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approach has been used by many to study the dynamics and control KEYWORDS

of Boolegn systems. Howe\_/er, the process of gettlng.the Imez?r rep- Truth matrix; semi-tensor
resentation using the semi-tensor-product method is complicated product; discrete dynamical
even for a simple three-node network and requires the help of a system

computer program. In this work, we show that we can skip the semi-

tensor process and obtain the same linear representation with a  AMS CLASSIFICATIONS
straightforward mapping. Moreover, our approach produces a large 37A99;92C42; 06E30
number of isomorphic representations which provides a flexible

framework. Importantly, it could simplify the analytical study of net-

works with unspecified number of nodes that have some structure.

1. Introduction

An n-node autonomous Boolean network is a discrete dynamical system with the form

xi(t+ 1) zgi(xl(t)’XZ(t))---:xn(t))) (1)

where x; is the state variable of the ith node, t is the current time step, t + 1 is the next time
step and g; is a Boolean function with a value of either 0 or 1. To simplify the notation, we
rewrite Equation (1) as:

x" =g(x), (2)

where x is a vector of size n, containing the states of all the Boolean nodes at the current
step, xT is the state of the n Boolean nodes in the next step and g = [g1,£2, . . .,8u]"-

Since first introduced by Kauffman [22], Boolean networks have been widely used to
model biological regulatory networks [1,2,6,14,18,36,37,40,41,46]. They can be set up in
situations where the detailed kinetic characterization of an interaction is not available or
not essential and provide many valuable insights [4,12,13,18,35,38,42,43].

Identifying fixed points and cycles is crucial for understanding the overall dynami-
cal behaviour of a Boolean network. When a network is small, cycles can be obtained
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by exhaustive enumeration. However, as the number of nodes increases, the number of
states grows exponentially. For large networks, numerical methods are the main tools
for investigating the dynamics [7,10,25,30,31,34,44]. To facilitate better understanding
of Boolean networks, several representations other than truth tables were proposed in
recent years such as linear representation [9], polynomial representation [20,28,44] and
directed graphs [27,32]. Among these, the linear representation proposed by Cheng and
Qi [9] has been used by many to analyse the dynamics and control of Boolean net-
works [21,23,26,45,47,48]. The advantage of a linear representation is that it enables us
to use existing theory from discrete dynamical systems to study Boolean networks.

While the resulting linear representation is very useful, without computer-aided cal-
culation, the process of obtaining it using semi-tensor products is not easy even for a
small three-node network. This makes it impossible to study more general network sys-
tems, where the number of nodes is not specified. To address this issue, we propose here a
straightforward approach to obtain the same linear representation. Moreover, since there
are an infinite number of isomorphic representations for a given Boolean network, our
method makes it easier to choose the most convenient one to work with. In addition, we can
construct a hybrid system that is in part Boolean and in part non-Boolean if it is needed.
Our result thus provides a flexible way of representing Boolean networks that facilitates
theoretical studies about their general properties.

This note is constructed as follows. In Section 2, we briefly review the semi-tensor-
product approach for obtaining a linear representation, and then show that the represen-
tation can be obtained by a straightforward map. In Section 3, we introduce a truth matrix,
which is a compact way to work with a linear representation. We then provide an algorithm
for identifying cycles and fixed points. We show in the Appendix how our method can be
applied for analysing Boolean representation of neural networks.

2. Linear representation of Boolean networks

The aim of this section is to write the Boolean network (2) as a discrete linear system:
y =Ly (3)

We show that y is a 2" x 1 vector and L is a 2" x 2" matrix (recall that # is the number of
nodes in the original Boolean network and that y* is y in the next step). We introduce two
methods for obtaining y and L. Both methods lead to the same y and L but the processes
to derive the result are distinct. The first method was proposed by Cheng and Qi [9] and
the second method is a simplification we propose here for the first time. We review the first
method in Section 2.1 to make the comparison with our method easier. Then, in Section 2.2
we discuss our alternative approach.

2.1. Linear representation of Boolean networks based on semi-tensor product [9]

Semi-tensor product: Let A,,x, and By, be two matrices. When n = kp or p = kn for
some positive integer k > 0, the semi-tensor product of A and B is defined as follows

A B |AB®L), ifn=kp
(AQ I)B, ifp=kn
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where ® is the Kronecker product and Iy is a k x k identity matrix. For example, if A and
B are two column vectors: A = (a1,...,a,)  and B= (by,..., bp)T, then

AXB= (albl,. . ,albp,azbl,. . .,asz,. . ,ambl, .. .,ambp)T

is an mp X 1 vector.

By its definition, the semi-tensor product is a generalization of conventional matrix
product. We thus will assume that the matrix product is a semi-tensor product and the
notation X will be omitted later on.

Matrix expression of logic: Let 61’; be the i column of the identity matrix I and
Ap={8li=1,2,...,k}.
The logical states T = 1, F = 0 are mapped into:

T=46 = I:(l):| and F = 8% = |:(1)j| (4)

Next, matrices for each logic operation are defined. For example, the matrices corre-
sponding to negation (—), disjunction/or (V) and conjunction/and, A are M,,, M; and M,
respectively as follows:

[0 1
M, = = [8%’8%] = 82[2: 1]:
(1 0
1 110
Md - _0 0 0 1] = 82[1’ 1: 1,2]’
1 0 0 0
M, = 0 1 1 1] = §,[1,2,2,2] (5)

Logic functions can then be converted to matrix semi-tensor products. For example, the
operation F A T = F is converted to the semi-tensor product:

I 0 0 Of|0f(1 0
IRSIHIBEH ©
Deriving linear representations of Boolean systems : Next we show an example ([9,

Example IV.7]) of how the linear representation is derived through semi-tensor product.
Consider the system

+

X = X2 A\ X3,
x;_ = —|x1’
x;" =X V X3. (7)

where x1, x, x3 € {0, 1}.
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Based on the matrix expression of logic operators in (5) and the identification given
in (4), system (7) can be rewritten as follows

AT = MBC
C*+ = M,BC

where A,B,C € A, = {81,8§}.

Next, definey = ABC which givesy € Ag. To derive L, we need two additional matrices:
the swap matrix Wi, ), and the power-reducing matrix M, (see details in [9]). Then using
the semi-tensor product and its properties we get [9]:

y" = M.BCM,AM,BC

= M.(I4 ® M,)BCAM;BC

= M,(Is ® M,))(Is ® M;)BCABC

= M:(I4 ® M;)(Is ® M) W24 ABCBC

= Mc(I ® My) (I ® My) ® Wiz ABW |3 BCC

= M. (I4 ® M,)(Is ® Mg) W24 (14 ® W[2))AM,BM,C

=M (I4 @ My)(Is @ Mg) W2,4) (14 @ Wo))(I2 @ M;)(I4 ® M;)ABC,

= 33(3,7,7,8,1,5,5,6]y = Ly, (9)
As can be seen, although the resulting linear expression is simple, the intermediate steps
and expressions are rather complicated. The above calculation can be simplified by a recent
development of the semi-tensor process in [24]. However, even with this simplification it

is still not an easy calculation for such a small system. We show in the next subsection that
we do not have to go through all these steps to find the linear representation.

2.2. Proposed alternative conversion to discrete dynamical system

In this section, we show in Theorem 2.1 that any bijection from {0,1}" — Aj» converts
a Boolean network to a discrete linear dynamical system y*© = L y. Then we prove in
Theorem 2.2 that the semi-tensor product used for the construction of y is the same as
a specific bijection from {0, 1} — Agyn.

We begin by defining a bijection that takes a state of a Boolean network and convert
it into a distinct number. Let Q = {q1,...,427} be a set of 2" distinct numbers and h :
{0,1}" — Qbeabijection function that associates each Boolean state with a single number.
Depending on the set Q, the function & could take different forms and is not unique. For
example, if Q = {0, 1,2, ...,2" — 1} the function & could be

h(x1, %2, .. x0) = x12" D) + 02" ) + - + x4, (10)

and many more.
IfQ=1{1,2,3,...,2"} the function & could be:

R(X1, %25 -3 %) = 2127 D) + 2" 2) + - 4 x, + 1, (11)
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or
h(x1,%2,...,%p) = 2" — (xl(z”—l) +02"H+- -+ xn) . (12)

and many more.

Theorem 2.1: Letg : {0,1}" — {0, 1}" be a Boolean map and U, = {ei}%il be the standard
basis of RZ". Let Q = {1,2,3,...,2"} and h : {0,1}" — Q be a bijection map. Define H :
{0,1}* — U, by

H(x) = epx), forx e {0,1}".
Then g : U, — U, defined by
g=HogoH™!

is isomorphic to g and can be represented as
g(y) =Ly, forye U

with L = [g(e1),g(e2),...,g(en)].

Proof: Since h is a bijection, it is invertible, which implies that H is also invertible. This
makes g isomorphic to g by definition. Next we show that g(y) = Ly. Let L; be the i
column of L. Then L; = Le; = g(e;). So g(y) = Ly, fory € U,,. [ |

Remark 2.1: (1) Theorem 2.1 says that instead of solving the Boolean network x* =
g(x), we can solve the linear system y*© = L(y).

(2) The map H in Theorem 2.1 is an arbitrary bijection from {0, 1} to Aj» since h is
arbitrary. So the theorem implies that any bijection from {0, 1}" to A~ takes a Boolean
network system to a discrete linear dynamical system.

When h is as in Equation (12), we prove in Theorem 2.2 that we obtain the same linear
representation as the one constructed by the semi-tensor product method developed by
Cheng and Qi [9]. As an example, take System (7). Table 1 shows the isomorphic map of
the system from U,, — U,.

Table 1. Truth table of the isomorphic
linear dynamical system of the Boolean
system (7). H is defined in Theorem 2.1
with h defined by Equation (12).

HX) H(x")

H(1,1,1) = e H(1,0,1) = e3
H(1,1,0) = e H(0,0,1) = ey
H(1,0,1) = e; H(0,0,1) = e7
H(1,0,0) = eq H(0,0,0) = eg
H(©0,1,1) =es H(,1,1) =e
H(O,],O) = &g H(O,],T) = @5
H(0,0,]) = ey H(0,1,1) = €5

H(0,0,0) = eg H(0,1,0) = e¢
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By Theorem 2.1, the isomorphic linear representation of the Boolean system x* = g(x)
is
+ [

y €3, e7, e7, eg, €1, €5, €5, €6Y,

which is the same as was obtained by the semi-tensor product in (9).

Theorem 2.2: Let x; € {0,1} andz; € A; be the vector associated to x; by (4) for1 <i < n.
Then

Z1 X Zy X -+ X Zy = €p(x) (13)

where h(x) = 2" — (x1 2" D) + 2" ) + - - - + x,) = 2" — Dec(x).

Proof: We use induction to prove the theorem. When n = 1, by (4), x1 = 1 is associated
with [1,0]7 = e; = e;1_; and x; = Oisassociated with [0, 1]7 = e, = e,1_. So (13) holds
forn=1.

Suppose (13) holds when n = m, that is, z; X zZp X - -- X Z, = X[ ,2Z; = exm_pec(x)-

When n = m + 1, we need to prove that Nm"l'lz,' = eymt1_pe(x)- Note that xmtlzi =1z X

1= 1=
(X7 ,zi+1). We will prove the result by considering two possible cases: (Case 1) when x; =
0 and (Case 2) when x; = 1. LetX = (x2,...,Xm+1).

(Case 1) Whenx; = 0,z; = [0,1]T andx = (0,x). Then

0 " 0
1| X Kizmzi) = | 2| T €2m+(2m—Dec(X)) = €2m+1_Dec(x)
1=
where the bold-faced 0 is a zero vector with dimension 2™ x 1. So (13) holds in this case
whenn = m+1.
(Case 2) When x; = 1,z; = [1,0]7 and x = (1, %)

1 X" z;
[O] X (XL Zip1) = [ "(1) '+1] = €M _Dec(%)

Note that Dec(x) = Dec(1,X) = 2™ + Dec(X). So 2™ — Dec(X) = 2™ + 2™ —
(2™ + Dec(X)) = 2"+! — Dec(x). Hence, X 1'z; = eymi1_ Decx) and (13) holds for this
case as well.

Therefore, (13) holds for all n. |

3. Truth matrix: an abreviated linear representation of Boolean networks

In this section, we show another way of analysing Boolean networks, similar to the way
permutation matrices are reperesented [3].

Let g: {0,1}" — {0,1}" be a Boolean map and & : {0, 1}"” — Q be a bijection function
as defined in Section 2. We can now define a new map f : Q — Q that is isomorphic to g
as follows

f=hogoh™. (14)

We can represent the map f by the following matrix

_| 4 q2 qon
T = (q) f(q2) --- f(Q2ﬂ):|’ (15)
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Table 2. A Boolean map.

X g
(0,0,0) (0,1,0)
0,0,1) ©,1,1)
(0,1,0) ©,1,1)
(VA P)) 1,1,1)
(1,0,0) (0,0,0)

(1,0,1) 0,0,1)
(1,1,0) 0,0, 1)
(PP )) (1,0,1)

Table 3. A map isomor-
phic to the one in Table 2.

h(x) f(hx))
2

NOuUhWN=O
UV = = O W w

where g; € Q. As an example, consider the Boolean map g in Table 2. If k is defined by
Equation (10), then its isomorphic map f is shown in Table 3.

Note that T(f) in Equation (15) is just another way to represent the truth table (such
as the one shown in Table 3). However, it has a simpler appearance, which provides an
easier way to identify the Boolean states and their corresponding next states and poten-
tial patterns. Such representation facilitates analytical studies of Boolean networks, even
of networks with unspecified number of nodes. We illustrate this aspect in the Appendix
where we show a few examples. For convenience, we call T(f) in Equation (15) a truth
matrix of f. Note that the exact components of truth matrices depend on the choice of h.

We now provide some general results.

Definition 3.1 (Limit set and transient state): Consider an n-node Boolean network,
xt = g(x), where x € {0,1}". V C {0, 1}" is called a limit set of g if g™ (V) C V when m is
sufficiently large. A transient state is any statex ¢ V.

Lemma 3.2: Let T be a truth matrix of the isomorphic map f. If q; is not in the second row
of T, then q; is a transient state.

Proof: Since the second row of T consists of all the images of Q = h(x), then the fact that
gi is not in the second row of T means that g; is not an image of any element on the first
row. So gj is a transient state. u

Theorem 3.3: Let T be a truth matrix and qy € T be a transient state. Let T be the matrix
resulting from removing the columns containing qo. Then the limit set of T is the same as the
limit set of T.
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Proof: We only need to prove that if g; is in the limit set of T, then it must be in the limit
set of T. Suppose that g; is in the limit set of T. By definition of a limit set, there must exist
gj in the limit set of T such that f(g;) = g;. Therefore, g; # go and is not a transient state
by Lemma 3.2. It follows that g; is in T. Hence, removing columns related to the transient
state go does not reduce the limit set. |

Based on these results, we propose the following algorithm for finding all possible cycles
of a given Boolean network.

Algorithm 1 Algorithm for finding all cycles in a Boolean network

1. Create a Truth Matrix, T.

2. Identify all transient states. That is, identify all elements on the first row that do not
show up in the second row and remove the corresponding column from T.

3. Repeat the previous step for the updated T until all elements on the first row show up
in the second row. Then the remaining elements in the first row forms the limit set V.

4. Pickany elementin V, trace its trajectory until it repeats itself. Then mark the trajectory
as a cycle and remove all columns corresponding to the elements of this cycle from the
matrix.

5. Repeat the previous step until T is empty.

6. Convert the states back to the original Boolean representation.

Example 3.4: We use the example from Table 3 to show the algorithm. First remove those
columns whose first element does not show up in the second row, which we have indicated
in red. Repeat the process until all the elements in the first row are in the second row.

01234567_)012357_>
23 3 7 01 15 2 3 3 7 15
_>12357_>1357
3 3 7 1 5 3 7 1 5|

We then pick any element, say 1 and trace its trajectory. In this case, we find that there is
only one cycle: 1 - 3 — 7 — 5 — 1. Then in the original system, the cycle is

001 — 011 — 111 — 101 — 001.

Remark 3.1: (1) There is a considerable body of literature on how to find cycles in
Boolean networks numerically [5,11,15-17,19,29,33,39,49]. Our algorithm is for facil-
itating analytical studies of networks. It has the advantage of dealing with networks
with unspecified number of nodes. We show its flexibility and advantage by presenting
some examples in Appendix A.

(2) By Theorem 3.3, in order to find cycles, we can throw away known transient states
from the beginning, which cannot be done with the linear representation (3).
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(3) For large networks, we could divide nodes into groups. Importantly, the variables of
each group can be associated with a different isomorphic representation. We illustrate
this idea in Appendix A.

4, Discussion and conclusions

In this work we suggest an alternative approach for converting a Boolean Network to a
discrete linear dynamical system on a finite space. Our approach is straightforword and
much simpler than the semi-tensor product approach developed by [9] and produces a
large number of isomorphic representations. We proved that our approach, when used with
a specific isomorphic representation, gives the same end result as the linear representation
obtained through the semi-tensor product. In addition, we introduced a truth matrix and
an algorithm to analyse Boolean networks. The truth matrix can be viewed as a different
version of a truth table, however, we find it more tractable. Our methodology facilitates
analytical studies of networks. Importantly, it allows us to obtain general results for Boolean
networks with unspecified number of nodes if they have some structure, which cannot be
done under the semi-tensor product framework. On the other hand, we did not consider
how our methodology could deal with delayed and/or controlled systems, for which the
semi-tensor product method has provided a platform [8]. Our ability to obtain general
results using our methodology and the flexibility of our approach is illustrated with a few
case studies in Appendix A.
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Appendix A. Case studies

In this appendix we present three case studies that correspond to three Boolean networks intro-
duced in [4]. The dynamical properties of these networks were derived theoretically in [4] deploying
a different methodology than the one presented in this appendix. To illustrate the advantages and
flexibility of the approach we present in this paper, we prove the results found in [4] using the truth
matrix, isomorphic decimal representation and the algorithm we proposed (Algorithm 1). Specif-
ically, in Appendix A.1, we give the detailed construction of the truth matrix associated with the
example, including the states of all nodes, and use Algorithm 1 to derive the network limit sets.
In Appendix A.2, we exemplify how prior knowledge on the dynamics of certain sub-networks
can be used to simplify significantly the construction of the truth matrix from the beginning.
In Appendix A.3, we illustrate how to analyse a large network by decomposing it into smaller
sub-networks and use different isomorphic representations simultaneously.

A.1. Periodic signal generator

In [4], we considered the following Boolean network, whose architecture is presented in Figure Al.
X = =(VE %),
x;'“ =x;_for 2<i<n. (A1)

This network system generates a periodic output with period # of the form (10- - - 0), where the

n—1
pattern under the line repeats.
Here we use the truth matrix and Algorithm 1 to prove the following result that is equivalent to
the one in [4, Lemma 1].

Theorem A.1: The limit set of System (A1) consists of a unique cycle
(©---0) = (10---0) = (010++-0) = -+ — (0---01) — (0---0),
which corresponds to the cycle under the map h in Equation (10)

021522 5 ... 52510,

Proof: We first derive the truth matrix for the Boolean system from Equation (Al).
By Equation (A1), we obtain

(1) (0,...,007 =(1,0,...,0),
(2) (1,%25 - s x)T = (0,%1,. .., %5_1) when x; = 1 for somej € {1,2,...,n}.

Then under the map h defined by Equation (10), (1) and (2) are equivalent to

O+=211—1
E X L1 » output
Tn K ¢ Ty ¢ T3 K Z2

Figure A1. Boolean network with n nodes, x1, x3,...,X, and an external signal £, which is equal to 1 at
all steps. The network generates a periodic signal with period n.
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and
2" 2" 12 ) T = 2" 02" (A2)

Note that a binary number is odd if and only if the last digit is 1. So Equation (A2) means that when
the number g; € {0,1,2,...,2" — 1} is such that g; # 0 then

o %, when g; is even
% = 'Ifz;l, when g; is odd.
Hence, the truth matrix of the system is

go_[0 1 23 4 .2q 241 -0 22 271
0= 21 0 1 1 2 -..g qi R I s |

Note that all numbers larger than 2"~! are not in the range (the second row). So we can remove all
those columns whose first element > 27!, The resulting truth matrix is

T [o 1 2 3 4 ---29; 2g+1 --- 2711 2"—1}
1= .

b0 11 2 g gi - 2"P—1 2" (43)

Next note that all numbers between 2”2 and 2"~ ! are not in the range of the truth matrix T; in
Equation (A3). We can reduce the matrix by removing all those columns whose first elements are
in (272,27 1), Repeat this process, that is, remove those columns whose first elements are between
273 and 2"~2 then those between (2"~% and 2”3 etc., and we obtain the following matrix

0 1 2 4 ...2k ... gn72 el
= an=1 g 1 2 ...2k/1 .. gn=3 on-2|"

~t

(A4)

It is easy to see from the matrix T in Equation (A4) that the limit set of the map consists of a unique
cycle
021 52"2 5 ... 525150

A.2. Excitatory network with periodic input

In this section, we consider the Boolean system associated with the network in Figure A2, previously
introduced in [4]. The system can be described by the following equations.

St =a
SIT" =81 for 2<i<k (A5)
X{ = \/ijeK(/\jJil Sij)s

where k is the number of Snodes, K = {1,...,k}and C; = (10- - - 0) is a periodic signal with period

p—1
p.
The System (A5) is of the form

-+
{s =2(S,C1) (46)

X[ = (),

where 8 = (S1,...,Sk). Since it is a feed-forward network, we first look at the limit sets of ST =
£1(S, C1), then determine the dynamics of X;. Our end result is the same as presented in [4] but the
proof is different, and, due to the new representation we introduced in this paper, easier to validate.

Lemma A.2: Consider the system

St=8_, for 1<i<k, (A7)
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¥ S;n —— St

—— output

Figure A2. Excitatory network with periodic input [4]. C; is a periodic signal of period p, that is, it has
a repeated pattern of one followed by p—1 zeros. X1 = 1 in the next step whenever there are at least N
onesin (51,...,5¢) at the current step.

where C; = (10---0 0) andp > 1. Letly = LkJ and ro = k — lyp. Denote
p— 1
V= YA +20 +2% 4 ... 420P)  agnd U= DA +20 +2% 4 ... 4 2(b=Dpy

where j is an integer such that 0 < j < p. Then System (A7) has the following unique cycle after each
point on the cycle has been transformed by the map h(Sy,...,Sk) = S1 + 28 + -+ + 27715,

Go: Uy—> U — -+ = U1 — Uy whenry =0,
b\: y0—>1/{1—>---—>UP_1—>y0whenr0=1,
©>: yo—>~--—>yr0_1—>um—>---—>L{p_1—>y0whenro>1.

Proof: Note that after the first k transient steps, the chain (515, - - - Sx) exhibits the periodic pat-
tern of the controller C;. More specifically, (55, - - - S) has the value of C; at the previous k time
steps. Thus, (515 - - - Sx) must have the pattern (- - - 10 - - - 010 - - - ), where there are exactly p—1 zeros
between two consecutive 1s. Therefore, it is sufficient to construct a truth matrix that contains these
states only. By (A7), ST = (S1,...,Sk)™ is just one unit shift to the right with an exception for S,
which is determined by C;, and the ending element that is pushed out of the chain. If j is the number
of shifts to the right we can expect

h(0-- 010 010---) =21 +204+2% +...+2P), forsomejwith 0<j<p, (A8)
i p—l
wherel =Ilgorl =1y — 1.

We next consider the detailed expression of h(S™) = h(S)™ on a case by case basis.
Since [y = Lg] andrg = k — lpp, then 0 < ry < p.

(1) Consider first the case ro = 0. In this case, k = lyp and there are exactly [y number of S; with a

value of 1.
lptimes
r-—Jhx
Suppose (S1,...,8) = (10 O) then,
- 1

h(S1,. . S) = 1428 +2% .. 4 200=Dp — 14,

Ifp = 1 thenly = Up.Ifp> 1,then S| = 0and the sequence (S;, ..., S)T shifts by one unit
to the right. Hence,

UF =20+ 22 +2% ... 2007Dp) =1y
Similarly, we can show that

+_
U =Un
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foralll <j < p— 1.NotethatUy_; = 2P71(1 + 27 + 2% + - - - + 20 =DP) corresponds to the
state with C; = 1. Hence, Si" = 1. It follows that U;‘_ , = Up. Therefore, the system has a unique
cycde:Uy — Uy — --- = Uy — Up.

(2) Next consider the case ry > 0. In this case,

lotimes
——
(1., $) =(0---010---010---0)for 0<j<ry—1
j p-1 ro—1—j

and
lo—1,times

S S 0---:010---01 0---0 ) f <j
(1’___’ k)_( )or rn<j<p
j p=1  ptro—l-j
Next we derive the truth matrix. If §; = 1 (j = 0), then
B(Sts...,SK) =1+ 2P 4+ 2% 4 ... 4 2lP = Y,
Similar to the arguments in the previous case, we can see that Jij+ =Yifor0<j<rg—1,

y+ =u’0’2/{j+= i1 fOl‘T() §j<p—1andl/[;'_1 =y0-

ro—1

In summary, we can write the truth matrix M for this case as follows.
yO yl yr—l Z/Ir Z’lf+l u—l
M= { U 21, A9
|:yl yZ s ur() ur0+1 ur0+2 . yO ( )

Whenry = 1,thecycleis: Yo - U; — -+ — L{P_l — Yoandwhenry > 1thecycleis: )y —
o= Vi1 > Upy — --- = Up—1 — ). Note that in all cases the cycle is of period p.

|
We can now prove the dynamics of X; in Equation A5.

Theorem A.3 ([4, Theorem 3 (wording slightly modified)]): Consider the System (A5) where C; =
(10---0). Then the system has the following limit sets when N > 1:

p—1

) ifp < £, thenX; = (1)

@) ifp = iy, then X, = {0}

3) if%<p<%,Xl={1---10--~O}where170=k—(N—1)p.

[} p—ro
When N = 1 the limit sets are:

(1) whenp <k X; = {1}
(2) whenp>k X, ={1---10---0}.

k p—k

Remark A.1: Limit sets in Boolean networks are usually classified as fixed points or cycles. However,
in [4] a more sophisticated classification of limit sets has been introduced. The solution X; = {1} is
a fixed point but was also classified in [4] as a periodic solution with period p = 1. The solution

X;={1---10---0}, where?p=k— (N —1)p

to p—to

is a cycle with period p. It was classified in [4] as “bursting” with period p (see [4] for the precise
definition).



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS . 557

Proof: Suppose N > 1.

(1) First note that p < % implies % >Nandly = | %J > N. By Lemma A.2, all the three possible
cycles 6y, 61, and %, which correspond to the state values of (S, ..., Sk), contain at least Iy
(> N) number of 1s. It follows that X; has at least N number of active inputs at steady state.
Hence X; = gcl). ) L . .

(2) When p > =, » <N-1. If}—):N—lthen,ﬁ= LEJ =1y and ro =k — lpp = 0. It has
been shown in Lemma A.2 that in this case, all possible cycles that correspond to the state val-
ues of (81, ..., Sk) have at most [y number of 1s. Since [y = N — 1, [j < N. If% < N — 1 then

lo < N —1since | ] < X It has been shown in Lemma A.2 that all possible cycles that cor-
respond to the state values of (i, .. ., Sx) have at most [y 4+ 1 number of 1s. Since lp < N — 1,
Ip + 1 < N. In both cases, X; has at most N—1 active inputs at steady state and thus X; = (0).
(3) When % <p< %,we have N -1 < ;—; < N. This implies that J; = L;—;J =N-1and0 <
ro < p where ry = k — Iyp. It follows that [y + 1 = N. By Lemma A.2, %) and %, are the only
possible cycles. Since V; corresponds to states of (Sy, . . ., Sk) that contain exactly Iy + 1 number
of 1s and U; corresponds to states of (Si,. .., Sk) that contain exactly [y number of 1s, X; will
be activated only when the states of (S1,. .., S) are in ;. Since Y; exist for 0 < i < ry — 1 and
Io = N — 1, it follows that
X, = (110 -0,

o p—ro

where 7o = k — (N — 1)p.
Suppose now that N = 1.

(1) Whenp <k, ’1—§ > 1,asin the case with N > 1, (81, . . ., S¢) contains at least one 1 in all the three

possible limit cycles. Hence, X1 = (1).

(2) Note that p > k implies that 0 < % <l=Nand] = L%J = 0. Hence, ry = k — lyp = k. By
Lemma A.2, ¢ and %, are the only possible cycles. Notice that )); corresponds to the states
of (S1,...,8) containing exactly one 1 since Iy + 1 =1 and U; corresponds to states of
(S1,-..,8k) = (0---0) since Iy = 0. Because the threshold N for activating X is 1 and because
there are ry states that correspond to V;, X; = {1---10--- 0} at steady state.

—— |

k p—k
A.3. Simplification of an excitatory network with memory loss

In this section, we illustrate how the isomorphic representation we introduced in Section 2 can be
used to simplify and analyse a Boolean network by decomposing it into subnetworks. The full net-
work was first published in [4] and is shown in Figure A3(a). The network can be decomposed into
two subnetworks shown in Figure A3(b ,c), and an equivalent network that uses the isomorphic
representation is shown in Figure A3(d).

The Boolean system associated with the network in Figure A3(a) is:

Sf=a
S?‘=S,~_1 for 1<i<m
ST =S8i_1 A (=X (1) for m<i<M (A10)

X! = Vijekini(Niz1 S ®)

where K = {1,...,M}.
Let W =h(S;,...,Sm) and V = h(Sy+1,-..,Sm). Then the isomorphic system to (A10)
depicted in Figure A3(d), has the form

W(t+1) = L(W(H), Ci(D)
V(t+1) =LV, X1, W) (A11)
Xi(t+1) =fV(H), W)
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S — - — S,
—{ Su

S\ K N

X3 1 X4
(a) Full network (b) Sub-network 1 (c) Sub-network 2 (d) Equivalent
network

Figure A3. Excitatory network with memory loss. (a) The full network [4]. C; is a periodic signal of period
p, that s, it has a repeated pattern of one followed by p—1 zeros. X1 = 1in the next step whenever there
areatleast 2 onesin (51, ..., Su) atthe current step. S; = 1in the next step if C; = 1in the current step
(fori = 1),if S;_1 = 1in the current step (for2 <i < m) orif $;_1 = 1 and X7 = 0 in the current step
(form+ 1 < i < M). (b) Sub-network 1 consisting of nodes S, ..., Sn and the periodic input, ;. (¢)
Sub-network 2 consisting of Sm+1, ..., Sm and X;. (d) An equivalent network with W = h(51,....,5m)
and V = h(Sm+1, ... . Sm). (@) Full network, (b) Sub-network 1, (c) Sub-network 2 and (d) Equivalent
network.

Note that the functions f; and f, have the range of the function 4 (see Section 2) while the function
f3 has the range of {0, 1}.

Next we prove Theorem A.4 below, which is similar to Theorem 2.6 in the supplement of [4]
(there are small differences in the wording of the theorem). While the end result is the same, the
proof is different and uses the various representations of the network shown in Figure A3.

Theorem A.4: Consider the system in (A10) with C; = (10---0). Let [y = L%J and ry = m — lop.

p—1
Then, after the first M steps,

(1) Whenp < 2, X; = {1}.
(2) WhenZ <p<m—2,X;={1---10---0}.
fo p—t

(3) Whenm—2<p<M—1,X; ={110---0}.
p—2
(4) Whenp=M-1,X; ={10---0}.
p—1
(5) Whenp > M, X; = {0}.

Proof: First note the following observations, assuming that the isomorphic system (A11) was
created using the map h(Sy,...,S¢) = S; + 28, + -+ - + 271§,

(i) f£(V,1, W) = 0since X, suppresses all the nodes S; form + 1 <i < M.
(ii) IfV(t) = Oforallt, then the dynamics of the network (A10) is the same as that of the network
in Figure A2 with m = k.
(iii) The dynamics of sub-network 1 is governed by Lemma A.2.

We now prove the theorem point by point.

(1) Suppose p < Z. Considering only the interaction between Sub-network 1 and Xj, by
Theorem A.3 with N = 2 and k = m, Xj = {1}. Since the inputs from Sy,41,. . ., Sp are acti-
vating, the additional interaction between these nodes and X; do not change the dynamics of
X;. Thus, when considering the full network, X; = {1}.

(2) Suppose 3 < p < m — 2. First note that m > 5 (otherwise the statement is meaningless). Also
note that 1 + % < % < 2. Therefore, Iy = [%J =land2 <rp=m—p < p. By Lemma A2,
W (1) goes around the cycle % since ry > 2.
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Notice that independent of the initial values of X; and V, if W(0) = ), then X, (t) = 1 for
1 <t < ro. The reason is as follows. By Lemma A .2, along %3,

Vi, 0<t<r—1

W(t):{uh rnn<t<p-1

From the proof of Lemma A.2, Part 2, it follows that there are exactly two §; having a value
1 when 0 <t < ry — 1 and exactly one S; having a value of 1 when ry <t < p — 1. Hence,
Xj = 1 for consecutive rj time steps, which effectively leads to V = 0 all the time. Hence X; =

{1---10---0}.
— e —
(0] p—ro
To prove Points 3 and 4, we group Si,...,Sm as one entity and X; as another. Let W=
h(S1,...,Sm), then the system isomorphic to System (A10) is of the form
W(t+1) = (WD), CL1, X1 (1)
Xi(t+ 1) =L(W®)
Suppose m — 2 < p < M — 1. We first show that all possible trajectories have to pass through

(W, X;) = (14 27,0). We show it in two steps: (a) we show that X; can neither remain 0 nor remain
1 in any trajectory. (b) We show that if X; = 0, it will next be excited by W = 1 4 27,

(A12)

(a) X can neither remain 0 nor remain 1 in any trajectory.

Suppose X; () = 0 for all ¢, then Sy,... Sy behave exactly as in Theorem A.3 with k = M. Since
p <M, X;(t) = 1 for some t. This contradicts the assumption that X; (f) = 0 for all £. Hence, X;
cannot remain 0 in any trajectory. On the other hand, suppose X;(t) = 1 for all ¢, then S;(t) =0
for all t when m 4 1 < i < M because X suppresses these nodes. Additionally, note that after the
first initial M steps, the first m S; must have a pattern of the form (0- - -010---010- - - ), where there
are exactly p—1 zeros between two consecutive ones. Since the pattern shifts one unit to the right
after each step, and since p > % there exists time ¢, for which there is only one §; with a value of 1.
This implies X; (fo + 1) = 0 which contradicts the assumption X; (f) = 1 for all . Hence, X; cannot
remain 1 in any trajectory.

(b) If X1 = 0, it will next be excited by W = 1 + 2P

From Point (a) above, it is clear that when X; changes fromX; = 1to X; =0, S; = (0 010---).
The first time two ones will appear in §; will be when (5183 -+ SpSp41--+) = (10 - --) and
Xj = 0, thatis, when (W, X)) = (14 2°,0). We next prove Points 3 and 4 by con51der1ng tra]ectorles
that start at (W,X1) = (1 + 2°,0). Recall that a shift to the right in S; is equivalent to a multiplication
by 2in W (see the proof of Lemma A.2).

(3) When m—2<p<M-1, we can summarize the trajectories in Table Al. Note that since
p+2>m,S;=0fori>p+2 Hence, X; = {110---0}.
p-2
(4) When p = M—1, the first time X; = 0 will be excited will be when §; = 1 and Sy = 1. In the
next step, S = 1 and Syr = 0. Hence, X; = {10---0}. See also Table A2.

p-1
(5) When p > M, there is at most one S; having a value of 1 after the first M steps. Hence, X; = (0).

Table A1. The state values of the trajectory through (I7V,X1) = (14 2P,0) over one period when
m—-2<p<M-1.

WX (1+2°,0) @+2r1,1) 2,1) 23,0 21,0
(W, xn* @2+20417) @1 (23,0) (24,0) (14 2°,0)
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Table A2. The state values of the trajectory through (17V,X1) =(1+
2P,0) over one period whenp = M—1.

(Wx1) (14 2°,0) @ (22,0) (2°-1,0)
W, X+ @1 (22,0) (23,0) (14 2°,0)
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