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Abstract

Variational Bayesian (VB) methods produce posterior inference in a time frame considerably smaller than traditional Markov
Chain Monte Carlo approaches. Although the VB posterior is an approximation, it has been shown to produce good parameter
estimates and predicted values when a rich classes of approximating distributions are considered. In this paper, we propose
the use of recursive algorithms to update a sequence of VB posterior approximations in an online, time series setting, with the
computation of each posterior update requiring only the data observed since the previous update. We show how importance
sampling can be incorporated into online variational inference allowing the user to trade accuracy for a substantial increase in
computational speed. The proposed methods and their properties are detailed in two separate simulation studies. Additionally,
two empirical illustrations are provided, including one where a Dirichlet Process Mixture model with a novel posterior
dependence structure is repeatedly updated in the context of predicting the future behaviour of vehicles on a stretch of the

US Highway 101.

Keywords Importance sampling - Forecasting - Clustering - Dirichlet process mixture - Variational inference

1 Introduction

Time series data often arrive in high-frequency streams in
applications that may require a response within a very short
period of time. For example, self-driving vehicles may need
to constantly monitor the position of each surrounding vehi-
cle, predict or infer the behaviour of their likely human
drivers, and react accordingly. In this context, the most
recently received data can be highly informative for very
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short-term predictions, if the inferred models can be pro-
cessed very quickly in an online fashion. In order to account
for uncertainty in the models or predictions, Bayesian updat-
ing methods may be employed by targeting a sequence of
posterior distributions, each conditioned on an expanding
dataset. The computational demands of such an algorithm
may be improved if the incorporation of additional data does
not require the re-use of any observations that have previ-
ously been conditioned upon.

In many empirical settings, the desired Bayesian pos-
terior distributions are not analytically tractable. In such
cases, posterior inference may be obtained using Markov
chain Monte Carlo (MCMC) methods, which will even-
tually produce a (dependent) sample from the posterior.
Unfortunately, this approach typically involves relatively
slow algorithms that are incompatible with the time frames
demanded by streaming data. Further, while particle filtering
methods for sequential posterior updating have been devel-
oped both for static parameter models (Chopin 2002) and
dynamic latent variable models e.g. (Doucet et al. 2001),
these available methods appear to be too slow for practical
online use. This is particularly the case when they require
use of the entire dataset to avoid particle degeneracy and/or
when the number of inferred parameters is large. For a
recent review of particle filtering methods, see Doucet and
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Lee (2018). An alternative approach appears in Jasra et al.
(2010) and Del Moral et al. (2015), who apply Approximate
Bayesian Computation (ABC) for sequential posterior updat-
ing; however, this involves an embedded particle filter that
similarly scales poorly to higher dimensional models. Bhat-
tacharya and Wilson (2018) provide a sequential method to
update parameter inference; however, their grid-based poste-
rior evaluation is suitable only for low dimensions. Taking a
different approach, Chen et al. (2019) learn the parameters of
a so-called flow operator, a neural network that approximates
a function which maps a set of particles from a posterior dis-
tribution at one time period, and additional data, to a set of
particles belonging to an updated posterior distribution.

An alternative approach that has grown in popularity in the
recent literature for high-dimensional models is the so-called
Variational Bayes (VB) method (see Zhang et al. 2017, for a
review). VB approximates the posterior with a tractable fam-
ily of distributions, and chooses a member of this family by
minimising a particular loss function with respect to auxiliary
parameters. Early work in VB found an optimal approxi-
mation with coordinate descent algorithms for exponential
family models, an approach widely known as Mean Field
Variational Bayes (MFVB, see (Jordan et al. 1999; Attias
1999; Ghahramani and Beal 2000; Wainwright and Jordan
2008). Recent developments in VB consider gradient-based
algorithms (Ranganath et al. 2014; Kingma and Welling
2014), which allow for a much richer class of models and
approximating distributions to be utilised. These gradient-
based approaches are stochastic, and target the true gradient
of a given loss function with an unbiased estimator. We refer
to this approach as Stochastic Variational Bayes (SVB).

There is a rich tradition of using only a subset of the
complete dataset for certain aspects of VB inference, such
as for gradient estimation. Hoffman et al. (2010) and Wang
etal. (2011) propose MFVB algorithms for Dirichlet Process
Mixture (DPM) models where the optimisation of a subset
of the auxiliary parameter vector occurs through gradient-
based approaches, using a subsample of the complete data at
each iteration. Hoffman et al. (2013) and Titsias and Lazaro-
Gredilla (2014) implement this data subsampling into the
fully gradient based SVB approaches. Alternatively, Sato
(2001) considers an alternative loss function defined as the
expected value of the Kullback-Leibler (KL) divergence,
with respect to the data generating process. Any realisa-
tion from the data generating process may be used within
the MFVB coordinate descent algorithm, which is applied
online with newly observed data substituted in as it becomes
available. However, each of these approaches results in only
a single posterior distribution conditioned on data up to some
pre-specified time period 7, and do not provide a mechanism
for the approximation to be updated at a later time period
T,+1 following the availability of additional observations.
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Smidl (2004) and Broderick et al. (2013) each consider
VB approximations for Bayesian updating, resulting in a pro-
gressive sequence of approximate posterior distributions that
each condition on data up to any given time period 7,,. Their
approaches update to the time 7},4 | by substitution of the time
T,, posterior with MFVB approximations, which are feasibly
obtained due to assuming the model and approximation each
adhere to a suitably defined exponential family form. In these
special settings, MFVB is able to linearly combine the avail-
able optimally converged auxiliary parameters. While Smidl
(2004) is concerned with state space models, Broderick et al.
(2013) considers application to a latent Dirichlet allocation
problem and shows it performs favourably compared to the
approach of Hoffman et al. (2010) in terms of predictive log
score and computational time.

In this paper, we formalise and extend the SVB approx-
imation approach, developing an algorithm that we call
Updating Variational Bayes (UVB). This algorithm can be
seen as an application of the framework of Broderick et al.
(2013) to the time series setting. UVB can be applied to
sequentially update posterior distributions, and in a man-
ner suitable for applications of streaming data. UVB treats
data as arriving in a sequence, with the production of recur-
sive, but approximate, posterior distributions obtained from
conditioning on past information at nominated time points
according to a Bayesian updating scheme. The approach
delivers the approximate posterior distributions to the user
at any desired point in time, with each new update using
only the data observed since the previous update time. UVB
requires an optimisation step for each update, which may be
too slow for practical use in some situations.

To reduce the computational load of repeated updates, we
extend UVB to a second, and completely novel algorithm,
called Updating Variational Bayes with Importance Sam-
pling (UVB-IS). Significant gains in computation speed per
update can be achieved, albeit with some potential cost in
gradient estimator variance and subsequently accuracy. Our
proposed UVB-IS shares some similarities with the gradient
estimator of Sakaya and Klami (2017); however, the impor-
tant distinction is that our proposed UVB-IS is developed for
the sequential updating setting. To the best of our knowledge,
our approach is the first to exploit Importance Sampling in
an online Variational Bayes framework.

We provide two simulation studies: a small-scale time
series forecasting application, and a larger application clus-
tering time series, to compare the approximation error of
each of SVB, UVB, and UVB-IS relative to (asymptotically)
exact! inference obtained using MCMC. We also compare

' Although MCMC is also approximate inference, it is exact in the
asymptotic sense, in a way that variational Bayes is not. Hereafter, for
brevity we will refer to MCMC as being ‘exact’ rather than ‘asymptot-
ically exact.’
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the computational time required by each of the variational
approximations and show that UVB-IS is substantially faster
than either UVB or the repeated application of SVB, while
incurring only a minor cost in performance, dependent on
the application. We also demonstrate the application of UVB
and UVB-IS to a simple hierarchical model to re-analyse the
‘Eight Schools’ example of Gelman et al. (1997), and mea-
sure the increased approximation error from the updating
approaches relative to SVB in this setting.

Finally we demonstrate the application of UVB to the
problem of updating posterior inference in the context of a
DPM model. Here the aim is to provide Bayesian inference
and prediction regarding the heterogeneous behaviour of 500
drivers from the New Generation Simulation dataset (FHWA
2017), according to the distribution of their lateral lane posi-
tion. In this context, data arrive rapidly. We introduce a new
class of dependent approximating distributions and show that
the DPM model with UVB-based inference is able to provide
more accurate forecasts than those achieved using a standard
MFVB-based approach. UVB in this case has accuracy com-
parable to repeated use of (full data) SVB, but benefits from
an ability to process updates sequentially as additional data
arrives.

The paper is arranged as follows: in Sect. 2, we review
standard VB methods and the available gradient algorithms
commonly employed. In Sect. 3, we propose our main UVB
approach, with the UVB-IS extension detailed in Sect. 4.
Next, Sect. 5 contains simulation studies for time series data
and a mixture distribution, while Sect. 6 details applications
of the newly proposed methods to the Eight Schools hierar-
chical model of Gelman et al. (2014). UVB is applied to a
vehicle DPM model in Sects. 7, and 8 concludes the paper.

2 Background on Variational Bayes

Before introducing our new algorithms for recursively updat-
ing approximations to the posterior, the main ideas associated
with the implementation of an SVB approach are introduced.
A more detailed description of SVB can be found in Blei et al.
(2017), with further references provided therein.

The usual target of Bayesian inference is the posterior
distribution for a potentially vector-valued static parameter
0, as characterised by its probability density function (pdf)
denoted by p(@|y,.7). Here y,.7 denotes data observed from
time 1 to T and the posterior pdf is obtained using Bayes’
theorem, given by

p(y1.710)p(0)
Jo P1.710)p(0)do

p®lyy.r) = ey

where p(@#) denotes the pdf for the prior distribution that
characterises belief about § prior to the observation of y;.7.

Although MCMC algorithms are commonly used to produce
a (typically dependent) sample from this posterior distribu-
tion, these can be computationally intensive.

As an alternative to MCMC, VB aims to approximate the
pdf in (1) with another density of given parametric form,
denoted by ¢a (#|y.7). Here A is a vector of auxiliary param-
eters associated with the approximation, to be selected via
optimisation. We note that the approximating density g is
explicitly parameterised by A, and so its evaluation does
not explicitly require y;.;7 once an optimal value of A has
been found. However, we include the conditioning notation
to reinforce that the selected g (6]y;.7) corresponds to an
approximation of the posterior distribution in (1). This point
is particularly relevant to the process of updating VB as is
shown in Sect. 3.

In the SVB context, the family of the approximating den-
sity ga(y1.7) is held fixed, with the member of that family
indexed by the parameter vector A selected to minimise a
given loss function. Typically the KL divergence Kullback
and Leibler 1951) from g3 (0|y;.7) to p(@]y;.7), denoted as
KL[gx@|yy.7) || p@ly;.r)], is used, with

KL[grBly,.7) || p@ly;.r)] =E, [log(gr@]y,.r))
—log(p@ly;.r)] - ()

We note that the KL divergence is not symmetric, and
reversing g (0|y.7) and p(0|y.7), leads to similarities with
assumed density filtering, independently proposed in statis-
tics Lauritzen 1992) and artificial intelligence Boyen and
Koller 2013; Opper and Winther 1998) and control May-
beck 1982). Often in practice, the KL divergence in (2) is
intractable, with p(@|y;.7) only known up to a proportional-
ity constant due to the difficulties involved in the evaluation
of the integral in the denominator of (1). Nevertheless, it has
been shown that an equivalent problem to minimising the
KL divergence is to maximise the so-called evidence lower
bound (ELBO Attias 1999), given by

L(q,\) = Eg4 [log(p@®, yi.7) —log@x@ly;.7)]. (3

A further complication that typically arises when attempt-
ing to implement SVB is that an analytical expression for the
expectation in (3) may not be available. In this case, maximi-
sation of the ELBO may be achieved via stochastic gradient
ascent (SGA, Bottou 2010). To apply SGA to the problem of
maximising the ELBO, an initial value A is selected and is

recursively modified to A form =1, 2, ..., according to
AGHD — g o) 4 O£ A) @)
3X X:X(m)
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with the converged value of A*) obtained when the change
from L(q, LMY to L(q, A™EDY falls below some pre-
specified threshold Hoffman et al. 2013).

The adjustment term in (4) is made of two factors, the
so-called learning rate, ,0(’"), and an estimate of the gradient

of the ELBO, %. A popular estimator of this gradient is
the score-based estimator Ranganath et al. 2014), given by

9L(q, M) 1 )3 3 1og(gr (0 1y1.7))

A sc S“4 oA
j=1
(log(p(yi.7 8)) —log(@ @y 1) ~@) . (5)
where the simulated values {0(j ), forj =1,2,...,8} are

drawn from the presiding approximating density g, e (8| y;.7),
and @ is a vector of control variates with

ar = ™ (log(p(y1.7-0))—

al 0ly,.
10g(qA(B1y1.7)) . W) /

Tar (3 log(CIA(0|y1:T))) .
oAk

a0 <G (L)

(6)

As (5) results in an unbiased estimator of the gradient of the
ELBO, it is known that the SGA procedure will converge in
probability to a local maximum Robbins and Monro 1951),
provided that the learning rate sequence.” satisfies

oo

D p" =00 ™
m=1
and

oo

> (") < oo, @®)
m=1

We note that although SGA is itself a recursive procedure,
the result in the VB context is the one-time posterior pdf
approximation g+ ~ p(@|y,.;), where A* = AM) is the
optimal parameter.

2.1 Dependence in the approximation
Considering the vector § = (0, 62)’, the application of

SVB often employs the so-called Mean Field approxima-
tion Bishop 2006) where the approximating distribution is

2 The learning rate used for all implementations of SGA in this paper
is provided by the Adaptive Moment (Adam) algorithm of Kingma and
Ba (2014).
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factorised as

qr (01, 021y1.7) = @ (011y1.7)gx (62| y1.7)- (&)

However, SVB allows more general forms of the approximat-
ing distribution that may include dependence. In this paper,
we also consider approximation families that can exploit
cases where the posterior of a subset of parameters condi-
tional on remaining parameters is known. In this case, the
full posterior can be approximated by

(01, 021y1.7) = qr(011y1.7) p(02101, y1.7)- (10)
where the second term on the right-hand side is known (hence
the use of p rather than ¢) and only 6; requires approxima-
tion. For many models, the posterior can be decomposed
in this manner. An example is the model we consider in
Sect. 7 where we explicitly include the exact conditional
distribution. To our knowledge, the potential to exploit this
conditional approximation structure—and in particular to
include an exact component within that structure—appears
to be a novel contribution to the literature.

3 Updating Variational Bayes

We now introduce the proposed algorithm for updating VB
when data are observed in an online setting. Let 71, 75, .. . be
a sequence of time points, from which a sequence of poste-
rior distributions p(6|y.7,), p(@|y;.1,), - . ., is desired. Now
suppose that the (exact) posterior distribution for the govern-
ing (static) parameter vector @ is available, as given by its
pdf p(@|y;.7,). Our objective is to update this posterior dis-
tribution, after observing data up to, and including, time 7},4 1,
when the additional 7,,4| — T}, data points have become avail-
able. The pdf of the resulting updated posterior distribution
is denoted as p(@]y;.7, ). In an online setting, where new
data continues to appear, we will want to repeat this updating
procedure sequentially, each time updating the past posterior
to reflect all of the data, including the latest available.

The usual application of Bayes’ rule at a given time 7,41
involves a likelihood made up of 7,41 factors. However, with
the availability of the posterior at time 7},, given by its density
p@1yi.7,), the updated time 7}, posterior is given by
POy, ) < POy 41:7, Y1, O POy LT, (1D
where p(yz,41.7,,,10. ¥1.7,) on the right-hand side of (11)
is comprised of only 7,41 — T, factors.

We propose the Updating Variational Bayes (UVB) algo-
rithm for use when the evaluation of the online posterior
updating is computationally demanding. Our UVB algo-
rithm, detailed in Algorithm 1, is initialised by forming the
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variational approximation at a given time 77 as e @y1.1,)
where

T=argniin KL[gr,@lyr.) 1| p@lyy)] 12)
1

At this first stage, we simply approximate the first posterior
p(@y;.7,) with the optimised distribution as in SVB, namely
g+ (01y1.7,). Importantly, this first update depends only on
the first set of observations, y.7;, through the choice of the
optimal parameter, A}.

In general then, after approximating the posterior at time
T, with g, (0]y,.7,) and observing additional data up to time
T,+1, UVB replaces the posterior construction described by
(11) with the available approximation,

BO1yLr,) < pOr 17, 00 Oly1.7,)- (13)

This defines an alternate target distribution, p(0|y;., 1)
referred to as the ‘pseudo-posterior’ at time 7, 1.

The objective for each update is to find Ay ; (and hence
e, (81y1.7,,,)) through the minimisation of the KL diver-
gence to the corresponding pseudo-posterior, resulting in

A= argirnlifll KLlgxr,,@lyi.g,.) Il p@Olyi.1,, )]
(14)
foreachn =1, 2, .. .. The sequence of distributional families

qxr;» qr,, - - - » may differ at each time period, though we note
it is convenient to hold the family fixed.

Algorithm 1: Updating Variational Bayes (UVB)

Input: Prior, Likelihood.
Result: Posterior approximation at 77.
Observe yy.7, -5
Minimises K L{gx, (@1y1.r,) || p(@]yy.7,)] using SGA via (5).;
forninl,...,7 —1do
Observe next data yg 1.7, -
Use g3, (9|.YI:T,,) and (13) to construct the UVB
pseudo-posterior up to proportionality.;
Minimise K L[qy,., (0|)’1:Tn+1) || ﬁ(9|}’1;r,,+, )] using SGA
via (5).;
end

We note some important features of the proposed UVB
algorithm compared with an SVB implementation. First, at
time 7,41 an SVB implementation would target the exact
posterior p(0|y1:Tn+1) X p(Yi.7,, |6) p(@) whereas UVB
instead targets an alternate pseudo-posterior distribution in
(13). Second, at time 7,1, the evaluation for UVB corre-
sponding to (5), which conditions on all available data yr,_,,
is composed of only 7,41 — T}, factors, since the earlier data
y1.1,, have already been incorporated in the previous update

which forms the new prior, as shown in (13). Hence, the com-
putational complexity of UVB has rate O (7,41 — T,) rather
than rate O (7},41), i.e. computing UVB is not increasing in
the number of observations for equally spaced intervals, as
is the case for SVB. Third, unlike SVB, the UVB algorithm
can begin even when only part of the data has been observed,
making it well-suited to online applications. Further, the pre-
vailing optimal value of A,,, denoted A", could be used as the
UVB starting value for the optimisation at time 7}, as long
as the class of approximating distributions ¢ is the same for
each update. This may reduce the number of SGA iterations
required for the UVB algorithm to converge.

While posterior parameter distributions that result from
each iteration of UVB are relatively fast to compute, with
each update there will likely be some loss of accuracy, partic-
ularly with regard to the tails of these distributions. However,
a loss of accuracy in posterior distributions for parameters
need not imply a large loss of accuracy in posterior predic-
tion distributions, as measured by a scoring rule. This sort
of finding has been seen before in other approximate infer-
ential settings, including for SVB (see, for example (Gefang
et al. 2019; Gunawan et al. 2021). We investigate the trade-
off between computational speed and forecast accuracy in a
simulation setting in Sect.5.1.

For applications involving very long time series, the dete-
rioration of the accuracy of UVB and UVB-IS relative to
SVB will eventually offset any earlier computational gains.
In these settings, it is advised to run either SVB or MCMC at
regular intervals to ‘refresh’ the approximation. For instance,
if updates are required every minute, perhaps a full MCMC
could be run offline at the start of each day to avoid the accu-
mulation of approximation errors. The regularity with which
to run exact inference will be context specific.

Where the objective of the analysis is classification using
a mixture model, the misclassification rate may be similarly
robust to inaccuracies in the tail, such that the computational
gains of our proposed sequential method are worthwhile.
This is explored in a simulation setting in in a simulation
setting in Sect. 5.2.

Before exploring these aspects, we introduce a modified
approach whereby the computational speed may be further
improved, albeit potentially with some additional loss in
accuracy. This modified approach, referred to as UVB with
Importance Sampling (UVB-IS), is described in the next sec-
tion.

4 UVB with importance sampling
An application of UVB up to some time 7,, involves SVB
inference at time 77 followed by n — 1 updates, for a total

of n applications of SGA optimisation. Repeated updates
may incur a significant computational overhead relative to

@ Springer
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SVB, which applies only a single SGA algorithm using all
data up to time T,. In this section, we address this problem
and explore the possibility of achieving large computational
gains per update through the incorporation of ideas from
importance sampling. (For a general overview of importance
sampling, see Gelman et al. (2014).) Before introducing our
UVB with Importance Sampling (UVB-IS) algorithm, we
briefly review the incorporation of importance sampling into
SGA, as introduced by Sakaya and Klami (2017).

Temporarily suppressing the subscript 7 on the given time
period T, the m'" iteration in the SGA algorithm for a given
target VB posterior changes A to A"+ via § simulations
of 8™ from g, (8yy.7) as per (5). For each of these simu-
lations, the log-likelihood, log-prior, and additional terms
involving g, m (0]y.7) must be evaluated. Note that, for
large scale applications this computation is dominated by
the 7' terms in the log-likelihood.

In the subsequent SGA iteration from A7 +1 to A"+2),
the evaluation of the log-likelihood requires a new set of S
simulations 8"+ from g, m+1 (0]y1.7). Sakaya and Klami
(2017) note that as the change from A" to A"+ is likely to
be small, the distributions g, m) (0]y1.7) and g, m+1 (01y1.7)
will likely be similar. Using this motivation, an alterna-
tive gradient estimator is suggested for each iteration k =
m+1,m+2, ..., m+r viaan importance sampler that uses
q,m (0]y.7) as a proposal distribution, rather than generat-
ing new draws of @ from each g, « (6|y;.7). This approach
retains the set of samples 0 and their associated log-
likelihood values, only resampling @ and re-evaluating the
corresponding log-likelihood at iteration m 4 r + 1. In the
SVB context, the value of r should not be taken to be too large,
as substantial differences between A and A" *") may lead
to a corresponding increase in the variance of the resulting
gradient estimator.

In the context of UVB, we sequentially update the poste-
rior approximation at each time 7,, via repeated applications
of SGA. As before UVB-IS holds the family of the approx-
imating distribution ¢, fixed between each update, and sets
the initial value of the parameter vector at time 7,41 equal
to the optimal value from the previous update, i.e. we set

X,(llll = A;. During the subsequent application of SGA,
the sequence of parameter vectors )»fllil, )”5321’ el X: 41

corresponds to a sequence of distributions moving from
qr:(01yy.1,) to D, (@1y1.7,,,)- For repeated updates with
small values of T, 1; — T,, the new information about 6
in yr,.7,,., will typically be relatively small, and unless
there is a structural change in the data process, we expect the
approximating distributions will become similar.

The above observation motivates the addition of an impor-
tance sampling gradient estimator to be applied for each
update. In each update using the SGA algorithm at time 7,41,
all of the requisite gradients are estimated via importance

@ Springer

sampling, using the previous UVB posterior gy = (0]y.7,) as
the (identical) proposal distribution. The consequence of this
approach is that only S samples of @ are required for the entire
SGA algorithm, and thus the likelihood is evaluated S times
in total, rather than S times per iteration (or S times per r
iterations in the case of Sakaya and Klami (2017)).

Suppressing the SGA iteration superscript index (), the
UVB-IS gradient estimator is derived from the score-based
estimator implied by (5). In this case, the updated joint dis-
tribution, given by p(yz, 1.7, 01¥1.7,), is replaced by an
expression proportional to (13), with

0L(q, Any1)
O, Ant 1) /qkn+l(o|y1:n+l)f(o)do, (15)
0Ant1 0

where

dlog(gn, 1 1Y1:7,.,)
81n+1

POT 41T Oy
log —a).
L]x,,+1(9|J’1;T,H1)
Multiplication and division of the integrand in (15) by

qr: (01yy.7,) allows it to be written as an expectation with
respect (o gy (01y1.7,);

f0) =

LG, hit)

D O1y1:7,,,)
—/f]x;;(0|y1;Tn)—+l —
8)Vn—&-l 0

0)deo,
ar:@lyr.r,) 7@

(16)

Hence, (16) may be estimated via a Monte Carlo average,

0L(q, Any1)
OAnt1 s

S
= < wO) F0) a”
=1

since 0 ~ gy (8]y,.7,) and

P 01y 17, )

w(g(j)) — i
a0V y1.z)

(18)

with @ estimated as per Eq. (6).

Since only the value of A, changes in each iteration of
SGA, and the S sampled values 8/) are held fixed, only the
terms involving A, 1, namely
i 10g(qn,,, 0V 1y1.7,,,)) and g, 0V |yyp,, ), are
required to be calculated.

The variance of the UVB-IS gradient estimator is increased
relative to the score-based gradient estimator in (5) due
to the presence of the importance sampling weights. This
increased variance may result in a reduction in the accuracy
of e, (@1yy.7,,,)- This is due to the fact that the algo-
rithm stopping criterion, which is a sufficiently small value of
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|L(q, A" tD) — £(g, A?™)| can only be evaluated approxi-
mately by a noisy estimator, also produced via an importance
sampler. As the computation per iteration is extremely small,
S may be set to a larger value to reduce the variance, thereby
allowing the user the capacity to balance the inevitable trade-
off between computational time and approximation accuracy
to suit their requirements. Provided there is no major struc-
tural change in the data generating process, it is expected that
the distributions g+ (0|y;.7,) and D, 01yy.7,,,) become
more similar as n increases, subsequently reducing the UVB-
IS gradient estimator variance.

A potential disadvantage of using importance sampling is
for the variance of the gradient to increase with each itera-
tion of stochastic gradient ascent. This is likely to be offset
by a reduction in the variance of the gradient as more data
are observed with each update. As a check on whether the
importance sampling is working well, we recommend run-
ning stochastic gradient ascent without importance sampling
on the first block of data and computing the variance of the
gradient after a small number of iterations (e.g. 30-50). This
can then provide a threshold which the variance of the gra-
dient computed by importance sampling should not exceed.

The proposed UVB-IS algorithm is summarised in Algo-
rithm 2. Figure 1 provides a diagram to help illustrate the
differences between the approach of Sakaya and Klami
(2017) to UVB-IS. In panel (a) of Fig. 1, each block indi-
cates r separate iterations of SGA, each undertaken over an
entire sample of length 7', with arrows indicating that the
final iteration of each block is used as an importance sam-
pling proposal distribution for the entire next block. That
is, there is one SGA algorithm applied for all data, but the
importance sampling distribution changes every r”* iteration
until convergence is reached. In panel (b) of Fig. 1, three dis-
tributional updates using UVB-IS are depicted. In this case,
the posterior itself is updated periodically, as indicated by
arrows and corresponding to times 77, T, and T3, with the
same importance sampling distribution used for all SGA iter-
ations needed to complete a single distributional update.

5 Simulation studies

To investigate the trade-off between the computational effi-
ciency and accuracy of different methods, we consider two
simulated examples. The first is a time series forecasting
application, while the second is a clustering example based
on a mixture model. As well as considering both of the pro-
posed algorithms (i.e. UVB and UVB-IS) we also consider
a standard SVB approach and an exact MCMC algorithm,
based on a Random Walk Metropolis-Hastings strategy (see
(Gilksetal. 1995a,b), and (Garthwaite et al. 2016), employed
using all data observed up to each relevant time point.

Algorithm 2: UVB with Importance Sampling (UVB-
IS)

Input: Prior, Likelihood.

Result: Approximating distribution at 77 .

Observe yy.7, -3

Minimises K L[gx, (01y;.7;) |l p@|y;.1,)] using SGA via (5).;

forninl,..., 7 —1do

Observe next data yr, 1.7, ,

Sample ) ~ @ @lyy.p) for j=1,2,...8;
Evaluate p(y7,41.7,,, 10¢)) and qr (G(j)lyl:Tn) for each j.;
Set ).,(L)l toA).;
Minimise K L[qgy,,.,, (0|yl:Tn+1) || ﬁ(ﬂlyl:T”H)] using SGA
via (17).;

end

5.1 Time series forecasting

In this first simulation study, we consider R = 500 replica-
tions of time series data, with each comprised of T = 500
observations simulated from the following auto-regressive
order 3 (AR3) model, given by

Ve= u+od1(y—1— ) +¢2(yr—2 — 1)
+¢3(yi—3 — ) + e (19)

where e¢; ~ N (0, o). For each replication, the true values
of the parameters are obtained by drawing u and each auto-
regressive coefficient, ¢, ¢, and ¢3 from an independent
N (0, 1) distribution, accepting only draws where each ¢ lies
in the AR3 stationary region. The precision parameter, o 2,
is drawn from a Gamma distribution with both shape and rate
equal to five.

The inferential objective is to progressively produce the
one-step ahead predictive densities, each based on a UVB
approximation to the target posterior distribution that results
from assuming data arises from the AR3 model above, with a
prior distribution specified for @ = {i, ¢1, ¢2, ¢3, log(c?)}.
The prior distribution for the parameter vector is taken as
0 ~ N(0s, 10I5), where 0, and I; denote, respectively, the
d—dimensional zero vector and identity matrix. In partic-
ular, we aim to produce UVB-based approximate one-step
ahead predictive distributions progressively, using at time
T, all (and only) data up to and including time period
T,, recursively for each of the 21 time periods given by
T, = 100, 125, 150, ...500. That is, the first target pre-
dictive distribution is given by p(y101|¥1.199), followed by
p(y126]¥1.125), and continuing on to the final predictive
P(¥5011¥1.500)- For each update, predictive distributions are
approximated with g taken as a K —component mixture
of multivariate normal distributions. Diagonal covariance
matrices for each normal are assumed; alternatively, a sparse
structure Tan and Nott 2018) or a factor structure (Ong et al.
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1 T

[ ] 1 iteration

r iterations

r iterations

{ r iterations

(a) Sakaya and Klami (2017)

Fig. 1 Graphical illustrations for importance sampling in VB algo-
rithms. a: The approach of Sakaya and Klami (2017). Each block
indicates r iterations of a single implementation of the SGA algorithm,
with arrows indicating that the final iteration of each block is used as
an importance sampling proposal distribution for the next r iterations
contained in the subsequent block. b: The UVB-IS algorithm, where

2018) could be employed. The results are compared using
three different choices of K, with K = 1,2 and 3. This
strategy allows us to compare the approximation accuracy of
the simple K = 1 distribution that may not adequately cap-
ture the entire posterior distribution as well as more complex
approximations. In all cases, the convergence criterion is to
compare the mean of objective function from the last five
iterations to the five iteration before that, and to stop if the
difference is less than 10™* times the number of parameters.

For the cases involving SVB and UVB, the score-based
gradient estimator (5) uses S = 25 draws of #; however,
we use a larger number of draws for UVB-IS to offset the
increased variance, setting S = 100. Finally the MCMC
benchmark comparison is based on 15000 posterior draws,
with the first 10000 discarded for ‘burn in’. In each approach,
we allow {¢1, ¢», ¢3} to take any value in R3, so the posterior
distribution for these parameters is not restricted to the AR3
stationary region.

Under the posterior given by p(0]y,.7, ) together with the
conditional predictive densities implied by (19), the one-step
ahead predictive density is given by

p(yr,,+1|y1;rn)=/0p(yr,,+1|y1;rn,0)p(0|y1;Tn)d0- (20)

Given our UVB approximation to the posterior at time
T,, we approximate the integral in (20) using M draws
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1 I T T

(b) UVB-IS

each block indicates that SGA is applied three times, once for each of
three distributional updates corresponding to an increase in data. For
an update, indicated by an arrow, a sample from the pseudo-posterior
distribution corresponding to the previous update is used as proposal
draws in every iteration of the SGA algorithm

0 ..M ~ qrx(0]yy.7,). with the resulting marginal pre-
dictive density estimate given by

M
~ 1 )
POTlyin) ~ 57 D pOTly, . 00). @1

i=1

The forecast accuracy associated with the resulting approx-
imate predictive density is measured using the cumulative
predictive log score (CLS) for the update at time 7},, given
by

n
~ bs
CLS, =Y log(Bl N1y 17D, 22)
j=1

forn = 1,2,...,17, where y(TZTf denotes the realised
(observed) value of y7,y1. In particular, we compare the
mean CLS (MCLS) over R = 500 Monte Carlo replica-
tions, for each approximation method and each given value
of K, at consecutive update times 7,, € {100, 125, ..., 500}.
The results are displayed in Fig. 2, where each row indicates
a different (known) value of K. Panel (a), on the left-hand
side, the MCLS value is displayed relative to the MCLS value
obtained using MCMC inference at each incremental values
of T, +1 =101, 126, ..., 501. As greater values of indicate
better forecast accuracy, it is not surprising to find that each
of the approximate VB method produces a lower relative to
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Fig. 2 AR3 Simulation from Sect. 5.1. (left): Forecast accuracy,
indicated by one-step-ahead mean cumulative predictive log scores
(MCLS), corresponding to incremental updates under competing meth-
ods (SVB, UVB and UVB-IS) relative to MCMC. Higher values of
MCLS indicate better forecast accuracy. (right): Computational effi-

exact (MCMC) inference. Amongst the approximate meth-
ods, repeated SVB performs the best, in terms of, followed
by UVB and UVB-IS at K = 1, though these differences are
less severe as K (and the model complexity) increases.’

To investigate the computational efficiency of differ-
ent methods, we compute the relative cumulative mean
runtime (RMCR), for each considered algorithm (SVB,
UVB and UVB-IS), again over updating times 7, €
{100, 125, 150, ..., 500}. Each of these sequences repre-
sents an average over R = 500 independent Monte Carlo
cumulative runtimes from the relevant algorithm, reported as
a multiple of the average runtime of the SVB algorithm for a
single update at 71 = 100 and with a single mixture compo-
nent K = 1. For all three methods considered, at update time

3 To check that these differences are not a result of variability across
the 500 replications we conduct non-parametric Friedman and post-hoc
Nemenyi tests with details discussed in “Appendix A”.
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SvB UVB == UVB-IS

ciency, indicated by relative mean cumulative runtime (RMCR), again
corresponding to incremental updates under competing method (SVB,
UVB and UVB-IS), each reported relative to the mean runtime for SVB
when K = 1 and 7,, = 100. Lower values of RMCR reflect improve-
ments in computational efficiency

T,,+1 the optimal value of the variational parameter obtained
at time T, is used as the starting value for the optimisation.
The RMCR values obtained are reported in Panel (b) of Fig.
2. Note that for n > 1, the SVB approximation at time 7},
requires an application of the SGA algorithm using all data
observed up to 7},, while each of the updating methods begin
with an SVB approximation at 77, followed by n — 1 pro-
gressive updates each using only the new data observed since
the previous update period. As can be seen in the top row of
Panel (b), the RMCRs are all identical and equal to one at the
first update time 77 = 100 and all increase over consecutive
updates. While all three methods show an increase in RMCR
with each update, the SVB method appears to be least effi-
cient, while substantial improvements in computational time
accrue from using UVB-IS.

In this setting, the amount of data in each update is rel-
atively small, and UVB increases the runtime compared to
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SVB. This is due to the computational overhead of n SGA
applications not being offset by a reduction in the number
of log-likelihood calculations. In contrast, UVB-IS achieves
sizeable computational gains despite showing minimal loss
in the corresponding MCLS for K > 1.

To illustrate the reduced variability in subsequent UVB
gradient estimators, Fig. 3 displays the median variance
of the gradient estimator for the posterior mean parameter
u, for UVB with § = 25, and for UVB-IS with each of
S = 25,50, 100 and 200, all monitored over six selected
update periods. At 77, all algorithms implement SVB with
arbitary starting values for XEI). This causes extreme, but
declining, variance until convergence is reached. This pat-
tern is typical for SVB inference. In subsequent time periods,
each updating method sets the starting value at Xﬁ,l) =1,
The estimated variance is subsequently orders of magnitude
smaller than SVB. For small values of n the distributions
qrx 01y;.7,) and ql<,,,)l (01y,.7;,) may differ as m increases,
causing a reduction in the effective sample size associated
with the gradient estimator, and an increase in the UVB-IS
estimator variance. This effect is visible at times 7>, T3, and
Ts, though the UVB-IS estimator variance is low relative to
SVB despite this inefficiency. Furthermore although the vari-
ances of the gradients estimated by Importance Sampling are
high (with a median value reaching around 30 for 75 and 73),
this is still orders of magnitude lower than for SVB with-
out importance sampling at 7. For this application, UVB-IS
passes the check recommended in Sect. 4.

5.2 Mixture model clustering

In the second simulated example, we consider the case where
repeated measurements are simulated on N = 100 cross-
sectional units at each of 7 = 100 times. The measurements
for a given unit follows one of two possible DGPs, with the
objective being to cluster the units into the correct groups,
according to the underlying DGP, with additional observa-
tions of each cross-sectional unit accumulating in an online
fashion as time increases. Each of these scenarios was then
replicated R = 500 times.

For each independent replication, we generate data y; ; as
the measurement of unit ; at time ¢, fori = 1,2, ..., N and
t=1,2,..., T as follows. We first define the cluster indicator
for unit 7 as k;, and generate these for a given probability
0 < m < 1 according to

kil "X Bernoulli (), (23)

where i.i.d abbreviates independent and identically dis-
tributed. Then, conditional on k; we let

. ind
Vialtki = j).pj. 0} = N(uj. o), (24)
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for j = 0, 1, with ind short for independent. For this exer-
cise, we set 1 = 0.5, with the replicated values of g and uq
independently drawn from an N (0, 0.25) distribution, while
ag and 012 are independently drawn from a uniform distribu-
tion over the interval (1, 2).

Having simulated the data, the actual values k; are retained
for each replication. We then use the UVB algorithm of
the described model with the simulated data, as if all N
units were being observed online at increasing times 7,, =
10, 20, 30, ... 100. The aim of the exercise is to cluster the
units into two groups aligning with the true, but ‘unobserved’
value of k;.

The Bayesian updating analysis proceeds as follows.
Denoting the collective parameter vector as § = { log(aoz),
log(alz), o, 1 }, the joint prior for @ and 7 used at T is
given by independent components

0 ~ N(04, 10I4), and (25)
m ~ Beta(a, B). (26)

Note that the model for 7 in (23) and the prior in (26)
imply that the k; are independent a priori, with marginal
probabilities given by

B(j ,B—Jj+1

27)

for j = 0,1, where B(-,-) denotes the Beta function.
Hence we have marginalised out the ‘unknown’ value of
7, and can now proceed to updating the prior in (27), for

eachi = 1,2,..., N, on the basis of information at times
T, = 10, 20, ..., 100.
Denoting yi,lITy, = {yi,llt = 1, ey Tn} and yl:N,lZTn =

{¥i1.1,5 1 = 1,... N}, the initial augmented posterior distri-
bution is given by

N
p@. kinyiy ) < p@O) [ [ pin 0.k = ))
i=1

x Pr(k; = j), (28)

with each likelihood p(y; ;.7, 10, ki = j) given by the prod-
uct of densities associated with (24) and the value of ;.

Due to the conditional independence of the components
of @ and the cluster indicators, subsequent posteriors at times
T,+1 are approximated by

N
PO, kinlyin 1.1,,,) & Hp(yi,Tn+1:T,,+1 0, ki = /)
i=1

x Pr(ki = j1y1n.17,)PO1Y 1N 1.1, (29)
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Fig. 3 AR3 example in Sect. 5.1. Median gradient estimator variance
for the first 100 SGA iterations, with colour indicated by the acronym
(either UVB or UVB-IS) followed by the value of S. Both UVB and

UVB-IS algorithms have arbitrary starting values at 77, denoted as lgl) s
where the estimated gradient exhibits high variance. The starting value

at time 7,, is set to the previous optimal value, i.e. Xf,l) = )”271- Since
only a subset of time periods are presented here, the variance corre-

where the latent class probabilities, Pr(k; = j|y;.n 1.7,), are
estimated before updating with

M

~ . 1 ;

Pr(ki = jlyinr,) & 37 > Py, 00 ki = )
=1

x Pr(k; = j), (30)

with 00 ~ p@ly .y 1) forl =1,2,..., M.

As in Section 5.1, the UVB and UVB-IS algorithms
are compared to standard SVB and MCMC. Each of these
approaches utilises an approximation to the augmented pos-
terior of the form

sponding to the previously converged value of A is not shown for each
update. For example, the gradient variance corresponding to Agl) is
shown but not 3. Since the variance falls dramatically with each update,
different y-axis scales are used at at subsequent update times. Conse-
quently, the variance of the UVB gradient estimator is reduced relative
to SVB, though the UVB-IS variance increases slightly for small n and
large iteration index m

[7) (07 k12N|yl:N,l:Tn+1) = At (0|yl:N,1:T,,+])
N
X l_[Pr(ki = Jjlyin11,)s (31)

i=1

where ‘Iln+1(0|J’1:N,1:T,,+1) isa K = 1,2, or 3 component
mixture of multivariate normal distributions and the ") sam-
ples used to estimate (30) are simulated from the previous
approximation gy, (0y .y 1.1,)-

The form of the approximation used in (31) is chosen due
to the fact that the gradient of the augmented divergence,
KLlgr, 0, ki:nlyinr,) || PO, kinlyin iz,)] is
equivalent to the gradient of the marginal divergence,
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KL[g,®ly;.n1.7,) || P@|yi.n1.7,)], and hence the
same approximation can be found by instead targeting the
marginal posterior distribution,

p@lyi.n1.1) x p@)

N 1
[T pirnl0. ki = ) Priki = j) | .

i=1 \j=0

(32)

or its updated form

N 1

POy 17,,,) X l_[ <Zp(yi,Tn+l:T,,+| 0. ki = j)

i=1 " j=0

xPr(k; = j|y1:N,l:Tn)P(0|y1:N,1:Tn)>- (33)

At each update, we estimate class labels for k; according
to

ki = argmax Prki = j1y1.y 1.7,)s (34)
J

and assign a classification accuracy (CA) score at T;,, given
by

N N
1 _~ 1 P
CA, = max (ﬁ ; Ikin=k), ~ ; [(kip # k,-)) ,
(35)

the proportion of successful classifications up to label switch-
ing. SVB and UVB gradients are estimated from § = 25
samples of @ per iteration, while UVB-IS sets S = 100.
The results for this problem are displayed in Fig. 4, where
each row corresponds to a different value of K. Panel (a)
displays the mean classification accuracy (MCA), corre-
sponding to updates at times 7,, = 10, 20, ..., 100 and across
R replications. As in the previous study, each variational
approximation reduces accuracy relative to exact inference.
In this example, UVB and in some instances UVB-IS are
more accurate than SVB, with little change apparent in any
variational approach between different values of K. This
resultis somewhat puzzling since UVB and UVB-IS do intro-
duce further approximation compared to SVB. One possible
explanation is that by failing to capture the thickness of the
tails in the posterior, UVB ‘implicitly’ imposes an empiri-
cal Bayes prior with thinner tails for the following update.
Priors (and posteriors) with thinner tail may improve the per-
formance with respect to classification accuracy, especially
for observations near the decision boundary.* This finding
may be idiosyncratic to this example, and in general, it seems

4 We thank an anonymous referee for making this point.
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unrealistic to expect UVB and UVB-IS to substantially out-
perform SVB.

As in the previous section, Panel (b) of Fig. 4 displays
the RMCR for each VB method using data up to 7,,, for
T, = 10,20, ..., 100, calculated relative to the mean run
time of the SVB algorithm fitting a single mixture at the ini-
tial update time, when 7,, = 10. As the problem features
a large number of cross-sectional units, the computational
cost of calculating the log-likelihood dominates the gradient
estimation. Processing smaller amounts of data, and having
a reduced gradient variance lead to reduced computational
time for both UVB and UVB-IS relative to SVB, particu-
larly in the case of UVB-IS. Despite the updating methods
consisting of 10 SGA applications while SVB uses only one,
UVB and UVB-IS require, on average, 14.7%, and 4.6% of
the computational time of SVB, respectively, in the top right
panel when K = 1 at time 779 = 100.

6 Eight schools example

In this section, the so-called Eight Schools problem described
in Gelman et al. (2014) is considered. This problem analyses
the effectiveness of a short-term coaching program, imple-
mented independently by each of eight studied schools, for
the SAT-V test.’ Forstudentsi = 1,2,..., N j ineach school
j=1,2,...,8, consider the linear regression

SAT-V,‘J Zﬂ(),j + ,BLjCOach,‘,j + ,Bz,jPSAT-V,‘,j

+ B3, PSAT-M; ; + € ; (36)
where Coach; ; is a dummy variable indicating a student’s
inclusion (or not) in a coaching program run by their school,
alongside control variables PSAT-V; ; and PSAT-M; ;,
corresponding to each student’s scores in the verbal and
mathematical preliminary SAT, respectively.

Following Gelman et al. (2014), the estimated school-level
coaching coefficients that correspond to the ordinary least
squares estimators are taken as the observations, y; = ,B] s
for j = 1,2, ...8, and have approximate sampling distribu-
tions given by
yjloj. 07 ~ N(©;.07). (37)
where 6; is the latent ‘true’ effectiveness of school j’s
coaching program. The standard deviation of the sampling
distribution, o, is assumed to be known and is held fixed at
the standard error estimated by the relevant regression, with
each having taken account of the individual school sample
size Nj.

> The SAT-V is a standardised aptitude test commonly taken by high
school students in the USA.
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Fig. 4 Classification example in Sect. 5.2. (left): Mean Classification
Accuracy (MCA) for each inference method, higher is better. (right):
Relative mean cumulative runtime (RMCR) for each updating method.
Average runtimes for each updating algorithm are reported relative to
the average runtime required for SVB at 77 and with K = 1, with

Again following Gelman et al. (2014), we apply a hierar-
chical prior to the population mean values in (37), assuming
that the 0; themselves are random and iid from a Student-¢
distribution,

Qj—,l,b

~t(v) (38)

where v is the degrees of freedom, fixed at v = 4. The hier-
archical model also employs the uninformative hyper-prior

plp, ) o1, (39)

over positive values of t, and both positive and negative val-
ues of w.

Collecting the unknown school means together and denot-
ingby@01.3 = {61, 62, ..., 03}, the posterior distribution of all
unknowns and based on the observed values from all schools

20+

15+

10+

[$)]
L

Relative Mean Cumulative Runtime (RMCR)

10 40 70 100
Observations per unit (Total 100 Units)

SvB UVB == UVB-IS

lower RMCR values preferred. Both UVB and UVB-IS perform better
than SVB in terms of classification accuracy and are also much faster,
as computation of the data likelihood is a large part of the gradient
calculation in this scenario

is then given by

8
pOis. . tlyrg) o [ pjl6j. oHp@jlt. ). (40)
j=1

It is feasible to obtain this posterior exactly, via MCMC,
for example using the algorithm provided in the statistical
modelling platform Stan, (Stan Development Team 2018).

Our aim here is to demonstrate the application of UVB and
UVB-IS to this hierarchical model, where with each update
we sequentially ‘observe’ an additional school, as indicated
by the inclusion of an additional observation y;. Each vari-
ational algorithm approximates the progressive posterior by
the multivariate normal distribution gy, (01.,, i, T|yy.,), for
n = 1,2, ..., 8. The initial distribution approximation at 7}
for UVB and UVB-IS is given by the multivariate normal
distribution (01, 1, 7|y1) where
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[ =argmin K Llgy, 61, i, Tly)) 11 pO1, 1, Tyl
1
(41)

Updates at further ‘times’ 7,41 = n+1,forn =1,2,...,7,
involves sequentially adding schools to the model targetting
the pseudo-posterior distribution, given by the decomposi-
tion

PO g1, 1, TY 1) < POngt|0n41) pGnsrlie, )
X g @1, 4, T Y1) (42)

Either UVB or UVB-IS then may be used to obtain
the updated approximate posterior, given by e, @ 1:0+1,

M, T|y1:n+l)’ with
Ay = arginin K L{gr, 0 Otn+15 4 T Y 1ng1)
n+1
[l POrn+1, it TVt D], (43)

forn =1,2, ..., y. As each update adds a new variable 6,
to the model, the optimal vector A, ; updates the auxiliary
parameters associated with the pseudo-posterior distribution
for 6,41 together with the previously included variables u, 7,
and 61.,. We note that our implementation of UVB-IS here
employs a hybrid strategy utilising importance sampled gra-
dients (17) for simulations of 1, 7, and 1., from the previous
qrx (@1:1, 4, T| ¥1.011)» and score-based gradients for 6,1,
as per (5). The score-based gradients use samples generated
from 0,11 ~ g, Onr1ly1nr1> 4, T, 01:4), Which is avail-
able as this variational approximation was chosen to be a
multivariate normal distribution.

We compare approximations that result from using UVB
and UVB-IS, relative to the sequential implementation of
SVB, following the incorporation of data from each new
school. As the ordering of the inclusion of schools is arbi-
trary in this example, we report results that are averaged
over a randomly selected 100 of the 8! = 40, 320 possi-
ble permutations of school sequences. For each ordering,
the variational posterior g» (0 1.+1, i, T|y1.,41) is compared
to the exact posterior p((01.n+1, 4, TI1Y1.,41) in (40), each
calculated using 10,000 MCMC sample draws retained fol-
lowing a burn-in period of 10,000 iterations.

The average Hellinger distances between different vari-
ational marginal posteriors and their exact counterparts,
for each school specific effect are summarised in Table 1.
In all cases, the Hellinger distance is computed between
each marginal posterior produced using MCMC and the
corresponding posterior produced using one of the three
variational methods. The Hellinger distance is estimated by
noting that squared Hellinger distance is, up to a multiplica-
tive constant, a special case of a Tsallis divergence. We then
use the f}m estimator based on a von Mises expansion pro-
posed by Krishnamurthy et al. (2014). We note that while
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Table 1 Eight Schools example from Sect. 6. Average Hellinger dis-
tance between the marginal posteriors obtained via MCMC and those
obtained by SVB, UVB and UVB-IS. Lower values are better.

Parameter SVB UVB UVB-IS
61 0.022 0.218 0.612
(2 0.002 0.048 0.590
63 —0.007 0.147 0.539
04 0.004 0.054 0.548
05 0.012 0.096 0.511
23 0.008 0.084 0.470
67 0.006 0.106 0.657
63 0.004 0.119 0.571

The differences between methods are statistically significant for all
parameters—see the discussion in “Appendix A”

this estimator is consistent, in finite samples, negative val-
ues of the estimate are possible when two distributions are
extremely close in Hellinger distance. Table 1 shows that for
an example where the objective of the analysis is parameter
inference, rather than prediction or classification, the result-
ing approximate posterior inference can deteriorate when
UVB or UVB-IS is used relative to SVB. This is likely due
to the errors in the variational approximation, particularly in
the tails, accumulating with each update. We therefore rec-
ommend caution when using the UVB and UVB-IS purely
for parameter estimation rather than forecast accuracy.

7 Lane position example

Vehicle drivers may exhibit a tendency to move laterally
(i.e. side-to-side) within their designated lane on a high-
way. Figure 5 displays this notion, by plotting the trajectory
of five drivers as they travel along a section of the US
Route 101 Highway, as taken from the Next Generation
Simulation (NGSIM, FHWA (2017)) dataset. In this figure,
the vehicles—whose trajectories are indicated in black—are
travelling towards the right, with each (estimated) lane cen-
tre line given by the red dashed line. Drivers likely adapt
their position in real time, in at least partial response to the
perceived position of vehicles that are travelling nearby.
The aim of this section is to apply the UVB methodology to
analyse a model of the lateral position of vehicles. The model
incorporates driver heterogeneity, while the analysis itself
produces sequential, per-vehicle distributional forecasts of
a large number of future car positions. The methodology
suggests that a smart vehicle (i.e. one without a human driver)
may be able to repeatedly ‘observe’ neighbouring vehicle
positions, predict their positions in real time as they travel
along the road, and appropriately respond to those forecasts.
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Fig.5 Car lane position example from Sect. 7. The path of five selected
vehicles from the NGSIM dataset, travelling from left to right, with each
black line representing a unique vehicle, with estimated lane centre lines

To set up the scenario, we randomly select, from the
NGSIM dataset, trajectories associated with N = 500 vehi-
cles that do not change lane. We note that the NGSIM dataset
is the result of a project conducted by the US Federal High-
way Administration (FHWA), and includes data recorded
from 6101 vehicles traveling along a 2235 foot long section
of the US 101 freeway in Los Angeles, California from 7:50
am to 8:35 am on June 15th, 2005. Though initially collected
by static cameras, the data were then processed by Cambridge
Systematics Inc. to produce coordinates of the centre of the
front of each vehicle at 100 millisecond intervals.

7.1 A hierarchical model

In developing a model for the position of cars, we consider
a number of issues. First, we view each vehicle/driver as
having its own idiosyncratic behaviour, captured by its own
parameter values. Let y; ; denote the lateral deviation from
the lane centre of vehicle i at time ¢, with details on calcu-
lating the lateral deviation provided in “Appendix B”. For

i=1,...,Nandt=1,..., T, we assume
zind 2
via i o2 "N (i o). (44)

in red. This section of US Route 101 is comprised of five main lanes,
with a sixth entry/exit lane not shown

where p; and oiz are parameters specific to vehicle i. For sim-
plicity, we collect the individual vehicle-specific parameters
into a single vector, 6;, by defining 6; = (u;, log (aiz)), for
i = 1,2,.., N. We note that alternative parametric models
could be used here, including a time series model for vehicle
i, with little loss in generality.

Multiple cars may display similar behaviour, a phe-
nomenon that can be modelled by allowing different cross-
sectional units to share parameters. This structure, whereby
cross-sectional units belong to mixture components, leads
to predictions that ‘borrow strength’ from the full sample of
vehicles. To make this idea explicit, let k; denote an indicator
variable such that vehicle i belongs to mixture component j
if k; = j. All vehicles within the same mixture component
share parameters, that is 6; = 9;.“, for all i such that k; = j.
Note that the star superscript and j subscript are generally
used to index the mixture component that the parameters
belong to, while the subscript i is generally used to index the
cross-sectional unit, i.e. vehicle.

Since the number of components are unknown and since
there is a possibility that a new vehicle will be observed with
behaviour that cannot be well described by any of the pre-
vailing parameters, we consider an infinite mixture model.
In particular, we use an infinite mixture model induced by a
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Dirichlet Process (DP) Prior for the distribution of the param-
eters. The DP prior is given by

G ~ DP(a, Gy), 45)

where G is the DP base distribution, assumed here to be
N(0,, 10I,), and the DP concentration parameter « is fixed
here and equal to one. The prior for the collection of @; values
represent a draw from the DP, with

0,16 G, fori=1,2,...,N. (46)
Combining (44), (45) and (46) leads to the hierarchy

G ~ DP(a, Go)

i
0,G'~< G, fori =1,2,...,N

ind
vie | 0; g N(,u,-,oiz), fori =1,2,...,N and

t=1,2,...,T. (47)

We note that the DP prior induces clustering on the obser-
vation sequences, as described by the Chinese Restaurant
Process (CRP, Aldous 1985) representation. The CRP pro-
vides a mechanism for drawing from the prior of 1, ..., 8,,
marginal of the random G, via the introduction of dis-
crete variables that act as component indicators. Define s;
as the number of unique values in ki, k2, ..., k;, and let
nij = Zi,;] I(ky, = j). Then, the indicator variables can
be simulated from p(k; = jla, k1.;—1) where

plky =1, Go) = 1, )
Vli—‘],j fOrj =1.2 5
ki = jla, Go. ki) = | @301 T m e
pki = j| 0, kii—1) aﬁ—] for j =s;—1+1,

(49)

fori =2,..., N.Note that although simulation of the indi-
cators does not require knowledge of G, we include explicit
conditioning on both « and G in (48) and (49) to emphasise
the marginalisation over G. Under the CRP, unique values of
0;, denoted as 07, for j = 1,2,...,sy are drawn from the
base distribution G, and if we set §; = Ojf for all i such that
ki = j,then (01, 0>, ..., 0y)is adraw from the hierarchical
setup in (47). Note that although the model is an infinite com-
ponent mixture model, under the CRP the maximum number
of unique clusters, sy, can be no greater than the number
of vehicles in the sample, N. For simplicity, we retain the
full vector O’f: > noting that some values 0”1‘: N> may not be
associated with any vehicle.

The overall model may be seen as a Dirichlet Process Mix-
ture (DPM) model for the lane deviations. Background mate-
rial regarding Bayesian analysis of DPM models, including
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many references and detailed discussions relating to MCMC-
based techniques for sampling from the relevant posterior, is
given in Miiller et al. (2015). Online VB-based inference for
DPMs has been established using a Mean Field approach
see, e.g. Hoffman et al. (2010); Wang et al. (2011) and
Kabisa et al. (2016)). In contrast, our approach incorporates
SVB, which allows for greater flexibility regarding the form
of the approximating posterior distribution. Another impor-
tant distinction between our analysis and this literature is
that our setting involves multiple observations over time, on
each cross-sectional unit. Rather than updating as new cross-
sectional units are observed, we update parameters relating
to the same cross-sectional units observed periodically over
a period of time.

7.2 Implementation of SVB at time T,

Before discussing how UVB is applied to this problem it is
instructive to discuss how SVB is implemented for the DPM
in (47) that targets the posterior conditional on all cross-
sectional units N over just the first time period from # = 1 to
t = Tj. For notational convenience, conditional dependence
on « and Gy is suppressed in all notation for the remainer of
this section. The objective is to minimise the KL divergence
between a suitable variational approximation and a posterior
that is augmented by indicator variables. To implement SVB,
we must evaluate

N T
p(yl:N,l:Tl’OT:NakliN) = [Hl_[p(yl,AoTval)}

i=1t=1

N
x |:1_[ P(ki|k1:il)j| pO7.y)

i=I
(50)

for given values of y.y 1.7, 0’{:N, and ki.y,. Each of the
three main components on the right-hand side of (50) can be
computed from the hierarchical structure in (47) and the CRP,
as Sethuraman (1994) shows that the unique values 7. are
a priori independent and identically distributed according to
the base distribution G.

A second required input into SVB is an approximate pos-
terior density structure, given by g, and for this we propose

N
Oy kinlyiy 1) = l_[q/‘(e}kb’lw,l:n)
=1
N
X |:l_[ p(ki|yl:N,l:T1’OT:N’kU—l)] .
i=1

61V
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Each ¢;(.) on the right-hand side is a bivariate normal dis-
tribution with unique means, variances and covariances for
eachi =1, 2, .., N, leading to a total of 5N auxiliary param-
eters in the approximation. In the second product term on the
right-hand side of (51), the notation p is used instead of ¢
since p(ki|yy.y. 1.7;> k1:i—1, 07.y) is known exactly and can
be computed recursively using

X p(Yi 1.1 10755 ki),
(52)

fori =1,2,...,N.

The use of the so-called full conditional distribution for
k 1.y, given by the second product in (51), is a novel inclusion
that enables our model to capture some of the dependence
structure of the posterior. In contrast, a MFVB approxima-
tion would force posterior independence between each k; and
every 9;‘, as in, for example, Wang et al. (2011).

Furthermore, in addition to minimising the KL diver-
gence to the augmented posterior, our choice has the benefit
of ensuring minimisation of the KL divergence to the
corresponding marginal posterior. That is, the augmented
gradients are given by

OKLlgr, 0.5, kinlyin 1) || p(OT.n. kin|Yin 1:7,)]
oAl

(53)
and are equal to the marginal gradients

OKLlgx, 0T.x1y1n1:m) || POTNIYIN1.1)]

, 54
on (54)

and so the optimisation procedure is equivalent to one where
the indicator variables used to construct the DPM have
been marginalised out. The proof of this result is shown in
“Appendix C”.

7.3 Iterating UVB

Using data up to time 7j, the first UVB posterior is
obtained using SVB, as described in Sect. 7.2. For updat-
ing at time 7,41, we construct a pseudo-posterior using
information from the previous variational approximation
qr, 075, k1:n1Y1.y 1:7,) in two distinct ways. First, the
base distribution in the DP as the prior distribution for
7.y is updated to reflect the clustering present in the
previously obtained posterior, and so is replaced with
qxr, (07.51¥1:n3.1:7,)- Second, retaining the form of the approx-
imation in (51) for the update is complicated by the use of
the full conditional distribution for k;, given by

pki = j|y1:N,]:Tn+190T:N’ kii-1)
o p(Yi 117, 10755 ki)

x pki = jIyin11,, 018 K1io1), (55)

as all currently observed data up to time 7,1 is required for
each new 7., value simulated within the SGA algorithm.
Instead our approach is to marginalise the variational distri-
bution using

qki = jlyi.n11,- kri-1) = /* a, Oy 1Y1N 1T,

1I:N

x ptki = jlyin o, 01y ki-1)d07.y,  (56)

before each update, estimating (56) from a sample average of
pki = jlyin 1.1, 075+ K1:i—1) using M samples 67 and
k1.;—1 simulated from the available approximate distribution.
This requires use of all observed data at 7,,, for each of the
M samples, but is independent of 7., and thus data up to T},
is not required as new 67 values are simulated in the SGA
algorithm. The component of the variational approximation
for k; is then replaced by

pki = j|y1:N,]:Tn+190T:N’ ki:i-1)
(&8 p(yi,Tn+1:T,,+1 |0T:N’ ki = J)

x q (ki ZjlylzN,lzT,,H’k]ii*l)’ (57)

which may be calculated using only the newly observed
data yi.y 7,41.7,,, in the SGA algorithm. Note that the
marginalisation step for all updates uses the exact full con-
ditional distribution from the CRP representation, p(k; =
J1¥1:8.1.7,» 01.5+ k1:i-1), rather than the marginalised form
plki = JYEN 1T 07.5. k1.;—1) from the previous update.

The targeted pseudo-posterior distribution for the update
at T4 is given by

N
POy kinyiN1T,,,) X l_[ [P 1117, 107 Ki)
i1

1
X q(kilyyn 1, krioD] @z OF v 1v 17, (58)

where the base distribution of the DP posterior in the DPM
(and its corresponding CRP) is replaced with its associated
variational approximation at time 7},. The approximating dis-
tribution for the update at time 7,11 is given by

N
D O1n Kenlyin iz,,,) = 1_[ qjn1OF 1Y 1N 17 )
j=1
N
X l_[ﬁ(kilylzN,l:Tn+1’ 07.n. kri-1). (59

i=1
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Given the pseudo-posterior (50), form of approximating
distribution (59), and components of the time 7, approxi-
mation: g, (07.y1¥1.y,1.7,) and g (ki = jlyi.n. 1.7, k1:i—1)s
the optimal parameter vector at time 7,1, A%, ,, may be
obtained via Algorithm 3.

n+1°

Algorithm 3: UVB for the DPM
Input: DP base distribution G or updated approximating
distribution at T,,.
Result: Approximating distribution at 7}, 1.
Calculate (56) for all i.;
Observe y;.y Tt 1T 5
Set £(g. A ) = —
Set initial values )‘(421 ;
Setm =1.;
while [£(q. ") — £(g. A" )| < e do
Simulate 9]:(N> ~ gy O n1Y1n 17, fors =1,2,...,8;
n+

Simulate k), with probabilities (52) or (57).;

. I~ () 7.(s)
Evaluate p(yy.y 1. TH],OT;\,,k YI Do

Evaluate g, (07 % . Ky Y1y 17, )

Evaluate qa,,, 078 . KN 19117,/ 0hns15
Update auxiliary parameter
(m+1) _ 5 (m) 0£(q Az
D W 5
An+l :)vn+] (m)

Caleulate £(g, A" D).

Setm =m +1.;
end

7.4 Predicting Lane Positions
Given a posterior approximation gx, (07.y. k1:N1Y1.n.1.7,)-

we may obtain the approximate predictive distribution for
vehicle i at some future time 7;, + & as

Q(yi,Tn+h|y1:N,l:Tn)Z/p(Yi,TnJrhWT:N’ki)
ax, 07N kin1YiN 1:7,)d07 AR (60)

After obtaining this distribution from samples {07.y, k1.5} )

~ q;fn(ﬂ’f:N, kinlyin 1), for j =1,2,..., M, we cal-
culate the predictive log score (LS),

_ (obs)
LSi,n,h = 10g(Q(yi,T,,+h|y1:N,1ITn))’ (61)

where yl.(o;z ?rh is the observed value of y; 7,4+4. The perfor-

mance of the UVB algorithm is evaluated by comparing its
RMCR relative to those produced by competing methods.
We also infer the DPM model via MFVB using the so-
called stick-breaking representation of the Dirichlet Process,
as in Wang et al. (2011). This approach estimates the fully

@ Springer

factorised posterior approximation, given by

N
= HCI(97|J’1;N,1:TH)

j=1
q(kjlyinr,)- (62)

0., kinlyin1eT,)

This may be used to build a predictive distribution in the
same manner as (60). Details of the MFVB approximation
are provided in “Appendix 1.

To illustrate the benefits of including posterior dependence
in the approximation, we also introduce a parametric and
independent model, which retains a normal likelihood for
each vehicle, i.e.

i ~ N (i, o) (63)

and assumes for each vehicle an independent uninformative
prior, given by

p(ui, o) o2 (64)

For this model, the predictive distribution for vehicle i is
analytically available as

(L
pOiT,+nlYi1:1,) = ) -
NV(T"+1)Si,n
rz)—g—

2\ ~5H

Ty (yi,7y+h — Yin)
1 5 (65)
v(T, + l)si,n

a location-scale transform of the usual Student-¢ distribu-
tion with v = T,, — 1 degrees of freedom, where y; , and

,, denote the sample mean and variance of y; .7 , respec-
tlvely Note that this model ignores any information from all
other vehicles and is similarly evaluated by the corresponding
cumulative predictive log score.

7.5 Analysis of the NGSIM Data

We now discuss the empirical application results from the
UVB algorithm for the DPM model described above for
the NGSIM data. The posterior updates for both the clus-
ter locations, #7.y, and the indicator variables, ki.y, occur
at a sequence of pre-determined time periods, given by

= 50,7, = 75,73 = 100, Ty = 125,75 = 150, and
Ts = 175.

Consider first the two graphs shown in the top panel (panel
(a)) of Fig. 6. In each graph, the approximate marginal pos-
terior distributions for each unique value /L}f (on the left) and

o> (on the right). Noting there are N = 500 marginal den-
sities for each of u* and o2* the plotted densities for each
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Fig.6 Car lane position example from Section 7. a: Posterior approxi-
mation for each 6*, weighted by proportion of k.y draws. Two groups
have high posterior precision with numerous groups showing more
uncertainty. b: Posterior predictive distribution means and standard

deviations, sized according to the top 80% of k. draws. ¢: Averaged
predictive distribution for all groups in dark blue, with a random subset
of fifty per vehicle distributions in grey
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parameter are weighted according to the proportion of vehi-
cles in a sample of M = 100 draws of (07., k1.n) obtained
from the UVB approximation. That is, the weights are cal-
culated according to

M N (m) .
= Z Z ! (k ) (66)

m=1i=1

so that w; represents the proportion of the M N many sam-
pled k; values, denoted by kl.(m) fori = 1,2,..., N and
m = 1,2, ..., M, that correspond to the given value of j. The
weights suggest that only six of the 0 values account for the
majority of the vehicles, with the six welghted densities asso-
ciated with 11} and ;" most prominent in the figures shown in
panel (a). In contrast, the sample of 07 values that are seldom
(if ever) allocated to a vehicle and hence receive little or no
weight appear in these figures as flat lines indistinguishable
from zero.

Now turning to panel (b) of Fig. 6, a predictive distribution
for new values of y is estimated for each cluster location j,
using the M previously simulated values 7., . The mean of
each predictive distribution is plotted against the correspond-
ing predictive standard deviation, with the size of each point
given by w ;. The fifty pairs of means and standard deviations
shown correspond to 80% of all simulated k; values, with
the results showing that the majority of vehicles belong to a
relatively small number of large and cohesive groups, each
associated with a distinct predictive mean value coupled with
low predictive standard deviation. Members of these groups
appear to stay in the same region of their lane, but with these
regions spread across both sides of the centre line. There are
also many smaller groups, having predictive means closer to
zero but with larger standard deviations, perhaps describing
idiosyncratic vehicle positioning in the region of the centre
lane.

The bottom panel plots, in grey, the individual predictive
densities associated with fifty randomly selected vehicles,
with the average predictive density over all N = 500 vehicles
in the sample shown in dark blue. Note that the predictive dis-
tribution associated with an individual vehicle will typically
itself be comprised of a mixture of components. Importantly,
many of the individual predictive densities display reduced
uncertainty, relative to the overall average.

We now consider the performance of UVB against several
competing methods. Using data up to each time period 7;,, we
predict the future position y; 7,4, h = 1,2, ..., 50 for each
vehicle using four different predictive distributions described
in Sect.7.4:

1. The DPM predictive distribution (60), with approximate
inference provided via UVB.
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2. The DPM predictive distribution (60), with approximate
inference provided via MFVB,

3. The DPM predictive distribution (60), with approximate
inference provided via SVB,

4. The independent model predictive distribution (65), with
exact inference.

The mean cumulative predictive log scores (MCLS), aver-
aged across each of the N = 500 vehicles, and associated
with each of the four types of predictive distributions for
individual cars enumerated above, are plotted in Fig. 7.

The results show that, while in each case both approximate
implementations of the DPM model outperform the analyti-
cally exact independent model, the posterior dependency in
the SVB and UVB approximations greatly improves fore-
casts relative to MFVB. The UVB and SVB lines coincide,
and there is no evidence of accumulating approximation error
through the UVB recursion relative to the single model fit
of SVB. As the amount of data increases, the MFVB and
independent model log scores similarly increase. In con-
trast, the UVB inference MCLS stays at the same level: the
N x (Tg — T1) = 62, 500 additional observations included in
Te has not provided much marginal information to improve
forecasts relative to the original 77 fit with N x 77 = 25, 000
observations. By construction, the DPM shares information
between vehicles, so forecasts of vehicle i are accurate even
with only 77 = 50 observations of that particular vehi-
cle. When MFVB inference is employed forecasts are only
slightly stronger than the fully independent model that does
not share information, implying that the MFVB implementa-
tion did not successfully include behaviour of other vehicles.

8 Conclusions

This paper proposes UVB, a framework for SVB inference
implemented in a sequential posterior updating setting. UVB
is a variational analogue to exact Bayesian updating, where
the previous posterior distribution, taken as the prior for the
update, is replaced with an approximation itself derived from
an earlier SVB approximation. The resulting sequence of
posterior distributions can be computed substantially faster
than those produced using repeated applications of SVB on
the expanding dataset and are amenable to many different
types of inferential activities, such as parameter estimation,
classification and prediction. In addition, the UVB-IS method
provides a further reduction in computational overheads by
exploiting information from previously updated UVB poste-
riors through importance sampling.

The relative inferential and computational performance
of posteriors resulting from UVB and UVB-IS are stud-
ied in against those that result from ‘exact” MCMC, and
from repeated SVB, through two simulation experiments.
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Fig.7 Car lane position example from Section 7. Mean cumulative pre-
dictive log scores (MCLS) for each model averaged across N = 500
vehicles. Each model is fit using data up to 7}, then forecasts are
made for each of the following fifty observations. The SVB and UVB

One experiment is focused on sequential forecasting of time
series data and the other on the progressive clustering of
observations from a mixture model. In addition, the UVB
approaches are considered in the context of the well-known
‘Eight Schools’ example, where individual school-based
information is incorporated successively. In all cases, large
computational savings can be obtained with the UVB meth-
ods; however, there is some cost in terms of predictive
and parameter inference particularly after several rounds of
updating. Whether in other applications the loss of inferential
accuracy over several implementations of UVB or UVB-IS
will be acceptable will of course depend on the context and
corresponding urgency for fast updates, it may be prudent to
‘refresh’ the updated distributions periodically with an SVB
approximation. It should also be noted that the cost in terms
of accuracy from using UVB and UVB-IS may ultimately
depend on the objective of the analysis. In cases where accu-
racy is needed in the tails of the posterior, the cost may be
large, for predictive accuracy as measured by log score, the
cost is negligible, while in our classification setting, UVB
actually outperforms SVB in terms of classification accu-
racy.

The proposed UVB and UVB-IS algorithms are well-
suited to situations where up-to-date inference for complex
probabilistic models is required whenever data arrive so
rapidly as to render MCMC or SVB infeasible, and especially
so when inference involves classification and prediction.
To illustrate this type of situation, an empirical illustration

implementations are visually indistinguishable, while the MFVB imple-
mentation performs only slightly better than the fully independent
model

regarding observed lane positions of vehicles on the US-101
Highway is presented using a Dirichlet Process Mixture.
In this implementation of UVB, an approximating distri-
butional family that exploits dependence between cluster
locations and indicator variables is detailed. Forecasts of
future lane positions produced using UVB are comparable
to an SVB approach. Posterior dependence is induced by
exploiting the known full conditional distribution for the dis-
crete indicator variables by using these as a component of
the approximating distribution. Inferring the model through
UVB and SVB outperform inference using MFVB, as this
method requires an independent posterior approximation.
Future research involves the application of UVB to build a
more sophisticated heterogeneous model to provide forecasts
of vehicle movement from this dataset in an online fashion—
where UVB facilitates model updates and forecasts in a short
time-frame after data arrives.

A Post-Hoc Nemenyi tests

To ensure that the differences in performance between meth-
ods, both with respect to accuracy via the log score and run
time, are significant, we employ the following procedure.
First a non-parametric Friedman test is performed on the
ranks of each method. Then post-hoc Nemenyi tests are used
to detect whether each method is significantly worse than the
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Fig.8 AR3 example from Section 5.1. Plot showing multiple compar-
isons from the best method (according to log score) based on ranks.
Results are shown for 7, = 400 and K = 3. Here SVB is the most
accurate method according to log score. Since the intervals for UVB
and UVB-IS do not overlap with the grey region, these differences are
significant. A 95% significance level was used; however, there is no
overlap with the grey bands even for a 99% level of significance

best performing method. All p-values were less than 0.0001
indicating differences between methods were significant.

The results are presented graphically in Fig. 8 for the log
score and in Fig.9 for run time. These results are from the
AR(3) in the simulation study in Sect. 5.1. Results are shown
for forecasts made at 7, = 400 and with K = 3 components
in mixture of normals used for the variational approximation.
In these plots, if any method has an interval that overlaps with
the grey band, then the difference in forecasting accuracy,
(or running time) is not significantly different from the best
method. It can be clearly seen that the bands do not overlap.
As such, we are confident that the number of replications
used in the simulation study is sufficiently large to ensure
differences in performance are not simply due to variation
across the replications. While omitted for brevity, similar
plots are obtained for different values of 7,, and K and for
other simulation studies conducted in this paper.

B Calculation of Lateral Lane Deviation

Let x; ; denote the position of vehicle i along the direction of
travel at time ¢, and y; ; denote the position across the lane,
as in Fig. 10 for one vehicle travelling to the right.

For each vehicle i and time ¢ since entering the road, with
travel originating at ¢ = 1, the total distance travelled up to
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23

Mean ranks
19 2.0 21

1.8

1.7

SVB - 1.77
UVB -2.00
UVB-IS - 2.24 —

Fig.9 AR3 example from Section 5.1. Plot showing multiple compar-
isons from the best method (according to computational time) based on
ranks. Results are shown for 7,, = 400 and K = 3. Here UVB-IS is the
fastest method. Since the intervals for SVB and UVB do not overlap
with the grey region, these differences are significant. A 95% signifi-
cance level was used; however, there is no overlap with the grey bands
even for a 99% level of significance

45 -
43 -
>
41 -
39 .. ‘ | ‘ ‘
0 500 1000 1500 2000
X

Fig. 10 Car lane position example from Section 7. Coordinate system
for one vehicle. The X —axis denotes distance travelled along the lane,
and the Y —axis denotes the relative vertical position in the lane

time ¢ is given by

1
dis =3\ i = xism1? + s =y (6T)

s=2

Using this distance measure and 100 randomly sampled vehi-
cles per lane, the two-dimensional coordinates corresponding
to the centre line of each lane are estimated via independent
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Fig. 11 Car lane position example from Sect. 7. Raw data of paths
taken by cars in the five lanes of the highway corresponding to the
application in Sect. 7. Each black line charts the path of a single car,
with 100 randomly selected cars per lane shown on the figure. The fitted
spline models for each lane used to correct for the geometry of the road
are overlaid as red lines

smoothing splines, where each coordinate is a function of
the distance travelled to that point. Each smoothing spline is
calculated using the ‘R stats” package R Core Team 2017).
The estimated centre line for lane k, is denoted by the curve
{Xax = fEd). Jax = fE(@)}, for d = 0. The fitted spline
models are shown in red overlaying the raw data in Fig. 11
Excluding the vehicles used to estimate the spline models,
each of the vehicles in the dataset uses the relevant lane centre
line estimate fit from the spline model associated with its
starting lane to calculate relative coordinates {x,, y*,}. x*,
denotes the distance travelled along the road, and yl* ; denotes
the deviation from the lane centre line, and are calculated by

o~

di,, = arg n’bin\/(xi,t — fE@)? + i — fH@)?  (68)

Tie = fAdin (69)
i = i) (70)
-~ — —_~~ _1
N ) Tig—xig\ 5 )
Yi = s1gn tan | ——— — tan DYV N
' Vit — Vit fy i)
G = %007 + O = 5’ (1)

The coordinate pair (X; ¢, ¥; ;) denotes the closest position of
the spline model to the actual vehicle position given by the
pair (x; ¢, yi.r). Lateral deviation yl?f , has magnitude equal to
that of the vector from (Xj s, yi./) to (X, yi.r). A negative
sign on y*, indicates that the vehicle is to the left of the lane
centre, and a positive sign indicates that the vehicle is to the
right of the lane centre.

CEquivalence of Augmented and Marginal KL
Divergence Gradients

Consider the augmented posterior distribution

PO, kly) o< p(y10, k) p(k|0)p(©0) (72)

and variational approximation given by

9.0, kly) = q,01y) p(kly, 0). (73)
The corresponding KL divergence, K L[g, (0, k|y) || p(@,
k|y)], is indirectly minimised using the gradient
0K L[g)(6,k 0,k aL(q, A

9,0, kly) [I p@. kIy] _ 3L(q )7 (74)

oA oA

where the gradient d.L(g, A)/dA is the score-based gradient
of the ELBO, given by

0L(q, M) _ dlog(g,.(0, kly))
on —/M le(e,kb’)iak

—log(gq,.(0, k|y)) dOdk. (75)

(log(p(y, 0, k))

Next, consider the associated marginal posterior distribution,

p@ly) o< p(y|0)p(©), (76)

and consider using as the variational approximation g5 (6y)
given by the first component (only) on the right-hand side of
(73), i.e. ¢, (Oly) = ¢,.(0|y). Note that, as a consequence,
log g3, = log §; and 2 lgﬁq* = 313#. The KL divergence in

this case, K L[, (@]y) || p(O]y)], has gradient given by

IKLIgOly) I p@IN] _ LG, »)

oA ar 77
where 0L(g, 1)/ is
LG, A) /~ ©| )Blog(%(ély))
o S,V R
(log(p(y, 0)) —log(g(01y))) do. (78)

Here we show that (75) is equal to (78), and hence the gradi-
ent of both KL divergences are equal, and must share local
minima.
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Begin by expanding each joint density in (75) by (72) and
(73),

0L(g, A
%:/ a:01y) p(k16. y)
0,k

o 3(log(gx (01y)) + log(p(kl6. y))

oA
x (log(p(@) p(ylk, 0) p(k|6))
—log(g,.(0ly)p(k|0, y))) dfdk (79)

al 0
= /gk‘h(m)’)p(kw,y)M

oA

p(ylk, 9)p(kl9))p(y|9))
p(y10)

— log(g:.(01y)) — log(p(kl6, y)))dé’dk (80)

X (log(p(@) + log <

as the term log(p(k|6, y)) is independent of A. Then

IL(q. %)
ar

al [}
/ 0.01y) p(klo, y>w
0,k

x (log(p(0) + log(p(y10)) + log(p(kly, 6))
— log(g(01y))
—log(p(k|6, y))) dodk (81)

by Bayes’ Rule. Cancelling log(p(k|y, 0)) results in

9L(g. M)
o

a1l 2}
/ 0.01y) p(kl6, y)w
0,k

(log(p (@) + log(p(y16)) — log(gx(0]y))) dOdk

(82)
ol 2}
:/(/P(kle’wdk) qx(9|y>w
0 \Jk
(log(p(y, 8) —log(gx(0]y))) db. (83)

The final expression (83) is equivalent to the marginal model
gradient (78) and the proof is complete.

D Mean Field Variational Bayes
Implementation of the Dirichlet Process
Mixture

Implementation of MFVB for this model follows the offline
coordinate ascent approach of Wang et al. (2011), employing
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the stick-breaking construction of the Dirichlet Process as

iid

07 '~ Go. (84)
B, ™ Beta(l, ), (85)
By =1. (86)
j—1
Bi=8;]]a-8. (87)
=1
N
G=) Bis@®}, (88)

j=1

where § is the Dirac Delta function. The stick-breaking con-
struction is equivalent to the CRP representation of the DP,
after marginalisation over 8 Miller 2018), and is similarly
augmented with the set of indicator variables ki.y. In this
case, the prior distribution is given by

ki ~ Multinomial(By.y). (89)

The contribution to the likelihood from observation i is then
determined by

Yia 0 ki ~ N(“Zvaﬁ-*) , (90)

To maintain the analytical tractability of the MFVB approxi-
mation, we replace the base distribution G with a conjugate
prior for the normal likelihood,

n*1Go ~ N(0, 10) oD

02*|G0 ~ InverseGamma(shape = o, scale = k)
(92)

where ¢ and «( are chosen to be the MLE values for the
inverse gamma distribution, estimated from 100,000 samples
of the implied lognormal(0, 10) distribution for o>* that was
used in the SVB and UVB approaches. These values are
estimated by the second algorithm of Llera and Beckmann
(2016) as

ap = 0.15275 (93)
ko = 0.00102. 94)

The variational approximation employed is of the form

N
0, ey By 05n) = [T akoaB)a(uha o) (95)

i=1
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with
ki ~ Multinom(p;) (96)
Bi ~ Beta(a;, b;) (97)
ut ~ NG, ) 98)
oiz* ~ Inv.Gamma(o;, ki) (99)

Coordinate ascent algorithms for MFVB consists of cycling
through in a set of equations for each parameter until the
change in each parameter is below some threshold. For this
model, the equations are given by

N
aj =1 +Zpij,

(100)
i=1
N N
bjza—i—z Z Pil s (101)
i=11=j+1
T,
pij o< =3 Eqllog(o}")]
wi [ In
(Y2 Y e
J \i=1 =1
+ E4[log(B))], (102)
oj N T
. 105 251 2202y pijyie (103)
= .
107,22 32% pij + 1
10 (104)
T = i ’
107, 3L pij + 1
N
aj:a0+7nzpij’ (10>
i=1
1 (Y L
j=ko+ | Qomi | dovi + T} + 7))
i=1 =1
Ty
—2y;j Z)’it (106)
t=1

The expectations E,[log(;)] are available in closed form as

j—1
E4[log(Bj)] = Eq4 [log(ﬂ})] + Z E4[log(1 — /3})] (107)

=1

where

E,llog(B))] = W (aj) — ¥ (aj +b;) (108)
and

E,llog(1 — B))] = W(b)) — ¥ (aj +bj) (109)

where ¥ is the digamma function. The expectation E,[log
(01.2*)] does not have a closed-form solution but is estimated

from samples of q(crjz*).
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