
Vol.:(0123456789)1 3

Rheologica Acta 
https://doi.org/10.1007/s00397-023-01421-z

ORIGINAL CONTRIBUTION

Progress and challenges in suspension rheology

Jeffrey F. Morris1 

Received: 24 October 2023 / Accepted: 26 October 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Developments in the last century, and especially in the last 50 years, have advanced understanding of suspension rheology 
greatly. Here, a limited review of suspension work over this period is presented, emphasizing advances over the last three 
decades in understanding of the particle pressure and strong shear thickening, which were motivated by crucial experimental 
observations, computational advances, and a critical review, all from the 1980s. This review serves as a preview to some 
outstanding challenges in suspension mechanics. This article considers primarily dispersions of spherical particles, which 
serve not only as a model material for understanding the rheology of more complex fluids of practical relevance, but also as 
a basic system for the study of nonequilibrium statistical physics.
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Introduction

This paper follows, with some added detail, the April 2022 
Weissenberg Award Lecture at the Annual European Rhe-
ology Conference in Seville, Spain. As in the lecture, the 
objective of the paper is to distill out certain main themes 
of my own work, in order to give a sense of what seems 
most important after struggling with the questions for some 
years. A suggestion of a few major challenges in the field of 
suspension mechanics will also be presented.

Attention in this work will be confined to rheology and 
statistical physics, as an earlier perspective considered the 
fluid mechanics of suspensions (Morris 2020b). However, 
shear-induced particle migration plays a primary role in 
connecting nonlinear rheology to fluid mechanics, and this 
phenomenon will be discussed.

Suspensions and a few of their applications

A suspension is defined as particles immersed in a fluid, 
which for practical purposes means particles in a liquid. This 
is not quite a precise concept, so some qualifications are in 

order. It is assumed in applying the term suspension that 
the particles stay suspended for some significant period of 
time. For the case where gravitational settling is rapid and 
agitation is needed to keep particles suspended, “slurry” is 
the commonly used term. The term “dispersion” is used for 
both a suspension and an emulsion (drops in liquid), and 
often implies that the particles or drops are sufficiently small 
that they remain suspended due to Brownian motion, and is 
then a colloidal dispersion. We will consider noncolloidal 
suspensions and colloidal dispersions here, as the main dif-
ference is in the size of the particles and resulting change in 
the types of forces that dominate the particle motion. More 
precise definition of the issue will follow in the “System of 
interest: the near-hard-sphere suspension” discussion below.

Many industrial and natural examples of suspensions can 
be found. In fact, in our workplaces, we are surrounded by 
the residue of suspensions, as wall paints are composed of 
particles dispersed in liquid. Flowable cement suspensions 
(Roussel et al. 2010) are precursors to solid cement, which 
of course plays a major role in concrete used in building and 
highway construction. In nature, mud and crystal-bearing 
magma are examples of suspensions appearing in geophys-
ics, while blood is a suspension primarily of red blood cells 
(RBCs) in liquid plasma. Deformability of the RBCs makes 
blood somewhat distinct from the cases considered here, and 
this highlights the fact that to sort out the science of complex 
fluid behavior, we require well-defined systems. We turn 
next to this point.
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System of interest: the near‑hard‑sphere suspension

Suspensions can be of widely varied form as suggested 
by the range of applications discussed above. To develop 
the mechanical framework, we focus on a basic form of 
suspension, which nonetheless exhibits the primary rheo-
logical phenomena seen in more complex suspensions. 
This is a suspension made up of spherical particles with 
very limited-range surface forces, slight deformability, 
or some surface roughness. Such a suspension is perhaps 
the simplest of complex fluids, described at leading order 
by the solid fraction ϕ, the particle size (radius a) distri-
bution, and the suspending fluid properties. Consistent 
with most of my own research, the discussion will only 
consider results involving Newtonian suspending fluids 
(of viscosity η0), which substantially reduces the param-
eter space and thus simplifies the description. Because 
the nonhydrodynamic forces considered are short-ranged, 
i.e., they are inconsequential beyond a particle separation 
small compared to the particle radius, or the deformabil-
ity is slight, this is termed the near-hard-sphere (NHS) 
suspension. As opposed to the hard-sphere (HS) model 
of suspensions, with truly rigid spheres immersed in a 
continuum fluid, this implies that not only hydrodynamic 
and Brownian forces play a role. Either short-range con-
servative or contact forces, the latter implying deforma-
tion and possibly friction, must also be considered. More 
technical development of this point is given in the next 
section.

If the density of particles differs from that of the fluid, 
gravitational settling (or rising) must be considered. While 
this is an unavoidable factor in many applications, for pur-
poses of understanding the suspension as a material—and 
this is the primary interest in rheology—it is best to con-
sider neutrally buoyant suspensions, in which particle and 
liquid densities are matched.

Intellectual interest in the neutrally buoyant NHS suspen-
sion arises in large part because it plays a role for a class of 
mixtures that is in the spirit of the HS fluid, which serves 
as a very basic system for defining statistical mechanical 
understanding of gases and liquids. Through the ability to 
eliminate gravitational effects that lead to spatially varying 
concentration and stress, the suspension is a more flexible 
model than dry granular materials, to which it has significant 
similarity under high-ϕ (often termed “dense”) conditions 
(Boyer et al. 2011). The statistical physics objectives include 
reduction from a many-body to a few-parameter description 
of behavior. This includes development of predictive under-
standing of the microstructure and its relation to proper-
ties from the particle-scale mechanics, both in equilibrium 
and—of more interest to rheologists—under flow, as well 

as development of understanding of the basis for particle 
migration described later in the work.

Owing to the variety of forces and surface features that 
may be considered, the NHS suspension actually repre-
sents a class of materials in itself yet it is simple to param-
eterize, realizable in the laboratory, and has been acces-
sible by computer simulation for almost four decades: 
the first publication on the Stokesian Dynamics method 
was Bossis and Brady (1984). Thus, the NHS suspension 
is a basic nonequilibrium system whose behavior can 
be related to balances between the relatively few forces 
at play with most of these localized to the near-contact 
regions between particle pairs. Furthermore, in the HS 
limit, the system has a well-defined equilibrium thermody-
namics, with the osmotic pressure π a key quantity (Russel 
et al. 1995). The osmotic pressure plays a major role in 
the developments here when we consider its extension to 
shear flow, Π, defined in “Rheological quantities” section 
below in the Introduction.

Depending on the size of the particles, it may be neces-
sary to consider Brownian motion. This is characterized by 
the Stokes–Einstein-Sutherland diffusivity D = kT/6πη0a, 
with kT the thermal energy. The relative importance of ther-
mal motion to flow is defined in terms of a Péclet number 
Pe = 6πη0 𝛾̇a3/kT, where the shear rate of the flow is 𝛾̇ . For 
Pe → 0, the suspension approaches thermodynamic equilib-
rium. For Pe ≫ 1, the suspension is far from equilibrium and 
its behavior depends on Pe (i.e., on the driving rate 𝛾̇ ), the 
solid volume fraction ϕ, and the details of those forces that 
make the system near-hard rather than truly hard sphere.

It is further assumed in the discussion here that the flow 
at rheologically relevant length scales is Stokes flow, i.e., the 
particle-scale Reynolds number Rep = ρ𝛾̇a2/η0 ≪ 1. The impor-
tance of being near-hard rather than truly hard (i.e., rigid and 
without any finite-range forces) arises in part from the fact 
that Stokes flow reversibility implies that the non-Brownian 
suspension, at Pe−1 → 0, should exhibit fore-aft symmetry in 
its microstructure. Thus, roughly speaking, a system that is 
prepared with structural isotropy should be able to be returned 
to isotropy simply by shearing forward and backward the same 
strain. In reality, this reversible nature of the fluid mechani-
cal interactions is an important but not a controlling feature: 
irreversibility and the loss of fore-aft symmetry are observed 
after any significant strain of a reasonably concentrated sus-
pension, even one very close to the HS limit at large Pe. The 
reasons for this in terms of finite-range surface forces and 
residual Brownian motion (Brady and Morris 1997) as well 
as roughness (Da Cunha and Hinch 1996; Rampall et al. 1997; 
Wilson 2005) have been explored, as have the implications in 
terms of chaotic dynamics of the sheared system (Dasan et al. 
2002; Drazer et al. 2002).
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Rheological quantities

Suspensions, even of this simplest NHS form, exhibit a 
wide range of rheological phenomena. The discussion will 
be limited to steady-state rheological properties in this 
paper, and the quantities discussed and the notation used 
will be defined here. For purposes of defining the rheologi-
cal response of the material, it is common to describe the 
bulk stress in suspensions (SOR Nomenclature 2013) by 
Σ = ΣF + ΣP, where superscripts F and P denote the fluid 
and particle contributions. To be consistent with the lit-
erature, we will use σ for an imposed shear stress or for 
the local continuum stress at a particle surface in several 
places, while the Σ notation is reserved here for analy-
sis of the suspension stress where we specifically address 
either the particle–fluid nature or the averaging over the 
two phases to obtain a bulk property.

The rheological quantities that will be considered here 
are the shear viscosity and the normal stress response. The 
bulk stress in a shear flow with u1 = 𝛾̇x2 can be written

with 3 denoting the vorticity direction. Because the fluid 
is Newtonian, it does not contribute directly to the normal 
stress response. The standard rheometric functions are the 
apparent suspension viscosity, ηs = Σ12/𝛾̇ , and the normal 
stress differences:

The viscosity is often expressed as the relative viscos-
ity ηr = ηs /η0. The mean particle normal stress, or particle 
pressure, is related to the osmotic pressure π and will also 
be discussed. This is given by

Outline

The growth of understanding of two particular topics that 
have occupied much of my time since about 1990 will be 
considered in “Recent decades in suspension rheology” 
section. To begin, however, earlier developments includ-
ing both crucial technical advances as well as puzzling 
observations will be described in “A brief historical back-
ground up to 1990” section to set the stage. The work will 
conclude in the “Challenges” section with a discussion of 
some broad challenges in the study of suspensions.
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A brief historical background up to 1990

The purpose in this section is to provide a brief general 
background and then highlight certain specific develop-
ments (numbered below in this section) that were critical 
foundations for my own work in suspension mechanics.

In opening a discussion of suspensions, it is common 
to recall that the analytical study of suspension proper-
ties dates to Einstein (1906). This work showed that the 
added dissipation due to a spherical particle immersed in a 
deforming fluid could be used to define an effective viscos-
ity of the dilute suspension, yielding the celebrated result 
ηE(ϕ) = η0(1 + 5ϕ / 2). This was not an isolated calculation, 
but a part of a body of work developed to relate the trans-
port and thermodynamic (osmotic pressure) properties of 
suspended particles. While a number of results, for exam-
ple, for single particles in confinement and for pair inter-
actions, appeared earlier and are gathered in the text of 
Happel and Brenner (2012), there was a gap of many years 
between the publication of Einstein’s viscosity result and 
the development of a full stress-system analysis presented 
by Batchelor (1970). This work provides a foundation for 
description of the ensemble-averaged stress associated 
with the various mechanisms of stress generation—each 
associated with a specific type of force or surface trac-
tion—due to suspended particles. This general theory was 
coupled with dilute-ϕ flow-induced particle structure to 
describe the influence of the particles on the stress for 
non-Brownian (infinite-Pe) hard spheres in Batchelor 
and Green (1972a, b) and for weakly sheared Brownian 
(Pe ≪ 1) dilute dispersions in Batchelor (1977). This body 
of work by Batchelor laid the foundation for structural 
studies that relate closely to the normal stress response and 
more will be said about this topic in the “Recent decades 
in suspension rheology” section.

Published experimental studies of the flow properties of 
suspensions date at least to work on colloidal dispersions 
by Bingham and Robertson (1929), and this work was 
noted in the study of strong shear thickening (described 
by the term “dilatancy”) exhibited by concentrated dis-
persions in work by Freundlich and Röder (1938). A sig-
nificant part of suspension study for many years after that 
time focused on the ϕ dependence of the steady-shear 
viscosity, and from this arose the well-known formulas 
of Maron and Pierce (1956) and Krieger and Dougherty 
(1959), with the dependence as ηs/η0 ∝ (ϕJ − ϕ)−α where 
α is typically near 2; here, ϕJ is the maximum packing 
fraction, now more commonly called the jamming frac-
tion, at which the apparent viscosity diverges. However, 
significant variation in the measured relative viscosity ηs/
η0 was seen, with order of magnitude variation at given ϕ 
between separate researchers, even though reproducibility 
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by a single laboratory (working with a specific material) 
might be good (Thomas 1965). Furthermore, while the 
empirical forms captured the general behavior, different 
values of the maximum packing fraction were found for 
different realizations of suspensions composed of nomi-
nally monodisperse hard spherical particles: this was strik-
ing to me as a novice in suspensions, as it meant that a 
rheology depending on only the concentration variable ϕ 
and the distance from equilibrium Pe (if Brownian motion 
is relevant) was not sufficient. Clearly, other forces are at 
play, and thus, other dimensionless parameters than just ϕ 
and Pe must be considered. The HS model for suspensions 
implies hard spheres in a Newtonian continuum liquid so 
that only hydrodynamic and Brownian forces are active 
if a lubricating film avoids contact interactions. On the 
one hand, an essential point is that this model proves too 
restrictive to describe the actual observed rheology even 
of systems designed to approach the HS limit. But, on the 
other hand, working as close as possible to the HS model 
allows development of the most basic and general results, 
and this led to my focus on the NHS suspension. In sim-
plest terms, the NHS suspension implies particles in which 
the suspended particles may have short-range forces, slight 
deformability (i.e., be slightly nonrigid) or have surface 
features such as roughness that make contact. Considering 
again the dimensionless description, roughness and con-
tact can introduce a classical friction coefficient, itself a 
dimensionless parameter, or the ratio of roughness length 
scale to particle size. For the forces, the characteristic 
shearing force σa2 can be compared to the short-range 
force scale F to form a group σa2/F. For deformable par-
ticles, a relevant balance is σ/G, where G is an elastic 
modulus of the particles, but this is not considered here. It 
is important to note that slight deformation induced when 
hard (but not truly rigid) particles are pressed together 
is important to create “flat” zones and enduring contacts 
relevant for frictional interactions, but highly deformable 
objects, such as RBCs, drops, or microgels, tend to have 
well-lubricated surfaces. The implications of this in con-
centrated suspensions, for wall slip (Cloitre and Bonne-
caze 2017) and other rheological phenomena (Malkin et al. 
2004; Seth et al. 2011; Malkin and Kulichikhin 2015), 
differ substantially from those of surface interactions of 
interest for the NHS suspensions considered here.

It is important for understanding the foundation on which 
rests much of the work described in this paper to high-
light two critical research developments of the 1980s, and 
a review appearing at the end of the decade. Each played 
a major role in the advances seen in areas of suspension 
mechanics that have occupied much of my attention.

1.	 Shear-induced migration. Experimental evidence of 
striking non-Newtonian behavior that impacted upon 

the spatial distribution of the liquid and solid compo-
nents of a suspension was published by Leighton and 
Acrivos (1987). This work described the observation of 
a slow evolution of viscosity of a concentrated suspen-
sion of nominally hard spheres, measured in a Couette 
(cup-and-bob) apparatus, and the authors showed the 
basis of this to be a shear-induced migration. The par-
ticles progressively moved from the high-stress region 
in the annular gap to the low-stress region under the 
bob, reducing ϕ in the annular gap and hence reducing 
the measured viscosity. The importance of this behav-
ior to practical scenarios and the fundamental concept 
of a stress-driven flux considerably widened the scope 
of study in suspensions. Earlier work by Gadala-Maria 
and Acrivos (1980), showing the development of flow-
induced structure and its impact on the measured viscos-
ity in shear reversal experiments, was seen in retrospect 
to be related to these phenomena, as was work in the 
Gadala-Maria (1979) thesis on measurement of normal 
stress differences in concentrated suspensions.

2.	 Stokesian Dynamics simulation. The current under-
standing of the phenomena just noted was ultimately 
strongly influenced by simulation studies that spring 
from the development of Stokesian Dynamics (SD) 
(Bossis and Brady 1984; Brady and Bossis 1985, 1988) 
and related methods (Ladd 1988) appearing in the 
1980s for the simulation of Stokes flow suspensions. 
The ability to simulate the motions of particles, even 
in the limited numbers accessible at that time, was eye 
opening. These simulation approaches have had influ-
ence on understanding of the rheology and dynamics 
of dispersions analogous to that of molecular dynamic 
(MD) simulations on understanding of statistical physics 
of gases and liquids, which began in the 1950s (Alder 
and Wainwright 1957). The SD method came much 
later, largely because of a need to describe the forces 
due to the continuum fluid between particles. To capture 
these hydrodynamic interactions in an efficient way that 
allows tracking only the macroscopic particle degrees 
of freedom, we now rely on the pair-particle resistance 
and mobility functions formalized 1980s by Jeffrey and 
Onishi 1984) and Jeffrey (1992), and used in SD imple-
mentations even before their publication.

3.	 A critical review by Barnes (1989) considered about 
100 papers on shear thickening (ST) in concentrated sus-
pensions. The phenomenon of ST, even extreme and dis-
continuous ST (or DST), had long been known (although 
terminology was different) as mentioned above (Bing-
ham and Robertson 1929; Freundlich and Röder 1938). 
However, DST was shown to be observable in carefully 
synthesized spherical particle suspensions by Hoff-
man (1972), work that was seminal to development of 
understanding of ST. The systematic analysis by Barnes 
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established features of the shear thickening response, 
including a stress scaling for onset of thickening as σc ∼ 
a−2. This challenged the community to understand the 
force balance giving rise to such a scaling (Boersma 
et al. 1990; Maranzano and Wagner 2001).

Recent decades in suspension rheology

While the phenomena to be discussed here are rheological 
in nature, they involve application of thermodynamic ideas 
to far-from-equilibrium suspensions. Two types of change 
in the “state” of the material arising as the result of flow are 
emphasized.

The first of these changes in material state is the “de-
mixing” with time under shear noted in point 1 of the prior 
section. When I started my own research career as a doc-
toral student in 1990, shear-induced migration (Leighton and 
Acrivos 1987) was a new concept. Although it was soon 
developed into a widely used model based on particle flux 
to regions of lower shear rate, j ∼ − ∇𝛾̇ , by Phillips et al. 
(1992), it was not based in familiar mass-transfer principles, 
e.g., the relation of species flux to a gradient in its chemi-
cal potential. The chemical potential of hard-sphere systems 
is closely related to osmotic pressure, and consideration of 
the nonequilibrium osmotic pressure, or particle pressure, is 
intertwined with my study of particle migration.

The second change in material state is rate dependence 
of the very abrupt form DST. In DST, the shear and normal 
stress (Seto et al. 2013) of a dense suspension undergo dis-
continuous changes at some critical rate 𝛾̇c(𝜙). This phenom-
enon caught my attention rather sharply as a result of discus-
sions with a post-doctoral groupmate, Dr. Willem Boersma, 
who in his PhD studies at Eindhoven had shown that this 
behavior was accompanied by extreme temporal fluctuations 
in the stress (Boersma et al. 1991) for 𝛾̇ ≈ 𝛾̇c. This was sug-
gestive of behavior seen at an equilibrium critical point and 

raised for me the compelling question of whether DST has 
features of a phase transition.

Shear‑induced migration and the particle pressure

As noted above, shear-induced migration was clearly identi-
fied by Leighton and Acrivos (1987), and the particle flux 
resulting in a gradient in ϕ within an initially well-mixed 
suspension was described as j ∼ − ∇𝛾̇c . With the mass 
conservation equation coupled to the momentum balance 
through the viscosity dependence ηr(ϕ), this work opened 
the way to suspension flow modeling that was intrinsically 
different from a generalized Newtonian model. The conse-
quences of particle migration, as exemplified in Fig. 1 for a 
pressure-driven flow, could be significant, with large varia-
tion of ϕ, although the blunting of the velocity at this bulk 
𝜙=̇0.3 is mild as seen at right in Fig. 1; this figure is adapted 
from Monsorno et al. (2017), whose work was based on two-
fluid modeling (Morris and Boulay 1999; Miller et al. 2009).

The description of migration flux as j ∼ − ∇𝛾̇c does not 
allow one to make predictions of migration based on other 
measurable rheological properties of the suspension. This 
objection was addressed in work by Nott and Brady (1994), 
through a relation of flux to the divergence of the particle 
stress, � ∼ ∇ ∙ �P , or most simply to the pressure associ-
ated with the particle phase, j ∼ − ∇Π. In this work, and 
later in Morris and Brady (1998), the particle pressure, as 
it has become known, was constitutively related to the par-
ticle fluctuational motion as Π ∼ Ts

1/2, where the “suspen-
sion temperature” is Ts = ⟨u′.u′⟩ and u′ is the fluctuation of 
a particle’s velocity from the local affine motion. This con-
cept was considered earlier in the context of suspensions 
by Jenkins and McTigue (1990) based on normal stress 
measurements linear in shear rate by Bagnold (1954), with 
the Stokes-flow scaling demanded by dimensional analy-
sis Π ∼ η0T

1∕2
s

/a. The suspension temperature is an anal-
ogy to the granular temperature, itself an analogy to the 

Fig. 1   Poiseuille flow of a suspension, ϕbulk = 0.3; plots adapted with 
permission from Monsorno et  al. (2017). At left is local solid frac-
tion, denoted ϕs, and at right the velocity, with uf for the fluid and us 
for the particles (solid). The curves labeled “present study” are based 

on two-fluid modeling (Morris and Boulay 1999; Miller and Mor-
ris 2006), while the “computation” results are from Yeo and Maxey 
(2011), which included the displayed experimental data of J. F. Gil-
christ
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thermodynamic temperature in kinetic theory of molecular 
fluids. In later work, the direct relation of the particle nor-
mal stress to the bulk shear rate (Morris and Boulay 1999), 
allowing for nonlocal-in-𝛾̇ contributions (Miller and Morris 
2006) to smooth the tendency toward maximum packing at 
places where the local mean shear rate vanishes (as used by 
Monsorno et al. (2017) with the desired effect at the center-
line in Fig. 1a), was found to be effective and simpler as it 
reduces the number of fields and boundary conditions.

As argued in Yurkovetsky and Morris (2008), the (dou-
ble) analogy to molecular kinetic theory is not the most fruit-
ful relation for description of the viscous suspension particle 
pressure: the osmotic pressure is a more direct route. The 
osmotic pressure of a HS suspension at equilibrium, i.e., at 
Pe = 0, is a well-established thermodynamic quantity and 
for monodisperse spheres of radius a at volume fraction ϕ is 
π = nkT [1 + 4ϕg(2a)]; the pair distribution function at con-
tact, g(2a), represents the influence of excluded volume. In 
the early 1990s, Brady considered the relation of Brownian 
osmotic pressure (Brady 1993) to the hydrodynamic interac-
tions between particles. This work made use of results that 
we (Jeffrey et al. 1993) developed to extend the hydrody-
namic interaction functions relating the trace of the particle 
stress, the mechanically defined particle pressure Π =  − ΣP

ii
 /3 

described in the Introduction, to the configuration and the 
kinematics. The hydrodynamic functions are independent 
of the flow state, but the microstructure—the mean con-
figuration, roughly speaking—depends on the interaction of 
flow with Brownian motion (Pe) and with various interpar-
ticle forces. We come to the microstructure in the following 
section.

The particle pressure was now well-founded in terms of 
the hydrodynamic traction moment (the symmetric part, 
or stresslet), ΠH ∼ sym ∫ x ∙ � ∙ nd S taken over the parti-
cle surface Sp, and moments of other interparticle forces 
ΠP ∼ x ∙ FP , as well as Brownian motion. Thus it was pos-
sible, in Yurkovetsky and Morris (2008), to demonstrate 

that the same formulation applied to evaluation of Π both at 
equilibrium and in shear flow of Brownian hard spheres: the 
particle pressure is the thermodynamic osmotic pressure at 
Pe = 0, and is simply the nonequilibrium osmotic pressure 
under flow. The Brownian contribution ΠB/nkT as a function 
of ϕ for a large range of Pe is shown in Fig. 2a. At Pe = 0.1, 
this contribution is asymptotic to the hard-sphere result 
ΠB/nkT ∼ πeq/nkT = 1 + 4ϕg(2a); because of the increasingly 
strong pair correlation near contact (see Fig. 4), ΠB increases 
with Pe. The hydrodynamic contribution, ΠH, is shown in 
Fig. 2b. Note that this quantity scales with η0 𝛾̇ , and ΠH/η0𝛾̇ 
begins increasing rapidly from a very small value at ϕ ≈ 0.3, 
consistent with the difficulty of measuring the small normal 
stress differences at ϕ < 0.3 (Zarraga et al. 2000; Gamonpilas 
et al. 2016).

To measure the particle pressure requires discriminating 
between the phases. This is seen in the fact that a tendency 
of the particles to spread, implied by a positive Π, requires 
that the liquid tend to be sucked into the region as the par-
ticles tend to leave it. Thus, the two components, particle 
and liquid, are in opposing normal stress states. As a con-
sequence, if we conceive of the suspension stress as a sum 
of the component contributions (as successfully done for 
the shear stress), the implications of the particle pressure 
are obscured. This is related to the mean pressure of the 
bulk suspension being indeterminate based on incompress-
ibility of the materials (not of the phases, which may change 
density, e.g., ϕ), leading Batchelor (1970) to dismiss the 
isotropic stress in a suspension. However, the perspective 
is changed if we realize that the measurement of osmotic 
pressure, which owes its presence to material dispersed in a 
liquid, is performed by sampling the liquid response: con-
sider a U-tube osmometer in which the pure solvent liquid is 
sucked into the solution (or dispersion) leg through a semi-
permeable membrane. This idea that multiphase pressures 
must discriminate between the phases was central in my own 
work to measure the shear-driven particle pressure (Deboeuf 

Fig. 2   Contributions to the 
particle pressure as a function 
of solid fraction ϕ in a hard 
sphere suspension. a Brown-
ian contribution ΠB/nkT and b 
hydrodynamic contribution ΠH/
η0γ˙ (in the plot, η is the pure 
fluid viscosity). Reprinted with 
permission from Yurkovetsky 
and Morris (2008)
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et al. 2009; Garland et al. 2013). Here, the liquid suction 
pressure under various ϕ and 𝛾̇ was measured across a screen 
playing the role of a semipermeable membrane; see Fig. 3. 
A key earlier demonstration of the essential idea applied 
in this work was found in a study by Prasad and Kytömaa 
(1995), who used a porous plate to drive a shear flow, so that 
the liquid stress equilibrated and only the particle stress was 
measured; Boyer et al. (2011) used this approach to probe 
the rheology of suspensions up to the limit of jamming, 
thereby providing unifying understanding of granular and 

suspension properties through ideas of the internal or bulk 
friction given by the ratio of shear to normal stress μ = σ/Π.

The idea of a flow-driven dispersed phase pressure in 
multiphase mixtures has a long history (Wallis 1969). How-
ever, over the last 30 years, its theoretical development and 
both conceptual and quantitative demonstration by experi-
ment have established the particle pressure as a basic prop-
erty in suspensions. When shear rate varies in a flow at an 
initially uniform solid fraction ϕ, as in Poiseuille flow of a 
suspension, the resulting ∇Π drives a particle flux toward the 
centerline to alleviate this gradient, by generation of elevated 
ϕ where 𝛾̇ is small as illustrated by Fig. 1. This simple idea 
captures the essence of an important multiphase phenom-
enon. As a consequence, the concept has found use in prac-
tical applications such as cross-flow filtration (Vollebregt 
et al. 2010). It is also seen in theoretical efforts to generalize 
the Stokes–Einstein-Sutherland diffusivity to sheared disper-
sions (Chu and Zia 2019). These two directions emphasize 
the point, alluded to in the opening of this section, that while 
its relation to normal stress differences is rheological, the 
influence of particle pressure on the shear-induced motion 
of particles is similar to a chemical potential and thus calls 
to mind thermodynamic concepts.

Particle microstructure

The development of shear-driven particle pressure or normal 
stress differences in a suspension of spheres requires loss of 
the fore-aft symmetry expected under pure hydrodynamic 
conditions, and in the current context, it seems appropriate 
to include some discussion of the microstructure here.

The strong microstructural asymmetry seen under strong 
shear (Pe = 1000) at ϕ = 0.3 is illustrated by the pair dis-
tribution function in Fig. 4, with the sign of the dominant 
ΠH shown in each quadrant of the pair interaction. The 

Fig. 3   Osmotic measurement 
of particle pressure. At left is 
a schematic of a U-tube osmom-
eter, employing a semiperme-
able membrane to keep solute 
from passing, with Δh related 
to the thermally driven osmotic 
pressure, π ∼ nkT; at right is 
a schematic particle-pressure 
measurement employing a grid 
(or screen) to maintain the parti-
cles in the suspension (Deboeuf 
et al. 2009; Garland et al. 2013) 
and Δh related to the particle 
pressure Π ∼ η0 𝛾̇ . Adapted with 
permission from Deboeuf et al. 
(2009)

Fig. 4   Pair distribution function g(r) of a strongly sheared, Pe = 1000, 
Brownian hard-sphere suspension of ϕ = 0.3 with associated sign map 
for Π. The grey circle is at radius r/a = 2 with a the particle radius. 
The shear flow is to right at top and left at bottom. The elevated val-
ues in compressional (second and fourth) quadrants form a boundary-
layer structure and correspond to the regions where Π > 0, while the 
depleted wake regions in extensional quadrants have Π < 0, leading to 
the observed bulk Π > 0. Adapted with permission from Morris and 
Katyal (2002)
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near-contact structure is very strongly enhanced in the com-
pressional (second and fourth) quadrants with g > 300 here. 
This is over 100 times its equilibrium value, and thus, there 
is a larger mean contact value than at Pe = 0. The observed 
positive shear-driven pressure (due to asymmetry) as well 
as the basis for the enhanced Brownian contribution (due to 
the larger mean of g(2a)) can thus be rationalized. A distinct 
boundary layer (in the compressional quadrants) and wake 
(in extensional quadrants) structure of g(r) is found for these 
conditions, as will be elaborated below.

The observation of the breaking of fore-aft symmetry and 
the development of non-Newtonian rheology were noted in 
the earliest SD simulations of two-dimensional (monolayer) 
suspensions (Bossis and Brady 1984), where the source of 
asymmetry was a short-ranged repulsive force. Exploration 
of the microstructure in suspensions requires considering 
varying rates of shear in relation to Brownian motion or 
such surface forces, and this rate dependence is a challenge 
less often (Hanley et al. 1987; Banetta and Zaccone 2019) 
considered for molecular liquids. While understanding of 
structure has expanded greatly as computational power 
has opened new possibilities in simulation, and analytical 
approaches have provided insight, this remains a topic where 
much remains to be developed at a predictive level.

In the study of particle microstructure, by which we mean 
the average spatial arrangement of particles, the large major-
ity of work has focused on g(r) = P11(r)/n2. Here, P11(r) is 
the probability of finding a second particle at a position r 
given the presence of a particle at the origin, normalized 
by the uncorrelated probability n2 of finding two particles 
at these positions. For spherical or other isotropic-particle 
suspensions, g(r) provides both information on the anisot-
ropy and the radial accumulation. This work was initiated 
by Batchelor and Green (1972a, b), who considered the case 
of the pair probability of purely hydrodynamically interact-
ing particles in extensional flow, rather than simple shear 
which leads to closed pair trajectories and an indeterminate 
probability distribution without a diffusive flux. This calcu-
lation showed that hydrodynamics alone results in a change 
in the radial distribution, in fact scaling at contact as g ≡ 
p∞ ∼ (r/a − 2)−0.78 (this scaling arises from a combination 
of hydrodynamic functions), but isotropy is retained, i.e., 
g(r) = g(r) for “pure hydrodynamic” interaction at Pe−1 = 0. 
The contact singularity in this pure hydrodynamic pair dis-
tribution is integrable, and thus, the influence on the rheol-
ogy is finite (Batchelor and Green 1972b).

In the opposite limit, Batchelor (1977) considered weak-
shear (small-Pe) perturbation of the equilibrium pair struc-
ture. Writing g = geq(r)[1 + Pef1(r) + …], with the leading-
order term f1 =  − h1(r) r̂ ∙ Ê ∙ r̂  , where r̂  is the unit vector 
along the line of centers of a pair of particles, and Ê is the 
dimensionless strain rate. Owing to the quadrupolar sym-
metry of the disturbance to the isotropic geq, the leading 

correction does not impact on the viscosity. However, it does 
influence the normal stresses of the suspension at O(ϕ2Pe), 
as shown in Brady and Vicic (1995).

The low-Pe analyses reveal perturbations extending far 
from particle contact, with f1 ∼ r−3 in the noted solution 
(Batchelor 1977). By contrast, Brady and Morris (1997) per-
turbed the Batchelor and Green (1972b) solution p∞(r) with 
weak Brownian motion, i.e., Pe−1 ≪ 1 so that shear flow is 
dominant. This results in a classic narrow boundary-layer 
solution for g(r) in the compressional quadrants of a pair 
interaction, which was found to scale as g(2a) ∼ Pe over an 
O(Pe−1)a thickness layer. From this, we rationalized that 
the pure hydrodynamic limit is singular to essentially any 
perturbation, with significant implications for not only rhe-
ology, but also irreversibility and diffusion. The structural 
predictions were in qualitative agreement with experiments 
from Parsi and Gadala-Maria (1987). Simulations at large 
ϕ have shown similar boundary-layer structure (see Fig. 4), 
but with a weaker g(2a) ∼ Pe0.7 scaling (Morris and Katyal 
2002), and also show the pair-depleted wake.

The dilute-limit analyses noted above used the Smolu-
chowski (differential) equation (SE) to describe g(r), and 
these provided important guidance to the development of 
my own colloidal rheology modeling (Frank et al. 2003). 
To reach large ϕ, later work by Nazockdast and Morris 
(2012) accounted for the influence of the surrounding bath 
of particles on the interaction of a pair. For this, an integro-
differential form of the pair SE was developed; the inte-
gral portion captures the forces on the pair due to the bath. 
This allowed predictions in satisfying agreement with SD 
simulations of pair structure and the viscosity as well as 
normal stress response for ϕ ≤ 0.55 and Pe ≤ 1000. Related 
high-ϕ calculations of nonequilibrium structure and rheol-
ogy include approaches of Brader et al. (2008) based on 
mode coupling and Scacchi et al. (2016) based on dynamic 
density-functional theory.

The finding of large pair correlation in compression 
shown in Fig. 4 suggested that true contact is highly likely 
and motivated the approach to shear thickening described 
in the “Extreme shear thickening” section. Two other studies 
providing crucial insight and motivation are noted. One is 
a study showing the difficulty of maintaining a liquid film 
between particles in a purely Stokes flow shearing motion 
at large ϕ, described as “lubrication breakdown” by Ball 
and Melrose (1995); a second key study, showing the role 
of even small induced roughness in causing major change 
in the rheological properties of concentrated suspensions, is 
described by Lootens et al. (2005). A change from classical 
lubrication to a contact interaction emerged as a valuable 
candidate for investigation.

When contact is allowed in a viscous suspension simula-
tion, as illustrated in Fig. 5 for a low-stress (unthickened) 
and high-stress (thickened) state, the tenuous structures of 
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contacts along the compressional direction (in agreement 
with the expected initial direction from elevated pair correla-
tion in compression in Fig. 4) grow and proliferate to form a 
much denser and more isotropic network. A key observation 
is that, according to the simulation model (Seto et al. 2013; 
Mari et al 2014) detailed in the next section, some of the 
contacts in the system require hydrodynamic force and hence 
flow to occur. Thus, the percolating contact force network 
breaks and reforms continuously.

Extreme shear thickening

The extreme forms of shear thickening in dense suspensions, 
whether strong continuous shear thickening (CST) or DST 
(Freundlich and Röder 1938; Hoffman 1972; Bender and 
Wagner 1996; Cwalina and Wagner 2014), have long chal-
lenged our understanding of viscous suspension flow. The 
review of Barnes (1989) pointed out the need for a balance 
to explain the onset of thickening at a critical stress σc ∼ a−2. 
A simple way of understanding this is that a repulsive force 
of maximum magnitude FR is effective in balancing the force 
due to the shear flow of σa2 until σca2 ∼ FR, thus providing 
a microscopically defined critical stress scale σc ∼ FR /a2.

Several studies provided detailed examinations of the 
possible basis for this scaling (Boersma et al. 1990; Maran-
zano and Wagner 2001; Kaldasch and Senge 2009). The 
predictions for the dependence of σc on a differ depending 
on whether the force balancing the external stress is due 
to surface electrostatic charge, steric effects arising from 
material grafted or adsorbed to the surface, or Brownian 
motion (Morris 2020a). Since Brownian motion alone (i.e., 
without other forces) is not sufficient to explain the obser-
vations (Morris and Katyal 2002; Mari et al. 2015a), while 
the repulsive force of steric or electrostatic origin has size 
dependence, it remains unclear why such a scaling with a 
seemingly constant FR works.

Nonetheless, the scaling developed by Barnes (1989) 
based on a large body of early work has been more recently 

confirmed, for example, by Guy et al. (2015). In addition to 
a critical stress, there is a need for a qualitative change in the 
dominant mechanism of stress generation to explain DST. 
The key idea that has been developed over the last decade is 
that, for σ > σc, this takes the form of a frictional interaction, 
so that the shear thickening involves a lubricated-to-fric-
tional transition in the particle interactions (Morris 2018). 
In simplest form, which happens to be the commonly used 
simulation approach (Mari et al. 2014, 2015a), this means 
that the ratio of tangential to normal force at the contact 
Ftan/Fnor ≤ μ, with μ a friction coefficient. The contact forms 
in this model when the shear force driving a pair together 
is σa2 > FR. The range of behavior that may be captured 
by this description is illustrated in Fig. 6. Most NHS sus-
pensions exhibit some shear thinning, and recent work has 
emphasized that this may be a result of a stress-dependent 

Fig. 5   Particle configurations 
and frictional contact force net-
work from simulated suspension 
shear flow (to right at top and 
to left at bottom) at conditions 
(ϕ = 0.54 and friction coefficient 
μ = 1) displaying strong continu-
ous shear thickening (Seto et al. 
2013). At left, a low viscosity 
state at shear rate just below 
shear thickening, 𝛾̇ < 𝛾̇

c
 , and at 

right a high viscosity state at 
𝛾̇ > 𝛾̇

c
. Adapted with permission 

from Morris (2018)

Fig. 6   Range of flow curves found in the lubricated-to-frictional sce-
nario (Mari et al. 2014; Morris 2018), here for an interparticle fric-
tion coefficient of μ = 1 and equal parts by volume particles of radii 
a and 1.4a. From low to high ϕ, the system displays continuous shear 
thickening, discontinuous shear thickening, and shear jamming. Black 
symbols with lines are at controlled stress; blue + symbols are at con-
trolled shear rate. Adapted with permission from Mari et al. (2015b)
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interparticle friction coefficient (Lemaire et al. 2023), with 
measurements showing that the measured friction coefficient 
may depend in a qualitative way on the suspending fluid (or 
“solvent”) (Le et al. 2023). A friction coefficient with stress 
dependence has been used in simulation to capture complex 
flow behavior (Khan et al. 2023).

It is worthwhile to consider the meaning of lubrication 
in discussion of a frictional interaction. For a lubricated 
contact between two spheres of radius a at surface separa-
tion ϵa with ϵ ≪ 1, the force depends on the pair relative 
motion with Ftan,lub ∼ η0U∥a ln ϵ and Fnor,lub ∼ η0U⊥aϵ−1 
for tangential and normal velocities of the pair U∥ and U⊥, 
respectively. This indicates that  Ftan,lub/Fnor,lub ∼ ϵ ln ϵ, and 
as the name implies, lubricated tangential motion is much 
easier than normal motion. A different way to achieve an 
O(1) ratio of tangential to normal resistance to motion is to 
recognize that surface asperities on otherwise smooth par-
ticles approach with a normal motion when the carrying 
sphere motion is tangential. Thus, for very small separations, 
the tangential resistance for two spheres also scales as ϵ−1, 
resulting in an O(1) effective friction coefficient as ϵ → 0 
(Wang et al. 2020). This has the advantage that existing 
Stokesian Dynamics algorithms can be very simply altered 
to capture the effects of friction, but it is unclear whether 
this model can capture the static jamming state, as it retains 
lubricating layers.

The introduction of contact friction between particles 
reduces the jamming solid fraction, consistent with the fact 
that the number of contacts per particle needed for jam-
ming of spheres is Z = 6 if the contacts have only a normal 
force, whereas 4 ≤ Zfric < 6 for frictional contacts, with small 
values needed for larger friction coefficient (Papanikolaou 
et al. 2013). This is a crucial element in the modeling of the 
rheological transition at DST by Wyart and Cates (2014), 
as the viscosity is modeled as η/η0 ∼ [ϕ − ϕm(σ)]−2, with 
ϕm(σ) = f(σ)ϕ�

J
 +[1 − f(σ)] ϕ0

J
 with ϕ�

J
and ϕ0

J
 the frictional 

and frictionless jamming fractions. The interpolation of the 
stress-dependent jamming fraction makes use of the “frac-
tion of frictional contacts,” denoted f(σ) and shown to have 
a sigmoidal form going from f = 0 at low stress to f → 1 at 
high stress (Mari et al. 2014); the original model of Wyart 
and Cates defined f in terms of the particle pressure, but 
an O(1) ratio of shear to normal stress makes the forms 
interchangeable.

Simulations (Seto et al. 2013) and theory (Wyart and 
Cates 2014) have converged on an interaction that has the 
appearance of contact forces inclusive of friction as the 
dominant stress-generating mechanism at stresses that over-
come a repulsive interparticle “barrier” force. Experimen-
tal evidence of the role of contact is largely indirect, but 
includes influence of roughness (Hsiao et al. 2017; Hsu et al. 
2018), behavior in strain reversal (Lin et al. 2015), and the 
influence of oscillatory orthogonal (Lin et al. 2016). The 

behavior under strain reversal and orthogonal shear presum-
ably results from breaking of contact networks, such as that 
illustrated in Fig. 5.

Challenges

The perspective presented in the work described here is 
that NHS suspensions have a special role in development 
of our understanding of complex fluids, because they are 
the simplest of this class of materials. As such, they allow 
us to explore in detail the basis for non-Newtonian rheol-
ogy and its impact on mixture fluid mechanics, while also 
providing a tractable system for study of nonequilibrium 
statistical physics issues, for example, the basic issue of the 
microstructure under shear. Numerous directions of study 
could be mentioned, but here the discussion is limited to 
three broad challenges:

1.	 Development and validation of continuum models of 
suspensions. This area of study has significant scope 
for advancement, and the motivations for advancements 
are strong from both fundamental and practical perspec-
tives. Modeling the flow of suspensions began in ear-
nest as a result of the clear description of shear-induced 
migration, and this modeling is challenging on multiple 
levels. These include the fact the materials may vary 
from fluid to soft solids with extreme rate dependence, 
the multiphase nature of suspensions becomes a key fac-
tor because of migration, and the difficulty in establish-
ing boundary conditions on suspension flows can also 
be noted. At a level that has great practical importance, 
the behavior of suspensions has significant dependence 
on details of the particle size distribution and this chal-
lenges even our understanding of the rheological proper-
ties (Pednekar et al. 2018; Guy et al. 2020; Malbranche 
et al. 2023), to say nothing of the relative motion of 
the different particle sizes due to migration phenomena 
(Lyon and Leal 1998; Semwogerere and Weeks 2008). 
This discussion exposes just a few issues and does not 
at all address the difficult and important issue of par-
ticle shape, but in scraping the surface, it suggests the 
noted scope for further work. Because advances in this 
direction provide tools that allow exploration of the pre-
dictive power of existing models, a valuable feedback 
channel from practitioners to theorists is opened by test-
ing existing theories against the behavior of practically 
relevant materials. This is exemplified nicely by work 
of Lee et al. (2020) to explore how the lubricated-to-
frictional constitutive models (Singh et al. 2018) apply 
to more complex suspensions.

2.	 Development of understanding of contact and tri-
bological impacts on rheology. Recent work has 
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developed a description of the ST transition in terms of 
contact with friction. The challenge is then to answer, 
what is happening in this “contact” zone? More gener-
ally, what are the forces at the surfaces that matter most, 
and how generic are the bulk outcomes to the range of 
specific surface forces? As these forces are often short-
ranged, experimental access to the small length scales 
is a clear challenge, while trying to probe the forces by 
MD simulation may lead to difficulty in reaching suffi-
ciently long time scales to be representative of particle 
interactions when contact takes place. A consideration 
of understanding gained by tribologists may allow clas-
sification of the influence of forces based on the con-
straints placed on particles’ relative motions (Guy et al. 
2018).

3.	 Nonequilibrium statistical physics of dispersions. The 
relationship of microstructure, from pair level to net-
works of contacts, to the properties of suspensions opens 
a range of questions in nonequilibrium statistical phys-
ics. The NHS suspension is relatively simply defined 
and, because it has limiting equilibrium behavior of the 
HS fluid, is a well-grounded system for such study. The 
physical system can be composed readily and its prop-
erties can be probed with standard rheometry in many 
laboratories. With scattering methods, the structure 
under flow even for colloidal dispersions is accessible 
(Gurnon and Wagner 2015). Combining this experimen-
tal access with the various simulation approaches (Seto 
et al 2013; Banchio and Brady 2003; Heussinger 2013; 
Ness 2021) available, the theoretical challenge of estab-
lishing principles for far-from-equilibrium systems may 
find an important testing ground in suspensions.

A closing remark

Taken together, these challenges span from the nanometer-
scale contacts to the bulk scale. Establishing how these 
scales interact, for example, through the two-way coupling 
of forces related to physics and chemistry at the contacts 
driven by forces imposed at the bulk scale, and development 
of physically based models and occasional contributions to 
theories have been the goals in my work. The Weissenberg 
Award leading to this paper was a deeply felt honor, but it 
becomes clear in considering these challenges that it is the 
work of others that will follow that matters most.
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