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Abstract—The valuable data collected by IoT devices together
with the resurgence of machine learning (ML) stimulate the
latest trend of artificial intelligence (AI) at the edge. However,
traditional ML and recent federated learning (FL) face major
challenges including communication bottleneck, data heterogene-
ity, and security concerns in edge IoT. Meanwhile, the swarm
nature of IoT systems is overlooked by most existing literature,
which calls for new designs of distributed learning algorithms.
Inspired by the success of biological intelligence (BI) of gregarious
organisms, we propose a novel edge learning approach for swarm
IoT, called communication-efficient and Byzantine-robust dis-
tributed swarm learning (CB-DSL), through a holistic integration
of Al-enabled stochastic gradient descent and BI-enabled particle
swarm optimization. To deal with the non-i.i.d. data issues and
Byzantine attacks, a small amount of global data samples are
introduced in CB-DSL and shared among IoT workers, which
alleviates the local data heterogeneity effectively and enables to
fully utilize the exploration-exploitation mechanism of swarm
intelligence. Our convergence analysis theoretically demonstrates
that the CB-DSL is superior to the standard FL with better
convergence behavior. We also evaluate the model divergence
of CB-DSL by deriving its upper bound, which measures the
effectiveness of the introduction of the globally shared dataset.

Index Terms—Distributed swarm learning, federated learning,
particle swarm optimization, non-i.i.d. data, convergence analysis,
model divergence analysis.

I. INTRODUCTION

With the vigorous growth of Internet of Things (IoT) and
Internet of Vehicles (IoV), smart devices are becoming the
workhorse at the edge of wireless networks beyond 5G (B5G)
[1]. The valuable data directly collected by devices together
with the resurgence of machine learning (ML) stimulate the
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latest trend of artificial intelligence (AI) at the edge of B5G
networks, termed as edge learning or edge Al [2], [3]. When
conventional ML techniques are applied for edge learning, they
are typically deployed in a centralized mode, which hinges
on a full collection of distributed local data from the edge
IoT devices to a central node. Such a centralized learning
approach can obtain high learning accuracy, but the raw data
collection process not only consumes huge communication
resources but also raises unwilling privacy exposure and severe
security concerns [4]. Alternatively, federated learning (FL)
has recently attracted great attention and resulted in fruitful
attempts for learning-based applications among multiple dis-
tributed workers such as personal mobile phones, which allows
distributed learning from local data without raw data exchange
(51, [6].

Standard FL. methods are originally designed for ideal
learning settings and wireless environments, which however
face several challenges when being adopted for distributed
learning among massive edge [oT devices that are usually
equipped with limited capability and resources. As the number
of model parameters goes very large in deep neural networks,
transmission of all the local model updates in FL between
IoT devices (working as local workers) and the parameter
server (PS) incurs high communication overhead in edge
networks. Further, stochastic gradient descent (SGD) is widely
applied for model training in FL [6], [7], where independent
and identically distributed (i.i.d.) data samples are assumed
at local workers and transmission is assumed error-free in
order to ensure unbiased estimates and good empirical per-
formances [8], [9]. However, in edge IoT scenarios, local
training data samples at different IoT workers turn to be
statistically heterogeneous worker-by-worker, giving rise to
the non-i.i.d. data issue that may considerably degrades the
learning performance of standard FL methods, e.g., Federated
Averaging (FedAvg) [10], [11]. In addition, gradient-based
algorithms are subject to local optimum traps in solving non-
convex problems [12]-[14], such as when training neural
networks with nonlinear activations. This issue is aggravated
in distributed settings, especially when local workers only
collect small-volume data. Last but not the least, standard
FL performs well in attack-free network settings, but is vul-
nerable to Byzantine attacks that may exist in practical edge
networks [15]-[18].

Although some of the aforementioned challenges have been
recently investigated in the literature of FL for edge networks
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and IoT applications [19]-[21], they mainly focus on the
modification and customization of the standard FL techniques,
which however largely neglect some important and unique
characteristics of IoT devices in edge networks. Such unique
characteristics include the large population of devices for many
IoT applications, limited communication bandwidth available
in edge networks, and non-i.i.d. local data with small data
volume at individual IoT workers. By ignoring these char-
acteristics, existing efforts on edge learning fail to consider
these limitations in the learning algorithm design for edge IoT
systems, which results in learning performance degradation
of FL applied to practical IoT edge networks. On the other
hand, biological organisms in nature have demonstrated swarm
intelligence with superior strength in collectively processing
information, making decisions, dealing with uncertainties,
adapting to environment changes, and recovering from errors
and failures, even though they are individually weak. All
these attributes of biological intelligence (BI) are desired
by IoT edge learning systems. Notably, bio-inspired swarm
optimization techniques are good at collaboratively finding the
globally optimal solutions to complex optimization problems
thanks to their built-in exploration-exploitation mechanism in
swarms, but their convergence speed is typically slow [22],
[23].

Motivated to bridge these gaps, this paper leverages both Al
and BI to develop a communication-efficient and Byzantine-
robust distributed swarm learning (CB-DSL) approach, by
reformulating the bio-inspired particle swarm optimization
(PSO) problem as a distributed learning problem with non-
i.i.d. local data and in the presence of malicious attacks. For
non-convex problems, by taking advantage of the exploration-
exploitation mechanism of PSO [24], [25], our CB-DSL
solutions have an increased chance to jump out of local
optimum traps via swarm intelligence. For the communication
bottleneck challenge, our CB-DSL only requires the best
worker having the minimum loss function value to upload
its local model to the PS, which thus dramatically reduces
the communication overhead and energy consumption in edge
networks. To alleviate the non-i.i.d. data issue, we propose to
introduce a small-volume global dataset that is shared among
all local workers for dual purposes. A part of this globally
shared dataset is used for training, whose effectiveness in
relieving the non-i.i.d. problem is evaluated through the model
divergence analysis. The other part of the global dataset is used
to calculate the fair-value loss for scoring the local models. It
helps to identify the per-worker best model for best worker
selection, and enables to verify the uploaded local model
by which the PS can screen Byzantine attackers. Our main
contributions are summarized as follows.

o We propose a new CB-DSL framework by developing a
holistic integration of Al-driven SGD and Bl-driven PSO,
to effectively handle the high communication costs, non-
i.i.d. issues, non-convex problems and Byzantine attacks
without sacrifice convergence speed, which cannot be
achieved by SGD or PSO alone. CB-DSL offers a new
paradigm of efficient and robust edge learning tailored for
massive smart [oT devices in edge networks, which brings

the benefits of swarm intelligence to broad applications
of distributed learning.

o From the theoretical point of view, we are the first one
to systematically analyze the combination of FL and
PSO, by deriving a closed-form expression to quantify
the expected convergence rate achieved by our CB-DSL.
Our analytical results not only reflect the impact of
different settings and parameters of our CB-DSL on the
performance of edge learning among distributed work-
ers, but also indicate that our CB-DSL outperforms the
standard FL methods such as FedAvg in terms of better
convergence rate.

o« We further investigate the non-i.i.d. data issue at dis-
tributed workers by providing a model divergence analy-
sis to evaluate how the introduction of a globally shared
dataset improves the learning performance of our CB-
DSL. Our theoretical result reveals that the model diver-
gence is subject to an upper bound, which is decided by
the earth mover’s distance (EMD) between the data dis-
tribution at local workers and the population distribution
for the whole datasets.

o Through comprehensive experiments, we test the pro-
posed CB-DSL approach in solving image classification
problems by using the MNIST dataset. Simulation results
show that our CB-DSL outperforms the benchmark meth-
ods in terms of achieving the highest testing accuracy
with the fastest convergence under both the i.i.d. and non-
i.i.d. cases and even in the presence of Byzantine attacks.

The rest of this paper is organized as follows. Section
Il reviews the related work. The problem formulation of
distributed learning and the framework of CB-DSL technique
are systematically presented in Section III, where we develop
the CB-DSL algorithm. The expected convergence rate and
the model divergence analysis of the CB-DSL technique are
studied in Section IV and Section V, respectively. Section
VI presents simulation results and comparison of the CB-
DSL technique with the benchmark methods, followed by
conclusions in Section VII.

Notations: Bold upper and lower case letters denote matrices
and vectors, respectively. Euclidean norm of a vector or a
matrix is depicted as || - ||. The expectation and the first order
derivative are represented by E and V. (-,-) calculates the
inner product of two vectors. The probability of an event y = ¢
is expressed as p(y = ¢). The event indicator is symbolled as
1,—., which is equal to 1 when y = ¢, or 0 otherwise.

II. RELATED WORK

Various methods have been proposed in addressing the com-
munication challenges of FL, such as sparsification [26], [27],
quantization [28]-[30] and infrequent uploading of local up-
dates [31]-[34]. Theses methods aim to reduce the amount of
the communication overhead, by either compressing or drop-
ping some non-informative transmissions. These strategies are
investigated predominantly for FL over digital channels based
on the orthogonal transmission resource allocation among
different local workers. Recently, a promising technique for
tackling the communication bandwidth bottleneck emerges in
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the form of FL over the air [35]-[37], which exploits the
fact that the model aggregation operation in FL. matches the
waveform superposition property of the wireless analog multi-
access channels. It can further incorporate other efficiency-
enhancing strategies for effectively reducing bandwidth con-
sumption. For instance, communication-efficient FL over the
air is developed by combining compression, quantization and
concurrent transmission through 1-bit compressive sensing and
analog aggregation transmission in [38], [39]. Nevertheless,
the aforementioned compression and transmission strategies
still require all participating workers to exchange some vari-
ants of their local updates, which are not tailored for edge IoT
systems and may result in tremendous communication costs
and energy consumption in edge networks with massive IoT
devices.

To take advantage of the swarm biological intelligence of
animal flocks, particle swarm optimization (PSO) has been
developed to solve complicated optimization problems without
invoking the assumption on convexity [24], [25]. Recently,
there are few attempts of applying the PSO ideas to improve
machine learning performance. In the centralized setting, PSO
is used to optimize the solution and hyperparameters of con-
volutional neural networks (CNNs) for enhanced recognition
accuracy of image classification [40]-[42]. In the distributed
setting, two relevant works are found in attempting to integrate
PSO into FL to improve FL performance [43], [44]. In [43],
FL is used for learning, while PSO is simply applied to search
the optimal hyperparameters. Different from [43], our work
focuses on the design of distributed training algorithm and
model updating strategy for improving the performance and
robustness of edge learning systems. In [44], PSO and FL are
combined in a simplistic manner for the idealized distributed
settings with ii.d. data and no attacks, which cannot be
guaranteed for practical edge IoT systems. Further, the work
[44] actually builds on an implicit assumption that a common
loss function is available to all distributed workers, which
trivializes the assessment of the globally best model. However,
in distributed learning problems, loss function is only partially
observable at local workers, which is data-dependent and
hence different across workers. Thus, the method in [44] is
not suitable to edge IoT systems with data of small volume
at local workers. More importantly, there has not been any
work on theoretical analysis for performance evaluation and
convergence guarantee of distributed learning by connecting
PSO with FL. To fill these identified technical gaps, in the next
sections, we develop a novel efficient and robust edge learning
algorithm through a holistic integration of Al-driven SGD and
BI-driven PSO and empowered by using a small-volume global
dataset, whose advantages are verified by rigorous convergence
analysis, model divergence evaluation, and experiments on real
data.

To overcome the non-i.i.d. issues in FL, some data-based
approaches are proposed to modify the distributions of local
datasets by data sharing [11], [45], [46] or data argumenta-
tion [47], [48]. Besides, there are some other approaches to
addressing the non-i.i.d. data issues in FL by adjusting the
algorithm or model structure of FL, such as local fine-tuning
[49], personalization layer [50], [51] and so on [52]. Note that

these aforementioned approaches can be combined with our
CB-DSL as well, if needed.

III. DISTRIBUTED SWARM LEARNING

This section starts with the problem statement for distributed
learning and the formulations of FL and PSO techniques.
Then, the pros and cons of FL and PSO motivate us to bridge
distributed learning with swarm optimization techniques to
make the best use of both artificial and biological intelligence.
In particular, we focus on a systematical integration of FL and
PSO for a novel communication-efficient and Byzantine-robust
edge learning algorithm with non-i.i.d. local data and in the
presence of Byzantine attacks.

Consider a distributed learning model with one parameter
server (PS) and U IoT workers, where U is very large but
each worker has data of small volume in edge IoT scenarios.
Assume that each worker has K; data samples in its local
dataset ©;, with |D;| = K, and ¢ = 1,...,U. Denote
(Xik, Yi,x) as the k-th data sample of the i-th local worker.
Let f(w;x; k, ¥i,k) represent the loss function associated with
each data sample (x; k., y; ), where w = [w!, ... wP] of size
D consists of the parameters of a common learning model.
The corresponding population loss function for the whole
datasets ® and that for the local dataset ®; of the i-th worker
are denoted as F(w) := Ep[f(W;X; k,¥i k)] and Fi(w) =
Eo,[f(W;Xi k, Yi k)], respectively, where ® = | J;©;. For
distributed learning, local workers collaboratively learn w by
minimizing

Pl: w; = argrrvlvin F;(wy), st., w; =12z, Vi, (1)
where z is an auxiliary variable to enforce consensus through
collaboration among distributed local workers.

A. Federated Learning

For standard FL designed in ideal learning settings and
network environments [5], the minimization of F;(w) is
typically carried out by the stochastic gradient descent (SGD)
algorithm [5], [6], where local workers iteratively update their
local models in FL as

U
Witil = Wit — g 251 V(Wi X8, 958),  (2)

where « is the learning rate and VFj(Wy; Xk, Yjk) =
& ngj VI (Weixs0:Y5,5)

D; [%B;]
at each local worker using its randomly selected mini-batch
B; C ©; with the mini-batch size |B,]|.

Note that (2) is the mathematical illustration of the iterative
local model update, whereas the second term of global gradient
averaging therein is typically implemented at the PS and
then sent back to local workers. Hence, communications take
place in every iteration until convergence, during which the
communication overhead to acquire the sum of all U local
gradients in (2) would be huge especially when U and D
are large. Moreover, for complicated non-convex problems,
distributed gradient-based FL solutions may converge to unde-
sired local optima and there is unfortunately a lack of effective
mechanisms to escape these traps.

is the local gradient computed
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B. Particle Swarm Optimization

As a bio-inspired algorithm, PSO is a stochastic optimiza-
tion approach based on the movement of particles (workers)
and the collaboration of swarms to iteratively and coopera-
tively search for an optimal solution to general optimization
problems [24], [25]. Note that PSO is originally designed
for optimization problems instead of learning problems with
distributed data. In this sense, the loss function in PSO is
assumed to be globally common to all particles, i.e., F;(-) =
F(-),Vi in the problem P1 in (1). This is however not the
case in distributed leaning where F;(-) is data-dependent and
different worker-by-worker, which will be explained in the
next subsection.

In PSO, a swarm consists of a large set of particles,
1 = 1,2...,U. At the current iteration, the position w;; of
each particle ¢ presents a possible solution to the problem,
and meanwhile the velocity v;, of each particle 7 denotes
the updating direction for the next step. To find the globally
optimal value of F'(-), particles collaborate with each other to
update their velocities and positions in an iterative manner

Vi1 = Vi +c1(Wiy — Wig) +ca(wi —wiy),  (3)

Wittl = Wit + Vittl, 4

where the velocity is updated as a combination of three sub-
directions: inertia v;; of the previous updating direction,
individual direction towards each particle’s own historical best
parameter wﬁ ,=argmin,—; ..., F(w; . ), and social direction
towards the globally best parameter found by the entire swarm
w{=argmin;—; ...y F(w} ). Among the corresponding three
weights, the inertia weight ¢j is a positive number, while c;
and cy are positive and random (say, uniformly distributed as
c1~U(0,0,,), and ca~U(0,d,,)) for stochastic optimization.
Notably, the weighted combination of the three sub-directions
in (3) serves a mechanism for exploration-exploitation trade-
offs, where ¢ is set to be linearly decreasing over iterations
to tune the solution search process from exploration to ex-
ploitation, and c; and cs indicate the random exploration level
at individual particles and the exploitation level in swarm,
respectively.

C. Communication-efficient and Byzantine-robust Distributed
Swarm Learning

A major challenge from optimization problems to learning
problems with distributed data is the lack of a common
F(-) for global assessment, which however becomes F;(-;D;)
dependent on local dataset ®; in distributed learning. Facing
this challenge, we first introduce a very small amount of
global dataset': D¢ = D¢ U DY to be shared by all
workers, and then propose a novel edge learning frame-
work called communication-efficient and Byzantine-robust
distributed swarm learning (CB-DSL). The CB-DSL algorithm

IFor the implementation point of view, a small amount (e.g., 1% of all
datasets is adequate as used in our simulations) of globally shared dataset
can be generated by a generative adversarial network module for keeping the
privacy of workers’ own local data [53], which can be either pre-stored in the
IoT devices or broadcasted from the PS to all the local workers. The required
resources in sharing and local storage are quite low.

is implemented in Algorithm 1, and schematically illustrated
through the following iterative model updating steps.

At the local workers ¢ = 1,--- ,U, the model parameters
are updated in a way of integrating Bl-enabled PSO with Al-
enabled SGD

_ p g
Witt1 = Wi+ CoVit + C1(Wi,t —Wiy) +ca(w! —w;y)

BI
—OéVFi(Wiyt; @Z U @g) 5 (5)

Al

where D& is a part of the global dataset ®¢ and used
for training to relieve the non-i.i.d. problem. Thanks to the
combination of the gradient-free stochastic optimization of the
BI term and the gradient-based learning technique of the Al
term in (5), the workers are good at searching for the optimal
solutions to complex problems with fast convergence.

Then, the local workers calculate their own historical min-
imum loss function values and maintain their own historical
best model parameters

{Flipn Wien}h = arg min, Fi(wir, D%),  (6)
where D¢, is the other part of the global dataset D¢ and
used to provide fair-value scores of local models for best-
worker selection by assessing the per-worker Fi’ ¢,1 that helps
to accurately identify w; ;. Then, all workers report their
F},. | to the PS.

Comparing the received {F},,,}; from all local workers,
the PS selects the best worker ¢y, ; with the global optimum
function value

ke g _ : P
{t5 1, Flat = arg mm i (7

If FY | < F{, then the worker with the selected index i}, is
invited to upload its w¥, 41 to the PS as the globally best
t+1°

model parameter w{, , = szwt - I FY ) > FY, then no
worker is invited to upload local model parameter and the PS
simply maintains the globally best model parameter and the
globally best loss function value from the previous iteration
as wi , =w{ and F/ , = F{.

Upon receiving Wf:“ﬂf 41 from the invited worker, the
PS further uses D¢ to verify the reported model pa-
rameter W%JrPt 4+1- If a mismatch is detected such as
F(W% 1,t+17©§c) # F{_,, then a Byzantine attack is iden-
tified and the attacker is filtered out; the PS will inquire the
next best local worker, until confirmed.

Communication Efficiency. Note that our CB-DSL requires
U workers to share their function value F; fj ¢+11 Which is only
a scalar, and then invites only one local worker with the
global minimum loss function value calculated using D¢, to
report its model parameter to the PS. Thus, our CB-DSL can
dramatically reduce the overall communication overhead and
energy consumption in edge networks during each commu-
nication round, compared with that required by standard FL
approaches.

Byzantine Robustness. In the process of collecting Ff’ t11 S

from local workers, it is inherently vulnerable to Byzantine
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attacks. For example, a malicious worker may send a fake
Ff,.y (< F!,) to fool the PS to invite the attacker
to upload its fake model parameter as the distorted global
optimum, which will undermine edge learning. Thanks to the
introduction of @sGC in our CB-DSL, it enables the PS using
D¢ to verify the reported model parameter so as to screen
and remove the potential Byzantine attackers, resulting our

CB-DSL Byzantine robust.

Algorithm 1 CB-DSL

Initialization:
wz 0= Wio, F?

i0 = = F;(w;0,9%), Vi;
. for each iteration t = 1: T do
at the local workers:

3 receive wi from the PS; otherwise maintain wi =

wi_g;
update the local model parameter w; ;1 via (5);

5: calculate the per-worker historical minimum loss
function value F,,, and maintain the corresponding
per-worker historical best model parameter w}, ; via
(6);

send the scalar function value F?, 11 to the PS;

7: only the invited local worker sends its wl,t 41 to the
PS;

8:  at the PS:

compare the received F},, ;’s, select the best worker
iy,, and identify its function value as FY,; via (7);

10: if Ff,, < F{, then invite the selected worker i}, to
upload its model parameter as the globally best model
parameter Wi, , = w?, .

»

t+1’
11: else, no worker is invited and maintain the globally

best model parameter and function value from the

9 _ 9.
previous iteration as wi,; = w{ and F/ | = FY;

12: given w?. , ; received from the invited worker,
t+1°
verify F(w* t+1,© ) == F
13: if an attacker is identified by F(wh, ,.,,D5) #
t4+10

F? |, remove it and repeat line 8 until a legitimate
worker is selected.

14: broadcast wi,, to local workers when a worker is
selected; or keep quiet when no worker is invited.

15: end for

IV. CONVERGENCE ANALYSIS
In this section, we first make some definitions and assump-
tions for convergence analysis. With these preliminaries, the
convergence behavior of our CB-DSL approach is theoretically
evaluated by deriving an upper bound of the convergence rate.

A. Assumption and Definition

Assumption 1. (Lipschitz continuity, smoothness): The gradi-
ent VE;(w) of the loss function F;(w) at node 7 is uniformly
Lipschitz continuous with respect to w, that is,

IVFi(Witq1) — VE(Wi)|| < Ll|Wip1 — Wi, Vi t, (8)

where L is a positive constant, referred as the Lipschitz
constant for the loss function F;(-) [54].

To facilitate analyses, we first rewrite w?, and w{ in (5) as

W= Wit 1V, )
(10)

g _ g
W, = W;t—1+Vy,

where vZ . and v} denote the per-worker and globally optimal
velocities currently used at the i-th worker.

Then, the DSL velocity update v;;y; = BI + Al =
Wi +1 — Wi ¢ in (5) can be rewritten as

Vigt1 = CoVig + 1 (VE, — (Wiy — Wiy—1))
+ (v — (Wip — Wis—1)) —aVE;(w;)
= coVii + c1(Vi,—Vit) +ca(Vi—vii) —aVEF(wi ;)

= (Co —C1 — Cg)Vz'_’t + clvf)t —+ CQVf — CMVF;;(W717t),

(1)

where we replace VF;(w; ; ©;UDE) by VF;(w; ;) hereafter
for symbol simplicity.

We use 6, 67,, and 6] to denote the angles between v; ;
and —V F;(w; ), between vf’t and —V F;(w; ), and between
v{ and —VF;(w;.), for any i and ¢, respectively. Then we
have

i VFi(w;s)) .
cost;, & Vit 2LV (12)
T ViV E (Wi )|
(Vi —VEFi(wiy))
cosO, & — Vit (13)
TNV Ei (Wi |
—VE(wi)) .
o7 2 V0. B0 it 14
NIV R (1

We further assume that the above cosine-similarity measures
are bounded, whose lower and upper bounds are denoted as’

q <cost; <7q, Vit (15)
¢’ <cosb}, <G, Vi,t (16)
q? < cosb] <7, Vi,t, (17)
[[Viell —
u < ’ <, Vi,t, (18)
IVEi (Wil
uP IV aP, Vit (19)
- T VE(w ) T
[v7]] g\
u? < <u?, Vit (20)
IVFi(wie)|l

B. Convergence Bound

We adopt the expected improvement on the gradient in terms
of its 2 norm, working as an indicator of convergence for
non-convex optimization [56], [57]

Ollnm IE[||gtH 21

2
Z gl
where the norm of the gradient is expected to converge to
0 as T increases to infinity, which means that the solution
converges asymptotically.

>The velocity update in our CB-DSL can be regarded as a kind of
momentum, which is related to the historical gradients. Assumptions similar
to (15)-(20) can be found in [55].
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With the assumptions and definitions presented in Subsec-
tion IV.A, the convergence errors of the CB-DSL algorithm
developed in Subsection III.C are bounded by the following
Theorem 1.

Theorem 1. For T communication rounds, the expected
convergence rate at each local worker in CB-DSL is bounded
by

LVEw)2]  Fwig) — F(w*) .

. ;n wslf)  Flwio) JFO) ;g
where B = o — 726"_52 —egu - g - g -
2L o =B+ Tl g Sy g T e g
(@) + o),

Proof. Please refer to Appendix A. O

The result of Theorem 1 implies the following convergence
rate

(23)

HVF Wzt || 1
Z ] Olg7):

The inequality of (23) indicates that the convergence of

the CB-DSL is guaranteed as the number of communica-

tion rounds T goes large. That is, as T — oo, we have
2

E {Z;T:l HVFi(YV:’y:.t)H } = 0.

Remark 1. When cq, d,.,, and J., are all set to be 0, we have
& = a — 2La? in (22) and (23), and CB-DSL degenerates
into FedAvg. As ®r — (o — 2La?) = M’* +
2 0% 0o, Beydeyy 2 53 —p\2

2L((0c,co + deyco — € — —5- — 52 — 5 2)u — 5+ (uP)? —
52 .

= (u9)?)— %qup - %ﬂgqg > (0, CB-DSL converges faster
than FedAvg.

V. MODEL DIVERGENCE ANALYSIS FOR THE CASE OF
NON-I.I.D. DATA

Intuitively, when the local datasets ©; over different local
workers are non-i.i.d., the learning performance varies with
the degree of the local dataset heterogeneity. Specifically,
the greater the heterogeneity of local datasets, the model
parameters updated at different local workers will become
more diverse, e.g., with a larger range of the values of cos; ;
in (15) among workers. That is, ¢ and g in (15) go smaller and
bigger, respectively. As a result, ® defined in (22) decreases
as the heterogeneity of non-i.i.d. datasets increases, which
leads to a loose upper bound on the convergence guarantee
in (22) and (23) and thus degrades the learning performance
with distributed non-i.i.d. datasets. In this section, we provide
a statistical analysis to evaluate the impact of the local data
heterogeneity on the learning performance of the CB-DSL.
We study the model parameter divergence resulted from the
distance enlargement between the non-i.i.d. data distributions
on local workers and the overall population distribution. We
evaluate such a distance by measuring the earth mover’s
distance (EMD) between these distributions [11], [58].

Consider a C-class classification problem defined over a
compact space X and a label space ). The k-th data point

(Xi,k, ¥i,5) on the i-th local worker distributes over X' x ) fol-
lowing the distribution p;. For the purpose of model divergence
analysis, suppose a genie worker who has the population data
that reflect the population distribution p of all local workers
that may differ from p;. The genie worker uses such knowledge
of p to search for the globally optimal solution to the learning
model, which serves as the reference to calibrate the model
divergence due to the distributed non-i.i.d. data. Then the origi-
nal population loss function F'(w) := Eg[f(W;X; &, ¥ £)] can
be rewritten as

F(w)=E

X,y~p

C
D ly—efelx, w)]

c=1

c
Z p\y = C x\y:c[fc(xa W)]7 (24)
where f, denotes the probability for the c-th class, ¢ € {1, C'}.
Then, the learning problem at the genie worker can be
formulated as
c
P2 W' =argmin Y ply = o)Exyc[felx, W) (25)
c=1
By solving P2, the model obtained at the genie worker plays
as the globally optimal position in each communication round
of CB-DSL. Then according to (11), the velocity at the genie
worker in the (¢ + 1)-th communication round is updated via

vi = cov] —aVF(w]). (26)

The model parameter at the genie worker in the (¢ + 1)-th
communication round is updated as

wi =w] + vl 27)

Given (5) and (27), the model divergence between the i-th
local worker and the genie worker is defined as

W?ﬂ”
Wil

Next, we provide Theorem 2 to evaluate the model diver-
gence by deriving its upper bound theoretically.

||Wi,t+1 -

model divergence = (28)

Theorem 2. Under the assumption that VEy,_.[f.(x, w)] is
L.-Lipschitz for each class ce{1,C}, we have the following
inequality for the model divergence after (t + 1) communica-
tion rounds

[wiep1—wiy | < B [wio — wi

t
+leo—c1—cal Y B ||vig — V||

j=0
C ’ t
+a Z ‘pi (y:C) —p(yzc)\ Z fmaz (W
c=1 =0
’ (29)

where ﬂ = 1+ Ozz(c 1p,(y = C>Lc and fmaa:(wg) =
maX{vEx|y C[f(/(x WJ)] g 1

Proof. Please refer to Appendix B. O
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Remark 2. Our theoretical result of Theorem 2 indicates
that the model divergence can be upper bounded in (29)
after (¢ + 1) communication rounds, which mainly comes
from three parts, including the initial model divergence, i.e.,
|lw; 0 — wi]||, the velocity divergence after ¢ communication
rounds, i.e., ||v;; — ng I, and the model divergence induced
by the probability distance between the data distribution on
the i-th local worker and the ground truth distribution for the
whole population as on the genie worker, i.e., Zle lpi(y =
c) —ply =c)l.

Remark 3. In (29), the initial model divergence (first term) and
the velocity divergence (second term) after (¢ + 1) communi-
cation rounds are iteratively amplified by (. Since 8 > 1,
if different local workers start from different initial model
parameters in the standard FL, then the model divergence will
still be enlarged, even though the local workers have i.i.d. data.

Remark 4. In (29), the third term S5, [pi(y = ¢)—p(y = ¢)|
is the EMD between the data distribution on the ¢-th local
worker and the population distribution [58], when the distance
metric is defined as |p;(y = ¢) — p(y = c¢)|. The impact
of EMD is affected by the learning rate «, the number
of communication rounds ¢, and the class-wise maximum

gradient f,,5(W;).

VI. EXPERIMENTAL RESULTS

This section demonstrates that our CB-DSL with a small
amount of globally shared dataset outperforms the benchmark
methods, with better learning performance and faster conver-
gence speed, on both the i.i.d. and non-i.i.d. settings, even in
the presence of Byzantine attacks.

A. System and Dataset Setting

To evaluate the learning performance of our CB-DSL, we
perform empirical simulations® by conducting a handwritten-
digit classification task based on the widely-used MNIST
dataset* that consists of 10 classes ranging from digit “0” to
“9”. In the MNIST dataset, there are 60000 training samples
and 10000 testing samples. In the training procedure, we set
the total number of local workers to be U = 50, as the IoT
devices in an edge network. For each local worker in the i.i.d.
setting, 300 distinct training samples are randomly selected
as its local datasets, i.e., K; = 300,Vi. To build the non-
ii.d. data setting upon the MNIST dataset, we first sort all
the 60000 training samples based on the classification labels.
Then we divide the 60000 training samples into 200 shards,
each of which consists 300 samples, that are highly non-
i.i.d. shard by shard [6]. We randomly allocate two shards to
each local worker for the edge learning problem. The globally
shared scoring dataset D%, consists of 2000 data samples, and
the globally shared training dataset D&, consists of 150 data
samples for the i.i.d. setting and 600 data samples for the non-
i.i.d. setting. In addition, we set co = 1, 6., = 1, and 6., = 1.

30ur code is available at: https://github.com/fuanxiyin/CB-DSL.git.
“http://yann.lecun.com/exdb/mnist/

TABLE I: Model architecture of the experiment.

Layer Details
1 Conv2D(1, 6, 5)
ReLU, MaxPool2D(2, 2)
2 Conv2D(6, 16, 5)
ReLU, MaxPool2D(2, 2)
3 FC(16 * 4 * 4, 120)
ReLLU
4 FC(120, 84)
ReLU
5 FC(84,10)

B. Neural Network Setting

For the learning model architecture, we use a five-layer
Convolutional Neural Network (CNN) whose detailed hyper-
parameter settings are listed in Table I. For the convolutional
layers (Conv2D), we list the sizes of the parameters with
sequence of input and output dimensions, and kernel size. For
the max pooling layers (MaxPool2D), we list kernel and stride
sizes. For the fully-connected layers (FC), we list input and
output dimensions. During the training process, we use the
SGD optimizer with learning rate o = 0.005 and the cross-
entropy loss. The batch size is set as ||B;| = 10,Vi for the
mini-batch SGD [6], [7].

C. Different Approaches

We compare the proposed CB-DSL with FedAvg [5], given
either i.i.d. or non-i.i.d. data’, for different cases of globally
shared dataset (without any shared dataset, with shared dataset
for scoring, with shared dataset for training, with shared
dataset for both scoring and training), including:

1) FedAvg without any globally shared dataset D€ it is
the standard FedAvg [5].

2) CB-DSL without any globally shared dataset D€ the
local workers use their own local dataset to calculate
Fl{’ 4

3) CB-DSL with a globally shared dataset for scoring DC.:
the local workers use the globally shared scoring dataset
to calculate ), in CB-DSL.

4) FedAvg with a globally shared dataset for training DS:.:
the local workers use both their own local dataset and
the globally shared training dataset to train their local
models in standard FedAvg [5].

5) CB-DSL with a globally shared dataset for both training
DY and scoring DC.: the local workers use both their
own local dataset and the globally shared training dataset
to train their local models and then use the globally
shared scoring dataset to calculate ', in CB-DSL.
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Fig. 1: The performance comparison under the i.i.d. setting.
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Fig. 2: The performance comparison under the non-i.i.d. setting.

D. Evaluation and Comparison

Fig. 1 and Fig. 2 show the simulation results for the five
cases under the i.i.d. and the non-i.i.d. settings, respectively.
As shown in Fig. 1, CB-DSL without D¢ is slightly better
than FedAvg under the same learning settings for the i.i.d.
case. A globally shared scoring dataset D¢, introduced in
CB-DSL can improve the learning performance of CB-DSL
without any globally shared dataset. This is because QSGC can
help to select the global optimum more accurately than that
based on local workers simply using their own dataset which
however makes the loss function F'(-) only partially observ-
able at local workers. In addition, a globally shared training
dataset ”Dtcfn can further improve the learning performance of
FedAvg and CB-DSL, since the data samples are increased for

5In this work, we mainly focus on evaluating the basic concept and general
methodology of the proposed CB-DSL framework and algorithm design
compared with the vanilla FedAvg, while other existing techniques for solving
the non-i.i.d. issues can also be equipped with our CB-DSL for implementation
in practice, such as the momentum-based methods [59] and regularization
strategies [60].
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Fig. 3: The performance comparison with a Byzantine attacker under the
i.i.d. setting.
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Fig. 4: The performance comparison with a Byzantine attacker under the
non-i.i.d. setting.

training. Meanwhile, CB-DSL is superior thanks to its benefits
by leveraging the exploration-exploitation gains from the BI
component and the fast convergence characteristics from the
Al component.

In Fig. 2, when CB-DSL runs without globally shared
dataset for training D&, it cannot work properly in the non-
i.i.d. setting. This is because CB-DSL hinges on single best
worker selection which however may not hold the optimum
model at all due to the model divergence from the ground
truth population distribution point of view in the non-i.i.d.
setting. Although using a globally shared scoring dataset D¢,
can slightly improve the learning performance of CB-DSL, it is
still worse than FedAvg where all workers with non-i.i.d. data
contribute to model average at the cost of high communication
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Fig. 5: The comparison of the weight divergences under the non-i.i.d.
setting.

cost. When both a globally shared training dataset and scoring
dataset are used as D¢ = DY U D, CB-DSL turns to
outperform FedAvg. This is because D&, helps to relieve the
local data heterogeneity issue by making the local datasets
to become more i.i.d., which decreases the EMD between
the data distributions on local workers and the population
distribution as revealed by our model divergence analysis in
Section V. Besides, the improvement on learning accuracy also
indicates that by using the exploration-exploitation mechanism
of PSO, our CB-DSL solutions have an increased chance to
jump out of local optimum traps via the swarm intelligence.

In Fig. 3 and Fig. 4, we provide the performance comparison
in the presence of the Byzantine attack for both the i.i.d.
and the non-i.i.d. settings, respectively. In the simulations,
the Byzantine attacker can send any information in order to
fool the PS. From Fig. 3 and Fig. 4, it is obvious that even
only one Byzantine attacker can fail FedAvg and CB-DSL
without €. On the other hand, the CB-DSL with D€ can
effectively defend the Byzantine attack, because the globally
shared dataset for scoring Z)fc can help identify and screen
out the Byzantine attacker as explained in Algorithm 1.

In Fig. 5, we further evaluate the weight divergences effects
under the non-i.i.d. setting. As the communication rounds
increase, the weight divergences of CB-DSL with or without
DY first increase and then flatten out after several commu-
nication rounds. The final steady-state weight divergence of
the CB-DSL with ©% is much less than that of the CB-DSL
without D, as depicted by the gap between the two curves in
Fig. 5. Such a nontrivial gap confirms the theoretical results of
Theorem 2: (1) the model divergence will be enlarged as the
communication rounds increase (this is because that the initial
model divergence is iteratively amplified by /3, as explained
in Remark 3); (2) the use of global data D¢ can reduce the
weight divergence (this is because that the use of ¢ decreases
the EMD between the data distributions on local workers and

the population distribution, as explained in Remark 4).

Note that only one local worker is selected and invited
to send its model parameter to the PS in CB-DSL, while
all workers need to send their model parameters to the PS
in FedAvg. Therefore, the communication cost consumed in
CB-DSL is only ¢ of that in FedAvg, given the fact that
the communication cost for the transmission of loss function
values as a scalar is relatively trivial to the transmission
of the model parameter vector and thus can be ignored.
In addition, we can see from Fig. 1 and Fig. 2 that our
CB-DSL with D¢ uses fewer communication rounds than
FedAvg to achieve the same learning accuracy. As a result, our
CB-DSL is communication-efficient with less communication
rounds and less communication overhead per round in practical
applications.

VII. CONCLUSION

This work studies a novel communication-efficient and
Byzantine-robust distributed swarm learning (CB-DSL) ap-
proach for edge IoT systems, as a holistic integration of the
Al-enabled SGD and the Bl-enabled PSO. We propose to
introduce a globally shared dataset to overcome the major
challenging issues in edge learning including: the partially
observability of loss function in distributed learning problems,
the non-i.i.d. local data issues, and the potential Byzantine
attacks. We provide theoretical analysis of the convergence
behavior of the proposed CB-DSL, which indicates that our
method can achieve better learning performance than existing
distributed learning methods. Further, we provide the model
divergence evaluation of the proposed CB-DSL in the non-
i.i.d. settings, which quantifies how a globally shared dataset
can improve the learning performance of the CB-DSL in the
non-i.i.d. setting. Simulation results verify that our proposed
CB-DSL solution can improve learning performance in both
the i.i.d. and non-i.i.d. settings, compared with the standard
FedAvg. Meanwhile, the communication saving by the CB-
DSL inherits the advantage of the bio-inspired PSO techniques
with much reduced communication cost than standard FedAvg.

APPENDIX A
PROOF OF THEOREM 1

Proof. Because Fj(-) is L-smooth from Assumption 1, ac-
cording to [61, Lemma 3.4] and velocity update in (11), we
have

Fi(Witq1) — Fi(wiy)

L
< (Witr1 — wig) I VE(wiy) + §HW¢¢+1 —wi|?

L
= Vi VEWi) + 7 Vi
= (co — c1 — o)V VFi(wiy) + 1 (Vf,t)TVFi(Wi,t)

L
+ o (V) 'V Fi(wiy) — al|[VF (wig)||* + §|\Vz‘,t+1H2~
(30)
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According to the definitions and assumptions of g, g*, g7,
g q°, ¢%, u, uP, u?, u, uP, w9 in (15)-(20), for any ¢ and ¢,
we have

wq||[VE(wig)|* < v VFi(w;;)
= [[vi[l[VEF;(wiz)| cos 0;
<ug||VFi(wi)|?
PP |VE(wi )|l < (V] ) VFi(wi,)
= Vi llIVFi(wi)| cos 67,
<wg|VF(wiy)l?,
@00 ||V (wit)||? < (v])TVE;(wiy)

s

= [V IV Fi(wiz)| cos 67

)

<@g |V Fi(wi ).

€29
(32)

(33)
Substituting (31)-(33) to (30), we have

Fi(Wiit1) — Fi(wiy)
< (co — ¢1 — )qU||VFi(wi ) ||* + 1w @ |V Fi(wi )|

+ UG [V Fi(wi ) ||?—al [ VFi(wi ) I” +
= (aTF" + W q+(co—c1—c2)qu — o) | VEF; (wy ) ||?

L
+ S Iviall®. (34)

§\|Vz‘,t+1||2

Applying the triangle inequality of norms ||X + Y| <
IX]| + [IY]|, the submultiplicative property of norms
XY < |IX]/|'Y], and the Jensens inequality (3>"i; a;)* <
n> i, af, we have
[Vier1l? =ll(co—c1—c2)vie + erviy + v —aVEFi(wi)|*

<(Il(co—er=c2)vi el lleavl Il + laV Ei(wie) )
S4((CO—C1—C2)2||Vz‘,t|| R [IVE 1V o AIVE (wi e ) )-

(35

According to the assumptions of u, w?, u? in (18)-(20), for
any ¢ and t, we have

Vil <al|VEi(wid)l, (36)
Vil STPIVEFi(wig)ll, (37)
[V <@ VEi(wiy)]- (38)

Substituting (36)-(38) to (35), we have

Ivierall®
< A((cou—crti—cou)?|| Vi (wi ) [|P+¢] (@) |V Fy(wi ) |12
+ @) (|VE; (i) + o?|[VE(wi)]|”)
= 4((cou—cru—coti)*+ci (TP ) > +c5(w9)*+a?) [V Fi(wi 4 ) ||
(39
Substituting (39) to (34), we have
Fi(Wisy1) — Fi(wit)
< (WP + W+ (co — 1 — )7 U — ) [V Fy(wi )|
2L ((cou—c1T—co@) 2+ (TP )2 +c3(T9)*+a?) |V Fi(wit) ||
= ||V F;(wia)|?, (40)
where & = @’ + cou9q7+(co — 1 — cz)aﬂ — a +
2L((cou—c1u—cot)? + c2(uP)? + c3(u?)? + a?).

10

Then we extend the expectation over randomness introduced
by CB-DSL and mini-batch training data in the trajectory of
iterations, and perform a telescoping sum of (40) over the T’
iterations

F(wio) — F(w") > F(wio) — E[F(w; )]
T
=E | (F(wii1) - F(Wi,t))]

T
>E [Z <I>E|VFi(wi,t)|2] , @D

t=1

where O =E[-®]|= %ﬁﬁJr
2 5o 02, | SeyBeyn—2 | Ol i—py2
a- 2L((cg—0c,co — eyCot -5+ 52 + =52 )u’ + - (WP )’ +
632 (@9)? + a?).
Finally, we can rearrange the inequality of (41) to yield the
convergence rate

Ocq — de _
c1 P €2
— 5Pyt = Sty —

i V7 (i) WP | o Fwio) = Flw)
pt Tog
Hence, the proof is completed. O
APPENDIX B

PROOF OF THEOREM 2

Proof. Based on the definitions of w; ;1 and wtg 1 1n (5) and
(27), we have

—wi + Vit — vl

|+ [1vit41

—wiill = lwi

< llwip — wi

Wi 41

—vill. 43)

Then based on the definitions of v; ;41 and v{,, in (11)
and (26), we get

Vi1 — Vil

= |l(co —c1 —c2)vis + 01V£t+(62 —co)vy
—aVFE(w;)+aVE(W])

< [(co—cr—c2)vi,e + c1vi, + (c2 — co) Vi ||
+ [V E (wey) — aVE(wl)|

< (co — e1 — ea)vip + e1vi + (ca — co) VY|
+ | aVFy(wis) — aVF(wd)]

=lco —c1 — ca|||vie — V|| + || VF;(wi ) — VF(wleL‘)

Given the definitions of gradients at local workers and the
genie worker VF;(w; +)= Zcozl Pi(y=¢)VEy|y=c[fec(X, Wi )]
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and VF(wj) = Zlep(y:c)VEx‘y:c[fc(x, wY)], respec- Letting 8 =1+ a Y%, pi(y = ¢) L., we rewrite (47) as
tively, we have
IVFi(wii) = VE(w{)]|

[Witr1 — Wil
will 4 |co — c1 — col[[vie — VY|

C
pi(y = C)VEX\yZC[fC(X7 Wit)] g
; +0 fmaa(Wi) Y iy = ¢) = p(y = ©)]
C c=1
2 g g
- Zp(y = ¢)VEx|y=c[fe(x, w])] <B7IWip—1 — Wil + Bleo — e — co| || Vi1 — vi_4]]
c=1
g — _ g
+Bafmax (Wt )Z Ipl (y—C) —p(y—C) |+‘Co—61—82‘ ‘|Vi7t_vt|‘
Zpi(y = C)VEX\y:c[fC(Xv Wi,t)] c=1
c=1 c
g — —
c , +0 fmaz (W) D Ipily = ¢) = ply = ¢)|
- Zpi (y= C)VEx\y:c[fC(Xa wi)] c=1
c=1 t
t+1 t—q
c <BHlwio = Wil 4 |co — e1 — ca| D B |[vi; — V||
— g -
+ Z;m(y = C)V]Ex\y=c[f6(xv Wi )} 7=0
c=1 c
+a Y [pily = o)—ply = o)| Z Frnaz (W (48)
- Zp VIEx|y c[fc(x Wy )] c=1 7=0
c Hence, the proof is completed. O
— g
< Z bi (y*C) (VEx\y=c [fc(X,Wi,t)] *VEx|y=c[fC(Xa Wy )])
c=1
e REFERENCES
+ Z(pz (y:c)—p(y:c))VEx‘y:C[fc(x,wf)] . 45) [11 Y. Wang and Z. Tian, Big Data in 5G. Encyclopedia of Wireless
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