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Abstract

Developments in the last century, and especially in the last 50 years, have advanced understanding of suspension rheology
greatly. Here, a limited review of suspension work over this period is presented, emphasizing advances over the last three
decades in understanding of the particle pressure and strong shear thickening, which were motivated by crucial experimental
observations, computational advances, and a critical review, all from the 1980s. This review serves as a preview to some
outstanding challenges in suspension mechanics. This article considers primarily dispersions of spherical particles, which
serve not only as a model material for understanding the rheology of more complex fluids of practical relevance, but also as
a basic system for the study of nonequilibrium statistical physics.
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Introduction

This paper follows, with some added detail, the April 2022
Weissenberg Award Lecture at the Annual European Rhe-
ology Conference in Seville, Spain. As in the lecture, the
objective of the paper is to distill out certain main themes
of my own work, in order to give a sense of what seems
most important after struggling with the questions for some
years. A suggestion of a few major challenges in the field of
suspension mechanics will also be presented.

Attention in this work will be confined to rheology and
statistical physics, as an earlier perspective considered the
fluid mechanics of suspensions (Morris 2020b). However,
shear-induced particle migration plays a primary role in
connecting nonlinear rheology to fluid mechanics, and this
phenomenon will be discussed.

Suspensions and a few of their applications
A suspension is defined as particles immersed in a fluid,

which for practical purposes means particles in a liquid. This
is not quite a precise concept, so some qualifications are in

P4 Jeffrey F. Morris
morris @ccny.cuny.edu

Levich Institute and Department of Chemical Engineering,

CUNY City College of New York, 140th St. and Convent.
Ave., New York, NY 10031, USA

Published online: 21 November 2023

order. It is assumed in applying the term suspension that
the particles stay suspended for some significant period of
time. For the case where gravitational settling is rapid and
agitation is needed to keep particles suspended, “slurry” is
the commonly used term. The term “dispersion” is used for
both a suspension and an emulsion (drops in liquid), and
often implies that the particles or drops are sufficiently small
that they remain suspended due to Brownian motion, and is
then a colloidal dispersion. We will consider noncolloidal
suspensions and colloidal dispersions here, as the main dif-
ference is in the size of the particles and resulting change in
the types of forces that dominate the particle motion. More
precise definition of the issue will follow in the “System of
interest: the near-hard-sphere suspension” discussion below.

Many industrial and natural examples of suspensions can
be found. In fact, in our workplaces, we are surrounded by
the residue of suspensions, as wall paints are composed of
particles dispersed in liquid. Flowable cement suspensions
(Roussel et al. 2010) are precursors to solid cement, which
of course plays a major role in concrete used in building and
highway construction. In nature, mud and crystal-bearing
magma are examples of suspensions appearing in geophys-
ics, while blood is a suspension primarily of red blood cells
(RBCs) in liquid plasma. Deformability of the RBCs makes
blood somewhat distinct from the cases considered here, and
this highlights the fact that to sort out the science of complex
fluid behavior, we require well-defined systems. We turn
next to this point.
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System of interest: the near-hard-sphere suspension

Suspensions can be of widely varied form as suggested
by the range of applications discussed above. To develop
the mechanical framework, we focus on a basic form of
suspension, which nonetheless exhibits the primary rheo-
logical phenomena seen in more complex suspensions.
This is a suspension made up of spherical particles with
very limited-range surface forces, slight deformability,
or some surface roughness. Such a suspension is perhaps
the simplest of complex fluids, described at leading order
by the solid fraction ¢, the particle size (radius a) distri-
bution, and the suspending fluid properties. Consistent
with most of my own research, the discussion will only
consider results involving Newtonian suspending fluids
(of viscosity #,), which substantially reduces the param-
eter space and thus simplifies the description. Because
the nonhydrodynamic forces considered are short-ranged,
i.e., they are inconsequential beyond a particle separation
small compared to the particle radius, or the deformabil-
ity is slight, this is termed the near-hard-sphere (NHS)
suspension. As opposed to the hard-sphere (HS) model
of suspensions, with truly rigid spheres immersed in a
continuum fluid, this implies that not only hydrodynamic
and Brownian forces play a role. Either short-range con-
servative or contact forces, the latter implying deforma-
tion and possibly friction, must also be considered. More
technical development of this point is given in the next
section.

If the density of particles differs from that of the fluid,
gravitational settling (or rising) must be considered. While
this is an unavoidable factor in many applications, for pur-
poses of understanding the suspension as a material—and
this is the primary interest in rheology—it is best to con-
sider neutrally buoyant suspensions, in which particle and
liquid densities are matched.

Intellectual interest in the neutrally buoyant NHS suspen-
sion arises in large part because it plays a role for a class of
mixtures that is in the spirit of the HS fluid, which serves
as a very basic system for defining statistical mechanical
understanding of gases and liquids. Through the ability to
eliminate gravitational effects that lead to spatially varying
concentration and stress, the suspension is a more flexible
model than dry granular materials, to which it has significant
similarity under high-¢ (often termed “dense’) conditions
(Boyer et al. 2011). The statistical physics objectives include
reduction from a many-body to a few-parameter description
of behavior. This includes development of predictive under-
standing of the microstructure and its relation to proper-
ties from the particle-scale mechanics, both in equilibrium
and—of more interest to rheologists—under flow, as well
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as development of understanding of the basis for particle
migration described later in the work.

Owing to the variety of forces and surface features that
may be considered, the NHS suspension actually repre-
sents a class of materials in itself yet it is simple to param-
eterize, realizable in the laboratory, and has been acces-
sible by computer simulation for almost four decades:
the first publication on the Stokesian Dynamics method
was Bossis and Brady (1984). Thus, the NHS suspension
is a basic nonequilibrium system whose behavior can
be related to balances between the relatively few forces
at play with most of these localized to the near-contact
regions between particle pairs. Furthermore, in the HS
limit, the system has a well-defined equilibrium thermody-
namics, with the osmotic pressure & a key quantity (Russel
et al. 1995). The osmotic pressure plays a major role in
the developments here when we consider its extension to
shear flow, II, defined in “Rheological quantities” section
below in the Introduction.

Depending on the size of the particles, it may be neces-
sary to consider Brownian motion. This is characterized by
the Stokes—Einstein-Sutherland diffusivity D = k7/6mna,
with kT the thermal energy. The relative importance of ther-
mal motion to flow is defined in terms of a Péclet number
Pe =67, }',a3/kT, where the shear rate of the flow is 7. For
Pe — 0, the suspension approaches thermodynamic equilib-
rium. For Pe >> 1, the suspension is far from equilibrium and
its behavior depends on Pe (i.e., on the driving rate y), the
solid volume fraction ¢, and the details of those forces that
make the system near-hard rather than truly hard sphere.

It is further assumed in the discussion here that the flow
at rheologically relevant length scales is Stokes flow, i.e., the
particle-scale Reynolds number Re,, = pya*in, < 1. The impor-
tance of being near-hard rather than truly hard (i.e., rigid and
without any finite-range forces) arises in part from the fact
that Stokes flow reversibility implies that the non-Brownian
suspension, at Pe~! — 0, should exhibit fore-aft symmetry in
its microstructure. Thus, roughly speaking, a system that is
prepared with structural isotropy should be able to be returned
to isotropy simply by shearing forward and backward the same
strain. In reality, this reversible nature of the fluid mechani-
cal interactions is an important but not a controlling feature:
irreversibility and the loss of fore-aft symmetry are observed
after any significant strain of a reasonably concentrated sus-
pension, even one very close to the HS limit at large Pe. The
reasons for this in terms of finite-range surface forces and
residual Brownian motion (Brady and Morris 1997) as well
as roughness (Da Cunha and Hinch 1996; Rampall et al. 1997,
Wilson 2005) have been explored, as have the implications in
terms of chaotic dynamics of the sheared system (Dasan et al.
2002; Drazer et al. 2002).
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Rheological quantities

Suspensions, even of this simplest NHS form, exhibit a
wide range of rheological phenomena. The discussion will
be limited to steady-state rheological properties in this
paper, and the quantities discussed and the notation used
will be defined here. For purposes of defining the rheologi-
cal response of the material, it is common to describe the
bulk stress in suspensions (SOR Nomenclature 2013) by
¥ =XF 4+ XP where superscripts F and P denote the fluid
and particle contributions. To be consistent with the lit-
erature, we will use ¢ for an imposed shear stress or for
the local continuum stress at a particle surface in several
places, while the X notation is reserved here for analy-
sis of the suspension stress where we specifically address
either the particle—fluid nature or the averaging over the
two phases to obtain a bulk property.

The rheological quantities that will be considered here
are the shear viscosity and the normal stress response. The
bulk stress in a shear flow with u; = yx, can be written

2 Z, 0
=%, %, 0
0 0 =f

with 3 denoting the vorticity direction. Because the fluid
is Newtonian, it does not contribute directly to the normal
stress response. The standard rheometric functions are the
apparent suspension viscosity, #,=X,,/y, and the normal
stress differences:

Ny = Zl1)1 - 252’1\12 = Zl2)2 - 23P3‘

The viscosity is often expressed as the relative viscos-
ity n,=n,/n,. The mean particle normal stress, or particle
pressure, is related to the osmotic pressure & and will also
be discussed. This is given by

P P P
_211 + 2y, + I3
3 .

Outline

The growth of understanding of two particular topics that
have occupied much of my time since about 1990 will be
considered in “Recent decades in suspension rheology”
section. To begin, however, earlier developments includ-
ing both crucial technical advances as well as puzzling
observations will be described in “A brief historical back-
ground up to 1990” section to set the stage. The work will
conclude in the “Challenges” section with a discussion of
some broad challenges in the study of suspensions.

A brief historical background up to 1990

The purpose in this section is to provide a brief general
background and then highlight certain specific develop-
ments (numbered below in this section) that were critical
foundations for my own work in suspension mechanics.

In opening a discussion of suspensions, it is common
to recall that the analytical study of suspension proper-
ties dates to Einstein (1906). This work showed that the
added dissipation due to a spherical particle immersed in a
deforming fluid could be used to define an effective viscos-
ity of the dilute suspension, yielding the celebrated result
ne(P)=ny(1+5¢ /2). This was not an isolated calculation,
but a part of a body of work developed to relate the trans-
port and thermodynamic (osmotic pressure) properties of
suspended particles. While a number of results, for exam-
ple, for single particles in confinement and for pair inter-
actions, appeared earlier and are gathered in the text of
Happel and Brenner (2012), there was a gap of many years
between the publication of Einstein’s viscosity result and
the development of a full stress-system analysis presented
by Batchelor (1970). This work provides a foundation for
description of the ensemble-averaged stress associated
with the various mechanisms of stress generation—each
associated with a specific type of force or surface trac-
tion—due to suspended particles. This general theory was
coupled with dilute-¢ flow-induced particle structure to
describe the influence of the particles on the stress for
non-Brownian (infinite-Pe) hard spheres in Batchelor
and Green (1972a, b) and for weakly sheared Brownian
(Pe K1) dilute dispersions in Batchelor (1977). This body
of work by Batchelor laid the foundation for structural
studies that relate closely to the normal stress response and
more will be said about this topic in the “Recent decades
in suspension rheology” section.

Published experimental studies of the flow properties of
suspensions date at least to work on colloidal dispersions
by Bingham and Robertson (1929), and this work was
noted in the study of strong shear thickening (described
by the term “dilatancy”) exhibited by concentrated dis-
persions in work by Freundlich and Roder (1938). A sig-
nificant part of suspension study for many years after that
time focused on the ¢ dependence of the steady-shear
viscosity, and from this arose the well-known formulas
of Maron and Pierce (1956) and Krieger and Dougherty
(1959), with the dependence as /5, * ($p;— ¢d)~* where
a is typically near 2; here, ¢; is the maximum packing
fraction, now more commonly called the jamming frac-
tion, at which the apparent viscosity diverges. However,
significant variation in the measured relative viscosity 1/
ny was seen, with order of magnitude variation at given ¢
between separate researchers, even though reproducibility
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by a single laboratory (working with a specific material)
might be good (Thomas 1965). Furthermore, while the
empirical forms captured the general behavior, different
values of the maximum packing fraction were found for
different realizations of suspensions composed of nomi-
nally monodisperse hard spherical particles: this was strik-
ing to me as a novice in suspensions, as it meant that a
rheology depending on only the concentration variable ¢
and the distance from equilibrium Pe (if Brownian motion
is relevant) was not sufficient. Clearly, other forces are at
play, and thus, other dimensionless parameters than just ¢
and Pe must be considered. The HS model for suspensions
implies hard spheres in a Newtonian continuum liquid so
that only hydrodynamic and Brownian forces are active
if a lubricating film avoids contact interactions. On the
one hand, an essential point is that this model proves too
restrictive to describe the actual observed rheology even
of systems designed to approach the HS limit. But, on the
other hand, working as close as possible to the HS model
allows development of the most basic and general results,
and this led to my focus on the NHS suspension. In sim-
plest terms, the NHS suspension implies particles in which
the suspended particles may have short-range forces, slight
deformability (i.e., be slightly nonrigid) or have surface
features such as roughness that make contact. Considering
again the dimensionless description, roughness and con-
tact can introduce a classical friction coefficient, itself a
dimensionless parameter, or the ratio of roughness length
scale to particle size. For the forces, the characteristic
shearing force ca” can be compared to the short-range
force scale F to form a group ca*/F. For deformable par-
ticles, a relevant balance is 6/G, where G is an elastic
modulus of the particles, but this is not considered here. It
is important to note that slight deformation induced when
hard (but not truly rigid) particles are pressed together
is important to create “flat” zones and enduring contacts
relevant for frictional interactions, but highly deformable
objects, such as RBCs, drops, or microgels, tend to have
well-lubricated surfaces. The implications of this in con-
centrated suspensions, for wall slip (Cloitre and Bonne-
caze 2017) and other rheological phenomena (Malkin et al.
2004; Seth et al. 2011; Malkin and Kulichikhin 2015),
differ substantially from those of surface interactions of
interest for the NHS suspensions considered here.

It is important for understanding the foundation on which
rests much of the work described in this paper to high-
light two critical research developments of the 1980s, and
a review appearing at the end of the decade. Each played
a major role in the advances seen in areas of suspension
mechanics that have occupied much of my attention.

1. Shear-induced migration. Experimental evidence of
striking non-Newtonian behavior that impacted upon
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the spatial distribution of the liquid and solid compo-
nents of a suspension was published by Leighton and
Acrivos (1987). This work described the observation of
a slow evolution of viscosity of a concentrated suspen-
sion of nominally hard spheres, measured in a Couette
(cup-and-bob) apparatus, and the authors showed the
basis of this to be a shear-induced migration. The par-
ticles progressively moved from the high-stress region
in the annular gap to the low-stress region under the
bob, reducing ¢ in the annular gap and hence reducing
the measured viscosity. The importance of this behav-
ior to practical scenarios and the fundamental concept
of a stress-driven flux considerably widened the scope
of study in suspensions. Earlier work by Gadala-Maria
and Acrivos (1980), showing the development of flow-
induced structure and its impact on the measured viscos-
ity in shear reversal experiments, was seen in retrospect
to be related to these phenomena, as was work in the
Gadala-Maria (1979) thesis on measurement of normal
stress differences in concentrated suspensions.
Stokesian Dynamics simulation. The current under-
standing of the phenomena just noted was ultimately
strongly influenced by simulation studies that spring
from the development of Stokesian Dynamics (SD)
(Bossis and Brady 1984; Brady and Bossis 1985, 1988)
and related methods (Ladd 1988) appearing in the
1980s for the simulation of Stokes flow suspensions.
The ability to simulate the motions of particles, even
in the limited numbers accessible at that time, was eye
opening. These simulation approaches have had influ-
ence on understanding of the rheology and dynamics
of dispersions analogous to that of molecular dynamic
(MD) simulations on understanding of statistical physics
of gases and liquids, which began in the 1950s (Alder
and Wainwright 1957). The SD method came much
later, largely because of a need to describe the forces
due to the continuum fluid between particles. To capture
these hydrodynamic interactions in an efficient way that
allows tracking only the macroscopic particle degrees
of freedom, we now rely on the pair-particle resistance
and mobility functions formalized 1980s by Jeffrey and
Onishi 1984) and Jeffrey (1992), and used in SD imple-
mentations even before their publication.

A critical review by Barnes (1989) considered about
100 papers on shear thickening (ST) in concentrated sus-
pensions. The phenomenon of ST, even extreme and dis-
continuous ST (or DST), had long been known (although
terminology was different) as mentioned above (Bing-
ham and Robertson 1929; Freundlich and Roder 1938).
However, DST was shown to be observable in carefully
synthesized spherical particle suspensions by Hoff-
man (1972), work that was seminal to development of
understanding of ST. The systematic analysis by Barnes
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established features of the shear thickening response,
including a stress scaling for onset of thickening as o, ~
a~2. This challenged the community to understand the
force balance giving rise to such a scaling (Boersma
et al. 1990; Maranzano and Wagner 2001).

Recent decades in suspension rheology

While the phenomena to be discussed here are rheological
in nature, they involve application of thermodynamic ideas
to far-from-equilibrium suspensions. Two types of change
in the “state” of the material arising as the result of flow are
emphasized.

The first of these changes in material state is the “de-
mixing” with time under shear noted in point 1 of the prior
section. When I started my own research career as a doc-
toral student in 1990, shear-induced migration (Leighton and
Acrivos 1987) was a new concept. Although it was soon
developed into a widely used model based on particle flux
to regions of lower shear rate, j ~ — Vy, by Phillips et al.
(1992), it was not based in familiar mass-transfer principles,
e.g., the relation of species flux to a gradient in its chemi-
cal potential. The chemical potential of hard-sphere systems
is closely related to osmotic pressure, and consideration of
the nonequilibrium osmotic pressure, or particle pressure, is
intertwined with my study of particle migration.

The second change in material state is rate dependence
of the very abrupt form DST. In DST, the shear and normal
stress (Seto et al. 2013) of a dense suspension undergo dis-
continuous changes at some critical rate y.(¢). This phenom-
enon caught my attention rather sharply as a result of discus-
sions with a post-doctoral groupmate, Dr. Willem Boersma,
who in his PhD studies at Eindhoven had shown that this
behavior was accompanied by extreme temporal fluctuations
in the stress (Boersma et al. 1991) for y = 7. This was sug-
gestive of behavior seen at an equilibrium critical point and
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Fig. 1 Poiseuille flow of a suspension, ¢y, =0.3; plots adapted with
permission from Monsorno et al. (2017). At left is local solid frac-
tion, denoted ¢,, and at right the velocity, with u; for the fluid and u
for the particles (solid). The curves labeled “present study” are based

raised for me the compelling question of whether DST has
features of a phase transition.

Shear-induced migration and the particle pressure

As noted above, shear-induced migration was clearly identi-
fied by Leighton and Acrivos (1987), and the particle flux
resulting in a gradient in ¢ within an initially well-mixed
suspension was described as j ~—Vy.. With the mass
conservation equation coupled to the momentum balance
through the viscosity dependence #,(¢), this work opened
the way to suspension flow modeling that was intrinsically
different from a generalized Newtonian model. The conse-
quences of particle migration, as exemplified in Fig. 1 for a
pressure-driven flow, could be significant, with large varia-
tion of ¢, although the blunting of the velocity at this bulk
¢=0.3is mild as seen at right in Fig. 1; this figure is adapted
from Monsorno et al. (2017), whose work was based on two-
fluid modeling (Morris and Boulay 1999; Miller et al. 2009).

The description of migration flux as j ~—Vy, does not
allow one to make predictions of migration based on other
measurable rheological properties of the suspension. This
objection was addressed in work by Nott and Brady (1994),
through a relation of flux to the divergence of the particle
stress, j ~ V o« ZF, or most simply to the pressure associ-
ated with the particle phase, j ~ — VII. In this work, and
later in Morris and Brady (1998), the particle pressure, as
it has become known, was constitutively related to the par-
ticle fluctuational motion as IT ~ TSI/Z, where the “suspen-
sion temperature” is T,=(u’.u’) and u’ is the fluctuation of
a particle’s velocity from the local affine motion. This con-
cept was considered earlier in the context of suspensions
by Jenkins and McTigue (1990) based on normal stress
measurements linear in shear rate by Bagnold (1954), with
the Stokes-flow scaling demanded by dimensional analy-
sis IT ~ ’70Txl/2/% The suspension temperature is an anal-
ogy to the granular temperature, itself an analogy to the

---- parabolic profile
—— 1, computation

uy present study

= = g present study
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on two-fluid modeling (Morris and Boulay 1999; Miller and Mor-
ris 2006), while the “computation” results are from Yeo and Maxey
(2011), which included the displayed experimental data of J. F. Gil-
christ
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thermodynamic temperature in kinetic theory of molecular
fluids. In later work, the direct relation of the particle nor-
mal stress to the bulk shear rate (Morris and Boulay 1999),
allowing for nonlocal-in-y contributions (Miller and Morris
2006) to smooth the tendency toward maximum packing at
places where the local mean shear rate vanishes (as used by
Monsorno et al. (2017) with the desired effect at the center-
line in Fig. 1a), was found to be effective and simpler as it
reduces the number of fields and boundary conditions.

As argued in Yurkovetsky and Morris (2008), the (dou-
ble) analogy to molecular kinetic theory is not the most fruit-
ful relation for description of the viscous suspension particle
pressure: the osmotic pressure is a more direct route. The
osmotic pressure of a HS suspension at equilibrium, i.e., at
Pe=0, is a well-established thermodynamic quantity and
for monodisperse spheres of radius a at volume fraction ¢ is
n=nkT [1+4dg(2a)]; the pair distribution function at con-
tact, g(2a), represents the influence of excluded volume. In
the early 1990s, Brady considered the relation of Brownian
osmotic pressure (Brady 1993) to the hydrodynamic interac-
tions between particles. This work made use of results that
we (Jeffrey et al. 1993) developed to extend the hydrody-
namic interaction functions relating the trace of the particle
stress, the mechanically defined particle pressure [1= — 22/3
described in the Introduction, to the configuration and the
kinematics. The hydrodynamic functions are independent
of the flow state, but the microstructure—the mean con-
figuration, roughly speaking—depends on the interaction of
flow with Brownian motion (Pe) and with various interpar-
ticle forces. We come to the microstructure in the following
section.

The particle pressure was now well-founded in terms of
the hydrodynamic traction moment (the symmetric part,
or stresslet), [T" ~ sym [ x « 6 «nd S taken over the parti-
cle surface S, and moments of other interparticle forces
[P ~ x « Fp, as well as Brownian motion. Thus it was pos-
sible, in Yurkovetsky and Morris (2008), to demonstrate

that the same formulation applied to evaluation of IT both at
equilibrium and in shear flow of Brownian hard spheres: the
particle pressure is the thermodynamic osmotic pressure at
Pe=0, and is simply the nonequilibrium osmotic pressure
under flow. The Brownian contribution IT®/nkT as a function
of ¢ for a large range of Pe is shown in Fig. 2a. At Pe=0.1,
this contribution is asymptotic to the hard-sphere result
18/nkT ~ Too/nkT=1+4¢g(2a); because of the increasingly
strong pair correlation near contact (see Fig. 4), IT® increases
with Pe. The hydrodynamic contribution, ITY, is shown in
Fig. 2b. Note that this quantity scales with 5, 7, and T/
begins increasing rapidly from a very small value at ¢ = 0.3,
consistent with the difficulty of measuring the small normal
stress differences at ¢ < 0.3 (Zarraga et al. 2000; Gamonpilas
et al. 2016).

To measure the particle pressure requires discriminating
between the phases. This is seen in the fact that a tendency
of the particles to spread, implied by a positive I, requires
that the liquid tend to be sucked into the region as the par-
ticles tend to leave it. Thus, the two components, particle
and liquid, are in opposing normal stress states. As a con-
sequence, if we conceive of the suspension stress as a sum
of the component contributions (as successfully done for
the shear stress), the implications of the particle pressure
are obscured. This is related to the mean pressure of the
bulk suspension being indeterminate based on incompress-
ibility of the materials (not of the phases, which may change
density, e.g., ¢), leading Batchelor (1970) to dismiss the
isotropic stress in a suspension. However, the perspective
is changed if we realize that the measurement of osmotic
pressure, which owes its presence to material dispersed in a
liquid, is performed by sampling the liquid response: con-
sider a U-tube osmometer in which the pure solvent liquid is
sucked into the solution (or dispersion) leg through a semi-
permeable membrane. This idea that multiphase pressures
must discriminate between the phases was central in my own
work to measure the shear-driven particle pressure (Deboeuf

Fig.2 Contributions to the 30 = 35
partic.le pressure as a function Pecl v —@—Pe=0.1
of solid fraction ¢ inahard .| = -4==- Pe=1 ! 301 Pe=1 Y
. 25 —a -Pe=10 / —& -Pe=10 .
sphere suspension. a Brown- | UL Pe=100 2 N B PS Pe=100 !
. o . - e Poe y 4l - = Po= 1
ian contribution IT?/1kT and b %=~ Pe=1000 ; i 25 = Pe=1000 i
hydrodynamic contribution IT?/ 20 /s !
7% (in the plot, 7 is the pure o 20 H
. . . . . H .
fluid viscosity). Reprinted with n’ s " !
permission from Yurkovetsky nkT n s i
and Morris (2008) ,-' k
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Fig.3 Osmotic measurement

of particle pressure. At left is

a schematic of a U-tube osmom-
eter, employing a semiperme-
able membrane to keep solute
from passing, with Ak related

to the thermally driven osmotic
pressure, © ~ nkT; at right is

a schematic particle-pressure
measurement employing a grid
(or screen) to maintain the parti-
cles in the suspension (Deboeuf
et al. 2009; Garland et al. 2013)
and Ah related to the particle
pressure I1 ~ 7, 7. Adapted with

Thermal agitation

permission from Deboeuf et al.
(2009)

Fig.4 Pair distribution function g(r) of a strongly sheared, Pe=1000,
Brownian hard-sphere suspension of ¢=0.3 with associated sign map
for I1. The grey circle is at radius r/a=2 with a the particle radius.
The shear flow is to right at top and left at bottom. The elevated val-
ues in compressional (second and fourth) quadrants form a boundary-
layer structure and correspond to the regions where I1>0, while the
depleted wake regions in extensional quadrants have I1<O0, leading to
the observed bulk I1>0. Adapted with permission from Morris and
Katyal (2002)

et al. 2009; Garland et al. 2013). Here, the liquid suction
pressure under various ¢ and y was measured across a screen
playing the role of a semipermeable membrane; see Fig. 3.
A key earlier demonstration of the essential idea applied
in this work was found in a study by Prasad and Kytomaa
(1995), who used a porous plate to drive a shear flow, so that
the liquid stress equilibrated and only the particle stress was
measured; Boyer et al. (2011) used this approach to probe
the rheology of suspensions up to the limit of jamming,
thereby providing unifying understanding of granular and

Shear rate

>
} Ah i } Ah
solvent o "-&suspending fluid
K A ‘
solution —— suspension
I ‘";
o ‘e gnd
membrane oo -

suspension properties through ideas of the internal or bulk
friction given by the ratio of shear to normal stress y = o/I1.

The idea of a flow-driven dispersed phase pressure in
multiphase mixtures has a long history (Wallis 1969). How-
ever, over the last 30 years, its theoretical development and
both conceptual and quantitative demonstration by experi-
ment have established the particle pressure as a basic prop-
erty in suspensions. When shear rate varies in a flow at an
initially uniform solid fraction ¢, as in Poiseuille flow of a
suspension, the resulting VII drives a particle flux toward the
centerline to alleviate this gradient, by generation of elevated
¢ where 7 is small as illustrated by Fig. 1. This simple idea
captures the essence of an important multiphase phenom-
enon. As a consequence, the concept has found use in prac-
tical applications such as cross-flow filtration (Vollebregt
et al. 2010). It is also seen in theoretical efforts to generalize
the Stokes—Einstein-Sutherland diffusivity to sheared disper-
sions (Chu and Zia 2019). These two directions emphasize
the point, alluded to in the opening of this section, that while
its relation to normal stress differences is rheological, the
influence of particle pressure on the shear-induced motion
of particles is similar to a chemical potential and thus calls
to mind thermodynamic concepts.

Particle microstructure

The development of shear-driven particle pressure or normal
stress differences in a suspension of spheres requires loss of
the fore-aft symmetry expected under pure hydrodynamic
conditions, and in the current context, it seems appropriate
to include some discussion of the microstructure here.

The strong microstructural asymmetry seen under strong
shear (Pe=1000) at ¢ =0.3 is illustrated by the pair dis-
tribution function in Fig. 4, with the sign of the dominant
MM shown in each quadrant of the pair interaction. The

@ Springer



Rheologica Acta

near-contact structure is very strongly enhanced in the com-
pressional (second and fourth) quadrants with g > 300 here.
This is over 100 times its equilibrium value, and thus, there
is a larger mean contact value than at Pe =0. The observed
positive shear-driven pressure (due to asymmetry) as well
as the basis for the enhanced Brownian contribution (due to
the larger mean of g(2a)) can thus be rationalized. A distinct
boundary layer (in the compressional quadrants) and wake
(in extensional quadrants) structure of g(r) is found for these
conditions, as will be elaborated below.

The observation of the breaking of fore-aft symmetry and
the development of non-Newtonian rheology were noted in
the earliest SD simulations of two-dimensional (monolayer)
suspensions (Bossis and Brady 1984), where the source of
asymmetry was a short-ranged repulsive force. Exploration
of the microstructure in suspensions requires considering
varying rates of shear in relation to Brownian motion or
such surface forces, and this rate dependence is a challenge
less often (Hanley et al. 1987; Banetta and Zaccone 2019)
considered for molecular liquids. While understanding of
structure has expanded greatly as computational power
has opened new possibilities in simulation, and analytical
approaches have provided insight, this remains a topic where
much remains to be developed at a predictive level.

In the study of particle microstructure, by which we mean
the average spatial arrangement of particles, the large major-
ity of work has focused on g(r) =P11(r)/n2. Here, P,(r) is
the probability of finding a second particle at a position r
given the presence of a particle at the origin, normalized
by the uncorrelated probability n” of finding two particles
at these positions. For spherical or other isotropic-particle
suspensions, g(r) provides both information on the anisot-
ropy and the radial accumulation. This work was initiated
by Batchelor and Green (1972a, b), who considered the case
of the pair probability of purely hydrodynamically interact-
ing particles in extensional flow, rather than simple shear
which leads to closed pair trajectories and an indeterminate
probability distribution without a diffusive flux. This calcu-
lation showed that hydrodynamics alone results in a change
in the radial distribution, in fact scaling at contact as g =
Do ~ (Ha— 2)7%78 (this scaling arises from a combination
of hydrodynamic functions), but isotropy is retained, i.e.,
g(r)=g(r) for “pure hydrodynamic” interaction at Pe ™' =0.
The contact singularity in this pure hydrodynamic pair dis-
tribution is integrable, and thus, the influence on the rheol-
ogy is finite (Batchelor and Green 1972b).

In the opposite limit, Batchelor (1977) considered weak-
shear (small-Pe) perturbation of the equilibrium pair struc-
ture. Writing g= geq(r)[l +APef1(r) +...], with the leading-
order term f; = —h,(r) T« E «F, where 7 is the unit vector
along the line of centers of a pair of particles, and E is the
dimensionless strain rate. Owing to the quadrupolar sym-
metry of the disturbance to the isotropic g, the leading
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correction does not impact on the viscosity. However, it does
influence the normal stresses of the suspension at O(¢p>Pe),
as shown in Brady and Vicic (1995).

The low-Pe analyses reveal perturbations extending far
from particle contact, with f; ~ r~3 in the noted solution
(Batchelor 1977). By contrast, Brady and Morris (1997) per-
turbed the Batchelor and Green (1972b) solution p_ (r) with
weak Brownian motion, i.e., Pe~! < 1 so that shear flow is
dominant. This results in a classic narrow boundary-layer
solution for g(r) in the compressional quadrants of a pair
interaction, which was found to scale as g(2a) ~ Pe over an
O(Pe™")a thickness layer. From this, we rationalized that
the pure hydrodynamic limit is singular to essentially any
perturbation, with significant implications for not only rhe-
ology, but also irreversibility and diffusion. The structural
predictions were in qualitative agreement with experiments
from Parsi and Gadala-Maria (1987). Simulations at large
¢ have shown similar boundary-layer structure (see Fig. 4),
but with a weaker g(2a) ~ Pe®’ scaling (Morris and Katyal
2002), and also show the pair-depleted wake.

The dilute-limit analyses noted above used the Smolu-
chowski (differential) equation (SE) to describe g(r), and
these provided important guidance to the development of
my own colloidal rheology modeling (Frank et al. 2003).
To reach large ¢, later work by Nazockdast and Morris
(2012) accounted for the influence of the surrounding bath
of particles on the interaction of a pair. For this, an integro-
differential form of the pair SE was developed; the inte-
gral portion captures the forces on the pair due to the bath.
This allowed predictions in satisfying agreement with SD
simulations of pair structure and the viscosity as well as
normal stress response for ¢ <0.55 and Pe < 1000. Related
high-¢ calculations of nonequilibrium structure and rheol-
ogy include approaches of Brader et al. (2008) based on
mode coupling and Scacchi et al. (2016) based on dynamic
density-functional theory.

The finding of large pair correlation in compression
shown in Fig. 4 suggested that true contact is highly likely
and motivated the approach to shear thickening described
in the “Extreme shear thickening” section. Two other studies
providing crucial insight and motivation are noted. One is
a study showing the difficulty of maintaining a liquid film
between particles in a purely Stokes flow shearing motion
at large ¢, described as “lubrication breakdown” by Ball
and Melrose (1995); a second key study, showing the role
of even small induced roughness in causing major change
in the rheological properties of concentrated suspensions, is
described by Lootens et al. (2005). A change from classical
lubrication to a contact interaction emerged as a valuable
candidate for investigation.

When contact is allowed in a viscous suspension simula-
tion, as illustrated in Fig. 5 for a low-stress (unthickened)
and high-stress (thickened) state, the tenuous structures of
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Fig.5 Particle configurations
and frictional contact force net-
work from simulated suspension
shear flow (to right at top and

to left at bottom) at conditions
(¢p=0.54 and friction coefficient
pu=1) displaying strong continu-
ous shear thickening (Seto et al.
2013). At left, a low viscosity
state at shear rate just below
shear thickening, y < 7., and at
right a high viscosity state at

7 > 7.. Adapted with permission
from Morris (2018)

contacts along the compressional direction (in agreement
with the expected initial direction from elevated pair correla-
tion in compression in Fig. 4) grow and proliferate to form a
much denser and more isotropic network. A key observation
is that, according to the simulation model (Seto et al. 2013;
Mari et al 2014) detailed in the next section, some of the
contacts in the system require hydrodynamic force and hence
flow to occur. Thus, the percolating contact force network
breaks and reforms continuously.

Extreme shear thickening

The extreme forms of shear thickening in dense suspensions,
whether strong continuous shear thickening (CST) or DST
(Freundlich and Roder 1938; Hoffman 1972; Bender and
Wagner 1996; Cwalina and Wagner 2014), have long chal-
lenged our understanding of viscous suspension flow. The
review of Barnes (1989) pointed out the need for a balance
to explain the onset of thickening at a critical stress 6, ~ a2
A simple way of understanding this is that a repulsive force
of maximum magnitude Fy, is effective in balancing the force
due to the shear flow of oa” until acaz ~ Fy, thus providing
a microscopically defined critical stress scale 6, ~ Fy /a”.

Several studies provided detailed examinations of the
possible basis for this scaling (Boersma et al. 1990; Maran-
zano and Wagner 2001; Kaldasch and Senge 2009). The
predictions for the dependence of o, on a differ depending
on whether the force balancing the external stress is due
to surface electrostatic charge, steric effects arising from
material grafted or adsorbed to the surface, or Brownian
motion (Morris 2020a). Since Brownian motion alone (i.e.,
without other forces) is not sufficient to explain the obser-
vations (Morris and Katyal 2002; Mari et al. 2015a), while
the repulsive force of steric or electrostatic origin has size
dependence, it remains unclear why such a scaling with a
seemingly constant F works.

Nonetheless, the scaling developed by Barnes (1989)
based on a large body of early work has been more recently

confirmed, for example, by Guy et al. (2015). In addition to
a critical stress, there is a need for a qualitative change in the
dominant mechanism of stress generation to explain DST.
The key idea that has been developed over the last decade is
that, for 6> o, this takes the form of a frictional interaction,
so that the shear thickening involves a lubricated-to-fric-
tional transition in the particle interactions (Morris 2018).
In simplest form, which happens to be the commonly used
simulation approach (Mari et al. 2014, 2015a), this means
that the ratio of tangential to normal force at the contact
F ool Fror < 1, With g a friction coefficient. The contact forms
in this model when the shear force driving a pair together
is oa®> Fy. The range of behavior that may be captured
by this description is illustrated in Fig. 6. Most NHS sus-
pensions exhibit some shear thinning, and recent work has
emphasized that this may be a result of a stress-dependent
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Fig.6 Range of flow curves found in the lubricated-to-frictional sce-
nario (Mari et al. 2014; Morris 2018), here for an interparticle fric-
tion coefficient of y=1 and equal parts by volume particles of radii
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thickening, discontinuous shear thickening, and shear jamming. Black
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interparticle friction coefficient (Lemaire et al. 2023), with
measurements showing that the measured friction coefficient
may depend in a qualitative way on the suspending fluid (or
“solvent) (Le et al. 2023). A friction coefficient with stress
dependence has been used in simulation to capture complex
flow behavior (Khan et al. 2023).

It is worthwhile to consider the meaning of lubrication
in discussion of a frictional interaction. For a lubricated
contact between two spheres of radius a at surface separa-
tion ea with € K1, the force depends on the pair relative
motion with Fy,, 1, ~ 7oUja In € and F,g., ~ 10U a€e™!
for tangential and normal velocities of the pair U and U,
respectively. This indicates that F, ,,/F, o0 ~ € In €, and
as the name implies, lubricated tangential motion is much
easier than normal motion. A different way to achieve an
O(1) ratio of tangential to normal resistance to motion is to
recognize that surface asperities on otherwise smooth par-
ticles approach with a normal motion when the carrying
sphere motion is tangential. Thus, for very small separations,
the tangential resistance for two spheres also scales as €',
resulting in an O(1) effective friction coefficient as € —0
(Wang et al. 2020). This has the advantage that existing
Stokesian Dynamics algorithms can be very simply altered
to capture the effects of friction, but it is unclear whether
this model can capture the static jamming state, as it retains
lubricating layers.

The introduction of contact friction between particles
reduces the jamming solid fraction, consistent with the fact
that the number of contacts per particle needed for jam-
ming of spheres is Z=6 if the contacts have only a normal
force, whereas 4 < Z; < 6 for frictional contacts, with small
values needed for larger friction coefficient (Papanikolaou
et al. 2013). This is a crucial element in the modeling of the
rheological transition at DST by Wyart and Cates (2014),
as the viscosity is modeled as /5, ~ [¢ — ¢,,(c)] 7%, with
dp(0) =flo)d! +[1—f(0)] ¢? with ¢i'and ¢? the frictional
and frictionless jamming fractions. The interpolation of the
stress-dependent jamming fraction makes use of the “frac-
tion of frictional contacts,” denoted f{c) and shown to have
a sigmoidal form going from f=0 at low stress to f— 1 at
high stress (Mari et al. 2014); the original model of Wyart
and Cates defined f in terms of the particle pressure, but
an O(1) ratio of shear to normal stress makes the forms
interchangeable.

Simulations (Seto et al. 2013) and theory (Wyart and
Cates 2014) have converged on an interaction that has the
appearance of contact forces inclusive of friction as the
dominant stress-generating mechanism at stresses that over-
come a repulsive interparticle “barrier” force. Experimen-
tal evidence of the role of contact is largely indirect, but
includes influence of roughness (Hsiao et al. 2017; Hsu et al.
2018), behavior in strain reversal (Lin et al. 2015), and the
influence of oscillatory orthogonal (Lin et al. 2016). The
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behavior under strain reversal and orthogonal shear presum-
ably results from breaking of contact networks, such as that
illustrated in Fig. 5.

Challenges

The perspective presented in the work described here is
that NHS suspensions have a special role in development
of our understanding of complex fluids, because they are
the simplest of this class of materials. As such, they allow
us to explore in detail the basis for non-Newtonian rheol-
ogy and its impact on mixture fluid mechanics, while also
providing a tractable system for study of nonequilibrium
statistical physics issues, for example, the basic issue of the
microstructure under shear. Numerous directions of study
could be mentioned, but here the discussion is limited to
three broad challenges:

1. Development and validation of continuum models of
suspensions. This area of study has significant scope
for advancement, and the motivations for advancements
are strong from both fundamental and practical perspec-
tives. Modeling the flow of suspensions began in ear-
nest as a result of the clear description of shear-induced
migration, and this modeling is challenging on multiple
levels. These include the fact the materials may vary
from fluid to soft solids with extreme rate dependence,
the multiphase nature of suspensions becomes a key fac-
tor because of migration, and the difficulty in establish-
ing boundary conditions on suspension flows can also
be noted. At a level that has great practical importance,
the behavior of suspensions has significant dependence
on details of the particle size distribution and this chal-
lenges even our understanding of the rheological proper-
ties (Pednekar et al. 2018; Guy et al. 2020; Malbranche
et al. 2023), to say nothing of the relative motion of
the different particle sizes due to migration phenomena
(Lyon and Leal 1998; Semwogerere and Weeks 2008).
This discussion exposes just a few issues and does not
at all address the difficult and important issue of par-
ticle shape, but in scraping the surface, it suggests the
noted scope for further work. Because advances in this
direction provide tools that allow exploration of the pre-
dictive power of existing models, a valuable feedback
channel from practitioners to theorists is opened by test-
ing existing theories against the behavior of practically
relevant materials. This is exemplified nicely by work
of Lee et al. (2020) to explore how the lubricated-to-
frictional constitutive models (Singh et al. 2018) apply
to more complex suspensions.

2. Development of understanding of contact and tri-
bological impacts on rheology. Recent work has
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developed a description of the ST transition in terms of
contact with friction. The challenge is then to answer,
what is happening in this “contact” zone? More gener-
ally, what are the forces at the surfaces that matter most,
and how generic are the bulk outcomes to the range of
specific surface forces? As these forces are often short-
ranged, experimental access to the small length scales
is a clear challenge, while trying to probe the forces by
MD simulation may lead to difficulty in reaching suffi-
ciently long time scales to be representative of particle
interactions when contact takes place. A consideration
of understanding gained by tribologists may allow clas-
sification of the influence of forces based on the con-
straints placed on particles’ relative motions (Guy et al.
2018).

3. Nonequilibrium statistical physics of dispersions. The
relationship of microstructure, from pair level to net-
works of contacts, to the properties of suspensions opens
a range of questions in nonequilibrium statistical phys-
ics. The NHS suspension is relatively simply defined
and, because it has limiting equilibrium behavior of the
HS fluid, is a well-grounded system for such study. The
physical system can be composed readily and its prop-
erties can be probed with standard rheometry in many
laboratories. With scattering methods, the structure
under flow even for colloidal dispersions is accessible
(Gurnon and Wagner 2015). Combining this experimen-
tal access with the various simulation approaches (Seto
et al 2013; Banchio and Brady 2003; Heussinger 2013;
Ness 2021) available, the theoretical challenge of estab-
lishing principles for far-from-equilibrium systems may
find an important testing ground in suspensions.

A closing remark

Taken together, these challenges span from the nanometer-
scale contacts to the bulk scale. Establishing how these
scales interact, for example, through the two-way coupling
of forces related to physics and chemistry at the contacts
driven by forces imposed at the bulk scale, and development
of physically based models and occasional contributions to
theories have been the goals in my work. The Weissenberg
Award leading to this paper was a deeply felt honor, but it
becomes clear in considering these challenges that it is the
work of others that will follow that matters most.
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