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ABSTRACT

This paper studies distributed online learning under Byzantine attacks.
The performance of an online learning algorithm is characterized by
(adversarial) regret, and a sublinear bound is preferred. But we prove
that, even with a class of state-of-the-art robust aggregation rules,
in an adversarial environment and with Byzantine participants, dis-
tributed online gradient descent can only achieve a linear adversarial
regret bound, which is tight. This is the inevitable consequence of
Byzantine attacks, even though we can control the constant of the
linear adversarial regret to a reasonable level. Interestingly, when the
environment is not fully adversarial so that the losses of the honest
participants are i.i.d. (independent and identically distributed), we
show that sublinear stochastic regret, in contrast to the aforemen-
tioned adversarial regret, is possible. We develop a Byzantine-robust
distributed online gradient descent algorithm with momentum to
attain such a sublinear stochastic regret bound.

Index Terms— Distributed optimization, Byzantine-robustness,
Online learning

1. INTRODUCTION

Online learning is a powerful tool to process streaming data in
a timely manner [1, 2, 3]. In response to an environment that pro-
vides (adversarial) losses sequentially, an online learning algorithm
makes one-step-ahead decisions. Its performance is characterized
by (adversarial) regret, which measures the accumulative difference
between the losses of the online decisions and those of the overall best
solution in hindsight. It is preferred that adversarial regret increases
sublinearly in time, which would lead to asymptotically vanishing
performance loss. When the streaming data are separately collected
by multiple participants and data privacy is a concern, distributed
online learning becomes a natural choice. Each participant makes
a local decision, and a server aggregates all the local decisions to a
global one [4, 5]. Exemplary applications include online web ranking
and online advertisement recommendation, to name a few [6, 7, 8, 9].

However, distributed online learning faces a new challenge in
terms of robustness, since not all the participants are trustful. Some
participants may intentionally or unintentionally send wrong mes-
sages, instead of true local decisions, to the server. These adversarial
participants are termed as Byzantine participants following the no-
tion in distributed systems to describe the worst-case attacks [10].
Therefore, an interesting question arises: Is it possible to develop a
Byzantine-robust distributed online learning algorithm with provable
sublinear adversarial regret, in an adversarial environment and in
the presence of adversarial participants?

In this paper, we give a rather negative answer to this question.
We show that, even equipped with a class of state-of-the-art robust
aggregation rules, distributed online gradient descent algorithms can
only achieve linear adversarial regret bounds, which are tight. This

rather negative result highlights the difficulty of Byzantine-robust
distributed online learning. The joint impact from the adversarial
environment and the adversarial participants leads the online deci-
sions to deviate from the overall best solution in hindsight, no matter
how long the learning time is. Nevertheless, we stress that it is the
necessary price for handling arbitrarily malicious Byzantine attacks
from the adversarial participants, and with the help of robust aggre-
gation rules, we are able to control the constant of linear adversarial
regret to a reasonable value. On the other hand, we further show that
when the environment is not fully adversarial so that the losses of the
honest participants are i.i.d. (independent and identically distributed),
sublinear stochastic regret [11], in contrast to the aforementioned
adversarial regret, is possible. We develop a Byzantine-robust dis-
tributed online gradient descent algorithm with momentum to attain
such sublinear adversarial regret.
Related works. Similar to its centralized counterpart, the distributed
online gradient descent algorithm has provable O(

√
T ) and O(logT )

regret bounds for convex and strongly convex losses, respectively
[12, 13]. However, its Byzantine-robust extension is rarely studied,
and will be the focus of this paper. Another tightly related area is
Byzantine-robust distributed stochastic optimization. Therein, the
basic idea is to replace the vulnerable mean aggregation in distributed
stochastic gradient descent with robust aggregation rules, including
coordinate-wise median [14], trimmed mean [14, 15], geometric me-
dian [16], Krum [17], centered clipping [18], Phocas [19], FABA [20],
etc. We will incorporate these robust aggregation rules with dis-
tributed online gradient descent to enable Byzantine-robustness.

Several recent works investigate distributed bandit under Byzan-
tine attacks. Different from online learning, participants receive
values of losses, instead of gradients or functions, from an environ-
ment. It has been shown in [21] that the proposed Byzantine-robust
algorithms have linear adversarial regret bounds for multi-armed and
linear-contextual problems. This is consistent with our result. Under
the i.i.d. assumption, [22] proves O(T 3/4) regret for linear bandit
with high probability. Also under the i.i.d. assumption, [23] reaches
O(
√
T ) regret but requires the action set to be finite. Our proposed

algorithm, with the aid of momentum, attains the O(
√
T ) bound in

terms of the stochastic regret. The work of [24] is free of the i.i.d.
assumption, but the regret for multi-armed bandit is defined according
to a suboptimal solution other than the optimal one. Therefore, the
derived O(logT ) sublinear regret bound is not comparable to others.

2. PROBLEM STATEMENT

Consider n participants in a set N, among which h are honest
and in H, while b are Byzantine and in B. We have n = h+ b, but
the identities and number of Byzantine participants are unknown. At
step t, each honest participant j makes its local decision of the model
parameters wjt ∈ Rd and sends it to the server, while each Byzantine
participant j sends an arbitrarily malicious message. For notationalIC
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convenience, denote zjt ∈ Rd as the message sent by participant j
to the server at step t, no matter if it is from an honest or Byzantine
participant. Upon receiving all zjt , the server aggregates them to yield
a global decision wt ∈ Rd. The quality of the sequential decisions
over T steps is evaluated by (adversarial) regret

RT :=

T∑
t=1

ft(wt)− min
w∈Rd

T∑
t=1

ft(w), (1)

where

ft(w) :=
1

h

∑
j∈H

f jt (w), (2)

and f jt is the loss revealed to j ∈H at the end of step t.
For distributed online gradient descent, each honest participant j

makes its local decision following

wjt+1 = wt − ηt∇f jt (wt), (3)

where ηt > 0 is the step size. The server aggregates the messages
zjt+1 to yield the mean value

wt+1 =
1

n

n∑
j=1

zjt+1. (4)

However, messages zjt+1 from j ∈ B are arbitrarily malicious, such
that wt+1 can be manipulated to reach infinite adversarial regret.

Motivated by the recent advances of Byzantine-robust distributed
stochastic optimization, one may think of replacing the vulnerable
mean aggregation with robust aggregation rules. Denoting AGG as a
proper robust aggregation rule, the server makes the decision as

wt+1 = AGG(z1t , z
2
t , · · · , znt ). (5)

3. LINEAR ADVERSARIAL REGRET BOUNDS OF
BYZANTINE-ROBUST DISTRIBUTED ONLINE

GRADIENT DESCENT

Robust aggregation rules have been proven effective in distributed
stochastic optimization, given that the fraction of Byzantine partici-
pants α = b

n
is less than 1

2
[14, 16, 15, 17, 18, 19, 20]. Thus, one may

wonder if the Byzantine-robust distributed online gradient descent
updates (3) and (5) can achieve sublinear adversarial regret.

Our answer is negative. Even with a wide class of robust bounded
aggregation rules, the tight adversarial regret bounds are linear.

Definition 1. An aggregation rule AGG is robust bounded aggrega-
tion, if the difference between its output and the mean of the honest
messages is bounded by

‖wt+1 − z̄t‖2 =‖AGG(z1t , z
2
t , · · · , znt )− z̄t‖2 ≤ C2

αζ
2,

where z̄t := 1
h

∑
j∈H zjt is the mean of the honest messages, ζ2 is the

largest deviation of the honest messages such that ‖z̄t − zjt ‖2 ≤ ζ2
for all j ∈H, and Cα is an aggregation-specific constant influenced
by the fraction of Byzantine participants α = b

n
.

We show that several state-of-the-art robust aggregation rules,
including coordinate-wise median [14], trimmed mean [14, 15], geo-
metric median [16], Krum [17], centered clipping [18], Phocas [19],
and FABA [20], are all robust bounded aggregations. Their analysis
and the corresponding constants Cα are left to an extended version
of this paper.

To analyze the adversarial regret bounds, we make the following
standard assumptions on the losses of any honest participant j ∈H.

Assumption 1 (L-smoothness). f jt is differentiable and has Lipschitz
continuous gradients. For any x, y ∈ Rd, there exists a constant
L > 0 such that

||∇f jt (x)−∇f jt (y)|| ≤ L||x− y||. (6)

Assumption 2 (µ-strong convexity). f jt is strongly convex. For any
x, y ∈ Rd, there exists a constant µ > 0 such that

〈∇f jt (x), x− y〉 ≥ f jt (x)− f jt (y) +
µ

2
‖x− y‖2. (7)

Assumption 3 (Bounded deviation). Define∇f̄t(wt) := 1
h

∑
j∈H

∇f jt (wt). The deviation between each honest gradient and the mean
of the honest gradients is bounded by

||∇f jt (wt)−∇f̄t(wt)||2 ≤ σ2. (8)

Assumption 4 (Bounded gradient at the overall best solution). Define
w∗ = arg minw∈Rd

∑T
t=1 ft(w) as the overall best solution. The

mean of the honest gradients at this point is upper bounded by

‖ 1

h

∑
j∈H

∇f jt (w∗)‖2 ≤ ξ2. (9)

These assumptions are common in online learning. Some works
make stronger assumptions [1,2,3], for example, bounded variable or
bounded gradient that yields Assumptions 3 and 4.

Theorem 1. Suppose that the fraction of Byzantine participants
α = b

n
< 1

2
. Under Assumptions 1, 2, 3, and 4, the Byzantine-robust

distributed online gradient descent updates (3) and (5) with robust
bounded aggregation and constant step size ηt = η ∈ (0, 1

8L
] have a

linear adversarial regret bound

RT ≤
1

η
‖w1 − w∗‖2 + 4η

(
1 +

8L2η

µ

)
ξ2T

+ 2

(
η +

1

µ

)
C2
ασ

2T. (10)

In particular, if ηt = η = c√
T

where c is a sufficiently small positive
constant, then the adversarial regret bound becomes

RT ≤
32L2c2

µ
ξ2 +

(
‖w1 − w∗‖2

c
+ 2cC2

ασ
2 + 4cξ2

)√
T

+
2

µ
C2
ασ

2T. (11)

We construct the following counter-example to demonstrate that
the derived O(σ2T ) linear adversarial regret bound is tight.

Example 1. Consider a distributed online learning system with 3
participants, among which participant 3 is Byzantine. Thus, N =
{1, 2, 3}, H = {1, 2} and B = {3}. Suppose that at any step t, the
losses of participants 1 and 2 are respectively given by

f1
t (w) =

1

2
(w − σ)2, f2

t (w) =
1

2
(w + σ)2.

It is easy to check that these losses satisfy Assumptions 1, 2, 3, and 4.
To be specific, the overall best solution w∗ = 0, L = 1, µ = 1, and
ξ2 = 0.

Take geometric median as an exemplary aggregation rule. Sup-
pose that the algorithm is initialized byw1 = σ. At step 1, participant
1 sends z11 = w1

1 = w1 − η(w1 − σ) = σ, while participant 2 sends
z21 = w2

1 = w1 − η(w1 + σ) = σ − 2ησ. In this circumstance,
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participant 3, who is Byzantine, can send z31 = σ so that the aggre-
gation result is w2 = σ. As such, for any step t, ft(wt) = σ2 and
ft(w

∗) = 1
2
σ2, and the adversarial regret is 1

2
σ2T .

For other robust bounded aggregation rules, we can observe
that the mean of the honest messages z̄t is (1− η)σ and the largest
deviation ζ2 = η2σ2. According to Definition 1, participant 3 can
always manipulate its message so that the aggregation result is in the
order of σ, which eventually yields linear adversarial regret. If the
aggregation rule is majority-voting-based, such as coordinate-wise
median and trimmed mean, sending z3t = σ is effective. For centered
clipping, participant 3 can send z3t = σ + 2ησ instead.

Note that one can use a diminishing step size ηt in (3). We prove
that it also yields linear adversarial regret, and leave the analysis to
the extended version of this paper. In fact, Example 1 still holds true
for a diminishing step size.

The linear adversarial regret bound seems frustrating, but is the
necessary price for handling arbitrarily malicious Byzantine attacks
from the adversarial participants. With the help of robust aggregation
rules, we are able to control the constant of linear adversarial regret
to a reasonable value 2

µ
C2
ασ

2, which is determined by the property
of losses, the robust aggregation rule and the fraction of Byzantine
participants, and the gradient deviation among honest participants.

4. SUBLINEAR STOCHASTIC REGRET BOUNDS OF
BYZANTINE-ROBUST DISTRIBUTED ONLINE

MOMENTUM GRADIENT DESCENT

According to Theorem 1, the linear adversarial regret is propor-
tional to σ2, the deviation between each honest gradient and the mean
of the honest gradients. This makes sense as the disagreement among
the honest participants is critical, especially in an adversarial envi-
ronment. This observation motivates us to investigate whether it is
possible to attain sublinear regret when the disagreement among the
honest participants is well-controlled.

To this end, suppose that the environment provides all the honest
participants with independent losses from the same distribution D at
all steps. Define the expected loss F (w) := EDf

j
t (w) for all j ∈H

and all t. In this setting, stochastic regret [11] is defined as

ST := E
T∑
t=1

F (wt)− T · min
w∈Rd

F (w), (12)

where the expectation is taken over the stochastic process. Note
that the works of [22] and [23], which investigate Byzantine-robust
distributed bandit, also make such an i.i.d. assumption.

However, naively applying robust aggregation rules (3) and (5)
cannot guarantee sublinear stochastic gradient, since the random
perturbations of the honest losses still accumulate over time and
the disagreement among the honest participants does not dimin-
ish. Motivated by the successful applications of variance reduc-
tion techniques in Byzantine-robust distributed stochastic optimiza-
tion [25, 26, 27, 18, 28], we let each honest participant perform mo-
mentum gradient descent, instead of gradient descent, to gradually
eliminate the disagreement during the learning process.

In Byzantine-robust distributed online gradient descent with mo-
mentum, each honest participant j maintains a momentum vector

mj
t = νt∇f jt (wt) + (1− νt)mj

t−1, (13)

where νt > 0 is the momentum parameter. Then, it makes its local
decision following

wjt+1 = wt − ηtmj
t , (14)

instead of (3) and sends to the server. The server still aggregates the
messages and makes the decision as (5).

Corresponding to Assumptions 1, 2 and 3, the analysis needs the
following assumptions.
Assumption 5 (L-smoothness). F is differentiable and has Lipschitz
continuous gradients. For any x, y ∈ Rd, there exists a constant
L > 0 such that

||∇F (x)−∇F (y)|| ≤ L||x− y||. (15)

Assumption 6 (µ-strong convexity). F is strongly convex. For any
x, y ∈ Rd, there exists a constant µ > 0 such that

〈∇F (x), x− y〉 ≥ F (x)− F (y) +
µ

2
‖x− y‖2. (16)

Assumption 7 (Bounded variance). The variance of each honest
gradient is bounded by

ED||∇f jt (wt)−∇F (wt)||2 ≤ σ2. (17)

In the i.i.d. setting, the overall best solution w∗ = arg minw∈Rd

F (w) makes ∇F (w∗) = 0, such that we no longer need to bound
the gradient at the overall best solution as in Assumption 4.

Theorem 2. Suppose that the fraction of Byzantine participants
α = b

n
< 1

2
and that each honest participant j draws its loss f jt

at step t from distribution D with expectation F := EDf
j
t . Under

Assumptions 5, 6 and 7, the Byzantine-robust distributed online mo-
mentum gradient descent updates (14) and (5) with robust bounded
aggregation, proper constant step size ηt = η = O( 1√

T
) and proper

constant momentum parameter νt = ν = O( 1√
T

) have a sublinear
stochastic regret bound

ST = O

(
σ2

h

(
1 + (h+ 1)C2

α

)L4

µ4

√
T

)
. (18)

In the sublinear stochastic regret bound (18), the constant σ
2

h
is

inversely proportional to h, the number of honest participants, and
highlights the benefit of collaboration. The constant 1+(h+1)C2

α is
determined by Cα that characterizes the defence ability of the robust
bounded aggregation rule. Smaller Cα yields smaller stochastic
regret. Besides, some robust bounded aggregation rules, including
trimmed mean, centered clipping and FABA, have Cα = 0 when
α = 0, namely, no Byzantine participants present. In this case, the
derived stochastic regret bound degenerates to O(σ

2

h

√
T ).

The i.i.d. assumption is essential to the sublinear bound. Similar
to the construction in Example 1, we can also show that Byzantine-
robust online momentum gradient descent has a tight linear adversar-
ial regret bound. But on the other hand, the momentum technique
is important as we can show that Byzantine-robust online gradient
descent without momentum has a linear stochastic regret bound. We
omit the analysis due to the page limit.

5. NUMERICAL EXPERIMENTS

In this section, we demonstrate performance of the Byzantine-
robust distributed online gradient descent and Byzantine-robust dis-
tributed online momentum gradient descent algorithms with experi-
ments. We consider the softmax regression problem on the MNIST
dataset, which contains 60,000 train samples and 10000 test samples.
The batch size is set as 32 during training. We launch one server
and 30 participants, and consider two data distributions. In the i.i.d.
setting, all training samples are evenly distributed to all participants.
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Fig. 1. Performance of Byzantine-robust distributed online gradient
descent on i.i.d. data.

Fig. 2. Performance of Byzantine-robust distributed online momen-
tum gradient descent on i.i.d. data.

In the non-i.i.d. setting, each class of training samples are evenly
distributed to 3 participants. Under Byzantine attacks, 5 randomly
chosen participants are adversarial. In the experiments the following
two Byzantine attacks are considered:
Sign flipping attack. Each Byzantine participant sends a negative
multiple of the honest message, and the multiple is −1.
Gaussian attack. Each Byzantine participant sends a random mes-
sage, where each element obeys the Gaussian distribution N(0, 200).

We compare seven robust bounded aggregation rules with mean,
including coordinate-wise median, trimmed mean, geometric median,
Krum, centered clipping, Phocas and FABA.

The step size η and the momentum constant ν are set to 0.01.
Other hyperparameters and the code are available online1. The per-
formance metrics are classification accuracy and adversarial regret,
because computing the stochastic regret is computationally demand-
ing on the large training set. Note that on the i.i.d. data, adversarial
regret is an approximation of the stochastic regret, but there is still a
substantial gap between the two.
Experiments on i.i.d. data. As shown in Fig. 1, on the i.i.d. data,
Byzantine-robust distributed online gradient descent equipped with
robust bounded aggregation rules all perform well when no attack
presents. Under both attacks, the algorithm with mean aggregation
fails, and the others demonstrate satisfactory robustness. The sign
flipping attack turns to be slightly stronger than the Gaussian attack;
under the former the algorithm with centered clipping performs worse,
but is still much better than the one with mean aggregation.

Also on the i.i.d. data, the Byzantine-robust distributed online

1https://github.com/wanger521/OGD

Fig. 3. Performance of Byzantine-robust distributed online gradient
descent on non-i.i.d. data.

Fig. 4. Performance of Byzantine-robust distributed online momen-
tum gradient descent on non-i.i.d. data.

momentum gradient descent algorithms improve over the ones with-
out momentum in terms of classification accuracy and adversarial
regret, as shown in Fig. 2. However, no sublinear adversarial regret
bound is guaranteed, which confirms our theoretical prediction.
Experiments on non-i.i.d. data. On the non-i.i.d. data, the envi-
ronment is more adversarial than on the i.i.d. data. In this case, the
Byzantine-robust distributed online gradient descent algorithm, no
matter with or without momentum, does not perform well, as in Figs.
3 and 4. This observation matches our conclusion on the hardness of
handling adversarial participants in the adversarial environment.

6. CONCLUSIONS

This paper is the first to investigate the Byzantine-robustness
of distributed online learning. We show that Byzantine-robust dis-
tributed online gradient descent has linear adversarial regret, and the
constant of the linear term is determined by the robust aggregation
rule. On the other hand, we also establish the sublinear stochas-
tic regret bound for Byzantine-robust distributed online momentum
gradient descent under the i.i.d. assumption.

Our future focus is to improve the Byzantine-robustness of dis-
tributed online learning algorithms in the non-i.i.d. setting, which is
of practical importance in processing streaming data.
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