasses
with fixed Li2O content does not show any obvious composition
dependence (Supporting Fig. S8). Since fracture processes are
typically accompanied by changes in chemical bonds, the concept
of bond-switching can be used to analyze fracture behavior [32]. As
shown in Fig. 2b, the fracture of the LiBP glasses is accompanied by
crack initiation and propagation. At a strain of 0.4, the sample is
almost fractured with few BeO and PeO bonds bridging the crack.

The three types of bond-switching activities of B as a function of
applied strain are shown in Figs. 2cee. Compared to the non-
strained structure, the B atoms can be subjected to bond-
switching activities such as decreased CN, increased CN and

swapped CN. Note that we do not show the bond-switching ac-
tivities of P atoms here since they are negligible (Supporting
Fig. S9). Among the three kinds of bond switching activities, the
increased coordination number of B atoms shown in Fig. 2d is
mainly attributed to the out-of-equilibrium state of [3]B. These units
tend to convert to [4]B under deformation, and therefore contrib-
utes to the smallest extent to the total bond switching activities.
The other two bond switching activities, i.e., decreased or swapped
CN of B are closely correlated with the deformation process since
they have the same dependence on the composition as the stress-
strain responses, and they are the main reservoirs to dissipate the
strain energy. Fig. 2c shows that the events of decreased CN in-
crease initially with an increase of applied strain, but after reaching
the maximum value, the number of events decreases and levels off
upon the onset of fracture. In contrast, the increased and swapped
CN activities increase monotonically with an increase in strain,
which is attributed to glass relaxation, i.e., more increased and
swapped CN events occur due to the partial re-densification of the
glass induced by the stress release upon brittle fracture. Overall, the

Fig. 1. (a) Atomic structure and photograph of Li40B30P30 glassy electrolyte. (b) Comparison of experimental (red) and simulated (blue) D(r) and S(Q) of Li40B30P30 glassy
electrolyte. The experimental data are taken from Ref. [22]. (c,d) Simulated (c) g(r) and (d) S(Q) of LiBP glassy electrolytes with varying compositions. The detailed composition for
each sample can be found in Supporting Table S1.
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bond-switching probability decrease with an increase of Li2O
content in the glassy LiBP electrolytes (Supporting Fig. S10). This
tendency agrees well with the dependence of the mechanical
response on composition. Next, we seek to predict the propensity of
boron atoms to bond switch based on the non-strained glass
structure, and thereby to predict the fracture behavior of LiBP
glassy electrolytes.

2.3. Ionic conductivity

Since ionic conduction is another key performance for solid-
state electrolytes, we analyze the dynamic and kinetic properties
of the Li ions based on the MD simulations. Fig. 3a illustrates the
trajectory of Li ions in the glassy Li40B30P30 electrolyte during the
300 K equilibration process. The white to green gradient lines
highlight the positions of selected Li ions as a function of time. We
observe that the dynamics of Li ions exhibits distinct behaviors, i.e.,
some Li ions are trapped in cages (immobile Li), while some can
jump out of their local confinements (mobile Li). The latter Li ions
promote the ionic conduction, and therefore, it is essential to un-
derstand the intrinsic mechanism governing Liþ rearrangement.
The MSDs of Li ions in glasses with fixed Li2O content at 300 K and
800 K are presented in Figs. 3b and c, respectively. The MSD at
300 K does not exhibit obvious dependence on composition, since it
does not reach the diffusive regime. When the samples are simu-
lated at 800 K, the MSD values increase significantly with time.
Meanwhile, both the MSD values at 300 and 800 K increase with an
increase in the Li2O content (Supporting Fig. S11), agreeing with
measured ionic conductivities of Li2O-rich glasses [17]. Addition-
ally, the final MSD values exhibit a positive correlation with the

B2O3 content, indicating a higher ionic conduction in the B2O3-rich
electrolytes. Compared to the previous findings [13,22], our results
show that the ionic conductivity will not only increase with an
increasing Li content, but also increase with an increasing B content
in the LiBP glasses.

Although the MSD results can be correlated with experimental
observations, the MSD at 300 K cannot reach the diffusive regime
[33] (i.e., with a slope of one in the log-log plot of MSD vs. time)
within the simulation time accessible. To correlate the atomic
rearrangement of Li at 300 Kwith the transport properties, we have
calculated the cumulative nonaffine displacement (Dcum) of each Li
ion during the 100 ps relaxation at 300 K (see Methods section). As
shown in Fig. 3d, the Dcum values monotonically increase as a
function of time, but the mobile Li ions systematically exhibit a
higher Dcum value compared to the immobile Li ions over time. As
such, the Dcum metric is a more robust indicator for rearrangement
than the conventionally used MSD metric. A comparison of MSD
and Dcum curves of individual Li ions during the 800 K equilibration
also confirms the robustness of the Dcum metric (see Supporting
Fig. S12). This is likely because, unlike the cumulative nonaffine
displacement, MSD is affected by the reversibility (e.g., atom jumps
to another pocket followed by another jump back to the original
pocket) and directionality (angle between one jump and the
following one) of the atomic jumps. The distributions of final Dcum
values are shown in Fig. 3e and imply that glassy LiBP electrolytes
with a high ion conductivity generally exhibit larger Dcum values.
Interestingly, when comparing the MSD results at 800 K (Fig. 3c)
with the Dcum distribution at 300 K (Fig. 3e), the spontaneous dy-
namics in the ambient environment are highly correlated with the
diffusion behaviors at elevated temperature. That is, Li ions that

Fig. 2. (a) Stress-strain curves of glassy LiBP electrolytes with fixed B2O3 content. (b) Atomic snapshots of the fracture process and the three types of bond-switching activities for
the Li40B30P30 composition at different strain values. (cee) Fraction of B atoms subjected to (c) decreased CN, (d) increased CN, and (e) swapped CN as a function of applied strain
for glasses with fixed B2O3 content.
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exhibit higher Dcum values yield a high ionic conductivity. There-
fore, the final Dcum value of each Li reflects the atomic rearrange-
ment and can be used as an indicator for ion conductivity.

2.4. Classification-based machine learning

Based on the above results, the fracture behavior and ion con-
duction are found to be correlated with PBS (the probability to bond
switch) of B atoms and Dcum (cumulative nonaffine displacement)
of Li atoms, respectively. In the following, we investigate whether
the propensity of B or Li atom to be mobile or immobile (i.e., the
propensity to bond switch or rearrange) can be predicted based on
the static glass structure. To this end, following the softness
approach proposed by Cubuk et al. [29], we constructed a hyper-
plane using logistic regression to distinguish the rearrangement of
atoms based on their structural features (Fig. 4a). The softness S is
computed as the distance from the hyperplane to the position in
the feature space. Herein, a positive value is associated with a
mobile atom, while the absolute value indicates the probability of
rearrangement. The detailed process and results of calculating
softness can be found in the Methods section.

We first investigate the correlation between softness and atomic
behaviors, i.e., bond-switching propensity and diffusion behavior.
Interestingly, although the softness S is calculated based on the
static structure, both the load- and time-induced dynamics of
atoms are highly correlated with the softness values, yielding a
predicting accuracy of around 0.77. Another interesting finding is
that although this analysis relies on a classification model (wherein
an atom can only be mobile or immobile), it eventually yields a
quantity (structural descriptor) that is correlated to the rear-
rangement. Namely, previous investigations of alkali bor-
ophosphate glasses indicate the physical properties (e.g., the glass
transition temperature, Vickers hardness, and liquid fragility)

exhibit a highly non-linear correlationwith composition [34]. Here,
based on a classificationmodel, we demonstrate that the long-term
behaviors, i.e., bond-switching and diffusion properties exhibit an
exponential dependence on Swhich also suggests that the quantity
of S captures the activation energy of the process [26] since the
softness concept is strongly correlated with the energy landscape
associated with atomic dynamics [35]. Specifically, Li atoms with a
large S are more likely to diffuse in the glass, while B atoms with a
large S tend to experience bond-switching when the glass is sub-
jected to deformation. We note that S is calculated based on the
initial structure, whereas the Dcum values and bond-switching rate
are computed at the end of the simulation (i.e., the glass is
dynamically relaxed for 100 ps or the glass is stretched up to
ε ¼ 1.0). That is, the strong correlation between initial softness and
atomic behavior clearly illustrates that the long-term behaviors of
LiBP glasses are quantitatively encoded in their initial static
structure.

The distributions of S of the Li atoms in the glasses with fixed
Li2O content are shown in Fig. 4c. We observe that the <S> of Li
atoms systematically increases with an increase in the B2O3 content
(inset of Fig. 4c), in agreement with the higher ionic conductivity
observed in B2O3-rich LiBP glasses. Fig. 4d illustrates the distribu-
tions of S of B atoms in the glasses with fixed B2O3 content, where
all the S distributions exhibit bimodal features. The two peaks are
located at softness values of #0.4 and 0.6, respectively, indicating
the distinct behaviors of immobile andmobile B atoms. As shown in
the inset of Fig. 4d, the bimodal distribution originates from the
different coordination states of B atoms, i.e., the [4]B atoms are more
prone to bond switch than the [3]B atoms. With a decrease in the
P2O5 content, the relative fraction of immobile B atoms increases at
the expense of mobile B atoms, leading to the overall decrease of
<S> of B atoms. This explains why LiBP glasses with a higher P2O5
content feature more pronounced bond-switching propensity, thus

Fig. 3. (a) Atomic trajectories of Li ions in the Li40B30P30 glassy electrolyte during the 300 K equilibration process, which highlights the distinct propensities of Li to rearrange. The
color coding of Li trajectories refers to the simulation time. (b,c) MSD of Li in LiBP glassy electrolytes with fixed Li2O content at (b) 300 K and (c) 800 K. (d) Cumulative nonaffine
displacement of selected Li atoms during the 300 K relaxation process. (e) Distribution intensity of cumulative nonaffine displacement of Li atoms after 100 ps relaxation at 300 K
for the LiBP glassy electrolytes with fixed Li2O content.
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exhibiting improved nanoscale ductility. Interestingly, although the
coordination information is not directly provided in the input
structural features to the machine learning model, the computed
softness is able to capture the distinct dynamical behaviors induced
by these coordination states.

2.5. Structural origin of softness

We then correlate the softness metric with other structural
features such as coordination number and atomic volume to un-
derstand the real-space structural origin of softness. Fig. 5a shows
the correlation between the atomic volume and softness for [3]B
and [4]B atoms. Consistent with the softness distribution in Fig. 4d,
[4]B atoms tend to exhibit a higher softness than [3]B atom, which
highlights the importance of the first coordination shell of B atoms
in governing their dynamical behaviors. Namely, [4]B atoms with a
lower atomic volume are subjected to a higher stress state, which
can be released through the change of its CN under an external
stimulus (Supporting Fig. S13). Based on the results in Fig. 5a, we
find that the B atoms tend to decrease their coordination number
with an increase in the atomic volume, while the B atoms with the
highest softness are located in the transition state between [3]B and
[4]B, namely, [4]B with a high atomic volume or [3]B with a low
atomic volume. Since the atomic volume is governed by the bond
length and CN, the BeO bond length may play an important role in
governing the softness of B atoms. Furthermore, Li atoms with

higher softness (i.e., higher rearrangement tendency) are typically
associated with the Li atoms with larger atomic volumes, thus
lower CNs. This correlation is consistent with the result in Ref. [26],
which shows that particles with larger atomic volumes and lower
CNs tend to exhibit higher rearrangement, thus highlighting the
different origins of structural features in governing the fracture and
diffusion behaviors.

To better illustrate the effects of atomic environment on the
softness metric, we correlate the parameters of the logistic
regressionmodel with the atomic structure. Specifically, the logistic
regression model trained only on the radial function enables the
computed softness to be highly interpretable with the pairwise
atomic correlations. According to Eq. (4) in theMethods section, the
weight function w(r) corresponds to the contributions of each
feature of G(i;r) to the classification. Therefore, the absolute value of
w(r) denotes the importance of G(i;r) in the classification, while a
positive or negative value of w(r) represents that an increasing
value of G(i;r) tends to result in an increased or decreased softness
value, respectively. As described in detail in the Methods section,
G(i;r) consists of the radial functions of four pairwise correlations
(e.g., BeLi, BeB, BeO, and BeP when B is the focused element). For
the softness calculation of B, the weight parameter w(r) and partial
pair distribution function of the four atom pairs are shown in Fig. 5c
and Supporting Fig. S14. Among these pairs, the w(r) of BeO pair
exhibits the largest absolute value, i.e., the BeO interactions are the
most influential features. As shown in the lower panel of Fig. 5c, the

Fig. 4. (a) Schematic of the classifier hyperplane to determine the rearrangement tendency of atoms, i.e., B atoms with high rearrangement tend to experience bond-switching after
deformation, while Li atoms with high rearrangement tend to diffuse spontaneously. (b) Probability of B atoms to undergo bond-switching and cumulative nonaffine displacement
of Li atoms as a function of their softness. The lines are guides to the eyes. (c,d) Distribution intensity of the atomic softness of (c) Li in the electrolytes with fixed Li2O content and (d)
B in the electrolytes with fixed B2O3 content. The inset figure of Fig. 3c illustrates the <S> of Li in the electrolytes with fixed Li2O content as a function of the glass composition. The
inset figure of Fig. 3d shows the distribution of S of [3]B and [4]B in the Li40B30P30 glassy electrolyte.
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most influential feature is associated with the distance r1 ¼ 1.8 Å.
The average bond length of [4]BeO is 1.52 Å, slightly higher than
that of 1.41 Å of [3]B atoms, in agreement with the literature [36]. As
such, the BeO tetrahedra with the bond length of 1.8 Å (i.e., the
largest BeO distance in the first coordination shell) are most likely
to experience bond-switching activities. We also observe that w(r)
in the region of 5e8 Å exhibits a negative value, indicating that the
MRO structure also influences the bond-switching activities. Spe-
cifically, the B atoms surrounded by other B atoms are less prone to
change their CNs, while the B atoms are more likely to bond switch
when surrounded by P atoms (Supporting Fig. S14).

For the softness of Li, w(r) and the partial pair distribution
function of different atomic pairs are shown in Fig. 5d and
Supporting Fig. S15. We observe that the LieLi correlation mostly
facilitates the rearrangement of Li, as the w(r) mainly shows a
positive value, indicating that the accumulation of Li ions tends to
exhibit good ion conduction. Since the accumulation of Li atoms
typically exists within the larger ring structures, this echoes our
previous finding that the relatively large rings facilitate Li ion
migration [22]. The LieP correlation exhibits the opposite trend to
that of LieLi, highlighting the steric hindrance effect of P on Li
rearrangement. Similar to the case of B atoms, the most influential
correlation is attributed to the LieO pair, which has a strong
Coulombic interaction. Fig. 5d shows that the effect of O on Li
rearrangement is closely correlated with the interatomic distance.
Specifically, when the LieO distance equals the equilibrium posi-
tion r0, the Li atoms tend to be stabilized and thus exhibit low

rearrangement. However, when the LieO distance becomes shorter
or longer than r0, the softness of Li will increase since it is away
from its equilibrium position. The comparison of w(r) and the
partial pair distribution functions highlights that the B or Li atoms
with a high propensity to rearrangement are in out-of-equilibrium
states, corresponding to a thermodynamically unstable states that
tend to relax towards a lower energy state over time.

Finally, we investigate the softness evolution of B atoms during
the fracture process. To this end, we calculate the softness of B as a
function of applied strain at an interval of Dε ¼ 0.01. Although the
classification hyperplane is built without the knowledge of the
investigated samples, the calculated softness is able to capture the
mechanical behaviors of the glassy LiBP electrolytes. As shown in
Fig. 6a, the B atoms with different softness are uniformly distrib-
uted in the non-strained sample. Upon deformation to ε ¼ 0.2, the
softness of B generally decreases and especially in the vicinity of the
crack. Fig. 6b shows the average softness of B atoms for different
LiBP samples as a function of strain. Overall, the glasses with a
higher P2O5 content tend to exhibit higher softness values of B
atoms, indicating a higher propensity for bond-switching. Upon
stretching, the softness will decrease initially and then increase
after reaching the fracture strain, highlighting that softness is an
indicator of fracture growth. We note that this evolution trend of
softness is opposite to our previous findings of simulated glassy
Al2O3 [25]. For glassy Al2O3, the softness is trained on the atomic
rearrangement (i.e., the propensity to rearrange). However, in this
work, softness is directly trained on the bond-switching property.

Fig. 5. (a,b) Softness of (a) B and (b) Li atoms as a function of their atomic volume and coordination number. (c,d) Weight coefficient w(r) of the classification hyperplane to calculate
the softness of (c) B atoms and (d) Li atoms as a function of the radial distance. The partial pair distribution function of (c) BeO and (d) LieO are provided at the top of each panel for
reference.
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From the evolution of softness, the initially decreased softness is
attributed to the increased atomic volume and decreased CN of B
atoms (see Fig. 5a) upon tension. After fracture, the increase in
softness is attributed to the compression induced by the sudden
release of stress, leading to the partial recovery of B coordination
state and atomic volume. This is seen from the CN change as a
function of the applied strain (Supporting Fig. S6).

3. Conclusions

In this work, we have applied the machine learning-based
softness metric to understand the ionic conduction and fracture
behavior of glassy lithium borophosphate electrolytes. The fracture
propensity and ionic conduction are found to be correlatedwith the
bond-switching behavior of B atoms and atomic rearrangement of
Li atoms, respectively. These findings suggest that the long-term
dynamics of both Li and B atoms at ambient conditions are
largely encoded in the initial static glass structures. Namely, the
long-term properties of glass structures can be forecasted without
the time-consuming simulations. Based on the interpretability of
the applied logistics regression classifier, the influences of struc-
tural features at different length scales on the long-term dynamics
have been identified. Although the medium range structure plays a
role in the softness calculation, the most influential factors are
attributed to the first oxygen-coordination shell of Li ions. The out-
of-equilibrium lengths of BeO or LieO bonds empower the excess
rearrangement of the atoms, i.e., they are the origin of the pro-
pensity for bond-switching or diffusion. The tuning of the BeO or
LieO bond lengths can, experimentally, be achieved by either post-
treatment (such as hot compression) or compositional design (such
as addition of alkali oxides to regulate the boron anomaly effect or
packing density). The present results suggest that machine learning
can be a powerful tool in revealing the hidden correlation between
structural features and long-term dynamic behaviors. Conse-
quently, the development of high-performance electrolyte mate-
rials with tailored properties can be achieved by tuning the atomic
structure.

4. Methods

4.1. MD simulation of melt-quenched glass

We performed classical MD simulations of LiBP glassy electro-
lytes using the GPU-accelerated LAMMPS package [37]. The

visualization of atomic configurations was performed using the
OVITO package [38]. The interatomic interactions of atoms were
described using a recently developed classical potential from
Ref. [39] which is a combination of short-range Buckingham form
and a long-range Coulombic term. This potential has been widely
used in the simulations of different lithium-containing borate and
phosphate systems, especially in reproducing the ionic conductiv-
ity and boron anomaly behaviors [40,41]. The detailed parameter-
ization of this potential can be found in Ref. [39] and it has been
thoroughly validated in our previous work on LiBP glasses [22]. The
long-range Coulombic interactions were calculated using the
particle-particle particle-mesh (PPPM) method with an accuracy of
10#5. The motion of atoms was described by the velocity-
Verlet algorithm with a timestep of 1 fs. For each composition, we
prepared three samples by changing the initial temperature profile
to ensure the reliability of the results. For example, the three
different cases of Li40B30P30 glassy electrolytes exhibit a similar
structure and fracture behavior (Supporting Fig. S17), indicating the
reliability of the simulations.

We generated the atomic configurations of the LiBP glassy
electrolytes through the conventional melt-quenching procedure
following Chen et al. [22] Specifically, Li2O, B2O3, and P2O5 units
with designated numbers were randomly placed in an ortho-
rhombic box using the PACKMOL package [42]. All the directions
were simulated using periodic boundary conditions. Here, we
simulated two series of LiBP glassy electrolytes with fixed B2O3
content and Li2O content, respectively. The detailed composition
and size of each system can be found in Supporting Table S1. For the
Li40B40P30 sample, we simulated systems with five different sizes
(around 3,000, 6,000, 10,000, 30,000, and 100,000 atoms) to
investigate the system size effect. Both the glass structure and
properties with the system size of 10,000 atoms can achieve a
satisfactory accuracy when compared to the large system sizes (see
Supporting Figs. S18 and S19). As such, the system size of around
10,000 atoms achieves a good balance between computational
accuracy and efficiency, and we thus prepared all the samples were
prepared with a similar system size of around 10,000 atoms.

The systems were melted at 3000 K in the canonical (NVT)
ensemble for 50 ps to ensure the loss of any memory of the initial
structure. These systems were cooled to 300 K in the
isothermaleisobaric (NPT) ensemble under zero pressure at the
cooling rate of 1 K/ps. The systems were subsequentially relaxed in
the NVT and NPT ensemble at 300 K, respectively. The resulting
configurations were further equilibrated in the NVT ensemble at

Fig. 6. Correlation of softness of B atoms and applied strain during fracture simulations. (a) Spatial distribution of particle softness of B atoms at different strain states. The B
particles are colored based on the softness values. The fracture surfaces are colored green. (b) Average softness of B atoms as a function of the applied strain in the different LiBP
glassy electrolytes.
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300 K for 100 ps to extract the trajectory for structural analysis.
During the simulation, the temperature and pressure of the sys-
tems were controlled using the Nos!eeHoover [43] thermostat and
barostat, respectively.

4.2. Structural analysis

The resulting structures of LiBP glassy electrolytes were
analyzed by computing the pair distribution function (PDF) g(r) and
structural factor S(Q). Specifically, we first computed the partial PDF
g(r) [44].

gijðrÞ¼
dnijðrÞ

4pr2drrj
(1)

where dnijðrÞ is the number of atoms of type j between distance r
and rþdr from an atom of type i, and rj is the average number
density of atoms of type j. The differential correlation function D(r)
was then calculated,

DðrÞ¼4prrGðrÞ (2)

GðrÞ¼
X

i;j

cibicjbj
!
gijðrÞ#1

"
(3)

where bi and bj are the coherent bound neutron scattering length of
species i and j (#1.90, 5.30, 5.803, 5.13 fm for Li, B, O, P, respectively
[45]), ci and cj are the concentration of type i and j, respectively.
Neutron weighted partial structure factor Sij(Q) of the simulated
glasses were calculated using the Faber Ziman formalism [46].

SijðQÞ¼1þ r0

ðrmax

0

4pr2
!
gijðrÞ#1

" sin ðQrÞ
Qr

sin
!

pr
rmax

"

pr
rmax

dr (4)

SðQÞ¼

Pn

i;j¼1
cibicjbjSijðQÞ

Pn

i;j¼1
cibicjbj

(5)

where Q is the scattering vector, rmax is the maximum distance of

integration, here is around half the box size. The term sin
!

pr
rmax

"
= pr
rmax

is a Lorch-type function used to reduce the ripples of SijðQÞ induced
by the Fourier transformation with a finite cutoff r.

The atomic volumes of the atoms were calculated using the
OVITO Voronoi analysis tool [38] from a Voronoi tessellation.

4.3. Fracture simulations

The obtained glass structures were subjected to uniaxial tensile
deformation to analyze their deformation and fracture behaviors.
The tensile simulations followed our previous work in Ref. [25]
The simulated structures were duplicated in the x-direction to
enable the loading to be applied to the longer direction. Before
loading, the replicated structures were further equilibrated in the
NPT ensemble at 300 K and zero pressure for 100 ps. To select an
appropriate strain rate, we initially tested the stress-strain
response with different strain rates for the Li40B40P30 sample
(see Supporting Fig. S20). Although the simulation strain rate is
much higher than that used in typical experiments, we find that
the strain rate of 5 ' 1010 s#1 can achieve a relatively accurate
stressestrain response, as also reported in Ref. [47]. More

importantly, the relative performance between the different
samples is found to be independent of the applied strain rate
(Supporting Fig. S21). Therefore, a constant strain rate of
5 ' 1010 s#1 was selected for the fracture simulations along the x-
direction. During the tensile process, the system was maintained
at 300 K, while the lateral directions were kept at zero stress (i.e.,
plane stress conditions). The trajectory during the tensile process
was recorded at a strain interval of 0.001, while the stress
component in the x-direction and corresponding strain were
extracted for stress-strain analysis.

4.4. Bond-switching analysis

The fracture behavior of the samples was correlated with the
atomic arrangement associated with bond breaking and re-
formation processes. That is, the changes in coordination number
and bond-switching activities were analyzed during the tensile
deformation. The coordination numbers were first analyzed by
calculating the partial pair distribution functions. The cutoffs of
BeO and PeO pairs were determined as the distance at the mini-
mum after the first peak in the corresponding pair distribution
functions (Supporting Fig. S2). The atom pairs were considered to
be bonded if they were within the cutoff distance. Specifically, the
cutoffs of BeO and PeO pairs were both selected to be 2.0 Å, and the
CN of B and P was determined as the number of O atoms within the
cutoff.

The bond-switching analysis was then performed to calculate
the fraction of atoms with an increased, decreased, swapped, or
unchanged CN compared to the initial non-strained structure. This
was achieved by comparing the CN of each individual atom and the
identity of the neighboring atom with their initial non-strained
state. If the CN has decreased or increased, then the atoms were
labeled as Decreased CN or Increased CN, respectively. If the
neighboring atoms remain unchanged, then the atoms were
labeled as Unchanged CN. Otherwise, the atoms were marked as
Swapped CN, denoting that the CNs of the atoms remained un-
changed but at least one neighboring atom had been swapped.

4.5. Displacement analysis of Li atoms

The ion conduction of the glassy electrolytes was estimated by
calculating the mean squared displacement (MSD). The as-
prepared configurations were equilibrated in the NVT ensemble at
either 300 K or 800 K for 1 ns to generate trajectories for MSD
calculations. Then, MSD was calculated as,

MSDiðtÞ¼Dr2i ðtÞ¼ jriðtÞ # rið0Þj
2 (6)

where riðtÞ is the position vector of the ith atom at time t. The
average MSD of Li atoms was used to characterize the ion con-
duction in the LiBP electrolytes since the slope of MSD is correlated
with the self-diffusion coefficient, which can be measured experi-
mentally [30].

The atom-based arrangement of each Li was investigated by
calculating the cumulative non-affine displacement Dcum at 300 K.
The idea of non-affine squared displacement D2

min is to isolate the
atomic displacements from the reorganization of the neighboring
deformation, and it has been widely used to describe atomic rear-
rangement processes [29,48]. The Dcum value of each Li atom is the
sum of the square-root of the incremental non-affine displace-
ments DD2

i;min during the isothermal relaxation with each small

increment of time. Following the literature [24,49], the D2
min be-

tween times t and t þ Dt can be calculated as,
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D2
min ¼

1
Mk

XMk

i
½rikðt þ DtÞ # JkðtÞrikðtÞ)

2 (7)

where rik(t) is the displacement vector between atom i and j at time
t, Jk(t) is the local strain tensor about atom k that minimizes
D2
minðk; tÞ, Mk is the total number of neighboring atoms around

atom k.

Dcum ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DD2

i;min

q
(8)

where DD2
i;min is the increment of D2

min with Dt, while n is the total
number of intervals during the 1 ns equilibration. The cut-off used
for the calculation of D2

min was set to 4 Å, which covers the first and
second coordination shells of Li atoms. Although the difference in
cut-off influences the values of Dcum, the relative behaviors be-
tween different compositions are not influenced by the cut-off
values as seen in Supporting Fig. S22.

4.6. Machine learning classification

We adopt the machine learning-based “softness” metric to
analyze the non-strained structure following the procedure pro-
posed in Ref. [26] Unlike the initially proposed softness concept
[24,29], here the softness calculation relies on the utilization of a
logistic regression classifier rather than the support vector ma-
chine, since we found it to offer superior classification accuracy and
training efficiency. Similar to previous studies, softness is defined as
the distance to the hyperplane in the feature space as shown in
Fig. 4a. Note that the previous findings [25,26,50] evidence that the
radial order function dominates the prediction for atomic dynamics
of systems simulated using two-body interactions (e.g., Bucking-
ham potential). Therefore, the radial order parameters are selected
as the features for constructing the hyperplane. The hyperplane
created by logistic regression can be expressed as a function of each
of the features as,
X

r
wðrÞGði; rÞ# b ¼ 0 (9)

where the features Gði; rÞ are standardized radial order parameters
as a function of pairwise distance r, whilew(r) and b are the weight
coefficients and bias of the logistic regression model, respectively.
Therefore, the hyperplane is a linear combination of input features,
which enables the softness to be informed with different features.
Namely, the absolute value of w(r) denotes the importance of the
corresponding feature Gði; rÞ. The positive and negative signs of
w(r) thus indicate that the increasing values of Gði; rÞ tend to in-
crease and decrease the softness values, respectively.

For comparison, we also applied different regressor models to
correlate the structural features with Li rearrangements. To this
end, we used the datasets from LiBP glassy electrolytes with fixed
Li2O content ((Li2O)40(B2O3)30þx(P2O5)30-x) where x ¼ #10, #5, 5,
and 10 serves as training sets and x ¼ 0 servess as the test set. As
shown in Supporting Fig. S23, we used six different regressors,
namely, support vector regression (SVR), bagging regressor (BR),
gradient boosting regressor (GBR), random forest regressor (RFR),
KNeighbors regressor (KNN), and multi-layer perceptron regressor
(MLP). We find that the regression models do not exhibit satisfac-
tory predictions in the test sets, indicating that the general
regression algorithms cannot well capture the structure correlation
with atomic rearrangement. This further motivates the present
approach using a classification-based machine learning model.

To analyze the ionic conduction and fracture behavior, we
trained two logistic regression (LR) models to calculate the softness

in two different ways. That is, the outputs of the LR models were
selected to be the Dcum metric of each Li atom and bond-switching
rate of each B atom, respectively. To exclude the effect of atom
numbers in influencing bulk properties, we keep the number of Li
and B atoms fixed for analyzing the ionic conductivity and fracture
behavior, respectively. To this end, the initial configurations of LiBP
electrolytes were divided into two groups, i.e., the LR model of Li
was trained on the (Li2O)40-x(B2O3)30(P2O5)30þx samples, while the
LR model of B was trained on the (Li2O)40 (B2O3)30-x(P2O5)30þx
(x ¼ #10, #5, 5, and 10) samples. The one overlapping composition
of (Li2O)40(B2O3)30(P2O5)30 serves as the test set for both the clas-
sification models for Li and B prediction to ensure the absence of
data leakage.

To choose the features Gði; rÞ for training, we first optimized the
interval dr and cutoff Rc values of the radial order parameters. To
this end, we examined the classification accuracy of the logistic
hyperplane as a function of different combinations of dr and Rc
values to discriminate the mobile and immobile B atoms as shown
in Supporting Fig. S24. Based on this analysis, the values dr of 0.2
and Rc of 10 were selected to construct the structural features,
which yielded a predicting accuracy of the test set of around 0.77 (a
satisfactory accuracy when compared to our previous results solely
used radial function [26,50]). Additionally, the dependence of
classification accuracy of Li atoms on the cumulative non-affine
displacement threshold Dc is shown in Supporting Fig. S25,
which highlighted that a Dc value of 360 Å generated a similar
accuracy of around 0.73 for both the training and test sets. Around
30% Li atoms was treated as mobile when we used a Dc value of
360 Å (Supporting Fig. S26). The confusionmatrix for the prediction
models for both B and Li can be found in Supporting Fig. S27. After
the construction of the classification hyperplane, the softness of Li
and B was calculated to predict whether an atom is prone to diffuse
or undergo bond-switching, respectively.
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