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Abstract—In this paper, we study a communication-efficient
distributed learning scheme through a holistic integration of
federated learning (FL) and particle swarm optimization, called
DSL, which is suitable for the implementation of intelligent IoT
applications. Since only one selected optimum from all local
devices need to report its local model updates to the param-
eter server, the communication cost of DSL is much reduced
compared to its counterpart of standard FL. However, the DSL
is vulnerable to adversarial attackers. To achieve Byzantine-
resilient DSL, we propose to introduce a shared dataset for
scoring local updates to screen attackers. We further provide the
convergence analysis to theoretically demonstrate that CB-DSL is
superior than the standard FL. Experiment results show that the
learning performance of our proposed CB-DSL outperforms the
existing benchmarks with only a small amount of globally shared
data. It enjoys higher robustness against Byzantine attacks than
the vanilla DSL, and has better communication efficiency than
the standard FL'.

Index Terms—Federated learning, particle swarm optimiza-
tion, communication efficiency, robustness, convergence analysis

I. INTRODUCTION

With the vigorous development of the Internet of Things
(IoT), edge devices have emerged as the main force of com-
puting resources to fuel the development of wireless networks
beyond 5G (B5G). A tremendous amount of valuable data
collected and stored on these edge devices and the advanced
machine learning technologies jointly drive the latest trend
in artificial intelligence (Al) at the BSG network edge (edge
Al) [1]. Enabling edge Al requires the distributed data can
be rapidly and securely access. From either communication,
security and privacy, regulatory or economic point of view,
it is impractical for a central server to train a satisfactory
learning model by collecting raw data from edge devices.
Fortunately, federated learning (FL) provides a way for various
IoT applications over edge devices in BSG IoT networks,
which allows edge learning from distributed local data without
compromising their privacy [2]-[5]. In FL, edge devices (local
workers) periodically upload their locally trained models to
an edge server (parameter server), where the local models
are aggregated to update a global model. In this way, FL
enables communication-efficient and privacy-preserving dis-
tributed learning without raw data exchange.

However, there still exist some remaining challenges in
FL especially in its applications for IoT edge networks.
For example, when the number of the model parameters is

'Our code can be found at:https:/github.com/fuanxiyin/CB-DSL.git.
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huge, transmission of their updates between edge devices and
the parameter server (PS) appears as a major bottleneck to
communication-constrained FL implemented over IoT-based
edge networks [4], [6]. Besides, gradient descent algorithms
are easy to fall into local optimums in solving non-convex
problems [7], given the non-convex nature of the cost function-
s. Last but not the least, FL is vulnerable to Byzantine attacks,
meaning that some local workers may behave completely
arbitrarily to disrupt cooperative tasks in FL [8]-[10].

To jointly overcome all, we leverage the biological in-
telligence (BI) and propose a communication-efficient and
Byzantine-resilient FL. scheme (CB-DSL) by using particle
swarm optimization. For the communication challenge, our
proposed CB-DSL only requires the worker with the optimal
local model to upload its local updates to the PS, which thus
reduce communication costs dramatically. For the non-convex
problems, CB-DSL takes the advantages of the exploration-
and-exploitation mechanism, which enables FL to jump out
of the local optimal trap [11], [12]. Since only one worker
is selected to upload the optimal local model to the PS, the
selected local worker may be a Byzantine attacker to upload
an adversarial model. For Byzantine attack issues, a globally
shared dataset is used as a globally scoring dataset to test the
uploaded optimal local model, and the PS can screen and kick
out potential Byzantine attackers if the scoring accuracy at
the PS does not match what they reported. Our proposed CB-
DSL establishes a new paradigm of efficient and robust edge
intelligence through a holistic integration of Al and BI. Our
main contributions are summarized as follows.

e We propose a CB-DSL approach to jointly handle
the high communication cost, non-convex problem and
Byzantine attacks in existing FL. In CB-DSL, local mod-
els are evaluated by a globally scoring dataset to select
the optimal one. Then only one optimal local model needs
to be uploaded to the PS rather than all the local models.
Further, the selected optimal local model is verified by
the PS to screen potential Byzantine attackers.

o From theoretical point of view, we derive the closed-
form expression of the expected convergence rate for our
CB-DSL. Our theoretical analysis reflects the impact of
different system parameters on the performance of FL
methods, and also indicates that our CB-DSL outperforms
the standard FL. method such as FedAvg.

o We evaluate the proposed CB-DSL in solving image
classification problems by using the MNIST dataset.
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Simulation results show that our proposed CB-DSL out-
performs the benchmark methods in terms of higher
testing accuracy and robustness.

II. RELATED WORK

Various methods has been proposed in addressing the
communication challenges of FL, such as sparsification [13],
quantization [14] and infrequent uploading of local updates
[15]-[17]. Other than these strategies designed for digital
transmission, another promising solution from an aspect of
transmissions is analog aggregation based FL, called FL over
the air, which exploits the waveform superposition property
of the wireless medium to support simultaneous transmission
by all the devices [2], [4], [6], [8], [10], [18]. However,
all the aforementioned methods require all participating local
workers to upload their local updates to the PS, which results
in tremendous communication costs in edge networks with
massive smart [oT devices. In contrast, we aim to upload
only one optimal local model to significantly save the overall
communication cost of the massive-IoT edge networks.

Motivated by taking advantage of the swarm biological
intelligence of animal flocks, PSO has been developed to solve
optimization problems without the assumptions of convexity
and differentiability [11], [12]. Recently, a few research efforts
have been found in applying PSO algorithms to improve ma-
chine learning performance. For example, the authors propose
to apply PSO to find the optimal hyperparameters for improv-
ing the learning performance of FL in [19]. The mentioned
work does not consider to combine the PSO and FL from the
algorithm perspective to leverage Al-enabled stochastic gradi-
ent descent and Bl-enabled particle swarm optimization. To fill
such technical gaps, our work proposes a new communication-
efficient and Byzantine-resilient FL solution (CB-DSL) with
rigorous convergence analysis to demonstrate the advantage of
the holistic integration of Al and BI.

III. CB-DSL

In this section, we will start with the models and formu-
lations of standard FL and PSO techniques. Then, we will
introduce our communication-efficient and Byzantine-resilient
CB-DSL algorithm design.

A. Federated Learning

Consider a distributed computation model with one pa-
rameter server (PS) and U local workers. Each local worker
stores /{ data samples in its dataset ©;. Denote (X; k. Yi k)
as the k-th data of the i-th local worker. Let f(W;X; ., Yik)
represent the loss function associated with each data point
(Xi ks Yik), where w = [wh ..., wP] of size D consists
of the model parameters. The corresponding population loss
function is expressed as F(w) := Ep[f(W;X; ., Yi )], Where
D = |J,;D;. The PS and local workers collaboratively learn
the model parameter vector w by minimizing

Pl: w* =argmin F(w). (1

The minimization of F'(w) is typically carried out through
the stochastic gradient descent (SGD) algorithm. At the PS,
the model parameter w; at the ¢ iteration is updated as

Y g
(Model updating) w; =w;_1 — a%l’t, 2)
where « is the learning rate and g =
Vf(we X kY k)
VF(Wi13Xi g, Yik) = EDJZ% il ] is

the local gradient computed at the i-th loca{%vzl‘orker using its
randomly selected mini-batch B; C ©; with the mini-batch
size |8;|. The communication overhead for the PS to acquire
the sum of local gradients in (2) from local workers in each
iteration would be huge especially when D is large.

B. PSO

PSO is a probabilistic approach to solve optimization prob-
lem [11], [12], e.g., the problem P1. In PSO, the swarm
consists of a set of particles, ¢ = 1, 2..., U. At the ¢-th iteration,
a particle ¢ holds a particle best solution to the problem
represented by a position w?, in a given search space, and has
a updating direction represehted by a speed v;; for the next
step. To find the global optimal value, particles communicate
with each other to share their own w!, variable step-by-step.
In this way, each particle is able to set a common w} (global
best) variable from the shared wﬁ , values that leads to the
optimal value of the cost function at the current iteration:
w{ = argminj—; 5 F(w7},). The parameters w and w} ,
are used for particles to move on to the next step as

Vi1 = Vi + (Wi, — Wig) +ca(wWi —wit),  (3)
Wi+l = Wit + Vi, €]

where ¢ is a positive constant representing the inertia weight,
c1, and co are two random acceleration factors for the particle
optimum and the global optimum, which follow the continuous
uniform distributions ¢(0, é., ) and ¢(0, ), respectively.

C. CB-DSL

In CB-DSL, each particle, e.g., ¢, initiates its starting
position wf o and speed v; ¢ for the next step. Given w?
and its dataset D;, each particle calculates its particle cost
Fy(w] ;D) as its particle optimum F};,. At the ¢-th com-
munication round, each particle sends its particle optimum
FZ-’,7 , to the PS, and the PS compares all the received Ff: S
to select the global optimum by F} = min{F},}". Then the
PS broadcasts the index i} of the selected particle and the
selected particle broadcasts its position wf’ , as the current
global optimal position w{. Given the received w{ and its
own W?, ;» each particle calculates its local gradient VF;(w; ;)
and updates its position and speed as

Vitt1 = CoVie + (Wi, — Wig) + ca(W] — wi )
+aVFi(w;t), Q)
Wi+l = Wig — Vil (6)
Then each particle updates its particle optimum Fi’j +11 DY

Ef ) = min{F},, Fi(w}, ,;9;)}, which is sent to the PS
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for the next iteration. Meanwhile, each particle also updates
its particle optimal position as WftH = w1 if FF, >
Fi(w Lt+1’©i); or w? 441 = w? i+ otherwise. The 1terat10ns
are implemented between the PS and all the particles until
convergence.

Since only the model parameter from the local worker with
the global optimum score is requested to be reported to the
PS, the communication cost at each communication round is
reduced significantly in CB-DSL, compared with that required
by standard FL. Besides, introducing a speed term into SGD,
both the updates of the speed and the gradient in (5) contribute
to seek an optimum for individual local workers, which leads
to an improvement of SGD. However, the process of collecting
Ff’ ;s is inherently vulnerable to Byzantine attacks, i.e., a local
worker may perform Byzantine attack to send a fake Fi’j .
to fool the PS to select its model parameter as the global
optimum, which would destroy FL. To solve this problem, we
propose to take advantage of a globally shared dataset D€, to
screen Byzantine attackers.

Specifically, we introduce a small dataset D€, of data which
is globally shared between all the local workers and the PS
before starting FL?. Each particle calculates the particle cost
F?, with D, ie., Fi(w!,;; D). After the PS selects the
partlcle, the global optimal model parameter broadcasted by
the selected particle can be verified at the PS and all the local
workers. If find a Byzantine attack, the attacker would be
kicked out to promise a Byzantine-resilient FL.

The detailed steps and operations of our CB-DSL is sum-
marized in Algorithm 1.

IV. CONVERGENCE ANALYSIS

In this section, we aim to give the theoretical analysis on
the convergence guarantees of CB-DSL. To this end, we firstly
make some definitions and assumptions for convergence anal-
ysis. Upon these preliminaries, the convergence behaviors of
CB-DSL are evaluated and an upper bound on the convergence
rate is derived.

A. Assumption and Definition

Assumption 1. (Lipschitz continuity, smoothness): For F;(w)
at node ¢, the gradient VF;(w) of the loss function F;(w) is
uniformly Lipschitz continuous with respect to w, that is,

(IVE;(Wi 1) — VE (Wi )| < LI|Wigp1 — Wi, Vit (7)

where L > 0 is the Lipschitz constant [5].

The following definitions are made to facilitate analysis.
Firstly, we rewrite w}, and w{ as

ijt Wit—1 — Vp,’ta (8)
w{ =wi; 1 — Vi, ©
where v{, and v{ denote the optimal local speed and the

optimal global speed at the i-th node in the (#—1)-th iteration.

2For the implementation point of view, the small amount of globally shared
scoring dataset can be either pre-stored in the IoT devices or broadcasted from
the PS to all the local workers.

Algorithm 1 CB-DSL

Initialization:
w? o, =w; o, FF,, for any i and t;

1: for each round ¢t = 1 : T do

2: At the workers:

3:  Iteratively update the local model parameter w;; and
speed v;; via (5) and (6);

4 Calculate F;(w; ; D%) with the globally shared dataset
@fc and the model parameter w; ¢;

5. Set the minimal particle cost Ff’ s =
min{F7,_;, Fi(w} ;;95)};

6: if Fp ==F’_, then

7: Set wl, o =wl,

8. else ' 7

9: Set w?, = w; ¢;

10:  endif

11:  Send the minimal particle cost F}, to the PS;

12: Upon receiving the index of the selected local worker
i7, the i7-th local worker sends w” to the PS;

13: At the PS:

14: Upon receiving all the F,’s, set th = min{F
select the corresponding worker b

15:  Broadcast if to local workers;

16:  Upon receiving wf’ from the i7-th worker, verify its
minimal particle cost F; by using D¢,

17:  If find a attacker, kick it out and repeat line 14 until a
legitimate worker is selected.

18: end for

P}y and

Then the speed v; ;41 of (5) can be rewritten as

Vitt1 = CoVig +er(=Vi, + Vi)
+co(—v{ +vii) + aVF(wiy)
=(co+c1+ CQ)Vi,t - ClVgt
—cav) +aVFE;(w;). (10)

We use 0,4, Gf ,» and 67 to denote the angles between
the vectors v; ; and VF;(w; ), vﬁt and VF;(w; ), v{ and
VF;(w; ), for any i and ¢, respectively. Then we have

Vi VEi(w; )T )
cos B, & : : , Vit (11)
vV E (wi )l
, vl VF, (wlt)
cosfl, & bt Vi, t, (12)
Y VNIV E (w1
VFi(Wit) .
cos @ & t—’, Vi, t, (13)
C NIV E (wi) |
where we assume
q<costy; <q, Vi,t (14)
¢’ <cost, <q°, Vit (15)
q? <cosb] <@, Vi,t. (16)
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Then we further assume

[vi,¢ | o
< WVirll o5 vy 17
SR w = (an
u? 1 <@, Vit (18)
O IVE(Mw ) T
w <V g vy (19)
- TIVEMwi ) T T

B. Convergence

With the assumptions and definitions presented in subsec-
tion IV.A, the convergence bound of CB-DSL is given by the
following Theorem 1.

Theorem 1. For T rounds of communication, the expected
convergence rate at each worker is bounded by

T
[V Fi(wi)|I” F(wio) — F(w*) .
E J < d A% 20
LZ:‘; T < 5, , Vi, (20)
where & = 72C°+6§1+602 qu + o — %W’@p — ‘s‘%ﬂgqg —

6T
2L((c§ 4 bc,co + Oeyco + 5+ +

52
-2 (w9)? + a?).

6

2y | OeyBegn—2 | O
32 4 12 2)u2+71(up)2+

Proof: Please refer to Appendix A. |
The result of Theorem 1 implies the following order-wise
convergence rate

T s )12
LT T

E 2

The inequality of (21) indicates that the convergence is guar-
anteed as the number of communication rounds goes large.

That is, as T — oo, we have E [Zthl w} — 0.

Remark 1. When ¢, ¢1, and ¢ are all set to 0, @ = a—2La>
and CB-DSL degenerates into FedAvg. Thus, when ® 5 —(a—

2La2) = 2otlatle gy Sagrgr _ Sayegy — 2L((2 +
8¢y | 02 | Beybeyno 02 pva 0y i gvo
Oe,CoF0c,cot+ 5=+ 52 + =2 Ut + - (@) + 2 (w9)?) >

0, CB-DSL converges faster than FedAvg.

Since the datasets over different local workers are non-i.i.d.,
the learning performance varies with the degree of the dataset
heterogeneity. Specifically, the greater the heterogeneity of
datasets, the parameters over different local workers will
become more diverse, e.g., larger range of the values of cos 6;
among workers. That is, ¢ becomes small and g becomes large.
Intuitively, ®; becomes smaller as the heterogeneity of non-
ii.d. datasets increases, which will lead to a worse learning
performance veiled by (20) and (21). We theoretically analyze
the impact of data heterogeneity on the learning performance
of CB-DSL in our journal version [20].

V. SIMULATION RESULT

In this section, we demonstrate that a globally shared dataset
is beneficial to the learning performance of our CB-DSL.

TABLE I: Model architecture of the experiment.

Layer Details
| Conv2D(1, 6, 5)
ReLU, MaxPool2D(2, 2)
) Conv2D(6, 16, 5)
ReLU, MaxPool2D(2, 2)
3 FC(16 * 4 * 4, 120)
RelLU
4 FC(120, 84)
RelLU
5 FC(84,10)

A. System and Dataset Setting

To evaluate the performance of our CB-DSL compared to
the benchmark methods, we perform an empirical simulations
by using a handwritten-digit classification task based on the
well-known MNIST dataset that consists of 10 classes ranging
from digit “0” to “9”. In our training procedure, we set a total
number of the local workers to be 50, as the IoT devices in
an edge network. For the i.i.d. setting, 300 distinct training
samples are randomly selected and distributed to each of the
local workers as their local datasets, i.e., K = 300. The
shared scoring dataset consists of 2000 data samples randomly
selected from the population training dataset. In addition, we
set the relevant parameters as ¢p = 1, 6., = 1, and 6., = 1.

B. Neural Network Setting

As shown in Table I, we use a five-layer CNN as the model
architecture. During training process, we use SGD optimizer
with learning rate o = 0.005 and cross-entropy loss. The batch
size is set to 10.

C. Benchmark Setting

We compare our CB-DSL with FedAvg under different
settings, including: (1) FedAvg without a shared dataset: it is
the standard FedAvg. (2) CB-DSL without a shared dataset:
the local workers use their own scoring dataset to culculate
F, in CB-DSL. (3) CB-DSL with a shared dataset for local
scoring: the local workers use the shared scoring dataset CD?C
to culculate F; in CB-DSL.

D. Result

Fig. 1 shows the simulation results under the three differ-
ent settings, respectively. As shown in Fig. 1, CB-DSL is
superior than FedAvg under the same settings without any
globally shared datasets. A shared scoring dataset can improve
the learning performance for CB-DSL. This is because a
shared scoring dataset can help the PS to select the global
optimum more accurately than that local workers using their
own scoring dataset which however makes the loss function
F(-) only partially observable at local workers. Besides, the
improvement on learning accuracy also indicates that by using
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Fig. 1: The performance comparison varies with communication rounds.
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Fig. 2: The performance comparison with a Byzantine attacker under the
ii.d. setting.

the exploration-exploitation mechanism of PSO, our CB-DSL
solutions have an increased chance to jump out of local
optimum traps via the swarm intelligence.

In Fig. 2, we provide the performance comparison in the
presence of the Byzantine attack. It is obvious that even
only one Byzantine attacker can fail FedAvg and CB-DSL
without D&, On the other hand, the CB-DSL with D¢, can
effectively defend the Byzantine attack, because the globally
shared dataset for scoring ®%, can help identify and screen
out the Byzantine attacker as explained in Algorithm 1.

In addition, since only one worker is called to send its
model parameters to the PS in CB-DSL while all workers
need to send their model parameters to the PS in FedAvg,
the communication cost in CB-DSL is only % of that in
FedAvg, given the fact that the communication cost for the
transmission of loss values is trivial and thus can be ignored.

Our CB-DSL with D¢, uses fewer communication rounds than
FedAvg to achieve the same learning accuracy. As a result, our
CB-DSL is communication-efficient with less communication
rounds and less communication overhead per round in practical
applications.

VI. CONCLUSION

This paper studies the holistic integration of FL and P-
SO, named as DSL, which can save communication cost
dramatically. However, the vanilla DSL becomes vulnerable
to Byzantine attacks. Thus, we propose to use a shared
dataset to achieve communication-efficient and Byzantine-
resilient DSL (CB-DSL). We provide theoretical analysis of
the convergence behavior of CB-DSL, which indicates that our
proposed method can achieve better learning performance than
FedAvg. Simulation results verify that our proposed solution
can improve learning performance compared with the standard
FedAvg. Meanwhile, the communication cost of CB-DSL is
much reduced communication cost than standard FedAvg.
Besides, CB-DSL can effectively defend Byzantine attacks.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Because Fj(-) is L-smooth from Assumption 1,
according to [21, Lemma 3.4], we have

Fi(wi,t+1) - Wi,t)vFi(Wi,t)T

+ §||Wi,t+1 - Wi,t||2 = V11 VF (Wi,

—Fi(wiy) < (Wigs1
L

)T+ §|\Vz',t+1|\2

—(co+c1+ ) Vit VE(wis)" + Clvf,tVFi(wi’t)T

L
+ cov{VEF(wig)" — o VE(wig)|* + §|\Vi,t+1|\2- (22)

According to the assumptions of g, ¢, ¢%, g, ¢*, ¢7, u, uP,
w9, u, uP, u9 in (14)-(19), for any ¢ and ¢, we have

QQHVFi(Wi,t)‘P <vitVEi(wiq)"

= Vil VFi(wiy)| cos b < ql|VE;(wi)|?,  (23)
PP |VE(wig)|* < v VE(wi )"
= IV} NIV Fi(wi) || cos 67, <aPgq”||[VFi(wi)l?, (24)
@O |V (wio)||” < vV Fi(wis)"
= VIV Fi(wis)| cos 0] <ug?||[VFi(wis)|?.  (25)
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Substituting (23)-(25) to (22), we have
Fi(wi 1) — Fi(wir) < —(co+e1+ CZ)QMHVFi(Wi,t)HQ
+ @@ |V (wi)||” + cu?q? | Vi (w0l

+ 2 lvienll? = alVE )P = Fivienl? + (@mg
+ g — (co + 1+ c2)qu — Q)||[VE;(wi )| (26)

Applying the triangle inequality of norms ||X + Y|
[IX]|+ Y]], the submultiplicative property of norms || XY ||
[IX]|[[Y ]|, and the Jensen’s inequality, we have

ININA

[vier1ll? = (co + e1 + c2)vip — ervh,

— covi + aVF(w4)|?

< (ll(eo + 1+ ) Vil + [ler vy, |l

+ lleavi|l + [aV E(wi o))

<A((co+ 1+ )P |Virl? + G lIVE P + SV

+ a?|VEi(wit)|?). 27

According to the assumptions of u, w”, w? in (17)-(19), for
any ¢ and ¢, we have

Vil < TNTFiwio)l (28)
[Vl <@ (IVE(wig)ll, (29)
[Vl <@ || VFi(wie)]- (30)

Substituting (28)-(30) to (27), we have

Vit ]® <4((cot + 1T + cou)? + ¢ (uP)?
+c3(@)’ +a®)|[VE(w,)|* 31
Substituting (31) to (26), we have

Fy(Wigt1) — Fi(wig) < @||VE;(w; )%, (32)

where ® = ¢ uPqP +cou?q9 — (co+c1+co)qu—a+2L((cou+
e+ cou)? + E@P)? + A@?)? + a?).

Now extend the expectation over randomness in the tra-
jectory, and perform a telescoping sum of (32) over the T’
iterations:

F(wio) — F(W") > F(w; o) — E[F(w;r)]

) )
T

t=1

=E (F(Wit—1) — F(wi))

T
>E Z(I)EHVEZ(WZ'J)HZ ) (33)
t=1
where (I)E _ ]E[—q)] _ _(5;1 Hpap_ég ﬂgag‘?mgﬂ"‘

5 éf 6§ Sey8e0\—2 6? 2
a—ZZ/((co—l—éClCo—}—(sCzco—i-Tl—i— 32+%)u —l—Tl(up) +
52
;2 (HQ)Q 32).

We can rearrange this inequality to yield the rate:

T
IVFi(wi)
]E 3y
2y

s F(wio) — F(W*)_

Top

(34)

[1]

[2

—

3

[l

[4

=

[51

[6

—

[7

—

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]
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