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Abstract— This article focuses on online kernel learning over a
decentralized network. Each agent in the network receives online
streaming data and collaboratively learns a globally optimal
nonlinear prediction function in the reproducing kernel Hilbert
space (RKHS). To overcome the curse of dimensionality issue
in traditional online kernel learning, we utilize random feature
(RF) mapping to convert the nonparametric kernel learning
problem into a fixed-length parametric one in the RF space.
We then propose a novel learning framework, named online
decentralized kernel learning via linearized ADMM (ODKLA),
to efficiently solve the online decentralized kernel learning
problem. To enhance communication efficiency, we introduce
quantization and censoring strategies in the communication
stage, resulting in the quantized and communication-censored
ODKLA (QC-ODKLA) algorithm. We theoretically prove that
both ODKLA and QC-ODKLA can achieve the optimal sublinear
regret O(

√
T ) over T time slots. Through numerical experiments,

we evaluate the learning effectiveness, communication efficiency,
and computation efficiency of the proposed methods.

Index Terms— Communication censoring, decentralized online
kernel learning, linearized alternating direction method of mul-
tiplier (ADMM), quantization, random feature (RF) mapping.

I. INTRODUCTION

DECENTRALIZED online learning has been widely stud-
ied in the last decades, mostly motivated by its broad

applications in networked multi-agent systems, such as wire-
less sensor networks, robotics, and the internet of things,
etc., [1], [2]. In these systems, a number of agents collect
their own online streaming data and aim to learn a com-
mon functional model through local information exchange.
This objective is usually achieved by decentralized online
convex optimization [3], [4], [5], [6]. With an online gradi-
ent descent–based algorithm [7], or through online alternat-
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ing direction method of multipliers (ADMMs) [4], a static
regret O(

√
T ) can be achieved over a time horizon T .

Further, if the cost functions are strictly convex, an effi-
cient algorithm based on the Newton method achieves a
regret bound of O(log T ) [8]. However, all these works
assume that the functional model to be learned by agents
is linear, which may not be always true in practical
applications.

Motivated by the universality of kernel methods in approxi-
mating nonlinear functions, this article aims to solve the decen-
tralized online kernel learning problem, where the common
function to be learned by agents is assumed to be nonlinear
and belongs to the reproducing kernel Hilbert space (RKHS).
However, directly applying kernel methods for decentralized
online learning is a formidably challenging task because they
adopt nonparametric models, where the number of model
variables grows proportionally to the data size. This incurs
the curse of dimensionality issue when data size becomes
large over time. Additionally, the data-dependent decision
variables hinder consensus optimization, especially when the
data sizes vary among different agents and across time, as well
as under certain circumstances where raw data exchange is
prohibited [9]. Another key issue in decentralized (kernel)
learning is its reliance on iterative local communications for
computational feasibility and efficiency. This incurs frequent
communications among agents to exchange their locally com-
puted updates of the shared learning model, which can cause
tremendous communication overhead in terms of both link
bandwidth and transmission power. Therefore, it is crucial
to design both communication- and computation-efficient dis-
tributed online kernel learning algorithms with data privacy
protection.

To alleviate the computational complexity of kernel meth-
ods, [10], [11] propose to restrict the number of parameters
to be estimated. Random feature (RF) based methods approxi-
mate the kernel function using a small number of features that
are randomly sampled from a distribution independent of the
training data [12], [13], [14]. In contrast, Nyström methods
approximate the kernel matrix by randomly selecting a subset
of training data to form its basis functions [15], [16]. Com-
pared to Nyström methods, the data-independent RF-based
methods not only circumvent the curse of dimensionality
problem but also enable consensus optimization without
any raw data exchange among agents, making them popu-
lar in many decentralized kernel learning works, including
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batch-form learning [9], [17] and online streaming learn-
ing [18], [19], [20].

To improve communication efficiency in decentralized
learning, Nesterov’s gradient is harnessed for achieving fast
convergence [21]. Quantization [19], [22], [23] and spar-
sification [24], [25] methods are employed to compress
transmitted information, while random node selection and
asynchronous updating are utilized to reduce the number of
transmissions per iteration [26], [27]. In contrast to random
node selection, a more intuitive approach involves evalu-
ating the importance of a message to avoid unnecessary
transmissions. This is often achieved through the adoption
of a communication-censoring or event-triggering scheme,
which adaptively determines whether a message is informative
enough to be transmitted during the iterative optimization
process [9], [28], [29], [30].

In this article, we thus focus on the decentralized online
kernel learning problem in networked multi-agent systems and
aim to develop algorithms that are both communication- and
computation-efficient. Relative to prior art, our contributions
are summarized as follows.

1) We first utilize RF mapping to transform the original
nonparametric data-dependent learning problem into a
parametric fixed-size data-independent learning problem
to circumvent the curse of dimensionality issue in tradi-
tional kernel methods and enable consensus optimization
in a decentralized setting in the RF space. Different from
existing gradient descent–based method [18], [19] or the
standard ADMM algorithm [20], we propose to solve the
decentralized kernel learning problem through linearized
ADMM. This leads to the development of the Online
decentralized kernel learning via linearized ADMM
(ODKLA) algorithm. In ODKLA, the local cost function
of each agent is replaced by its first-order approxi-
mation centered at the current iterate and results in a
closed-form primal update when the local cost function
is convex. Compared with the standard ADMM [19],
[20] that solve sub-optimization problems at each itera-
tion to get the updates of the primal variables, ODKLA
is more computationally efficient. Furthermore, ODKLA
is essentially a variant of the higher-order ADMM
and thus achieves faster convergence compared with
the diffusion-based first-order gradient descent meth-
ods [18]. Additionally, since no raw data is exchanged
among agents and the mapping from the original data
space to the RF space is not one-to-one mapping, data
privacy is protected to a certain level.

2) To reduce the communication cost, we develop
the quantized and communication-censored online
decentralized kernel learning via linearized
ADMM (QC-ODKLA) algorithm by introducing a
communication-censoring strategy and a quantization
strategy. The communication-censoring strategy
allows each agent to autonomously skip unnecessary
communications when its local update is not informative
enough for transmission, while the quantization strategy
restricts the total number of transmitted bits throughout
the learning process. In this way, the communication

efficiency can be boosted at almost no sacrifice to the
learning performance. In the absence of both strategies,
QC-ODKLA degenerates to ODKLA. Compared to
works such as [18] and [20] that do not have any
communication-saving strategies, and [19] that solely
utilizes the quantization strategy, our approach can
further save communication resources.

3) In addition, we analyze the regret bound of QC-ODKLA.
We show that when all techniques are adopted (lin-
earized ADMM, quantization, and communication cen-
soring), QC-ODKLA is still able to achieve the optimal
sublinear regret of O(

√
T ) over T time slots under

mild conditions, that is, the communication-censoring
thresholds should be decaying. This indicates that the
proposed QC-ODKLA algorithm enables every agent
in the network to learn a common function that has a
diminishing gap from the hindsight best function under
mild conditions. The analysis also provides guidelines
for tuning the parameters of QC-ODKLA, including the
step size, the censoring function, and the quantization
level. It also characterizes how the regret bound is
affected by the properties of the cost functions and the
communication graph.

4) Finally, we test the performance of our proposed
ODKLA and QC-ODKLA algorithms on extensive real
datasets. The results corroborate that both ODKLA and
QC-ODKLA exhibit attractive learning performance and
computation efficiency, while QC-ODKLA is highly
communication efficient. Such salient features make
it an attractive solution for broad applications where
decentralized learning from streaming data is at its core.

The remaining of this article is organized as follows.
Section II provides some preliminaries for decentralized kernel
learning. Section III formulates the online decentralized kernel
learning problem. Section IV develops the online decen-
tralized kernel learning algorithms, including both ODKLA
and QC-ODKLA. Section V presents the theoretical results.
Section VI tests the proposed methods by real datasets. Con-
cluding remarks are summarized in Section VII.

Notation: R denotes the set of real numbers. ∥·∥2 denotes
the Euclidean norm of vectors and ∥·∥F denotes the Frobenius
norm of matrices. |·| denotes the cardinality of a set. A denotes
a matrix, a denotes a vector, and a denotes a scalar.

II. PRELIMINARIES

A. Network and Communication Models

1) Network Model: Consider a bidirectionally connected
network of N agents and r arcs, whose underlying undirected
communication graph is denoted as G = (N ,A), where N
is the set of agents with cardinality |N | = N and A is the
set of undirected arcs with cardinality |A| = r . Two agents
i and j are called as neighbors when (i, j) ∈ A and, by the
symmetry of the network, ( j, i) ∈ A. For agent i , its one-hop
neighbors are in the set Ni = { j |( j, i) ∈ A} with cardinality
|Ni |, which is also known as the degree di of agent i . The
degree matrix of the communication graph is D ∈ RN×N ,
which is diagonal with the i th diagonal element being di ,∀i .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2023 at 16:03:06 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: QC-ODKLA 3

Define the symmetric adjacency matrix associated with the
communication graph as W ∈ RN×N , whose (i, j)th entry is
1 if agent i and j are neighbors or 0 otherwise. Define the
unsigned incidence matrix and the signed incidence matrix of
the communication graph as S+ ∈ RN×2r and S− ∈ RN×2r ,
respectively. According to [31], we have

D + W =
1
2

S+S⊤

+

D − W =
1
2

S−S⊤

−
.

2) Communication Model: In this article, we consider syn-
chronous communications. That is, the iterative process of
algorithm implementation consists of three stages: commu-
nication, observation, and computation. In the communication
stage, each agent broadcasts its state variable to its neighbors
and receives state variables from its neighbors according to the
communication-censoring rule, which shall be introduced later.
After communicating with its neighbors, each agent collects its
streaming data and formulates its own local objective function
in the observation stage. In the computation stage, each agent
carries out local updates based on the observed data, local
objective function, and state variables.

B. RF Mapping

RF mapping is proposed to make kernel methods scalable
for large datasets [12]. For a shift-invariant kernel that satisfies
κ(xt , xτ ) = κ(xt − xτ ), ∀t, ∀τ , if κ(xt − xτ ) is absolutely
integrable, then its Fourier transform pκ(ω) is guaranteed to
be nonnegative (pκ(ω) ≥ 0), and hence can be viewed as its
probability density function (pdf) when κ is scaled to satisfy
κ(0) = 1 [32]. Therefore, we have

κ(xt , xτ ) =

∫
pκ(ω)e jω⊤(xt−xτ )dω

= Eω[φ(xt , ω)φ∗(xτ , ω)] (1)

where E denotes the expectation operator, φ(x, ω) := e jω⊤x

with ω ∈ Rd , x ∈ Rd , and ∗ being the complex conjugate
operator. In (1), the first equality is the result of the Fourier
inversion theorem, and the second equality arises by viewing
pκ(ω) as the pdf of ω.

The main idea of the RF mapping method is to approximate
the kernel function κ(xt , xτ ) by the sample average

κ̂ L(xt , xτ ) :=
1
L

L∑
l=1

φ(xt , ωl)φ
∗(xτ , ωl) (2)

where {ωl}
L
l=1 are randomly drawn from the distribution pκ(ω).

For implementation, the following real-valued mapping is
usually adopted:

φ(x, ω) = [cos(ω⊤x), sin(ω⊤x)]⊤. (3)

III. PROBLEM STATEMENT

Consider the network model described in Section II-A, each
agent in the network only has access to its locally observed
data composed of independently and identically distributed

(i.i.d) input-label pairs {xi,t , yi,t }
T
t=1 obeying an unknown prob-

ability distribution p on X × Y , with xi,t ∈ Rd and yi,t ∈ R.
The decentralized learning task is to find a nonlinear prediction
function f such that yi,t = f (xi,t )+ ei,t for {{xi,t , yi,t }

T
t=1}

N
i=1,

where the error term ei,t is minimized accordingly to certain
optimality metric. This is usually achieved by minimizing the
empirical risk

f ⋆
= arg min

f ∈�

N∑
i=1

T∑
t=1

ℓ( f (xi,t ), yi,t ) + λ∥ f ∥2
� (4)

where ℓ(·, ·) is a nonnegative loss function, � is the function
space f belongs to, and λ > 0 is a regularization parameter
that controls overfitting. For regression problems, a common
loss function is the quadratic loss. For binary classifications,
the common loss functions are the hinge loss ℓ(y, ŷ) =

max(0, 1 − y ŷ) and the logistic loss ℓ(y, ŷ) = log(1 + e−y ŷ).
Assume f belongs to the RKHS H := { f | f (x) =∑
∞

t=1 αtκ(x, xt )} induced by a shift-invariant positive semidef-
inite kernel κ(x, xt ) : Rd

× Rd
→ R. Thus, the optimal

solution of (4) admits

f̂ ⋆
κ(x) =

N∑
i=1

T∑
t=1

αi,tκ(x, xi,t ) := α⊤κ(x) (5)

where α = [α1,1, . . . , αN ,T ]
⊤
∈ RN T is the coefficient vector

to be learned and κ(x) = [κ(x, x1,1), . . . , κ(x, xN ,T )]⊤. The
kernel function can be linear, Gaussian, or Laplacian. In this
article, we adopt a Gaussian kernel κ(x, xt ) = exp(−∥x −

xt∥
2
2/(2σ 2)) with a pre-defined bandwidth σ .

Notice that the parameter α to be learned is data dependent
and its size grows linear with the number of data points.
This incurs two problems. First, since the size of α grows
linearly with T , the computational complexity of estimating
α becomes an issue when T grows large. Second, since
α is data dependent, to learn a common functional model
represented by (5) in the decentralized network means that raw
data {xi,t , yi,t },∀i,∀t are also required to be communicated,
which raises the privacy concerns, especially when the raw
data contains sensitive information [9].

To circumvent the curse of dimensionality issue and pre-
vent raw data exchange, we adopt the RF mapping method
described in Section II-B. For the adopted Gaussian kernel, its
pdf is a normal distribution with pκ(ω) ∼ N(0, σ−2I). Then,
the function f ⋆ to be learned in (4) can be approximated by
the following representation:

f̂ ⋆(x) = θ⊤φL(x) (6)

where θ ∈ R2L is the decision vector to be learned in the RF
space, and φL(x) is the mapped data in the RF space using
(3)

φL(x) :=

√
1
L
[φ(x, ω1), . . . , φ(x, ωL)]⊤. (7)

Here, the new decision variable θ is data independent.
Therefore, when nodes in the decentralized network commu-
nicate, they only need to communicate the new parameter θ ,
as shown by Algorithms 1 and 2. Moreover, the size of θ is
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fixed and determined by the number of RFs chosen, which is
usually much smaller than the number of data points (L ≪ T ).
In addition, the mapping from x to φL(x) is not one to one,
which further relieves the sensitive raw data leakage problem.

With the approximation (6), the decentralized kernel learn-
ing problem is formulated as follows:

min
{θ i ,zi j}

N∑
i=1

[
T∑

t=1

ℓ
(
θ⊤

i φL
(
xi,t
)
, yi,t

)
+

λ

N
∥θ i∥

2

]
s.t. θ i = zi j , θ j = zi j ∀(i, j) ∈ A (8)

where θ i and θ j are the local copies of the global parameter θ

associated with agents i, j ∈ N , respectively. The constraint
in (8) enforces the consensus constraint on neighboring agents
i and j using an auxiliary variable zi j . The optimization
problem can then be solved using DKLA proposed in [9].
A communication-censored algorithm (COKE) is also pro-
posed in [9] to improve the communication efficiency of
DKLA.

However, both DKLA and COKE operate in batch form
when all data are available. Whereas in many real-life appli-
cations, function learning tasks are expected to perform in an
online fashion with sequentially arriving data. In this article,
we consider the case that each agent collects the data points
{xi,t , yi,t }

T
t=1,∀i in an online fashion, and the parameter is

estimated based on instantaneous data samples. To achieve
an optimal sublinear regrets from the optimal performance of
(8), we customize the general online decentralized ADMMs
algorithm proposed in [4] to decentralized online kernel learn-
ing to efficiently solve the online kernel learning problem
over a decentralized network. At every time t , decentralized
online kernel learning (approximately) solves an optimization
problem to obtain the update θ i,t+1 from the current decision
θ i,t and the newly arrived data

min
{θ i ,zi j }

N∑
i=1

Li,t (θ i ) +
ηt

2

N∑
i=1

∥θ i − θ i,t∥
2

s.t. θ i = zi j , θ j = zi j ∀(i, j) ∈ A (9)

where Li,t (θ i ) := ℓ(θ⊤

i φL(xi,t ), yi,t )+(λ/N )∥θ i∥
2 is the local

instantaneous cost function dependent of the new data only,
whereas θ i,t captures the influence of all the past data.

In Section IV, we first propose a computation-efficient
algorithm to solve (9). We then utilize communication-
censoring and quantization strategies to improve the
communication efficiency of the proposed algorithm.

IV. ALGORITHM DEVELOPMENT

In this section, we first utilize linearized ADMM to effi-
ciently solve (9) and then add the censoring and quantization
techniques to develop a communication-efficient decentralized
online kernel learning algorithm.

For notational clarity, we define 2 = [θ⊤

1 ; θ
⊤

2 ; . . . ; θ
⊤

N ] ∈

RN×2L that contains all the local copies θ i and Z =

[· · · ; z⊤i j ; · · · ] ∈ R2r×2L . We further define the aggregated
function as Lt (2) :=

∑N
i=1 Li,t (θ i ). With these definitions,

we rewrite (9) in a matrix form for the 2t+1 update

min
{2,Z}

Lt (2) +
ηt

2
∥2 − 2t∥

2

s.t. A2 + BZ = 04r×2L (10)

where A = (1/2)[S⊤
+

+ S⊤
−
;S⊤

+
− S⊤

−
] ∈ R4r×N and

B = [−I2r ;−I2r ].

A. ODKLA: Online Decentralized Kernel Learning via
Linearized ADMM

Standard ADMM to solve (10) starts from formulating the
augmented Lagrangian of (10) as follows:

Lt (2, Z, 3) = Lt (2) +
ηt

2
∥2 − 2t∥

2
F

+⟨3, A2 + BZ⟩ +
ρ

2
∥A2 + BZ∥2

F (11)

where ρ is the penalty parameter, 3 = [β;λ] ∈ R4r×2L is the
Lagrange multiplier associated with the constraint A2+BZ =

0. At time t , the updates of the primal variables 2t+1, Zt+1
and the dual variable 3t+1 are sequentially given by

2t+1 := arg min
2

Lt (2, Zt , 3t ) (12)

Zt+1 := arg min
Z

Lt (2t+1, Z, 3t ) (13)

3t+1 = 3t + ρ(A2t+1 + BZt+1). (14)

Note that given the instantaneous loss Lt , iterates (12)–(14)
only run once, and thus the optimization problem in (10) is
only approximately solved.

It has been proven in [4] that with initializations β1 = −λ1,
and Z1 = (1/2)S⊤

+
21, the update of the auxiliary variable

Zt is not necessary and the Lagrange multiplier 3 can be
replaced by a lower dimensional variable 0 := [γ⊤

1 ; . . . ; γ
⊤

N ] ∈

RN×2L . The simplified updates of ADMM for general online
decentralized optimization refer to [4]. Though simplified,
the general decentralized ADMM still involves solving local
optimization problems for the primal variables update, thus is
computational intensive.

To reduce the computation complexity of ADMM,
we replace Lt (2) in (12) by its linear approximation Lt (2t )+

⟨∂Lt (2t ), 2 − 2t ⟩ at 2 = 2t , and develop the ODKLA
algorithm where the iterates of 2t+1 and 0t+1 are generated
by the simplified recursions

2t+1 = (ηt I + 2ρ D)−1
[
(ρ(D + W) + ηt I)2t

− 0t − ∂Lt (2t )
]

(15)

0t+1 = 0t + ρ(D − W)2t+1. (16)

The ODKLA algorithm can be implemented distributedly.
Specifically, each agent i only needs to update a primal
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Algorithm 1 ODKLA (Run at Agent i)
Require: Kernel κ , hyperparameters (L , ηt ), initialize local

variables to θ i,1 = 0, and γi,1 = 0.
1: Draw L i.i.d. samples {ωl}

L
l=1 from pκ(ω) according to a

common random seed.
2: for iterations t = 1, 2, . . . , T do
3: Receive a streaming data (xi,t , yi,t )

4: Construct φ(xi,t ) via (7).
5: Update local primal variable θ i,t+1 via (17).
6: Transmit θ i,t+1 to neighbors and receive θ j,t+1 from

neighbors j ∈ Ni .
7: Update local dual variable γi,t+1 via (18).
8: end for

variable θ i and a dual variable γi with the following iterations:

θ i,t+1 = θ i,t −
1

ηt + 2ρdi

∂Li,t (θ i,t )

+ ρ
∑
j∈Ni

(θ i,t − θ j,t ) + γi,t

 (17)

γi,t+1 = γi,t + ρ
∑
j∈Ni

(θ i,t+1 − θ j,t+1). (18)

Note that with linearized ADMM, at each time t , ODKLA
has closed-form solutions for all agents to update their primal
variables, instead of solving optimization problems as in (12).
Thus, the computational efficiency is improved. The ODKLA
algorithm is outlined in Algorithm 1.

Remark 1: Our paper shares similar problem formulation
(9) as [20] since our algorithms are both developed from
the general decentralized online ADMM framework pro-
posed by [4]. However, our methods differ from [20] in
two ways. First, we utilize linearized ADMM to solve the
decentralized kernel learning problem while [20] adopts the
standard ADMM method. Compared with [20], our algo-
rithms enjoy light computation. Second, we also develop the
communication-efficient algorithm in the next section using
quantization and communication-censoring strategies while the
communication efficiency is not discussed in [20].

B. QC-ODKLA: Quantized and Communication-Censored
ODKLA

ODKLA resolves the challenges caused by streaming data
in decentralized network setting in a computationally effi-
cient manner. However, as seen in (17) and (18), agents
communicate all the time which causes low communica-
tion efficiency. Thus, we introduce communication-censoring
and quantization strategies to deal with the limited com-
munication resource situation and develop the QC-ODKLA
algorithm.

To start, we introduce a new state variable θ̂ i,t for each agent
i to record its latest broadcast primal variable up to time t .
Then, the difference between agent i’s updated state θ i,t+1

and its previously transmitted state θ̂ i,t at time t is defined as
follows:

hi,t = θ i,t+1 − θ̂ i,t . (19)

We then introduce an evaluation function

Hi,t = ∥hi,t∥2 − αβ t (20)

to evaluate if the local updates θ i,t+1 are informative enough to
be transmitted, with predefined positive constants α > 0 and
β < 1. If Hi,t ≥ 0, then θ i,t+1 is deemed informative, and
agent i is allowed to transmit a quantized update Q(θ i,t+1) to
its neighbors. Here, the quantization is introduced to reduce
the communication cost from the perspective of bit numbers
per transmission. To facilitate the measurement and analysis
of the impact of quantization, we adopt the difference-based
quantization scheme proposed in [33]. That is, at time t ,
instead of quantizing θ i,t+1, we quantize the difference hi,t .
Specifically, for each element hl

i,t , l = 1, . . . , 2L within the
range of [u, v), if we restrict the number of transmission bits
to be b, then we can evenly divide the range [u, v) to be
q = 2b intervals of equal length 1 = (v − u)/q. Then the
rounding quantizer Q(·) applied to hl

i,t outputs

Q(hl
i,t ) = u +

(⌊
hl

i,t − u

1

⌋
+

1
2

)
1 (21)

where ⌊·⌋ is the floor operation. In practice, it is not necessary
to transmit Q(hl

i,t ), instead, we can simply transmit the integer
k := ⌊(hl

i,t − u/1)⌋ using the b bits. Thus, the total number
of bits for agent i to transmit the quantized difference Q(hi,t )

to its neighbors is only 2Lb bits.
The whole communication process thus involves three parts:

evaluation, quantization, and states update. If Hi,t ≥ 0, then
θ i,t+1 is deemed informative, and agent i is allowed to transmit
a quantized difference Q(hi,t ) to its neighbors and updates
its local state as θ̂ i,t+1 = θ̂ i,t + Q(hi,t ). Otherwise, θ i,t+1
is censored, agent i sets θ̂ i,t+1 = θ̂ i,t , and no information
is transmitted. Similarly, upon receiving Q(h j,t ) from its
neighbor j , agent i updates the state variables of its neighbor’s
as θ̂ j,t+1 = θ̂ j,t + Q(h j,t ), otherwise, θ̂ j,t+1 = θ̂ j,t .

With the communication-censoring rule and quantization
scheme, the primal and dual updates in (17) and (18) become

θ i,t+1 = θ i,t −
1

ηt + 2ρdi

∂Li,t (θ i,t )

+ ρ
∑
j∈Ni

(θ̂ i,t − θ̂ j,t ) + γi,t


(22)

γi,t+1 = γi,t + ρ
∑
j∈Ni

(
θ̂ i,t+1 − θ̂ j,t+1

)
(23)

and the total numbers of transmissions and bits are both
reduced in the optimization and learning process. We sum-
marize the QC-ODKLA algorithm in Algorithm 2.
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Algorithm 2 QC-ODKLA (Run at Agent i )
Require: Kernel κ , hyperparameters (L , ρ, α, β), initialize

local variables to θ i,1 = 0, and γi,1 = 0, θ̂ i,1 = Q(θ i,1)

and θ̂ j,1 = Q(θ j,1) for all j ∈ Ni .
1: Draw L i.i.d. samples {ωl}

L
l=1 from pκ(ω) according to a

common random seed.
2: for iterations t = 1, 2, . . . , T do
3: Receive a streaming data (xi,t , yi,t )

4: Construct φ(xi,t ) via (7).
5: Update local primal variable θ i,t+1 by solving (22).
6: Calculate the difference hi,t via (19) and quantize it as

Q(hi,t ) via (21).
7: If (20) is nonnegative, transmit Q(hi,t ) to neighbors and

set θ̂ i,t+1 = θ̂ i,t + Q(hi,t ). Else, set θ̂ i,t+1 = θ̂ i,t and do
not transmit.

8: If receiving Q(h j,t ) from neighbors j , update θ̂ j,t+1 =

θ̂ j,t + Q(h j,t ). Else, set θ̂ j,t+1 = θ̂ j,t .
9: Update local dual variable γi,t+1 via (23).

10: end for

V. REGRET ANALYSIS

In this section, we analyze the regret bound of QC-ODKLA.
As in [18], we define the cumulative network regret of online
decentralized learning as follows:

R(T ) =

T∑
t=1

N∑
i=1

(
Li,t (θ i,t ) − Li,t (θ

⋆)
)

(24)

where θ ⋆ is the optimal solution of (8) that assumes all data
are available. We prove that QC-ODKLA achieves the optimal
sublinear regret O(

√
T ) for convex local cost functions Li,t .

Since ODKLA is a special case of QC-ODKLA where both
the quantization and communication-censoring strategies are
absent, the regret analysis of QC-ODKLA extends to ODKLA
straightforwardly. The following commonly used assumptions
are adopted.

Assumption 1: The local cost functions Li,t (θ) are convex
and differentiable with respect to θ . Also, assume the gradients
of the local cost functions are Lipschitz continuous with
constants CLi > 0,∀ i . That is, ∥∂Li,t (θ)∥2 ≤ CLi ,∀ i . The
maximum Lipschitz constant is CL := maxi CLi .

Assumption 2: The estimates θ i,t and the optimal solution
θ ⋆ of (8) are bounded. That is, ∥θ i,t∥2 ≤ Cθ , and ∥θ ⋆

∥2 ≤ Cθ .
Note that all assumptions are standard in online decentral-

ized kernel learning [18], [19], [20]. The convexity of local
cost functions are easily satisfied in learning problems if the
local cost functions are square loss or the hinge loss.

To study the regret bound for QC-ODKLA, we notice
that the difference of QC-ODKLA and ODKLA is the
communication-censoring step and quantization step in the
communication stage, which introduces an error if an update
is censored and/or quantized in a transmission. Define the
introduced error for agent i at time t as follows:

ei,t := θ i,t − θ̂ i,t . (25)

Then, the overall introduced error at time t can be con-
catenated as Et := [e⊤1,t ; e⊤2,t ; . . . ; e⊤N ,t ]. We first show

that the overall introduced error in QC-ODKLA is upper
bounded by the quantization error and the pre-defined thresh-
old parameters.

Lemma 1: For the updates (22) and (23), under Assump-
tions 1 and 2, if the quantized difference Q(hi,t ) is only
allowed to transmit when Hi,t ≥ 0 for the pre-defined
threshold parameters α and β, then, for any time t > 0, the
overall error introduced in the QC-ODKLA is upper bounded
by

∥Et∥
2
F ≤ ζ := max{

√
Nαβ,

√
2N L1/2} (26)

where 1 is the length of the quantization interval.
Proof: Define δθ̂ i,t = θ̂ i,t − θ̂ i,t−1, the introduced error

for each agent i can be represented as follows:

ei,t = θ i,t − θ̂ i,t

= θ i,t − θ̂ i,t−1 − δθ̂ i,t

= hi,t−1 − δθ̂ i,t . (27)

According to the censoring rule, if ∥hi,t−1∥2 ≥ αβ t−1 for
t ≥ 1, we have δθ̂ i,t = Q(hi,t−1), which implies ∥ei,t∥2 =

∥hi,t−1 − Q(hi,t−1)∥2 ≤
√

2L1/2. Otherwise, if ∥hi,t−1∥2 <

αβ t−1 for t ≥ 1, we have δθ̂ i,t = 0, which implies ∥ei,t∥2 =

∥hi,t−1∥2 ≤ αβ t−1
≤ αβ since β < 1. Therefore, the overall

introduced error ∥Et∥
2
F ≤ max{

√
Nαβ,

√
2N L1/2}. ■

With Lemma 1, we are ready to establish the network regret
bound of QC-ODKLA.

Theorem 1: Under Assumptions 1 and 2, if the quantized
difference Q(hi,t ) is only allowed to transfer when Hi,t ≥

0 for the pre-defined threshold parameters α > 0 and β < 1,
then, for any time t > 0, the cumulative network regret (24)
generated by the updates (22) and (23) satisfies

R(T ) ≤

(
√

NCθ +
1

σ 2
max(S−)

CL + σ 2
max(S−)ζ

)
O
(√

T
)
(28)

if ηt = ρ = 1/O(
√

T ).
Proof: See Appendix. ■

Remark 2: Note that in addition to the network size (N )
and topology (S−), the communication-censoring and quanti-
zation strategies (incorporated in ζ ) also affect the cumulative
network regret, which creates a trade-off between the commu-
nication efficiency and the online learning performance.

VI. EXPERIMENTS

This section evaluates the effectiveness of our proposed
QC-ODKLA algorithm in saving communication and com-
putation resources on various online regression tasks with
real-world datasets. The loss function is assumed to be a
squared loss, resulting in the following instantaneous cost
function for agent i,∀i ∈ N :

Li,t (θ i ) := (θ⊤

i φL(xi,t ) − yi,t )
2
+

λ

N
∥θ i∥

2. (29)

For the sake of comparison, the following decentralized
online learning algorithms will be used for our experiments.

1) RFF-DOKL: The decentralized online kernel learning
algorithm that is developed based on online gradient
descent and a diffusion strategy [18].
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2) DOKL: The decentralized online kernel learning
algorithm that is developed based on online
ADMM [20].

3) ODKLA: The proposed decentralized online kernel
learning that is developed based on linearized ADMM.

4) QC-ODKLA: The proposed communication-efficient
decentralized online kernel learning that is developed
based on linearized ADMM. The communication effi-
ciency is achieved by communication censoring and
quantization.

There are other efficient kernel-based learning algorithms,
for example, the parsimonious kernel learning method [11],
the Nyström method [15], the multi-kernel learning algo-
rithms [19], [20], etc. However, since we consider the case that
data are only locally available and cannot be shared among
agents to ensure raw data privacy, the parsimonious kernel
learning method and the Nyström method are excluded for
comparison. Although learning with multi-kernel has more
flexibility and may achieve better learning performance than
utilizing a single kernel, it is not our objective to compare
the learning performance of single and multiple kernels in
this article. We remark that the multi-kernel learning scheme
can be easily incorporated into our work though, as proposed
by [20], to achieve both high learning performance and
communication-computation efficiency.

A. Description of Online Datasets and Experimental Settings

The regression tasks are carried out on six datasets available
at the UCI machine learning repository [34]. The detailed
descriptions of the six datasets are listed below.

1) Tom’s Hardware: This dataset contains Ttotal =

11 000 samples with xt ∈ R96 including the number of
created discussions and authors interacting of a topic
and yt ∈ R representing the average number of display
to a visitor about that topic [35].

2) Twitter: This dataset consists of Ttotal = 98 700 samples
with xt ∈ R77 being a feature vector reflecting the
number of new interactive authors and the lengths of
discussions on a given topic, etc., and yt ∈ R represent-
ing the average number of active discussions on a certain
topic. The learning task is to predict the popularity of
these topics [35].

3) Energy: This dataset contains Ttotal = 18 600 samples
with xt ∈ R28 describing the humidity and temperature
in different areas of the house, pressure, wind speed,
and viability outside, while yt denotes the total energy
consumption in the house [36].

4) Air Quality: This dataset contains Ttotal = 7320 samples
measured by a gas multi-sensor device in an Italian city,
where xt ∈ R13 represents the hourly concentration of
CO, NOx, NO2, etc, while yt denotes the concentration
of polluting chemicals in the air [37].

5) Conductivity: This dataset contains Ttotal = 21 260 sam-
ples extracted from superconductors, where xt ∈ R81

represents critical information to construct supercon-
ductor such as density and mass of atoms. The task

is to predict the critical temperature, which creates
superconductor [38].

6) Blood Data: This dataset contains Ttotal = 61 000 sam-
ples recorded by patient monitors at different hospi-
tals, where xt ∈ R2 and the goal is to predict the
blood pressure based on several physiological parame-
ters from photoplethysmography and electrocardiogram
signals [39].

All experiments are conducted using MATLAB 2021 on
an Intel CPU @ 3.6 GHz (32 GB RAM) desktop. For
each dataset, the Ttotal data samples are randomly shuffled
and then partitioned among N nodes so that each node has
T = Ttotal/N samples. The features in data are normalized
so that all values are between 0 and 1. Throughout the
simulation, we adopt the Gaussian kernel for our learning
tasks, whose bandwidth is fine tuned through grid search for
each task. The Gaussian kernel bandwidth is fined tuned to
be σ = 0.5 for Tom’s hardware, Twitter, air quality, and
blood datasets. For conductivity and energy datasets, σ =

1 and σ = 0.1, respectively. The regularization parameter
λ = 10−4. The number of RFs adopted for RF approximation
is L = 50 throughout the simulations, which is the same
as [20]. The stepsize ρ and ηt are fine tuned via grid search
for each method and each dataset individually. The censoring
threshold parameters are α = 2, β = 0.9 for energy data, and
α = 4, β = 0.99 for all the other datasets. The quantization
level for QC-ODKLA algorithm is set to be q = 8 to
achieve a balance in saving communication and good learning
performance.

The connected graphs are randomly generated with N =

5 or N = 10 nodes, each with a moderate connection. The
probability of attachment per node equals to 0.5, that is, any
pair of two nodes are connected with a probability of 0.5. For
Twitter, conductivity, and blood datasets, whose datasize are
large, we use a 10-node network. The remaining datasets use
a 5-node network.

B. Performance Evaluations

We demonstrate the effectiveness of our proposed
QC-ODKLA algorithm from three aspects, that is: 1) the learn-
ing performance in terms of mean-squared-error (MSE); 2)
the communication efficiency in terms of the total number of
communications triggered and total number of bits transferred;
and 3) the computation efficiency in terms of the running
time to conduct each learning task. For fair comparison, all
hyperparameters are tuned to be the best for each algorithm,
as specified in Section VI-A.

1) MSE Performance: We first evaluate the learning per-
formance of all algorithms by their MSE, which is commonly
adopted in online learning problems [18], [20]. From Fig. 1,
we can see that the learning performance of ODKLA, RFF-
DOKL, and DOKL are very close while the trivial difference
comes from the distinction of specific datasets. Notice that
in ODKLA, we utilize the linearized ADMM instead of the
standard ADMM, and the negligible gap indicates that the
learning performance scarification can be ignored. For the pro-
posed QC-ODKLA algorithm that utilizes the quantization and
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Fig. 1. Comparisons of MSE performance of various methods in online regression tasks. (a) Tom’s hardware. (b) Twitter. (c) Energy. (d) Air quality.
(e) Conductivity. (f) Blood.

Fig. 2. Comparisons of MSE versus triggering numbers of various methods in online regression tasks. (a) Tom’s hardware. (b) Twitter. (c) Energy. (d) Air
quality. (e) Conductivity. (f) Blood.

communication-censoring strategies to save communications,
there are negligible performance degradation on half of the
simulated datasets (Twitter, energy, conductivity), while for
the remaining datasets, the performance degradation can also
be traded with the communication efficiency and computation
efficiency of it, which will be shown below.

2) Communication Efficiency: We then evaluate the com-
munication efficiency among different algorithms. We present
the MSE performance versus trigger counts in Fig. 2 and MSE
performance versus communication bits in Fig. 3. Fig. 2 shows
that QC-ODKLA triggers a few transmissions in the early
learning stage, which greatly improves the communication

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: George Mason University. Downloaded on December 03,2023 at 16:03:06 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: QC-ODKLA 9

Fig. 3. Comparisons of MSE versus communication bits of various methods in online regression tasks. (a) Tom’s hardware. (b) Twitter. (c) Energy. (d) Air
quality. (e) Conductivity. (f) Blood.

TABLE I
RUNNING TIME OF FOUR ALGORITHMS ON SIX DATASETS

efficiency. Further, thanks to the quantization, QC-ODKLA
only needs 3 bits to transmit an element, the total number of
communication bits is also greatly reduced accordingly. For
other methods to transmit each element of updates, suppose
the agent uses a 32-bit CPU operating mode, then the com-
munication cost is 32 bits per iteration per agent per element.
Therefore, QC-ODKLA is corroborated to greatly reduce the
communication cost.

3) Computation Efficiency: Finally, we evaluate the com-
putation efficiency of all algorithms by their running time
on six datasets, which is recorded in Table I. RFF-
DOKL is a gradient descent–based first-order algorithm,
which achieves the highest computation efficiency. Comparing
ODKLA with the ADMM-based DOKL method, we see
that the linearization step reduces a large amount of com-
putation of the standard ADMM. Under the circumstance
that online streaming data vary fast, a computation-efficient
algorithm is preferred, reflecting the advantages of the pro-
posed ODKLA and QC-ODKLA algorithms. Also, note that
QC-ODKLA is computationally slower than ODKLA since

the communication-censoring and quantization steps consume
computation resources.

In summary, we show that the proposed QC-ODKLA
algorithm achieves a good balance in learning performance,
communication efficiency, and computation efficiency com-
pared with the state of the art online decentralized kernel-based
algorithms.

VII. CONCLUSION

This article studies the online decentralized kernel learn-
ing problem under communication constraints for multi-
agent systems. We utilize RF mapping to circumvent
the curse of dimensionality issue caused by the increas-
ing size of sequentially arriving data. To efficiently solve
such a challenging problem, we then develop a novel
online decentralized kernel learning algorithm via linearized
ADMM. We integrate the communication-censoring and
quantization strategies into the proposed ODKLA algorithm
(QC-ODKLA) to further save communication overheads.
We derive the sublinear regret bound for QC-ODKLA the-
oretically, and verify their effectiveness in learning per-
formance, communication, and computation efficiencies via
simulations on various real datasets. Future work will
be devoted to multi-kernel learning and dynamic kernel
learning.

APPENDIX

Proof: Define 2⋆
= [θ ⋆⊤

; . . . ; θ ⋆⊤
] ∈ RN×2L , which is

the stack of N copies of θ ⋆, and Lt (2
⋆) :=

∑N
i=1 Li,t (θ

⋆),
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we rewrite (24) as follows:

RegS
T =

T∑
t=1

(
N∑

i=1

Li,t (θ i,t ) −

N∑
i=1

Li,t (θ
⋆)

)

=

T∑
t=1

(
Lt (2t ) − Lt (2

⋆)
)
. (30)

To analyze the regret bound of QC-ODKLA, we first
represent the matrix form update of QC-ODKLA updates
(22)–(23) as follows:

2t+1 = 2t − (ηt I + 2ρ D)−1
[
∂Lt (2t )

+ ρ(D − W)2̂t + 0t

]
(31)

0t+1 = 0t + ρ(D − W)2̂t+1 (32)

where 2̂t = [θ̂⊤

1,t ; . . . ; θ̂
⊤

N ,t ] ∈ RN×2L . Note that the censoring
and quantization are implemented after step (31) and before
step (32).

The definitions of the introduced error in (25) and the
overall introduced error Et is equivalent to Et := 2t − 2̂t .
With the equality D − W = (1/2)S−S⊤

−
, we can obtain the

equivalent form of (31) and (32), respectively, as follows:

2t+1 = 2t − (ηt I + 2ρ D)−1

×

[
∂Lt (2t ) +

ρ

2
S−S⊤

−
2t −

ρ

2
S−S⊤

−
Et + 0t

]
(33)

0t+1 = 0t +
ρ

2
S−S⊤

−
2t+1 −

ρ

2
S−S⊤

−
Et+1. (34)

Observe from (34) that 0t+1 stays in the column space of
S−S⊤

−
if 01 is also initialized therein. Therefore, we introduce

variables β t ∈ R2r×2L , which stay in the column space of S⊤
−

,
and let 0t = S−β t for any t ≥ 1. Then, (34) is equivalent to

β t+1 = β t +
ρ

2
S⊤

−
2t+1 −

ρ

2
S⊤

−
Et+1. (35)

Using (34) and 0t = S−β t to eliminate 0t , we rewrite (33)
as follows:

2t+1 = 2t − (ηt I + 2ρ D)−1

×

[
∂Lt (2t ) + S−β t+1 +

ρ

2
S−S⊤

−
(Et+1 − Et )

+
ρ

2
S−S⊤

−
(2t − 2t+1)

]
. (36)

The following analysis is based on the equivalent form
of the QC-ODKLA algorithm given by (36) and (35). The
Karush–Kuhn–Tucker (KKT) conditions of (10) are

∂Lt (2
⋆) + ηt (2

⋆
− 2t ) + S−β⋆

= 0 (37a)

S⊤

−
2⋆

= 0 (37b)
1
2

S⊤

+
2⋆

= Z⋆ (37c)

where (2⋆, Z⋆, β⋆) is the optimal primal-dual triplet.

Rearrange terms in (36) to place ∂Lt (2t ) at the left side,
we have

∂Lt (2t ) =

(
ηt I + 2ρ D −

ρ

2
S−S⊤

−

)
(2t − 2t+1)

+
ρ

2
S−S⊤

−
(Et − Et+1) − S−β t+1

=

(
ηt I +

ρ

2
S+S⊤

+

)
(2t − 2t+1)

+
ρ

2
S−S⊤

−
(Et − Et+1) − S−β t+1 (38)

where the second equality utilizes D − W = (1/2)S−S⊤
−

and D + W = (1/2)S+S⊤
+

such that 2D = (1/2)S−S⊤
−
+

(1/2)S+S⊤
+

. We consider to bound the instantaneous regret
Lt (2t ) − Lt (2

⋆) at time t first. With Assumption 1, it holds

Lt (2t ) − Lt (2
⋆) ≤ ⟨∂Lt (2t ), 2t − 2⋆

⟩. (39)

Substitute the expression of ∂Lt (2t ) in (38) into (39) yields

Lt (2t ) − Lt (2
⋆)

≤

〈(
ηt I +

ρ

2
S+S⊤

+

)
(2t − 2t+1), 2t − 2⋆

〉
+

〈ρ
2

S−S⊤

−
(Et − Et+1) − S−β t+1, 2t − 2⋆

〉
. (40)

Now we reorganize the two terms on the right-hand side of
(40). For the first term, we have〈(

ηt I +
ρ

2
S+S⊤

+

)
(2t − 2t+1), 2t − 2⋆

〉
≤ σmax

(
ηt I +

ρ

2
S+S⊤

+

)〈
2t − 2t+1, 2t − 2⋆

〉
=

σmax
(
ηt I + ρ

2 S+S⊤
+

)
2

(∥∥2t − 2⋆
∥∥2

F −
∥∥2t+1 − 2⋆

∥∥2
F

+∥2t − 2t+1∥
2
F

)
(41)

where σmax(ηt I + (ρ/2)S+S⊤
+
) denotes the maximum singular

value of ηt I + (ρ/2)S+S⊤
+

.
For the second term, we have〈ρ

2
S−S⊤

−
(Et − Et+1) − S−β t+1, 2t − 2⋆

〉
=

〈ρ
2

S⊤

−
(Et − Et+1) − β t+1, S⊤

−

(
2t − 2⋆

)〉
(a)
=

〈ρ
2

S⊤

−
(Et − Et+1) − β t+1, S⊤

−
2t

〉
(b)
=

〈
ρ

2
S⊤

−
(Et − Et+1) − β t+1,

2
ρ

(
β t − β t−1

)
+ S⊤

−
Et

〉
=

〈
β t−1 − 2β t +

ρ

2
S⊤

−
(2t − 2t+1),

2
ρ

(
β t − β t−1

)
+ S⊤

−
Et

〉
(c)
= −

2
ρ

〈
β t − β t−1, β t − β t−1

〉
−

2
ρ

〈
β t , β t − β t−1

〉
+
〈
β t−1 − β t , S⊤

−
Et
〉
+
〈
S⊤

−
(2t − 2t+1), β t − β t−1

〉
+

ρ

2

〈
S⊤

−
(2t − 2t+1), S⊤

−
Et
〉
−
〈
β t , S⊤

−
Et
〉

= −
2
ρ
∥β t − β t−1∥

2
F −

2
ρ
∥β t∥

2
F +

2
ρ

〈
β t , β t−1

〉
−
〈
β t , S⊤

−
Et
〉

+
〈
β t−1 − β t , S⊤

−
Et
〉
+
〈
S⊤

−
(2t − 2t+1), β t − β t−1

〉
+

ρ

2

〈
S⊤

−
(2t − 2t+1), S⊤

−
Et
〉

(42)

where (a) comes from the KKT condition (37b), (b) and (c)
are obtained by utilizing (35).
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Next, we will utilize Young’s inequality to bound the inner
product terms in (42), which are

2
ρ
⟨β t , β t−1⟩ ≤

2
ρ

(
1

2η1
∥β t∥

2
F +

η1

2
∥β t−1∥

2
F

)
=

1
ρη1

∥β t∥
2
F +

η1

ρ
∥β t−1∥

2
F ,

⟨β t−1 − β t , S⊤

−
Et ⟩ ≤

1
2η2

∥β t−1 − β t∥
2
F

+
η2

2
∥S⊤

−
Et∥

2
F

−⟨β t , S⊤

−
Et ⟩ ≤

1
2η3

∥β t∥
2
F +

η3

2
∥S⊤

−
Et∥

2
F

⟨S⊤

−
(2t − 2t+1), β t − β t−1⟩ ≤

1
2η4

∥S⊤

−
(2t − 2t+1)∥

2
F

+
η4

2
∥β t − β t−1∥

2
F

ρ

2
⟨S⊤

−
(2t − 2t+1), S⊤

−
Et ⟩ ≤

ρ

4η5
∥S⊤

−
(2t − 2t+1)∥

2
F

+
ρη5

4
∥S⊤

−
Et∥

2
F (43)

where η1, η2, η3, η4, η5 are any positive constants.
Substitute (43) into (42) gives

〈ρ
2

S−S⊤

−
(Et − Et+1) − S−β t+1, 2t − 2⋆

〉
≤

(
1

2η2
+

η4

2
−

2
ρ

)
∥β t − β t−1∥

2
F +

η1

ρ
∥β t−1∥

2
F

+

(
1

ρη1
+

1
2η3

−
2
ρ

)
∥β t∥

2
F ++

(η2

2
+

η3

2
+

ρη5

4

)
×∥S⊤

−
Et∥

2
F +

(
1

2η4
+

ρ

4η5

)
∥S⊤

−
(2t − 2t+1)∥

2
F

=

(
1

2η2
+

η4

2
+

1
ρη1

+
1

2η3
−

4
ρ

)
∥β t∥

2
F

+

(
1

2η2
+

η4

2
+

η1

ρ
−

2
ρ

)
∥β t−1∥

2
F

+

(
1

2η4
+

ρ

4η5

)
∥S⊤

−
(2t − 2t+1)∥

2
F

+

(η2

2
+

η3

2
+

ρη5

4

)
∥S⊤

−
Et∥

2
F +

(
2
ρ
−

1
2η2

−
η4

2

)
×
〈
β t , β t−1

〉
≤ c1∥β t∥

2
F + c2∥β t−1∥

2
F +

(
1

2η4
+

ρ

4η5

)
∥S⊤

−
(2t − 2t+1)∥

2
F

+

(η2

2
+

η3

2
+

ρη5

4

)
∥S⊤

−
Et∥

2
F (44)

where c1 and c2 are defined as follows:

c1 :=
1

2η2
−

4
ρ
+

η4

2
+

1
ρη1

+
1

2η3
+

2
ρη6

−
1

2η2η6
−

η4

2η6

c2 :=
η1

ρ
−

2
ρ
+

1
2η2

+
η4

2
+

2η6

ρ
−

η6

2η2
−

η4η6

2
.

With (44) and (41), we obtain an upper bound for (40),
which is

Lt (2t ) − Lt
(
2⋆
)

≤
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(
ηt I + ρ

2 S+S⊤
+

)
2

(
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∥
2
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∥
2
F

)
+
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2 S+S⊤
+

)
2
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2
F + c1∥β t∥

2
F
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2
F +

(
1

2η4
+

ρ

4η5

)
∥S⊤

−
(2t − 2t+1)∥

2
F

+

(η2

2
+

η3

2
+

ρη5

4

)
∥S⊤

−
Et∥

2
F

≤
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(
ηt I + ρ

2 S+S⊤
+

)
2

(
∥2t − 2⋆

∥
2
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∥
2
F

)
+ c1∥β t∥

2
F + c2∥β t−1∥

2
F +

(η2

2
+

η3

2
+

ρη5

4

)
× σ 2

max(S−)∥Et∥
2
F +

(
σmax

(
ηt I + ρ

2 S+S⊤
+

)
2

+
σ 2

max(S−)

2η4
+

ρσ 2
max(S−)

4η5

)
×∥2t − 2t+1∥

2
F . (45)

We then utilize (36) to rewrite 2t − 2t+1 as follows:

2t − 2t+1 = (ηt I + 2ρ D)−1
(
∂Lt (2t ) + 2S−β t − S−β t−1

)
(46)

and bound ∥2t − 2t+1∥
2
F as follows:

∥2t − 2t+1∥
2
F

=

∥∥∥(ηt I + 2ρ D)−1
(
∂Lt (2t ) + 2S−β t − S−β t−1

)∥∥∥2

F

≤
1

σ 2
min(ηt I + 2ρ D)

∥∂Lt (2t )∥
2
F +

4σ 2
max(S−)

σ 2
min(ηt I + 2ρ D)

∥β t∥
2
F

+
σ 2

max(S−)

σ 2
min(ηt I + 2ρ D)

∥β t−1∥
2
F (47)

where σmin(ηt I + 2ρ D) is the lower bound of the nonzero
singular values of ηt I + 2ρ D.

Substitute (47) into (45) we obtain

Lt (2t ) − Lt (2
⋆)

≤
σmax(ηt I + ρ

2 S+S⊤
+
)

2

(
∥2t − 2⋆

∥
2
F − ∥2t+1 − 2⋆

∥
2
F

)
+ (c1 + 4 cN )∥β t∥

2
F + (c2 + cN )∥β t−1∥

2
F +

cN
σ 2

max(S−)

×∥∂Lt (2t )∥
2
F +

(η2

2
+

η3

2
+

ρη5

4

)
σ 2

max(S−)∥Et∥
2
F

(48)

where cN is defined as follows:

cN :=

(
σmax

(
ηt I + ρ

2 S+S⊤
+

)
2

+
σ 2

max(S−)

2η4
+

ρσ 2
max(S−)

4η5

)
σ 2

max(S−)

σ 2
min(ηt I + 2ρ D)

.

Carefully choose η1, η2, η3, η4, η5, and η6, we can make c1 +

4cN = −(c2+cN ) = −c, where c > 0. One example is to set
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η4 = (2η6/((η6 − 1)2))((1/ρ)(η1 + (1/η1) + (2/η6) + 2η6) +

(1/2η2)(2− η6 − (1/η6))+ (1/2η3)+ 5cN ). Then (48) can be
further simplified as follows:

Lt (2t ) − Lt (2
⋆)

≤
σmax(ηt I + ρ

2 S+S⊤
+
)

2

(
∥2t − 2⋆

∥
2
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∥
2
F
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2
F − ∥β t∥

2
F ) +

cN
σ 2
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∥∂Lt (2t )∥

2
F

+

(η2

2
+

η3

2
+

ρη5

4

)
σ 2

max(S−)∥Et∥
2
F . (49)

Summarizing both sides of (49) from t = 1 to t = T leads
to the accumulated network regret R(T )

R(T )
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+
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2
+
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4
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max(S−)∥Et∥
2
F
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+
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∥
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T∑
t=1

cN
σ 2

max(S−)
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+
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2
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(
ηt I + ρ

2 S+S⊤
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∥
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F . (50)

The last equality comes from the initialization that 21 = 0
and β1 = 0 and thus β0 = 0. Assumption 2 assumes ∥θ ⋆

∥F ≤

Cθ , which implies ∥2⋆
∥F ≤

√
NCθ . Assumption 1 assumes

∥∂Lt (2t )∥F ≤ CL. Then, setting ρ = ηt = η2 = η3 =

1/O(
√

T ), the sublinear regret is achieved

R(T ) ≤ (
√

NCθ +
1

σ 2
max(S−)

CL + σ 2
max(S−)ζ )O(

√
T ) (51)

where ζ := max{
√

Nαβ,
√

2N L1/2} with α and β being the
predefined censoring threshold parameters and 1 being the
length of the quantization interval.
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