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Abstract

Variational Bayesian (VB) methods produce posterior inference in a time frame considerably smaller than traditional Markov

Chain Monte Carlo approaches. Although the VB posterior is an approximation, it has been shown to produce good parameter

estimates and predicted values when a rich classes of approximating distributions are considered. In this paper, we propose

the use of recursive algorithms to update a sequence of VB posterior approximations in an online, time series setting, with the

computation of each posterior update requiring only the data observed since the previous update. We show how importance

sampling can be incorporated into online variational inference allowing the user to trade accuracy for a substantial increase in

computational speed. The proposed methods and their properties are detailed in two separate simulation studies. Additionally,

two empirical illustrations are provided, including one where a Dirichlet Process Mixture model with a novel posterior

dependence structure is repeatedly updated in the context of predicting the future behaviour of vehicles on a stretch of the

US Highway 101.

Keywords Importance sampling · Forecasting · Clustering · Dirichlet process mixture · Variational inference

1 Introduction

Time series data often arrive in high-frequency streams in

applications that may require a response within a very short

period of time. For example, self-driving vehicles may need

to constantly monitor the position of each surrounding vehi-

cle, predict or infer the behaviour of their likely human

drivers, and react accordingly. In this context, the most

recently received data can be highly informative for very
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short-term predictions, if the inferred models can be pro-

cessed very quickly in an online fashion. In order to account

for uncertainty in the models or predictions, Bayesian updat-

ing methods may be employed by targeting a sequence of

posterior distributions, each conditioned on an expanding

dataset. The computational demands of such an algorithm

may be improved if the incorporation of additional data does

not require the re-use of any observations that have previ-

ously been conditioned upon.

In many empirical settings, the desired Bayesian pos-

terior distributions are not analytically tractable. In such

cases, posterior inference may be obtained using Markov

chain Monte Carlo (MCMC) methods, which will even-

tually produce a (dependent) sample from the posterior.

Unfortunately, this approach typically involves relatively

slow algorithms that are incompatible with the time frames

demanded by streaming data. Further, while particle filtering

methods for sequential posterior updating have been devel-

oped both for static parameter models (Chopin 2002) and

dynamic latent variable models e.g. (Doucet et al. 2001),

these available methods appear to be too slow for practical

online use. This is particularly the case when they require

use of the entire dataset to avoid particle degeneracy and/or

when the number of inferred parameters is large. For a

recent review of particle filtering methods, see Doucet and
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Lee (2018). An alternative approach appears in Jasra et al.

(2010) and Del Moral et al. (2015), who apply Approximate

Bayesian Computation (ABC) for sequential posterior updat-

ing; however, this involves an embedded particle filter that

similarly scales poorly to higher dimensional models. Bhat-

tacharya and Wilson (2018) provide a sequential method to

update parameter inference; however, their grid-based poste-

rior evaluation is suitable only for low dimensions. Taking a

different approach, Chen et al. (2019) learn the parameters of

a so-called flow operator, a neural network that approximates

a function which maps a set of particles from a posterior dis-

tribution at one time period, and additional data, to a set of

particles belonging to an updated posterior distribution.

An alternative approach that has grown in popularity in the

recent literature for high-dimensional models is the so-called

Variational Bayes (VB) method (see Zhang et al. 2017, for a

review). VB approximates the posterior with a tractable fam-

ily of distributions, and chooses a member of this family by

minimising a particular loss function with respect to auxiliary

parameters. Early work in VB found an optimal approxi-

mation with coordinate descent algorithms for exponential

family models, an approach widely known as Mean Field

Variational Bayes (MFVB, see (Jordan et al. 1999; Attias

1999; Ghahramani and Beal 2000; Wainwright and Jordan

2008). Recent developments in VB consider gradient-based

algorithms (Ranganath et al. 2014; Kingma and Welling

2014), which allow for a much richer class of models and

approximating distributions to be utilised. These gradient-

based approaches are stochastic, and target the true gradient

of a given loss function with an unbiased estimator. We refer

to this approach as Stochastic Variational Bayes (SVB).

There is a rich tradition of using only a subset of the

complete dataset for certain aspects of VB inference, such

as for gradient estimation. Hoffman et al. (2010) and Wang

et al. (2011) propose MFVB algorithms for Dirichlet Process

Mixture (DPM) models where the optimisation of a subset

of the auxiliary parameter vector occurs through gradient-

based approaches, using a subsample of the complete data at

each iteration. Hoffman et al. (2013) and Titsias and Lázaro-

Gredilla (2014) implement this data subsampling into the

fully gradient based SVB approaches. Alternatively, Sato

(2001) considers an alternative loss function defined as the

expected value of the Kullback–Leibler (KL) divergence,

with respect to the data generating process. Any realisa-

tion from the data generating process may be used within

the MFVB coordinate descent algorithm, which is applied

online with newly observed data substituted in as it becomes

available. However, each of these approaches results in only

a single posterior distribution conditioned on data up to some

pre-specified time period Tn and do not provide a mechanism

for the approximation to be updated at a later time period

Tn+1 following the availability of additional observations.

Smidl (2004) and Broderick et al. (2013) each consider

VB approximations for Bayesian updating, resulting in a pro-

gressive sequence of approximate posterior distributions that

each condition on data up to any given time period Tn . Their

approaches update to the time Tn+1 by substitution of the time

Tn posterior with MFVB approximations, which are feasibly

obtained due to assuming the model and approximation each

adhere to a suitably defined exponential family form. In these

special settings, MFVB is able to linearly combine the avail-

able optimally converged auxiliary parameters. While Smidl

(2004) is concerned with state space models, Broderick et al.

(2013) considers application to a latent Dirichlet allocation

problem and shows it performs favourably compared to the

approach of Hoffman et al. (2010) in terms of predictive log

score and computational time.

In this paper, we formalise and extend the SVB approx-

imation approach, developing an algorithm that we call

Updating Variational Bayes (UVB). This algorithm can be

seen as an application of the framework of Broderick et al.

(2013) to the time series setting. UVB can be applied to

sequentially update posterior distributions, and in a man-

ner suitable for applications of streaming data. UVB treats

data as arriving in a sequence, with the production of recur-

sive, but approximate, posterior distributions obtained from

conditioning on past information at nominated time points

according to a Bayesian updating scheme. The approach

delivers the approximate posterior distributions to the user

at any desired point in time, with each new update using

only the data observed since the previous update time. UVB

requires an optimisation step for each update, which may be

too slow for practical use in some situations.

To reduce the computational load of repeated updates, we

extend UVB to a second, and completely novel algorithm,

called Updating Variational Bayes with Importance Sam-

pling (UVB-IS). Significant gains in computation speed per

update can be achieved, albeit with some potential cost in

gradient estimator variance and subsequently accuracy. Our

proposed UVB-IS shares some similarities with the gradient

estimator of Sakaya and Klami (2017); however, the impor-

tant distinction is that our proposed UVB-IS is developed for

the sequential updating setting. To the best of our knowledge,

our approach is the first to exploit Importance Sampling in

an online Variational Bayes framework.

We provide two simulation studies: a small-scale time

series forecasting application, and a larger application clus-

tering time series, to compare the approximation error of

each of SVB, UVB, and UVB-IS relative to (asymptotically)

exact1 inference obtained using MCMC. We also compare

1 Although MCMC is also approximate inference, it is exact in the

asymptotic sense, in a way that variational Bayes is not. Hereafter, for

brevity we will refer to MCMC as being ‘exact’ rather than ‘asymptot-

ically exact.’
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the computational time required by each of the variational

approximations and show that UVB-IS is substantially faster

than either UVB or the repeated application of SVB, while

incurring only a minor cost in performance, dependent on

the application. We also demonstrate the application of UVB

and UVB-IS to a simple hierarchical model to re-analyse the

‘Eight Schools’ example of Gelman et al. (1997), and mea-

sure the increased approximation error from the updating

approaches relative to SVB in this setting.

Finally we demonstrate the application of UVB to the

problem of updating posterior inference in the context of a

DPM model. Here the aim is to provide Bayesian inference

and prediction regarding the heterogeneous behaviour of 500

drivers from the New Generation Simulation dataset (FHWA

2017), according to the distribution of their lateral lane posi-

tion. In this context, data arrive rapidly. We introduce a new

class of dependent approximating distributions and show that

the DPM model with UVB-based inference is able to provide

more accurate forecasts than those achieved using a standard

MFVB-based approach. UVB in this case has accuracy com-

parable to repeated use of (full data) SVB, but benefits from

an ability to process updates sequentially as additional data

arrives.

The paper is arranged as follows: in Sect. 2, we review

standard VB methods and the available gradient algorithms

commonly employed. In Sect. 3, we propose our main UVB

approach, with the UVB-IS extension detailed in Sect. 4.

Next, Sect. 5 contains simulation studies for time series data

and a mixture distribution, while Sect. 6 details applications

of the newly proposed methods to the Eight Schools hierar-

chical model of Gelman et al. (2014). UVB is applied to a

vehicle DPM model in Sects. 7, and 8 concludes the paper.

2 Background on Variational Bayes

Before introducing our new algorithms for recursively updat-

ing approximations to the posterior, the main ideas associated

with the implementation of an SVB approach are introduced.

A more detailed description of SVB can be found in Blei et al.

(2017), with further references provided therein.

The usual target of Bayesian inference is the posterior

distribution for a potentially vector-valued static parameter

θ , as characterised by its probability density function (pdf)

denoted by p(θ | y1:T ). Here y1:T denotes data observed from

time 1 to T and the posterior pdf is obtained using Bayes’

theorem, given by

p(θ | y1:T ) =
p( y1:T |θ)p(θ)∫

θ
p( y1:T |θ)p(θ)dθ

, (1)

where p(θ) denotes the pdf for the prior distribution that

characterises belief about θ prior to the observation of y1:T .

Although MCMC algorithms are commonly used to produce

a (typically dependent) sample from this posterior distribu-

tion, these can be computationally intensive.

As an alternative to MCMC, VB aims to approximate the

pdf in (1) with another density of given parametric form,

denoted by qλ(θ | y1:T ). Here λ is a vector of auxiliary param-

eters associated with the approximation, to be selected via

optimisation. We note that the approximating density q is

explicitly parameterised by λ, and so its evaluation does

not explicitly require y1:T once an optimal value of λ has

been found. However, we include the conditioning notation

to reinforce that the selected qλ(θ | y1:T ) corresponds to an

approximation of the posterior distribution in (1). This point

is particularly relevant to the process of updating VB as is

shown in Sect. 3.

In the SVB context, the family of the approximating den-

sity qλ(y1:T ) is held fixed, with the member of that family

indexed by the parameter vector λ selected to minimise a

given loss function. Typically the KL divergence Kullback

and Leibler 1951) from qλ(θ | y1:T ) to p(θ | y1:T ), denoted as

K L[qλ(θ | y1:T ) || p(θ | y1:T )], is used, with

K L[qλ(θ | y1:T ) || p(θ | y1:T )] =Eq

[
log(qλ(θ | y1:T ))

− log(p(θ | y1:T ))
]

. (2)

We note that the KL divergence is not symmetric, and

reversing qλ(θ | y1:T ) and p(θ | y1:T ), leads to similarities with

assumed density filtering, independently proposed in statis-

tics Lauritzen 1992) and artificial intelligence Boyen and

Koller 2013; Opper and Winther 1998) and control May-

beck 1982). Often in practice, the KL divergence in (2) is

intractable, with p(θ | y1:T ) only known up to a proportional-

ity constant due to the difficulties involved in the evaluation

of the integral in the denominator of (1). Nevertheless, it has

been shown that an equivalent problem to minimising the

KL divergence is to maximise the so-called evidence lower

bound (ELBO Attias 1999), given by

L(q,λ) = Eq

[
log(p(θ , y1:T )) − log(qλ(θ | y1:T ))

]
. (3)

A further complication that typically arises when attempt-

ing to implement SVB is that an analytical expression for the

expectation in (3) may not be available. In this case, maximi-

sation of the ELBO may be achieved via stochastic gradient

ascent (SGA, Bottou 2010). To apply SGA to the problem of

maximising the ELBO, an initial value λ(1) is selected and is

recursively modified to λ(m), for m = 1, 2, . . . , according to

λ(m+1) = λ(m) + ρ(m)
̂∂L(q,λ)

∂λ

∣∣∣∣
λ=λ(m)

(4)
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with the converged value of λ(∗) obtained when the change

from L(q,λ(m)) to L(q,λ(m+1)) falls below some pre-

specified threshold Hoffman et al. 2013).

The adjustment term in (4) is made of two factors, the

so-called learning rate, ρ(m), and an estimate of the gradient

of the ELBO,
∂̂L(q,λ)

∂λ
. A popular estimator of this gradient is

the score-based estimator Ranganath et al. 2014), given by

̂∂L(q,λ)

∂λ SC
=

1

S

S∑

j=1

∂ log(qλ(θ
( j)| y1:T ))

∂λ

(
log(p( y1:T , θ ( j))) − log(qλ(θ

( j)| y1:T )) − â
)

, (5)

where the simulated values {θ ( j), for j = 1, 2, . . . , S} are

drawn from the presiding approximating density qλ(m)(θ | y1:T ),

and â is a vector of control variates with

âk =̂Cov

(
∂ log(qλ(θ | y1:T ))

∂λk

(
log(p( y1:T , θ))−

log(qλ(θ | y1:T ))
)
,
∂ log(qλ(θ | y1:T ))

∂λk

)/

V̂ar

(
∂ log(qλ(θ | y1:T ))

∂λk

)
. (6)

As (5) results in an unbiased estimator of the gradient of the

ELBO, it is known that the SGA procedure will converge in

probability to a local maximum Robbins and Monro 1951),

provided that the learning rate sequence.2 satisfies

∞∑

m=1

ρ(m) = ∞ (7)

and

∞∑

m=1

(ρ(m))2 < ∞. (8)

We note that although SGA is itself a recursive procedure,

the result in the VB context is the one-time posterior pdf

approximation qλ∗ ≈ p(θ | y1:T ), where λ∗ = λ(M) is the

optimal parameter.

2.1 Dependence in the approximation

Considering the vector θ = (θ1, θ2)
′, the application of

SVB often employs the so-called Mean Field approxima-

tion Bishop 2006) where the approximating distribution is

2 The learning rate used for all implementations of SGA in this paper

is provided by the Adaptive Moment (Adam) algorithm of Kingma and

Ba (2014).

factorised as

qλ(θ1, θ2| y1:T ) = qλ(θ1| y1:T )qλ(θ2| y1:T ). (9)

However, SVB allows more general forms of the approximat-

ing distribution that may include dependence. In this paper,

we also consider approximation families that can exploit

cases where the posterior of a subset of parameters condi-

tional on remaining parameters is known. In this case, the

full posterior can be approximated by

qλ(θ1, θ2| y1:T ) = qλ(θ1| y1:T )p(θ2|θ1, y1:T ). (10)

where the second term on the right-hand side is known (hence

the use of p rather than q) and only θ1 requires approxima-

tion. For many models, the posterior can be decomposed

in this manner. An example is the model we consider in

Sect. 7 where we explicitly include the exact conditional

distribution. To our knowledge, the potential to exploit this

conditional approximation structure—and in particular to

include an exact component within that structure—appears

to be a novel contribution to the literature.

3 Updating Variational Bayes

We now introduce the proposed algorithm for updating VB

when data are observed in an online setting. Let T1, T2, . . . be

a sequence of time points, from which a sequence of poste-

rior distributions p(θ | y1:T1
), p(θ | y1:T2

), . . ., is desired. Now

suppose that the (exact) posterior distribution for the govern-

ing (static) parameter vector θ is available, as given by its

pdf p(θ | y1:Tn
). Our objective is to update this posterior dis-

tribution, after observing data up to, and including, time Tn+1,

when the additional Tn+1−Tn data points have become avail-

able. The pdf of the resulting updated posterior distribution

is denoted as p(θ | y1:Tn+1
). In an online setting, where new

data continues to appear, we will want to repeat this updating

procedure sequentially, each time updating the past posterior

to reflect all of the data, including the latest available.

The usual application of Bayes’ rule at a given time Tn+1

involves a likelihood made up of Tn+1 factors. However, with

the availability of the posterior at time Tn , given by its density

p(θ | y1:Tn
), the updated time Tn+1 posterior is given by

p(θ | y1:Tn+1
) ∝ p( yTn+1:Tn+1

| y1:Tn
, θ)p(θ | y1:Tn

), (11)

where p( yTn+1:Tn+1
|θ , y1:Tn

) on the right-hand side of (11)

is comprised of only Tn+1 − Tn factors.

We propose the Updating Variational Bayes (UVB) algo-

rithm for use when the evaluation of the online posterior

updating is computationally demanding. Our UVB algo-

rithm, detailed in Algorithm 1, is initialised by forming the
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variational approximation at a given time T1 as qλ∗
1
(θ | y1:T1

)

where

λ∗
1 = arg min

λ1

K L[qλ1(θ | y1:T1
) || p(θ | y1:T1

)]. (12)

At this first stage, we simply approximate the first posterior

p(θ | y1:T1
) with the optimised distribution as in SVB, namely

qλ∗
1
(θ | y1:T1

). Importantly, this first update depends only on

the first set of observations, y1:T1 , through the choice of the

optimal parameter, λ∗
1.

In general then, after approximating the posterior at time

Tn with qλ∗
n
(θ | y1:Tn

) and observing additional data up to time

Tn+1, UVB replaces the posterior construction described by

(11) with the available approximation,

p̃(θ | y1:Tn+1
) ∝ p( yTn+1:Tn+1

|θ)qλ∗
n
(θ | y1:Tn

). (13)

This defines an alternate target distribution, p̃(θ | y1:Tn+1
),

referred to as the ‘pseudo-posterior’ at time Tn+1.

The objective for each update is to find λ∗
n+1 (and hence

qλ∗
n+1

(θ | y1:Tn+1
)) through the minimisation of the KL diver-

gence to the corresponding pseudo-posterior, resulting in

λ∗
n+1 = arg min

λn+1

K L[qλn+1(θ | y1:Tn+1
) || p̃(θ | y1:Tn+1

)],

(14)

for each n = 1, 2, . . .. The sequence of distributional families

qλ1 , qλ2 , . . . , may differ at each time period, though we note

it is convenient to hold the family fixed.

Algorithm 1: Updating Variational Bayes (UVB)

Input: Prior, Likelihood.

Result: Posterior approximation at Tτ .

Observe y1:T1
.;

Minimises K L[qλ1 (θ | y1:T1
) || p(θ | y1:T1

)] using SGA via (5).;

for n in 1, . . . , τ − 1 do

Observe next data yTn+1:Tn+1
.;

Use qλn (θ | y1:Tn
) and (13) to construct the UVB

pseudo-posterior up to proportionality.;

Minimise K L[qλn+1 (θ | y1:Tn+1
) || p̃(θ | y1:Tn+1

)] using SGA

via (5).;

end

We note some important features of the proposed UVB

algorithm compared with an SVB implementation. First, at

time Tn+1 an SVB implementation would target the exact

posterior p(θ | y1:Tn+1
) ∝ p( y1:Tn+1

|θ)p(θ) whereas UVB

instead targets an alternate pseudo-posterior distribution in

(13). Second, at time Tn+1, the evaluation for UVB corre-

sponding to (5), which conditions on all available data yTn+1 ,

is composed of only Tn+1 − Tn factors, since the earlier data

y1:Tn have already been incorporated in the previous update

which forms the new prior, as shown in (13). Hence, the com-

putational complexity of UVB has rate O(Tn+1 − Tn) rather

than rate O(Tn+1), i.e. computing UVB is not increasing in

the number of observations for equally spaced intervals, as

is the case for SVB. Third, unlike SVB, the UVB algorithm

can begin even when only part of the data has been observed,

making it well-suited to online applications. Further, the pre-

vailing optimal value of λn , denoted λ∗
n , could be used as the

UVB starting value for the optimisation at time Tn+1 as long

as the class of approximating distributions q is the same for

each update. This may reduce the number of SGA iterations

required for the UVB algorithm to converge.

While posterior parameter distributions that result from

each iteration of UVB are relatively fast to compute, with

each update there will likely be some loss of accuracy, partic-

ularly with regard to the tails of these distributions. However,

a loss of accuracy in posterior distributions for parameters

need not imply a large loss of accuracy in posterior predic-

tion distributions, as measured by a scoring rule. This sort

of finding has been seen before in other approximate infer-

ential settings, including for SVB (see, for example (Gefang

et al. 2019; Gunawan et al. 2021). We investigate the trade-

off between computational speed and forecast accuracy in a

simulation setting in Sect. 5.1.

For applications involving very long time series, the dete-

rioration of the accuracy of UVB and UVB-IS relative to

SVB will eventually offset any earlier computational gains.

In these settings, it is advised to run either SVB or MCMC at

regular intervals to ‘refresh’ the approximation. For instance,

if updates are required every minute, perhaps a full MCMC

could be run offline at the start of each day to avoid the accu-

mulation of approximation errors. The regularity with which

to run exact inference will be context specific.

Where the objective of the analysis is classification using

a mixture model, the misclassification rate may be similarly

robust to inaccuracies in the tail, such that the computational

gains of our proposed sequential method are worthwhile.

This is explored in a simulation setting in in a simulation

setting in Sect. 5.2.

Before exploring these aspects, we introduce a modified

approach whereby the computational speed may be further

improved, albeit potentially with some additional loss in

accuracy. This modified approach, referred to as UVB with

Importance Sampling (UVB-IS), is described in the next sec-

tion.

4 UVBwith importance sampling

An application of UVB up to some time Tn involves SVB

inference at time T1 followed by n − 1 updates, for a total

of n applications of SGA optimisation. Repeated updates

may incur a significant computational overhead relative to
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SVB, which applies only a single SGA algorithm using all

data up to time Tn . In this section, we address this problem

and explore the possibility of achieving large computational

gains per update through the incorporation of ideas from

importance sampling. (For a general overview of importance

sampling, see Gelman et al. (2014).) Before introducing our

UVB with Importance Sampling (UVB-IS) algorithm, we

briefly review the incorporation of importance sampling into

SGA, as introduced by Sakaya and Klami (2017).

Temporarily suppressing the subscript n on the given time

period T , the mth iteration in the SGA algorithm for a given

target VB posterior changes λ(m) to λ(m+1) via S simulations

of θ (m) from qλ(m)(θ | y1:T ) as per (5). For each of these simu-

lations, the log-likelihood, log-prior, and additional terms

involving qλ(m)(θ | y1:T ) must be evaluated. Note that, for

large scale applications this computation is dominated by

the T terms in the log-likelihood.

In the subsequent SGA iteration from λ(m+1) to λ(m+2),

the evaluation of the log-likelihood requires a new set of S

simulations θ (m+1) from qλ(m+1)(θ | y1:T ). Sakaya and Klami

(2017) note that as the change from λ(m) to λ(m+1) is likely to

be small, the distributions qλ(m)(θ | y1:T ) and qλ(m+1)(θ | y1:T )

will likely be similar. Using this motivation, an alterna-

tive gradient estimator is suggested for each iteration k =

m +1, m +2, . . . , m +r via an importance sampler that uses

qλ(m)(θ | y1:T ) as a proposal distribution, rather than generat-

ing new draws of θ from each qλ(k)(θ | y1:T ). This approach

retains the set of samples θ (m) and their associated log-

likelihood values, only resampling θ and re-evaluating the

corresponding log-likelihood at iteration m + r + 1. In the

SVB context, the value of r should not be taken to be too large,

as substantial differences between λ(m) and λ(m+r) may lead

to a corresponding increase in the variance of the resulting

gradient estimator.

In the context of UVB, we sequentially update the poste-

rior approximation at each time Tn via repeated applications

of SGA. As before UVB-IS holds the family of the approx-

imating distribution qλ fixed between each update, and sets

the initial value of the parameter vector at time Tn+1 equal

to the optimal value from the previous update, i.e. we set

λ
(1)
n+1 = λ∗

n . During the subsequent application of SGA,

the sequence of parameter vectors λ
(1)
n+1,λ

(2)
n+1, . . . ,λ

∗
n+1

corresponds to a sequence of distributions moving from

qλ∗
n
(θ | y1:Tn

) to qλ∗
n+1

(θ | y1:Tn+1
). For repeated updates with

small values of Tn+1 − Tn , the new information about θ

in yTn+1:Tn+1
will typically be relatively small, and unless

there is a structural change in the data process, we expect the

approximating distributions will become similar.

The above observation motivates the addition of an impor-

tance sampling gradient estimator to be applied for each

update. In each update using the SGA algorithm at time Tn+1,

all of the requisite gradients are estimated via importance

sampling, using the previous UVB posterior qλ∗
n
(θ | y1:Tn

) as

the (identical) proposal distribution. The consequence of this

approach is that only S samples of θ are required for the entire

SGA algorithm, and thus the likelihood is evaluated S times

in total, rather than S times per iteration (or S times per r

iterations in the case of Sakaya and Klami (2017)).

Suppressing the SGA iteration superscript index (m), the

UVB-IS gradient estimator is derived from the score-based

estimator implied by (5). In this case, the updated joint dis-

tribution, given by p( yTn+1:Tn+1
, θ | y1:Tn

), is replaced by an

expression proportional to (13), with

∂L(q,λn+1)

∂λn+1
=

∫

θ

qλn+1(θ | y1:Tn+1
) f (θ)dθ , (15)

where

f (θ) =
∂ log(qλn+1 | y1:Tn+1

)

∂λn+1(
log

(
p̃( yTn+1:Tn+1

, θ | y1:Tn
)

qλn+1(θ | y1:Tn+1
)

)
− â

)
.

Multiplication and division of the integrand in (15) by

qλ∗
n
(θ | y1:Tn

) allows it to be written as an expectation with

respect to qλ∗
n
(θ | y1:Tn

),

∂L(q,λn+1)

∂λn+1
=

∫

θ

qλ∗
n
(θ | y1:Tn

)
qλn+1(θ | y1:Tn+1

)

qλ∗
n
(θ | y1:Tn

)
f (θ)dθ ,

(16)

Hence, (16) may be estimated via a Monte Carlo average,

̂∂L(q,λn+1)

∂λn+1 I S

=
1

S

S∑

j=1

w(θ ( j)) f (θ ( j)) (17)

since θ ( j) ∼ qλ∗
n
(θ | y1:Tn

) and

w(θ ( j)) =
qλn+1(θ

( j)| y1:Tn+1
)

qλ∗
n
(θ ( j)| y1:Tn

)
, (18)

with â estimated as per Eq. (6).

Since only the value of λn+1 changes in each iteration of

SGA, and the S sampled values θ ( j) are held fixed, only the

terms involving λn+1, namely
∂

∂λn+1
log(qλn+1(θ

( j)| y1:Tn+1
)) and qλn+1(θ

( j)| y1:Tn+1
), are

required to be calculated.

The variance of the UVB-IS gradient estimator is increased

relative to the score-based gradient estimator in (5) due

to the presence of the importance sampling weights. This

increased variance may result in a reduction in the accuracy

of qλ∗
n+1

(θ | y1:Tn+1
). This is due to the fact that the algo-

rithm stopping criterion, which is a sufficiently small value of
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|L(q,λ(m+1)) − L(q,λ(m))| can only be evaluated approxi-

mately by a noisy estimator, also produced via an importance

sampler. As the computation per iteration is extremely small,

S may be set to a larger value to reduce the variance, thereby

allowing the user the capacity to balance the inevitable trade-

off between computational time and approximation accuracy

to suit their requirements. Provided there is no major struc-

tural change in the data generating process, it is expected that

the distributions qλ∗
n
(θ | y1:Tn

) and qλ∗
n+1

(θ | y1:Tn+1
) become

more similar as n increases, subsequently reducing the UVB-

IS gradient estimator variance.

A potential disadvantage of using importance sampling is

for the variance of the gradient to increase with each itera-

tion of stochastic gradient ascent. This is likely to be offset

by a reduction in the variance of the gradient as more data

are observed with each update. As a check on whether the

importance sampling is working well, we recommend run-

ning stochastic gradient ascent without importance sampling

on the first block of data and computing the variance of the

gradient after a small number of iterations (e.g. 30-50). This

can then provide a threshold which the variance of the gra-

dient computed by importance sampling should not exceed.

The proposed UVB-IS algorithm is summarised in Algo-

rithm 2. Figure 1 provides a diagram to help illustrate the

differences between the approach of Sakaya and Klami

(2017) to UVB-IS. In panel (a) of Fig. 1, each block indi-

cates r separate iterations of SGA, each undertaken over an

entire sample of length T , with arrows indicating that the

final iteration of each block is used as an importance sam-

pling proposal distribution for the entire next block. That

is, there is one SGA algorithm applied for all data, but the

importance sampling distribution changes every r th iteration

until convergence is reached. In panel (b) of Fig. 1, three dis-

tributional updates using UVB-IS are depicted. In this case,

the posterior itself is updated periodically, as indicated by

arrows and corresponding to times T1, T2, and T3, with the

same importance sampling distribution used for all SGA iter-

ations needed to complete a single distributional update.

5 Simulation studies

To investigate the trade-off between the computational effi-

ciency and accuracy of different methods, we consider two

simulated examples. The first is a time series forecasting

application, while the second is a clustering example based

on a mixture model. As well as considering both of the pro-

posed algorithms (i.e. UVB and UVB-IS) we also consider

a standard SVB approach and an exact MCMC algorithm,

based on a Random Walk Metropolis-Hastings strategy (see

(Gilks et al. 1995a, b), and (Garthwaite et al. 2016), employed

using all data observed up to each relevant time point.

Algorithm 2: UVB with Importance Sampling (UVB-

IS)

Input: Prior, Likelihood.

Result: Approximating distribution at Tτ .

Observe y1:T1
.;

Minimises K L[qλ1 (θ | y1:T1
) || p(θ | y1:T1

)] using SGA via (5).;

for n in 1, . . . , τ − 1 do

Observe next data yTn+1:Tn+1
.;

Sample θ ( j) ∼ qλ∗
n
(θ | y1:Tn

) for j = 1, 2, . . . S.;

Evaluate p( yTn+1:Tn+1
|θ ( j)) and qλ∗

n
(θ ( j)| y1:Tn

) for each j .;

Set λ
(1)
n+1 to λ∗

n .;

Minimise K L[qλn+1 (θ | y1:Tn+1
) || p̃(θ | y1:Tn+1

)] using SGA

via (17).;

end

5.1 Time series forecasting

In this first simulation study, we consider R = 500 replica-

tions of time series data, with each comprised of T = 500

observations simulated from the following auto-regressive

order 3 (AR3) model, given by

yt = μ + φ1(yt−1 − μ) + φ2(yt−2 − μ)

+φ3(yt−3 − μ) + et (19)

where et ∼ N (0, σ 2). For each replication, the true values

of the parameters are obtained by drawing μ and each auto-

regressive coefficient, φ1, φ2, and φ3 from an independent

N (0, 1) distribution, accepting only draws where each φ lies

in the AR3 stationary region. The precision parameter, σ−2,

is drawn from a Gamma distribution with both shape and rate

equal to five.

The inferential objective is to progressively produce the

one-step ahead predictive densities, each based on a UVB

approximation to the target posterior distribution that results

from assuming data arises from the AR3 model above, with a

prior distribution specified for θ = {μ, φ1, φ2, φ3, log(σ 2)}.

The prior distribution for the parameter vector is taken as

θ ∼ N (05, 10I5), where 0d and Id denote, respectively, the

d−dimensional zero vector and identity matrix. In partic-

ular, we aim to produce UVB-based approximate one-step

ahead predictive distributions progressively, using at time

Tn all (and only) data up to and including time period

Tn , recursively for each of the 21 time periods given by

Tn = 100, 125, 150, . . . 500. That is, the first target pre-

dictive distribution is given by p(y101| y1:100), followed by

p(y126| y1:125), and continuing on to the final predictive

p(y501| y1:500). For each update, predictive distributions are

approximated with qλ taken as a K−component mixture

of multivariate normal distributions. Diagonal covariance

matrices for each normal are assumed; alternatively, a sparse

structure Tan and Nott 2018) or a factor structure (Ong et al.
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1 T

1 iteration

r iterations

r iterations

r iterations

.

.

.

(a) Sakaya and Klami (2017)

1 T1 T2 T3

. . .

(b) UVB-IS

Fig. 1 Graphical illustrations for importance sampling in VB algo-

rithms. a: The approach of Sakaya and Klami (2017). Each block

indicates r iterations of a single implementation of the SGA algorithm,

with arrows indicating that the final iteration of each block is used as

an importance sampling proposal distribution for the next r iterations

contained in the subsequent block. b: The UVB-IS algorithm, where

each block indicates that SGA is applied three times, once for each of

three distributional updates corresponding to an increase in data. For

an update, indicated by an arrow, a sample from the pseudo-posterior

distribution corresponding to the previous update is used as proposal

draws in every iteration of the SGA algorithm

2018) could be employed. The results are compared using

three different choices of K , with K = 1, 2 and 3. This

strategy allows us to compare the approximation accuracy of

the simple K = 1 distribution that may not adequately cap-

ture the entire posterior distribution as well as more complex

approximations. In all cases, the convergence criterion is to

compare the mean of objective function from the last five

iterations to the five iteration before that, and to stop if the

difference is less than 10−4 times the number of parameters.

For the cases involving SVB and UVB, the score-based

gradient estimator (5) uses S = 25 draws of θ ; however,

we use a larger number of draws for UVB-IS to offset the

increased variance, setting S = 100. Finally the MCMC

benchmark comparison is based on 15000 posterior draws,

with the first 10000 discarded for ‘burn in’. In each approach,

we allow {φ1, φ2, φ3} to take any value in R3, so the posterior

distribution for these parameters is not restricted to the AR3

stationary region.

Under the posterior given by p(θ | y1:Tn
) together with the

conditional predictive densities implied by (19), the one-step

ahead predictive density is given by

p(yTn+1| y1:Tn
) =

∫

θ

p(yTn+1| y1:Tn
, θ)p(θ | y1:Tn

)dθ . (20)

Given our UVB approximation to the posterior at time

Tn , we approximate the integral in (20) using M draws

θ (1) . . . θ (M) ∼ qλ∗
n
(θ | y1:Tn

),with the resulting marginal pre-

dictive density estimate given by

p̂(yTn+1| y1:Tn
) ≈

1

M

M∑

i=1

p(yTn+1| y1:Tn
, θ (i)). (21)

The forecast accuracy associated with the resulting approx-

imate predictive density is measured using the cumulative

predictive log score (CLS) for the update at time Tn , given

by

C L Sn =

n∑

j=1

log( p̂(y
(obs)
T j +1| y1:T j

)), (22)

for n = 1, 2, ..., 17, where y
(obs)
Tn+1 denotes the realised

(observed) value of yTn+1. In particular, we compare the

mean CLS (MCLS) over R = 500 Monte Carlo replica-

tions, for each approximation method and each given value

of K , at consecutive update times Tn ∈ {100, 125, . . . , 500}.

The results are displayed in Fig. 2, where each row indicates

a different (known) value of K . Panel (a), on the left-hand

side, the MCLS value is displayed relative to the MCLS value

obtained using MCMC inference at each incremental values

of Tn +1 = 101, 126, . . . , 501. As greater values of indicate

better forecast accuracy, it is not surprising to find that each

of the approximate VB method produces a lower relative to
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Fig. 2 AR3 Simulation from Sect. 5.1. (left): Forecast accuracy,

indicated by one-step-ahead mean cumulative predictive log scores

(MCLS), corresponding to incremental updates under competing meth-

ods (SVB, UVB and UVB-IS) relative to MCMC. Higher values of

MCLS indicate better forecast accuracy. (right): Computational effi-

ciency, indicated by relative mean cumulative runtime (RMCR), again

corresponding to incremental updates under competing method (SVB,

UVB and UVB-IS), each reported relative to the mean runtime for SVB

when K = 1 and Tn = 100. Lower values of RMCR reflect improve-

ments in computational efficiency

exact (MCMC) inference. Amongst the approximate meth-

ods, repeated SVB performs the best, in terms of, followed

by UVB and UVB-IS at K = 1, though these differences are

less severe as K (and the model complexity) increases.3

To investigate the computational efficiency of differ-

ent methods, we compute the relative cumulative mean

runtime (RMCR), for each considered algorithm (SVB,

UVB and UVB-IS), again over updating times Tn ∈

{100, 125, 150, . . . , 500}. Each of these sequences repre-

sents an average over R = 500 independent Monte Carlo

cumulative runtimes from the relevant algorithm, reported as

a multiple of the average runtime of the SVB algorithm for a

single update at T1 = 100 and with a single mixture compo-

nent K = 1. For all three methods considered, at update time

3 To check that these differences are not a result of variability across

the 500 replications we conduct non-parametric Friedman and post-hoc

Nemenyi tests with details discussed in “Appendix A”.

Tn+1 the optimal value of the variational parameter obtained

at time Tn is used as the starting value for the optimisation.

The RMCR values obtained are reported in Panel (b) of Fig.

2. Note that for n > 1, the SVB approximation at time Tn

requires an application of the SGA algorithm using all data

observed up to Tn , while each of the updating methods begin

with an SVB approximation at T1, followed by n − 1 pro-

gressive updates each using only the new data observed since

the previous update period. As can be seen in the top row of

Panel (b), the RMCRs are all identical and equal to one at the

first update time T1 = 100 and all increase over consecutive

updates. While all three methods show an increase in RMCR

with each update, the SVB method appears to be least effi-

cient, while substantial improvements in computational time

accrue from using UVB-IS.

In this setting, the amount of data in each update is rel-

atively small, and UVB increases the runtime compared to
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SVB. This is due to the computational overhead of n SGA

applications not being offset by a reduction in the number

of log-likelihood calculations. In contrast, UVB-IS achieves

sizeable computational gains despite showing minimal loss

in the corresponding MCLS for K > 1.

To illustrate the reduced variability in subsequent UVB

gradient estimators, Fig. 3 displays the median variance

of the gradient estimator for the posterior mean parameter

μ, for UVB with S = 25, and for UVB-IS with each of

S = 25, 50, 100 and 200, all monitored over six selected

update periods. At T1, all algorithms implement SVB with

arbitary starting values for λ
(1)
1 . This causes extreme, but

declining, variance until convergence is reached. This pat-

tern is typical for SVB inference. In subsequent time periods,

each updating method sets the starting value at λ
(1)
n = λ∗

n−1.

The estimated variance is subsequently orders of magnitude

smaller than SVB. For small values of n the distributions

qλ∗
n
(θ | y1:Tn

) and q
λ

(m)
n+1

(θ | y1:Tn
) may differ as m increases,

causing a reduction in the effective sample size associated

with the gradient estimator, and an increase in the UVB-IS

estimator variance. This effect is visible at times T2, T3, and

T5, though the UVB-IS estimator variance is low relative to

SVB despite this inefficiency. Furthermore although the vari-

ances of the gradients estimated by Importance Sampling are

high (with a median value reaching around 30 for T2 and T3),

this is still orders of magnitude lower than for SVB with-

out importance sampling at T1. For this application, UVB-IS

passes the check recommended in Sect. 4.

5.2 Mixture model clustering

In the second simulated example, we consider the case where

repeated measurements are simulated on N = 100 cross-

sectional units at each of T = 100 times. The measurements

for a given unit follows one of two possible DGPs, with the

objective being to cluster the units into the correct groups,

according to the underlying DGP, with additional observa-

tions of each cross-sectional unit accumulating in an online

fashion as time increases. Each of these scenarios was then

replicated R = 500 times.

For each independent replication, we generate data yi,t as

the measurement of unit i at time t , for i = 1, 2, . . . , N and

t = 1, 2, ..., T as follows. We first define the cluster indicator

for unit i as ki , and generate these for a given probability

0 < π < 1 according to

ki |π
i .i .d.
∼ Bernoulli(π), (23)

where i .i .d abbreviates independent and identically dis-

tributed. Then, conditional on ki we let

yi,t |(ki = j), μ j , σ
2
j

ind
∼ N (μ j , σ

2
j ), (24)

for j = 0, 1, with ind short for independent. For this exer-

cise, we set π = 0.5, with the replicated values of μ0 and μ1

independently drawn from an N (0, 0.25) distribution, while

σ 2
0 and σ 2

1 are independently drawn from a uniform distribu-

tion over the interval (1, 2).

Having simulated the data, the actual values ki are retained

for each replication. We then use the UVB algorithm of

the described model with the simulated data, as if all N

units were being observed online at increasing times Tn =

10, 20, 30, . . . 100. The aim of the exercise is to cluster the

units into two groups aligning with the true, but ‘unobserved’

value of ki .

The Bayesian updating analysis proceeds as follows.

Denoting the collective parameter vector as θ =
{
log(σ 2

0 ),

log(σ 2
1 ), μ0, μ1

}
, the joint prior for θ and π used at T1 is

given by independent components

θ ∼ N (04, 10I4), and (25)

π ∼ Beta(α, β). (26)

Note that the model for π in (23) and the prior in (26)

imply that the ki are independent a priori, with marginal

probabilities given by

Pr(ki = j) =
B( j + α, β − j + 1)

B(α, β)
, (27)

for j = 0, 1, where B(·, ·) denotes the Beta function.

Hence we have marginalised out the ‘unknown’ value of

π , and can now proceed to updating the prior in (27), for

each i = 1, 2, . . . , N , on the basis of information at times

Tn = 10, 20, ..., 100.

Denoting yi,1:Tn
= {yi,t |t = 1, . . . , Tn} and y1:N ,1:Tn

=

{ yi,1:Tn
; i = 1, . . . N }, the initial augmented posterior distri-

bution is given by

p(θ , k1:N | y1:N ,1:T1
) ∝ p(θ)

N∏

i=1

p( yi,1:T1
|θ , ki = j)

× Pr(ki = j), (28)

with each likelihood p( yi,1:T1
|θ, ki = j) given by the prod-

uct of densities associated with (24) and the value of j .

Due to the conditional independence of the components

of θ and the cluster indicators, subsequent posteriors at times

Tn+1 are approximated by

p̂(θ, k1:N |y1:N ,1:Tn+1
) ∝

N∏

i=1

p( yi,Tn+1:Tn+1
|θ , ki = j)

× P̂r(ki = j | y1:N ,1:Tn
)p(θ | y1:N ,1:Tn

), (29)

123



Statistics and Computing (2022) 32 :4 Page 11 of 26 4

T5 T10 T15

T1 T2 T3

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

5

10

15

20

25

0

1

2

3

0

10

20

30

0

1

2

3

0

30000

60000

90000

0

2

4

6

SGA Iteration

M
e

d
ia

n
 G

ra
d

ie
n

t 
E

s
ti
m

a
to

r 
V

a
ri

a
n

c
e

Method, S UVB, 25 UVB−IS, 25 UVB−IS, 50 UVB−IS, 100 UVB−IS, 200

Fig. 3 AR3 example in Sect. 5.1. Median gradient estimator variance

for the first 100 SGA iterations, with colour indicated by the acronym

(either UVB or UVB-IS) followed by the value of S. Both UVB and

UVB-IS algorithms have arbitrary starting values at T1, denoted as λ
(1)
1 ,

where the estimated gradient exhibits high variance. The starting value

at time Tn is set to the previous optimal value, i.e. λ
(1)
n = λ∗

n−1. Since

only a subset of time periods are presented here, the variance corre-

sponding to the previously converged value of λ is not shown for each

update. For example, the gradient variance corresponding to λ
(1)
5 is

shown but not λ∗
4 . Since the variance falls dramatically with each update,

different y-axis scales are used at at subsequent update times. Conse-

quently, the variance of the UVB gradient estimator is reduced relative

to SVB, though the UVB-IS variance increases slightly for small n and

large iteration index m

where the latent class probabilities, Pr(ki = j | y1:N ,1:Tn
), are

estimated before updating with

P̂r(ki = j | y1:N ,1:Tn
) ∝

1

M

M∑

l=1

p( y1:N ,1:Tn
|θ (l), ki = j)

× Pr(ki = j), (30)

with θ (l) ∼ p(θ | y1:N ,1:Tn
) for l = 1, 2, . . . , M .

As in Section 5.1, the UVB and UVB-IS algorithms

are compared to standard SVB and MCMC. Each of these

approaches utilises an approximation to the augmented pos-

terior of the form

qλn+1(θ , k1:N | y1:N ,1:Tn+1
) = qλn+1(θ | y1:N ,1:Tn+1

)

×

N∏

i=1

P̂r(ki = j | y1:N ,1:Tn
), (31)

where qλn+1(θ | y1:N ,1:Tn+1
) is a K = 1, 2, or 3 component

mixture of multivariate normal distributions and the θ (l) sam-

ples used to estimate (30) are simulated from the previous

approximation qλn (θ | y1:N ,1:Tn
).

The form of the approximation used in (31) is chosen due

to the fact that the gradient of the augmented divergence,

K L[qλn (θ , k1:N | y1:N ,1:Tn
) || p̂(θ, k1:N | y1:N ,1:Tn

)] is

equivalent to the gradient of the marginal divergence,
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K L[qλn (θ | y1:N ,1:Tn
) || p̂(θ | y1:N ,1:Tn

)], and hence the

same approximation can be found by instead targeting the

marginal posterior distribution,

p(θ | y1:N ,1:T1
) ∝ p(θ)

×

N∏

i=1

⎛
⎝

1∑

j=0

p( yi,1:T1
|θ, ki = j) Pr(ki = j)

⎞
⎠ , (32)

or its updated form

p̂(θ | y1:N ,1:Tn+1
) ∝

N∏

i=1

( 1∑

j=0

p( yi,Tn+1:Tn+1
|θ, ki = j)

×P̂r(ki = j | y1:N ,1:Tn
)p(θ | y1:N ,1:Tn

)

)
. (33)

At each update, we estimate class labels for ki according

to

k̂i,n = arg max
j

P̂r(ki = j | y1:N ,1:Tn
), (34)

and assign a classification accuracy (CA) score at Tn , given

by

C An = max

(
1

N

N∑

i=1

I (̂ki,n = ki ),
1

N

N∑

i=1

I (̂ki,n 	= ki )

)
,

(35)

the proportion of successful classifications up to label switch-

ing. SVB and UVB gradients are estimated from S = 25

samples of θ per iteration, while UVB-IS sets S = 100.

The results for this problem are displayed in Fig. 4, where

each row corresponds to a different value of K . Panel (a)

displays the mean classification accuracy (MCA), corre-

sponding to updates at times Tn = 10, 20, ..., 100 and across

R replications. As in the previous study, each variational

approximation reduces accuracy relative to exact inference.

In this example, UVB and in some instances UVB-IS are

more accurate than SVB, with little change apparent in any

variational approach between different values of K . This

result is somewhat puzzling since UVB and UVB-IS do intro-

duce further approximation compared to SVB. One possible

explanation is that by failing to capture the thickness of the

tails in the posterior, UVB ‘implicitly’ imposes an empiri-

cal Bayes prior with thinner tails for the following update.

Priors (and posteriors) with thinner tail may improve the per-

formance with respect to classification accuracy, especially

for observations near the decision boundary.4 This finding

may be idiosyncratic to this example, and in general, it seems

4 We thank an anonymous referee for making this point.

unrealistic to expect UVB and UVB-IS to substantially out-

perform SVB.

As in the previous section, Panel (b) of Fig. 4 displays

the RMCR for each VB method using data up to Tn , for

Tn = 10, 20, . . . , 100, calculated relative to the mean run

time of the SVB algorithm fitting a single mixture at the ini-

tial update time, when Tn = 10. As the problem features

a large number of cross-sectional units, the computational

cost of calculating the log-likelihood dominates the gradient

estimation. Processing smaller amounts of data, and having

a reduced gradient variance lead to reduced computational

time for both UVB and UVB-IS relative to SVB, particu-

larly in the case of UVB-IS. Despite the updating methods

consisting of 10 SGA applications while SVB uses only one,

UVB and UVB-IS require, on average, 14.7%, and 4.6% of

the computational time of SVB, respectively, in the top right

panel when K = 1 at time T10 = 100.

6 Eight schools example

In this section, the so-called Eight Schools problem described

in Gelman et al. (2014) is considered. This problem analyses

the effectiveness of a short-term coaching program, imple-

mented independently by each of eight studied schools, for

the SAT-V test.5 For students i = 1, 2, . . . , N j in each school

j = 1, 2, . . . , 8, consider the linear regression

S AT -Vi, j =β0, j + β1, j Coachi, j + β2, j P S AT -Vi, j

+ β3, j P S AT -Mi, j + ǫi, j (36)

where Coachi, j is a dummy variable indicating a student’s

inclusion (or not) in a coaching program run by their school,

alongside control variables P S AT -Vi, j and P S AT -Mi, j ,

corresponding to each student’s scores in the verbal and

mathematical preliminary SAT, respectively.

Following Gelman et al. (2014), the estimated school-level

coaching coefficients that correspond to the ordinary least

squares estimators are taken as the observations, y j = β̂1, j ,

for j = 1, 2, . . . 8, and have approximate sampling distribu-

tions given by

y j |θ j , σ
2
j ∼ N (θ j , σ

2
j ), (37)

where θ j is the latent ‘true’ effectiveness of school j’s

coaching program. The standard deviation of the sampling

distribution, σ j , is assumed to be known and is held fixed at

the standard error estimated by the relevant regression, with

each having taken account of the individual school sample

size N j .

5 The SAT-V is a standardised aptitude test commonly taken by high

school students in the USA.

123



Statistics and Computing (2022) 32 :4 Page 13 of 26 4

K = 3

K = 2

K = 1

10 40 70 100

0.65

0.75

0.85

0.65

0.75

0.85

0.65

0.75

0.85

Observations per unit (Total 100 Units)

M
e

a
n

 C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 (

M
C

A
)

Inference SVB UVB UVB−IS

K = 3

K = 2

K = 1

10 40 70 100

5

10

15

20

5

10

15

20

25

5

10

15

20

25

30

Observations per unit (Total 100 Units)

R
e

la
ti
v
e

 M
e

a
n

 C
u

m
u

la
ti
v
e

 R
u

n
ti
m

e
 (

R
M

C
R

)

SVB UVB UVB−IS

Fig. 4 Classification example in Sect. 5.2. (left): Mean Classification

Accuracy (MCA) for each inference method, higher is better. (right):

Relative mean cumulative runtime (RMCR) for each updating method.

Average runtimes for each updating algorithm are reported relative to

the average runtime required for SVB at T1 and with K = 1, with

lower RMCR values preferred. Both UVB and UVB-IS perform better

than SVB in terms of classification accuracy and are also much faster,

as computation of the data likelihood is a large part of the gradient

calculation in this scenario

Again following Gelman et al. (2014), we apply a hierar-

chical prior to the population mean values in (37), assuming

that the θ j themselves are random and i id from a Student-t

distribution,

θ j − μ

τ
∼ t(ν) (38)

where ν is the degrees of freedom, fixed at ν = 4. The hier-

archical model also employs the uninformative hyper-prior

p(μ, τ) ∝ 1, (39)

over positive values of τ , and both positive and negative val-

ues of μ.

Collecting the unknown school means together and denot-

ing by θ1:8 = {θ1, θ2, . . . , θ8}, the posterior distribution of all

unknowns and based on the observed values from all schools

is then given by

p(θ1:8, μ, τ | y1:8) ∝

8∏

j=1

p(y j |θ j , σ
2
j )p(θ j |τ, μ). (40)

It is feasible to obtain this posterior exactly, via MCMC,

for example using the algorithm provided in the statistical

modelling platform Stan, (Stan Development Team 2018).

Our aim here is to demonstrate the application of UVB and

UVB-IS to this hierarchical model, where with each update

we sequentially ‘observe’ an additional school, as indicated

by the inclusion of an additional observation y j . Each vari-

ational algorithm approximates the progressive posterior by

the multivariate normal distribution qλn (θ1:n, μ, τ | y1:n), for

n = 1, 2, ..., 8. The initial distribution approximation at T1

for UVB and UVB-IS is given by the multivariate normal

distribution qλ∗
1
(θ1, μ, τ |y1) where
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λ∗
1 = arg min

λ1

K L[qλ1(θ1, μ, τ |y1) || p(θ1, μ, τ |y1)].

(41)

Updates at further ‘times’ Tn+1 = n+1, for n = 1, 2, . . . , 7,

involves sequentially adding schools to the model targetting

the pseudo-posterior distribution, given by the decomposi-

tion

p̃(θ1:n+1, μ, τ | y1:n+1) ∝ p(yn+1|θn+1)p(θn+1|μ, τ)

× qλ∗
n
(θ1:n, μ, τ | y1:n). (42)

Either UVB or UVB-IS then may be used to obtain

the updated approximate posterior, given by qλ∗
n+1

(θ1:n+1,

μ, τ | y1:n+1), with

λ∗
n+1 = arg min

λn+1

K L[qλn+1(θ1:n+1, μ, τ | y1:n+1)

|| p̃(θ1:n+1, μ, τ | y1:n+1)], (43)

for n = 1, 2, ..., y. As each update adds a new variable θn+1

to the model, the optimal vector λ∗
n+1 updates the auxiliary

parameters associated with the pseudo-posterior distribution

for θn+1 together with the previously included variables μ, τ ,

and θ1:n . We note that our implementation of UVB-IS here

employs a hybrid strategy utilising importance sampled gra-

dients (17) for simulations of μ, τ , and θ1:n from the previous

qλ∗
n
(θ1:n, μ, τ | y1:n+1), and score-based gradients for θn+1,

as per (5). The score-based gradients use samples generated

from θn+1 ∼ qλn+1(θn+1| y1:n+1, μ, τ, θ1:n), which is avail-

able as this variational approximation was chosen to be a

multivariate normal distribution.

We compare approximations that result from using UVB

and UVB-IS, relative to the sequential implementation of

SVB, following the incorporation of data from each new

school. As the ordering of the inclusion of schools is arbi-

trary in this example, we report results that are averaged

over a randomly selected 100 of the 8! = 40, 320 possi-

ble permutations of school sequences. For each ordering,

the variational posterior qλ(θ1:n+1, μ, τ | y1:n+1) is compared

to the exact posterior p((θ1:n+1, μ, τ | y1:n+1) in (40), each

calculated using 10,000 MCMC sample draws retained fol-

lowing a burn-in period of 10,000 iterations.

The average Hellinger distances between different vari-

ational marginal posteriors and their exact counterparts,

for each school specific effect are summarised in Table 1.

In all cases, the Hellinger distance is computed between

each marginal posterior produced using MCMC and the

corresponding posterior produced using one of the three

variational methods. The Hellinger distance is estimated by

noting that squared Hellinger distance is, up to a multiplica-

tive constant, a special case of a Tsallis divergence. We then

use the T̂lin estimator based on a von Mises expansion pro-

posed by Krishnamurthy et al. (2014). We note that while

Table 1 Eight Schools example from Sect. 6. Average Hellinger dis-

tance between the marginal posteriors obtained via MCMC and those

obtained by SVB, UVB and UVB-IS. Lower values are better.

Parameter SVB UVB UVB-IS

θ1 0.022 0.218 0.612

θ2 0.002 0.048 0.590

θ3 −0.007 0.147 0.539

θ4 0.004 0.054 0.548

θ5 0.012 0.096 0.511

θ6 0.008 0.084 0.470

θ7 0.006 0.106 0.657

θ8 0.004 0.119 0.571

The differences between methods are statistically significant for all

parameters—see the discussion in “Appendix A”

this estimator is consistent, in finite samples, negative val-

ues of the estimate are possible when two distributions are

extremely close in Hellinger distance. Table 1 shows that for

an example where the objective of the analysis is parameter

inference, rather than prediction or classification, the result-

ing approximate posterior inference can deteriorate when

UVB or UVB-IS is used relative to SVB. This is likely due

to the errors in the variational approximation, particularly in

the tails, accumulating with each update. We therefore rec-

ommend caution when using the UVB and UVB-IS purely

for parameter estimation rather than forecast accuracy.

7 Lane position example

Vehicle drivers may exhibit a tendency to move laterally

(i.e. side-to-side) within their designated lane on a high-

way. Figure 5 displays this notion, by plotting the trajectory

of five drivers as they travel along a section of the US

Route 101 Highway, as taken from the Next Generation

Simulation (NGSIM, FHWA (2017)) dataset. In this figure,

the vehicles—whose trajectories are indicated in black—are

travelling towards the right, with each (estimated) lane cen-

tre line given by the red dashed line. Drivers likely adapt

their position in real time, in at least partial response to the

perceived position of vehicles that are travelling nearby.

The aim of this section is to apply the UVB methodology to

analyse a model of the lateral position of vehicles. The model

incorporates driver heterogeneity, while the analysis itself

produces sequential, per-vehicle distributional forecasts of

a large number of future car positions. The methodology

suggests that a smart vehicle (i.e. one without a human driver)

may be able to repeatedly ‘observe’ neighbouring vehicle

positions, predict their positions in real time as they travel

along the road, and appropriately respond to those forecasts.
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Fig. 5 Car lane position example from Sect. 7. The path of five selected

vehicles from the NGSIM dataset, travelling from left to right, with each

black line representing a unique vehicle, with estimated lane centre lines

in red. This section of US Route 101 is comprised of five main lanes,

with a sixth entry/exit lane not shown

To set up the scenario, we randomly select, from the

NGSIM dataset, trajectories associated with N = 500 vehi-

cles that do not change lane. We note that the NGSIM dataset

is the result of a project conducted by the US Federal High-

way Administration (FHWA), and includes data recorded

from 6101 vehicles traveling along a 2235 foot long section

of the US 101 freeway in Los Angeles, California from 7:50

am to 8:35 am on June 15th, 2005. Though initially collected

by static cameras, the data were then processed by Cambridge

Systematics Inc. to produce coordinates of the centre of the

front of each vehicle at 100 millisecond intervals.

7.1 A hierarchical model

In developing a model for the position of cars, we consider

a number of issues. First, we view each vehicle/driver as

having its own idiosyncratic behaviour, captured by its own

parameter values. Let yi,t denote the lateral deviation from

the lane centre of vehicle i at time t , with details on calcu-

lating the lateral deviation provided in “Appendix B”. For

i = 1, . . . , N and t = 1, . . . , T , we assume

yi,t | μi , σ
2
i

ind
∼ N

(
μi , σ

2
i

)
, (44)

where μi and σ 2
i are parameters specific to vehicle i . For sim-

plicity, we collect the individual vehicle-specific parameters

into a single vector, θ i , by defining θ i = (μi , log (σ 2
i )), for

i = 1, 2, .., N . We note that alternative parametric models

could be used here, including a time series model for vehicle

i , with little loss in generality.

Multiple cars may display similar behaviour, a phe-

nomenon that can be modelled by allowing different cross-

sectional units to share parameters. This structure, whereby

cross-sectional units belong to mixture components, leads

to predictions that ‘borrow strength’ from the full sample of

vehicles. To make this idea explicit, let ki denote an indicator

variable such that vehicle i belongs to mixture component j

if ki = j . All vehicles within the same mixture component

share parameters, that is θi = θ∗
j , for all i such that ki = j .

Note that the star superscript and j subscript are generally

used to index the mixture component that the parameters

belong to, while the subscript i is generally used to index the

cross-sectional unit, i.e. vehicle.

Since the number of components are unknown and since

there is a possibility that a new vehicle will be observed with

behaviour that cannot be well described by any of the pre-

vailing parameters, we consider an infinite mixture model.

In particular, we use an infinite mixture model induced by a
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Dirichlet Process (DP) Prior for the distribution of the param-

eters. The DP prior is given by

G ∼ D P(α, G0) , (45)

where G0 is the DP base distribution, assumed here to be

N (02, 10I2), and the DP concentration parameter α is fixed

here and equal to one. The prior for the collection of θ i values

represent a draw from the DP, with

θ i |G
i id
∼ G, for i = 1, 2, . . . , N . (46)

Combining (44), (45) and (46) leads to the hierarchy

G ∼ D P(α, G0)

θ i |G
i id
∼ G, for i = 1, 2, . . . , N

yi,t | θ i
ind
∼ N

(
μi , σ

2
i

)
, for i = 1, 2, . . . , N and

t = 1, 2, . . . , T . (47)

We note that the DP prior induces clustering on the obser-

vation sequences, as described by the Chinese Restaurant

Process (CRP, Aldous 1985) representation. The CRP pro-

vides a mechanism for drawing from the prior of θ1, . . . , θn ,

marginal of the random G, via the introduction of dis-

crete variables that act as component indicators. Define si

as the number of unique values in k1, k2, . . . , ki , and let

ni j =
∑i

m=1 I (km = j). Then, the indicator variables can

be simulated from p(ki = j |α, k1:i−1) where

p(k1 = 1 | α, G0) = 1, (48)

p(ki = j |α, G0, k1:i−1) =

{ ni−1, j

α+i−1
for j = 1, 2, . . . , si−1

α
α+i−1

for j = si−1 + 1,

(49)

for i = 2, . . . , N . Note that although simulation of the indi-

cators does not require knowledge of G0, we include explicit

conditioning on both α and G0 in (48) and (49) to emphasise

the marginalisation over G. Under the CRP, unique values of

θ i , denoted as θ∗
j , for j = 1, 2, . . . , sN are drawn from the

base distribution G0, and if we set θ i = θ∗
j for all i such that

ki = j , then (θ1, θ2, . . . , θ N ) is a draw from the hierarchical

setup in (47). Note that although the model is an infinite com-

ponent mixture model, under the CRP the maximum number

of unique clusters, sN , can be no greater than the number

of vehicles in the sample, N . For simplicity, we retain the

full vector θ∗
1:N , noting that some values θ∗

1:N , may not be

associated with any vehicle.

The overall model may be seen as a Dirichlet Process Mix-

ture (DPM) model for the lane deviations. Background mate-

rial regarding Bayesian analysis of DPM models, including

many references and detailed discussions relating to MCMC-

based techniques for sampling from the relevant posterior, is

given in Müller et al. (2015). Online VB-based inference for

DPMs has been established using a Mean Field approach

see, e.g. Hoffman et al. (2010); Wang et al. (2011) and

Kabisa et al. (2016)). In contrast, our approach incorporates

SVB, which allows for greater flexibility regarding the form

of the approximating posterior distribution. Another impor-

tant distinction between our analysis and this literature is

that our setting involves multiple observations over time, on

each cross-sectional unit. Rather than updating as new cross-

sectional units are observed, we update parameters relating

to the same cross-sectional units observed periodically over

a period of time.

7.2 Implementation of SVB at time T1

Before discussing how UVB is applied to this problem it is

instructive to discuss how SVB is implemented for the DPM

in (47) that targets the posterior conditional on all cross-

sectional units N over just the first time period from t = 1 to

t = T1. For notational convenience, conditional dependence

on α and G0 is suppressed in all notation for the remainer of

this section. The objective is to minimise the KL divergence

between a suitable variational approximation and a posterior

that is augmented by indicator variables. To implement SVB,

we must evaluate

p( y1:N ,1:T1
, θ∗

1:N , k1:N ) =

[
N∏

i=1

T1∏

t=1

p(yi,t |θ
∗
1:N , ki )

]

×

[
N∏

i=1

p(ki |k1:i−1)

]
p(θ∗

1:N )

(50)

for given values of y1:N ,1:T1
, θ∗

1:N , and k1:N ,. Each of the

three main components on the right-hand side of (50) can be

computed from the hierarchical structure in (47) and the CRP,

as Sethuraman (1994) shows that the unique values θ∗
1:N are

a priori independent and identically distributed according to

the base distribution G0.

A second required input into SVB is an approximate pos-

terior density structure, given by qλ, and for this we propose

qλ(θ
∗
1:N , k1:N | y1:N ,1:T1

) =

⎡
⎣

N∏

j=1

q j (θ
∗
j | y1:N ,1:T1

)

⎤
⎦

×

[
N∏

i=1

p(ki | y1:N ,1:T1
, θ∗

1:N , k1:i−1)

]
.

(51)
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Each q j (.) on the right-hand side is a bivariate normal dis-

tribution with unique means, variances and covariances for

each i = 1, 2, .., N , leading to a total of 5N auxiliary param-

eters in the approximation. In the second product term on the

right-hand side of (51), the notation p is used instead of q

since p(ki | y1:N ,1:T1
, k1:i−1, θ

∗
1:N ) is known exactly and can

be computed recursively using

p(ki = j | y1:N ,1:T1
, k1:i−1, θ

∗
1:N ) ∝ p(ki = j |k1:i−1)

× p( yi,1:T1
|θ∗

1:N , ki ),

(52)

for i = 1, 2, ..., N .

The use of the so-called full conditional distribution for

k1:N , given by the second product in (51), is a novel inclusion

that enables our model to capture some of the dependence

structure of the posterior. In contrast, a MFVB approxima-

tion would force posterior independence between each ki and

every θ∗
j , as in, for example, Wang et al. (2011).

Furthermore, in addition to minimising the KL diver-

gence to the augmented posterior, our choice has the benefit

of ensuring minimisation of the KL divergence to the

corresponding marginal posterior. That is, the augmented

gradients are given by

∂K L[qλ1 (θ
∗
1:N , k1:N | y1:N ,1:T1

) || p((θ∗
1:N , k1:N | y1:N ,1:T1

)]

∂λ1

(53)

and are equal to the marginal gradients

∂K L[qλ1(θ
∗
1:N | y1:N ,1:T1

) || p(θ∗
1:N | y1:N ,1:T1

)]

∂λ1
, (54)

and so the optimisation procedure is equivalent to one where

the indicator variables used to construct the DPM have

been marginalised out. The proof of this result is shown in

“Appendix C”.

7.3 Iterating UVB

Using data up to time T1, the first UVB posterior is

obtained using SVB, as described in Sect. 7.2. For updat-

ing at time Tn+1, we construct a pseudo-posterior using

information from the previous variational approximation

qλn (θ
∗
1:N , k1:N | y1:N ,1:Tn

) in two distinct ways. First, the

base distribution in the DP as the prior distribution for

θ∗
1:N is updated to reflect the clustering present in the

previously obtained posterior, and so is replaced with

qλn (θ
∗
1:N | y1:N ,1:Tn

). Second, retaining the form of the approx-

imation in (51) for the update is complicated by the use of

the full conditional distribution for ki , given by

p(ki = j | y1:N ,1:Tn+1
, θ∗

1:N , k1:i−1)

∝ p( yi,Tn+1:Tn+1
|θ∗

1:N , ki )

× p(ki = j | y1:N ,1:Tn
, θ∗

1:N , k1:i−1), (55)

as all currently observed data up to time Tn+1 is required for

each new θ∗
1:N value simulated within the SGA algorithm.

Instead our approach is to marginalise the variational distri-

bution using

q(ki = j | y1:N ,1:Tn
, k1:i−1) =

∫

θ∗
1:N

qλn (θ
∗
1:N | y1:N ,1:Tn

)

× p(ki = j | y1:N ,1:Tn
, θ∗

1:N , k1:i−1)dθ∗
1:N , (56)

before each update, estimating (56) from a sample average of

p(ki = j | y1:N ,1:Tn
, θ∗

1:N , k1:i−1) using M samples θ∗
1:N and

k1:i−1 simulated from the available approximate distribution.

This requires use of all observed data at Tn , for each of the

M samples, but is independent of θ∗
1:N and thus data up to Tn

is not required as new θ∗
1:N values are simulated in the SGA

algorithm. The component of the variational approximation

for ki is then replaced by

p̂(ki = j | y1:N ,1:Tn+1
, θ∗

1:N , k1:i−1)

∝ p( yi,Tn+1:Tn+1
|θ∗

1:N , ki = j)

× q(ki = j | y1:N ,1:Tn+1
, k1:i−1), (57)

which may be calculated using only the newly observed

data y1:N ,Tn+1:Tn+1
in the SGA algorithm. Note that the

marginalisation step for all updates uses the exact full con-

ditional distribution from the CRP representation, p(ki =

j | y1:N ,1:Tn
, θ∗

1:N , k1:i−1), rather than the marginalised form

p̂(ki = j | y1:N ,1:Tn+1
, θ∗

1:N , k1:i−1) from the previous update.

The targeted pseudo-posterior distribution for the update

at Tn+1 is given by

p̃(θ∗
1:N , k1:N | y1:N ,1:Tn+1

) ∝

N∏

i=1

[
p( yi,Tn+1:Tn+1

|θ∗
1:N , ki )

× q(ki | y1:N ,1:Tn
, k1:i−1)

]
qλ∗

n
(θ∗

1:N | y1:N ,1:Tn
), (58)

where the base distribution of the DP posterior in the DPM

(and its corresponding CRP) is replaced with its associated

variational approximation at time Tn . The approximating dis-

tribution for the update at time Tn+1 is given by

qλn+1(θ
∗
1:N , k1:N | y1:N ,1:Tn+1

) =

N∏

j=1

q j,n+1(θ
∗
j | y1:N ,1:Tn+1

)

×

N∏

i=1

p̂(ki | y1:N ,1:Tn+1
, θ∗

1:N , k1:i−1). (59)
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Given the pseudo-posterior (50), form of approximating

distribution (59), and components of the time Tn approxi-

mation: qλn (θ
∗
1:N | y1:N ,1:Tn

) and q(ki = j | y1:N ,1:Tn
, k1:i−1),

the optimal parameter vector at time Tn+1,λ
∗
n+1, may be

obtained via Algorithm 3.

Algorithm 3: UVB for the DPM

Input: DP base distribution G0 or updated approximating

distribution at Tn .

Result: Approximating distribution at Tn+1.

Calculate (56) for all i .;

Observe y1:N ,Tn+1:Tn+1
.;

Set L(q,λ
(0)
n+1) = −∞.;

Set initial values λ
(1)
n+1.;

Set m = 1.;

while |L(q,λ
(m)
n+1) − L(q,λ

(m−1)
n+1 )| < ǫ do

Simulate θ
∗(s)
1:N ∼ q

λ
(m)
n+1

(θ∗
1:N | y1:N ,1:Tn+1

) for s = 1, 2, . . . , S.;

Simulate k
(s)
1:N with probabilities (52) or (57).;

Evaluate p̃( y1:N ,1:Tn+1
, θ

∗(s)
1:N , k

(s)
1:i−1).;

Evaluate qλn+1 (θ
∗(s)
1:N , k

(s)
1:N | y1:N ,1:Tn+1

).;

Evaluate ∂qλn+1 (θ
∗(s)
1:N , k

(s)
1:N | y1:N ,1:Tn+1

)/∂λn+1.;

Update auxiliary parameter

λ
(m+1)
n+1 = λ

(m)
n+1 + ρ(m) ̂∂L(q,λn+1)

∂λn+1

∣∣∣∣
λn+1=λn+1

(m)

.;

Calculate L(q,λ
(m+1)
n+1 ).;

Set m = m + 1.;

end

7.4 Predicting Lane Positions

Given a posterior approximation qλn (θ
∗
1:N , k1:N | y1:N ,1:Tn

),

we may obtain the approximate predictive distribution for

vehicle i at some future time Tn + h as

q(yi,Tn+h | y1:N ,1:Tn
) =

∫
p(yi,Tn+h |θ∗

1:N , ki )

q∗
λn

(θ∗
1:N , k1:N | y1:N ,1:Tn

)dθ∗
1:N dk1:N . (60)

After obtaining this distribution from samples {θ∗
1:N , k1:N }( j)

∼ q∗
λn

(θ∗
1:N , k1:N | y1:N ,1:Tn

), for j = 1, 2, . . . , M , we cal-

culate the predictive log score (LS),

L Si,n,h = log(q(y
(obs)
i,Tn+h | y1:N ,1:Tn

)), (61)

where y
(obs)
i,Tn+h is the observed value of yi,Tn+h . The perfor-

mance of the UVB algorithm is evaluated by comparing its

RMCR relative to those produced by competing methods.

We also infer the DPM model via MFVB using the so-

called stick-breaking representation of the Dirichlet Process,

as in Wang et al. (2011). This approach estimates the fully

factorised posterior approximation, given by

qλ(θ
∗
1:N , k1:N | y1:N ,1:Tn

) =

N∏

j=1

q(θ∗
j | y1:N ,1:Tn

)

q(k j | y1:N ,1:Tn
). (62)

This may be used to build a predictive distribution in the

same manner as (60). Details of the MFVB approximation

are provided in “Appendix 1”.

To illustrate the benefits of including posterior dependence

in the approximation, we also introduce a parametric and

independent model, which retains a normal likelihood for

each vehicle, i.e.

yi,t ∼ N (μi , σ
2
i ) (63)

and assumes for each vehicle an independent uninformative

prior, given by

p(μi , σ
2
i ) ∝ σ−2

i . (64)

For this model, the predictive distribution for vehicle i is

analytically available as

p(yi,Tn+h | yi,1:Tn
) =

Γ
(

ν+1
2

)

Γ
(

ν
2

)
√

πν(Tn+1)s2
i,n

Tn

(
1 +

Tn

(
yi,Tn+h − ȳi,n

)2

ν(Tn + 1)s2
i,n

)−(ν+1)
2

(65)

a location-scale transform of the usual Student-t distribu-

tion with ν = Tn − 1 degrees of freedom, where ȳi,n and

s2
i,n denote the sample mean and variance of yi,1:Tn

, respec-

tively. Note that this model ignores any information from all

other vehicles and is similarly evaluated by the corresponding

cumulative predictive log score.

7.5 Analysis of the NGSIM Data

We now discuss the empirical application results from the

UVB algorithm for the DPM model described above for

the NGSIM data. The posterior updates for both the clus-

ter locations, θ∗
1:N , and the indicator variables, k1:N , occur

at a sequence of pre-determined time periods, given by

T1 = 50, T2 = 75, T3 = 100, T4 = 125, T5 = 150, and

T6 = 175.

Consider first the two graphs shown in the top panel (panel

(a)) of Fig. 6. In each graph, the approximate marginal pos-

terior distributions for each unique value μ∗
j (on the left) and

σ
2,∗
j (on the right). Noting there are N = 500 marginal den-

sities for each of μ∗ and σ 2,∗, the plotted densities for each
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Fig. 6 Car lane position example from Section 7. a: Posterior approxi-

mation for each θ∗, weighted by proportion of k1:N draws. Two groups

have high posterior precision with numerous groups showing more

uncertainty. b: Posterior predictive distribution means and standard

deviations, sized according to the top 80% of k1:N draws. c: Averaged

predictive distribution for all groups in dark blue, with a random subset

of fifty per vehicle distributions in grey
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parameter are weighted according to the proportion of vehi-

cles in a sample of M = 100 draws of (θ∗
1:N , k1:N ) obtained

from the UVB approximation. That is, the weights are cal-

culated according to

w j =

M∑

m=1

N∑

i=1

I (k
(m)
i = j)

M N
, (66)

so that w j represents the proportion of the M N many sam-

pled ki values, denoted by k
(m)
i for i = 1, 2, . . . , N and

m = 1, 2, ..., M , that correspond to the given value of j . The

weights suggest that only six of the θ∗
j values account for the

majority of the vehicles, with the six weighted densities asso-

ciated with μ∗
k and σ ∗

k most prominent in the figures shown in

panel (a). In contrast, the sample of θ∗
j values that are seldom

(if ever) allocated to a vehicle and hence receive little or no

weight appear in these figures as flat lines indistinguishable

from zero.

Now turning to panel (b) of Fig. 6, a predictive distribution

for new values of y is estimated for each cluster location j ,

using the M previously simulated values θ∗
1:N . The mean of

each predictive distribution is plotted against the correspond-

ing predictive standard deviation, with the size of each point

given by w j . The fifty pairs of means and standard deviations

shown correspond to 80% of all simulated ki values, with

the results showing that the majority of vehicles belong to a

relatively small number of large and cohesive groups, each

associated with a distinct predictive mean value coupled with

low predictive standard deviation. Members of these groups

appear to stay in the same region of their lane, but with these

regions spread across both sides of the centre line. There are

also many smaller groups, having predictive means closer to

zero but with larger standard deviations, perhaps describing

idiosyncratic vehicle positioning in the region of the centre

lane.

The bottom panel plots, in grey, the individual predictive

densities associated with fifty randomly selected vehicles,

with the average predictive density over all N = 500 vehicles

in the sample shown in dark blue. Note that the predictive dis-

tribution associated with an individual vehicle will typically

itself be comprised of a mixture of components. Importantly,

many of the individual predictive densities display reduced

uncertainty, relative to the overall average.

We now consider the performance of UVB against several

competing methods. Using data up to each time period Tn , we

predict the future position yi,Tn+h, h = 1, 2, . . . , 50 for each

vehicle using four different predictive distributions described

in Sect. 7.4:

1. The DPM predictive distribution (60), with approximate

inference provided via UVB.

2. The DPM predictive distribution (60), with approximate

inference provided via MFVB,

3. The DPM predictive distribution (60), with approximate

inference provided via SVB,

4. The independent model predictive distribution (65), with

exact inference.

The mean cumulative predictive log scores (MCLS), aver-

aged across each of the N = 500 vehicles, and associated

with each of the four types of predictive distributions for

individual cars enumerated above, are plotted in Fig. 7.

The results show that, while in each case both approximate

implementations of the DPM model outperform the analyti-

cally exact independent model, the posterior dependency in

the SVB and UVB approximations greatly improves fore-

casts relative to MFVB. The UVB and SVB lines coincide,

and there is no evidence of accumulating approximation error

through the UVB recursion relative to the single model fit

of SVB. As the amount of data increases, the MFVB and

independent model log scores similarly increase. In con-

trast, the UVB inference MCLS stays at the same level: the

N ×(T6 −T1) = 62, 500 additional observations included in

T6 has not provided much marginal information to improve

forecasts relative to the original T1 fit with N ×T1 = 25, 000

observations. By construction, the DPM shares information

between vehicles, so forecasts of vehicle i are accurate even

with only T1 = 50 observations of that particular vehi-

cle. When MFVB inference is employed forecasts are only

slightly stronger than the fully independent model that does

not share information, implying that the MFVB implementa-

tion did not successfully include behaviour of other vehicles.

8 Conclusions

This paper proposes UVB, a framework for SVB inference

implemented in a sequential posterior updating setting. UVB

is a variational analogue to exact Bayesian updating, where

the previous posterior distribution, taken as the prior for the

update, is replaced with an approximation itself derived from

an earlier SVB approximation. The resulting sequence of

posterior distributions can be computed substantially faster

than those produced using repeated applications of SVB on

the expanding dataset and are amenable to many different

types of inferential activities, such as parameter estimation,

classification and prediction. In addition, the UVB-IS method

provides a further reduction in computational overheads by

exploiting information from previously updated UVB poste-

riors through importance sampling.

The relative inferential and computational performance

of posteriors resulting from UVB and UVB-IS are stud-

ied in against those that result from ‘exact’ MCMC, and

from repeated SVB, through two simulation experiments.
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Fig. 7 Car lane position example from Section 7. Mean cumulative pre-

dictive log scores (MCLS) for each model averaged across N = 500

vehicles. Each model is fit using data up to Tn , then forecasts are

made for each of the following fifty observations. The SVB and UVB

implementations are visually indistinguishable, while the MFVB imple-

mentation performs only slightly better than the fully independent

model

One experiment is focused on sequential forecasting of time

series data and the other on the progressive clustering of

observations from a mixture model. In addition, the UVB

approaches are considered in the context of the well-known

‘Eight Schools’ example, where individual school-based

information is incorporated successively. In all cases, large

computational savings can be obtained with the UVB meth-

ods; however, there is some cost in terms of predictive

and parameter inference particularly after several rounds of

updating. Whether in other applications the loss of inferential

accuracy over several implementations of UVB or UVB-IS

will be acceptable will of course depend on the context and

corresponding urgency for fast updates, it may be prudent to

‘refresh’ the updated distributions periodically with an SVB

approximation. It should also be noted that the cost in terms

of accuracy from using UVB and UVB-IS may ultimately

depend on the objective of the analysis. In cases where accu-

racy is needed in the tails of the posterior, the cost may be

large, for predictive accuracy as measured by log score, the

cost is negligible, while in our classification setting, UVB

actually outperforms SVB in terms of classification accu-

racy.

The proposed UVB and UVB-IS algorithms are well-

suited to situations where up-to-date inference for complex

probabilistic models is required whenever data arrive so

rapidly as to render MCMC or SVB infeasible, and especially

so when inference involves classification and prediction.

To illustrate this type of situation, an empirical illustration

regarding observed lane positions of vehicles on the US-101

Highway is presented using a Dirichlet Process Mixture.

In this implementation of UVB, an approximating distri-

butional family that exploits dependence between cluster

locations and indicator variables is detailed. Forecasts of

future lane positions produced using UVB are comparable

to an SVB approach. Posterior dependence is induced by

exploiting the known full conditional distribution for the dis-

crete indicator variables by using these as a component of

the approximating distribution. Inferring the model through

UVB and SVB outperform inference using MFVB, as this

method requires an independent posterior approximation.

Future research involves the application of UVB to build a

more sophisticated heterogeneous model to provide forecasts

of vehicle movement from this dataset in an online fashion—

where UVB facilitates model updates and forecasts in a short

time-frame after data arrives.

A Post-Hoc Nemenyi tests

To ensure that the differences in performance between meth-

ods, both with respect to accuracy via the log score and run

time, are significant, we employ the following procedure.

First a non-parametric Friedman test is performed on the

ranks of each method. Then post-hoc Nemenyi tests are used

to detect whether each method is significantly worse than the
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Fig. 8 AR3 example from Section 5.1. Plot showing multiple compar-

isons from the best method (according to log score) based on ranks.

Results are shown for Tn = 400 and K = 3. Here SVB is the most

accurate method according to log score. Since the intervals for UVB

and UVB-IS do not overlap with the grey region, these differences are

significant. A 95% significance level was used; however, there is no

overlap with the grey bands even for a 99% level of significance

best performing method. All p-values were less than 0.0001

indicating differences between methods were significant.

The results are presented graphically in Fig. 8 for the log

score and in Fig. 9 for run time. These results are from the

AR(3) in the simulation study in Sect. 5.1. Results are shown

for forecasts made at Tn = 400 and with K = 3 components

in mixture of normals used for the variational approximation.

In these plots, if any method has an interval that overlaps with

the grey band, then the difference in forecasting accuracy,

(or running time) is not significantly different from the best

method. It can be clearly seen that the bands do not overlap.

As such, we are confident that the number of replications

used in the simulation study is sufficiently large to ensure

differences in performance are not simply due to variation

across the replications. While omitted for brevity, similar

plots are obtained for different values of Tn and K and for

other simulation studies conducted in this paper.

B Calculation of Lateral Lane Deviation

Let xi,t denote the position of vehicle i along the direction of

travel at time t , and yi,t denote the position across the lane,

as in Fig. 10 for one vehicle travelling to the right.

For each vehicle i and time t since entering the road, with

travel originating at t = 1, the total distance travelled up to
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Fig. 9 AR3 example from Section 5.1. Plot showing multiple compar-

isons from the best method (according to computational time) based on

ranks. Results are shown for Tn = 400 and K = 3. Here UVB-IS is the

fastest method. Since the intervals for SVB and UVB do not overlap

with the grey region, these differences are significant. A 95% signifi-

cance level was used; however, there is no overlap with the grey bands

even for a 99% level of significance
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Fig. 10 Car lane position example from Section 7. Coordinate system

for one vehicle. The X−axis denotes distance travelled along the lane,

and the Y−axis denotes the relative vertical position in the lane

time t is given by

di,t =

t∑

s=2

√
(xi,s − xi,s−1)2 + (yi,s − yi,s−1)2. (67)

Using this distance measure and 100 randomly sampled vehi-

cles per lane, the two-dimensional coordinates corresponding

to the centre line of each lane are estimated via independent
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Fig. 11 Car lane position example from Sect. 7. Raw data of paths

taken by cars in the five lanes of the highway corresponding to the

application in Sect. 7. Each black line charts the path of a single car,

with 100 randomly selected cars per lane shown on the figure. The fitted

spline models for each lane used to correct for the geometry of the road

are overlaid as red lines

smoothing splines, where each coordinate is a function of

the distance travelled to that point. Each smoothing spline is

calculated using the ‘R stats’ package R Core Team 2017).

The estimated centre line for lane k, is denoted by the curve

{̂xd,k = f k
x (d), ŷd,k = f k

y (d)}, for d ≥ 0. The fitted spline

models are shown in red overlaying the raw data in Fig. 11

Excluding the vehicles used to estimate the spline models,

each of the vehicles in the dataset uses the relevant lane centre

line estimate fit from the spline model associated with its

starting lane to calculate relative coordinates {x∗
i,t , y∗

i,t }. x∗
i,t

denotes the distance travelled along the road, and y∗
i,t denotes

the deviation from the lane centre line, and are calculated by

d̂i,t = arg min
d

√
(xi,t − f k

x (d))2 + (yi,t − f k
y (d))2 (68)

x̂i,t = f k
x (d̂i,t ) (69)

ŷi,t = f k
y (d̂i,t ) (70)

y∗
i,t = sign

⎛
⎝tan

(
x̂i,t − xi,t

ŷi,t − yi,t

)−1

− tan

(
f
′,k
x (d̂i,t )

f
′,k
y (d̂i,t )

)−1
⎞
⎠

√
(xi,t − x̂i,t )2 + (yi,t − ŷi,t )2 (71)

The coordinate pair (̂xi,t , ŷi,t ) denotes the closest position of

the spline model to the actual vehicle position given by the

pair (xi,t , yi,t ). Lateral deviation y∗
i,t has magnitude equal to

that of the vector from (̂xi,t , ŷi,t ) to (xi,t , yi,t ). A negative

sign on y∗
i,t indicates that the vehicle is to the left of the lane

centre, and a positive sign indicates that the vehicle is to the

right of the lane centre.

CEquivalenceofAugmentedandMarginalKL
Divergence Gradients

Consider the augmented posterior distribution

p(θ, k|y) ∝ p(y|θ, k)p(k|θ)p(θ) (72)

and variational approximation given by

qλ(θ, k|y) = qλ(θ |y)p(k|y, θ). (73)

The corresponding KL divergence, K L[qλ(θ, k|y) || p(θ,

k|y)], is indirectly minimised using the gradient

∂K L[qλ(θ, k|y) || p(θ, k|y)]

∂λ
= −

∂L(q, λ)

∂λ
, (74)

where the gradient ∂L(q, λ)/∂λ is the score-based gradient

of the ELBO, given by

∂L(q, λ)

∂λ
=

∫

θ,k

qλ(θ, k|y)
∂ log(qλ(θ, k|y))

∂λ
(log(p(y, θ, k))

− log(qλ(θ, k|y)) dθdk. (75)

Next, consider the associated marginal posterior distribution,

p(θ |y) ∝ p(y|θ)p(θ), (76)

and consider using as the variational approximation q̃λ(θ |y)

given by the first component (only) on the right-hand side of

(73), i.e. q̃λ(θ |y) ≡ qλ(θ |y). Note that, as a consequence,

log qλ ≡ log q̃λ and
∂ log qλ

∂λ
≡

∂ log q̃λ

∂λ
. The KL divergence in

this case, K L [̃qλ(θ |y) || p(θ |y)], has gradient given by

∂K L [̃qλ(θ |y) || p(θ |y)]

∂λ
= −

∂L(q̃, λ)

∂λ
, (77)

where ∂L(q̃, λ)/∂λ is

∂L(q̃, λ)

∂λ
=

∫

θ

q̃λ(θ |y)
∂ log(q̃λ(θ |y))

∂λ

(log(p(y, θ)) − log(q̃λ(θ |y))) dθ. (78)

Here we show that (75) is equal to (78), and hence the gradi-

ent of both KL divergences are equal, and must share local

minima.
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Begin by expanding each joint density in (75) by (72) and

(73),

∂L(q, λ)

∂λ
=

∫

θ,k

qλ(θ |y)p(k|θ, y)

×
∂(log(qλ(θ |y)) + log(p(k|θ, y))

∂λ

× (log(p(θ)p(y|k, θ)p(k|θ))

− log(qλ(θ |y)p(k|θ, y))) dθdk (79)

=

∫

θ,k

qλ(θ |y)p(k|θ, y)
∂ log(qλ(θ |y))

∂λ

×

(
log(p(θ) + log

(
p(y|k, θ)p(k|θ))p(y|θ)

p(y|θ)

)

− log(qλ(θ |y)) − log(p(k|θ, y))

)
dθdk (80)

as the term log(p(k|θ, y)) is independent of λ. Then

∂L(q, λ)

∂λ
=

∫

θ,k

qλ(θ |y)p(k|θ, y)
∂ log(qλ(θ |y))

∂λ

× (log(p(θ) + log(p(y|θ)) + log(p(k|y, θ))

− log(qλ(θ |y))

− log(p(k|θ, y))) dθdk (81)

by Bayes’ Rule. Cancelling log(p(k|y, θ)) results in

∂L(q, λ)

∂λ
=

∫

θ,k

qλ(θ |y)p(k|θ, y)
∂ log(qλ(θ |y))

∂λ

(log(p(θ) + log(p(y|θ)) − log(qλ(θ |y))) dθdk

(82)

=

∫

θ

(∫

k

p(k|θ, y)dk

)
qλ(θ |y)

∂ log(qλ(θ |y))

∂λ

(log(p(y, θ) − log(qλ(θ |y))) dθ. (83)

The final expression (83) is equivalent to the marginal model

gradient (78) and the proof is complete.

DMean Field Variational Bayes
Implementation of the Dirichlet Process
Mixture

Implementation of MFVB for this model follows the offline

coordinate ascent approach of Wang et al. (2011), employing

the stick-breaking construction of the Dirichlet Process as

θ∗
j

i id
∼ G0, (84)

β ′
j

i id
∼ Beta(1, α), (85)

β ′
N = 1, (86)

β j = β ′
j

j−1∏

l=1

(1 − β ′
l ), (87)

G =

N∑

j=1

β jδ(θ
∗
j ), (88)

where δ is the Dirac Delta function. The stick-breaking con-

struction is equivalent to the CRP representation of the DP,

after marginalisation over β Miller 2018), and is similarly

augmented with the set of indicator variables k1:N . In this

case, the prior distribution is given by

ki ∼ Multinomial(β1:N ). (89)

The contribution to the likelihood from observation i is then

determined by

yi,1:T1
|θ∗

1:N , ki ∼ N

(
μ∗

ki
, σ 2∗

ki

)
. (90)

To maintain the analytical tractability of the MFVB approxi-

mation, we replace the base distribution G0 with a conjugate

prior for the normal likelihood,

μ∗|G0 ∼ N (0, 10) (91)

σ 2∗|G0 ∼ I nverseGamma(shape = α0, scale = κ0)

(92)

where α0 and κ0 are chosen to be the MLE values for the

inverse gamma distribution, estimated from 100,000 samples

of the implied lognormal(0, 10) distribution for σ 2∗ that was

used in the SVB and UVB approaches. These values are

estimated by the second algorithm of Llera and Beckmann

(2016) as

α0 = 0.15275 (93)

κ0 = 0.00102. (94)

The variational approximation employed is of the form

qλn (k1:N ,β ′
1:N , θ∗

1:N ) =

N∏

i=1

q(ki )q(β ′
i )q(μ∗

i )q(σ 2∗
i ) (95)

123



Statistics and Computing (2022) 32 :4 Page 25 of 26 4

with

ki ∼ Multinom(ρi ) (96)

β ′
i ∼ Beta(ai , bi ) (97)

μ∗
i ∼ N (γi , τi ) (98)

σ 2∗
i ∼ I nv.Gamma(αi , κi ) (99)

Coordinate ascent algorithms for MFVB consists of cycling

through in a set of equations for each parameter until the

change in each parameter is below some threshold. For this

model, the equations are given by

a j = 1 +

N∑

i=1

ρi j , (100)

b j = α +

N∑

i=1

N∑

l= j+1

ρil , (101)

ρi j ∝ −
Tn

2
Eq [log(σ 2∗

j )]

−
α j

2κ j

(
Tn∑

t=1

y2
i t − 2γ j

Tn∑

t=1

yi t + Tn(γ 2
j + τ j )

)

+ Eq [log(β j )], (102)

γ j =
10

α j

κ j

∑N
i=1

∑Tn

t=1 ρi j yi t

10Tn
α j

κ j

∑N
i=1 ρi j + 1

, (103)

τ j =
10

10Tn
α j

κ j

∑N
i=1 ρi j + 1

, (104)

α j = α0 +
Tn

2

N∑

i=1

ρi j , (105)

κ j = κ0 +
1

2

(
N∑

i=1

ρi j

(
Tn∑

t=1

y2
i t + Tn(γ

2
j + τ j )

−2γ j

Tn∑

t=1

yi t

))
. (106)

The expectations Eq [log(β j )] are available in closed form as

Eq [log(β j )] = Eq [log(β ′
j )] +

j−1∑

l=1

Eq [log(1 − β ′
j )] (107)

where

Eq [log(β ′
j )] = Ψ (a j ) − Ψ (a j + b j ) (108)

and

Eq [log(1 − β ′
j )] = Ψ (b j ) − Ψ (a j + b j ) (109)

where Ψ is the digamma function. The expectation Eq [log

(σ 2∗
j )] does not have a closed-form solution but is estimated

from samples of q(σ 2∗
j ).
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