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Abstract—Federated learning (FL) methods face major chal-
lenges including communication bottleneck, data heterogeneity
and security concerns in edge IoT scenarios. In this paper,
inspired by the success of biological intelligence (BI) of gregarious
organisms, we propose a novel edge learning approach for swarm
IoT, called communication-efficient and Byzantine-robust dis-
tributed swarm learning (CB-DSL), through a holistic integration
of Al-enabled stochastic gradient descent and BI-enabled particle
swarm optimization. To deal with non-independent and identi-
cally distributed (non-i.i.d.) data issues and Byzantine attacks, a
very small amount of global data samples are introduced in CB-
DSL and shared among IoT workers, which not only alleviates the
local data heterogeneity effectively but also enables to fully utilize
the exploration-exploitation mechanism of swarm intelligence.
Further, we provide convergence analysis to theoretically demon-
strate that the proposed CB-DSL is superior to the standard FL
with better convergence behavior. In addition, to measure the
effectiveness of the introduction of the globally shared dataset, we
also evaluate the model divergence by deriving its upper bound.
Numerical results verify that the proposed CB-DSL outperforms
the existing benchmarks in terms of faster convergence speed,
higher convergent accuracy, lower communication cost, and
better robustness against non-i.i.d. data and Byzantine attacks'.

Index Terms—Distributed swarm learning, federated learning,
particle swarm optimization, non-i.i.d. data, convergence analysis,
model divergence analysis.

I. INTRODUCTION

Federated learning (FL) has recently attracted great attention
and resulted in fruitful attempts for learning-based applications
among multiple distributed workers such as personal mobile
phones, which allows distributed learning from local data
without raw data exchange [1]-[3]. Standard FL. methods are
originally designed for ideal learning settings and wireless
environments, which however face several challenges when
being adopted for distributed learning among massive edge
Internet of Things (IoT) devices that are usually equipped
with limited capability and resources [4], [5]. As the number
of model parameters goes very large in deep neural networks,
transmission of all the local model updates in FL between IoT
devices (working as local workers) and the parameter server
(PS) incurs high communication overhead. Further, stochastic
gradient descent (SGD) is widely applied for model training
in FL [6], where independent and identically distributed (i.i.d.)
data samples are assumed at local workers and transmission is
assumed error-free in order to ensure unbiased estimates and
good empirical performances [7], [8]. However, in edge IoT

'Our code can be found at:https:/github.com/fuanxiyin/CB-DSL.git.
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scenarios, local training data samples at different IoT work-
ers turn to be statistically heterogeneous worker-by-worker,
giving rise to the non-i.i.d. data issue that may considerably
degrades the learning performance of standard FL. methods,
e.g., Federated Averaging (FedAvg) [9]. In addition, gradient-
based algorithms are subject to local optimum traps in solving
non-convex problems [10], [11]. This issue is aggravated
in distributed settings, especially when local workers only
collect small-volume data. Last but not the least, standard FL
performs well in attack-free network settings, but is vulnerable
to Byzantine attacks that may exist in practical edge network-
s [12]-[15].

Although some of the aforementioned challenges have
been recently investigated in the literature of FL for edge
networks and IoT applications [16]-[20], they mainly focus
on the modification and customization of the standard FL
techniques, which however largely neglect some important
and unique characteristics of IoT devices in edge networks.
Such unique characteristics include the large population of
devices for many IoT applications, limited communication
bandwidth available in edge networks, and non-i.i.d. local data
with small data volume at individual IoT workers. By ignoring
these characteristics, existing efforts on edge learning fail to
consider these limitations in the learning algorithm design
for edge IoT systems, which results in learning performance
degradation of FL applied to practical IoT edge network-
s. On the other hand, biological organisms in nature have
demonstrated swarm intelligence with superior strength in
collectively processing information, making decisions, dealing
with uncertainties, and recovering from errors and failures,
even though they are individually weak. All these attributes of
biological intelligence (BI) are desired by IoT edge learning
systems. Notably, bio-inspired swarm optimization techniques
are good at collaboratively finding the globally optimal solu-
tions to complex optimization problems thanks to their built-
in exploration-exploitation mechanism in swarms, but their
convergence speed is typically slow [21].

Motivated to bridge these gaps, this paper leverages both Al
and BI to develop a communication-efficient and Byzantine-
robust distributed swarm learning (CB-DSL) approach, by
reformulating the bio-inspired particle swarm optimization
(PSO) problem as a distributed learning problem with non-
i.i.d. local data and in the presence of malicious attacks. For
non-convex problems, by taking advantage of the exploration-
exploitation mechanism of PSO [22], our CB-DSL solutions
have an increased chance to jump out of local optimum traps
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via swarm intelligence. For the communication bottleneck
challenge, our CB-DSL only requires the best worker having
the minimum loss function value to upload its local model to
the PS, which thus dramatically reduces the communication
overhead and energy consumption in edge networks. To alle-
viate the non-i.i.d. data issue, we propose to introduce a small-
volume global dataset that is shared among all local workers
for dual purposes. A part of this globally shared dataset is
used for training, whose effectiveness in relieving the non-i.i.d.
problem is evaluated through the model divergence analysis.
The other part of the global dataset is used to calculate the fair-
value loss for scoring the local models. It helps to identify the
per-worker best model for best worker selection, and enables
to verify the uploaded local model by which the PS can screen
Byzantine attackers. Our main contributions are summarized
as follows.

e We propose a new CB-DSL framework by developing a
holistic integration of Al-driven SGD and BI-driven PSO,
to effectively handle the high communication costs, non-
i.i.d. issues, non-convex problems and Byzantine attacks
without sacrifice convergence speed, which cannot be
achieved by SGD or PSO alone. CB-DSL offers a new
paradigm of efficient and robust edge learning tailored
for massive smart IoT devices in edge networks.

o From the theoretical point of view, we are the first one
to systematically analyze the combination of FL and
PSO, by deriving a closed-form expression to quantify
the expected convergence rate achieved by our CB-DSL.
Our analytical results not only reflect the impact of
different settings and parameters of our CB-DSL on the
performance of edge learning, but also indicate that our
CB-DSL outperforms the standard FL. methods such as
FedAvg in terms of better convergence rate.

o We further investigate the non-i.i.d. data issue by provid-
ing a model divergence analysis to evaluate how a glob-
ally shared dataset improves the learning performance
of our CB-DSL. Our theoretical result reveals that the
model divergence is subject to an upper bound, which is
decided by the earth mover’s distance (EMD) between
the data distribution at local workers and the population
distribution for the whole datasets.

o Through comprehensive experiments, we test the pro-
posed CB-DSL approach in solving image classification
problems by using the MNIST dataset. Simulation results
show that our CB-DSL outperforms the benchmark meth-
ods in terms of achieving the highest testing accuracy
with the fastest convergence under non-i.i.d. cases and
even in the presence of Byzantine attacks.

II. DISTRIBUTED SWARM LEARNING

Consider a distributed learning model with one PS and U
IoT workers, where U is very large but each worker has data
of small volume in edge IoT scenarios. Assume that each
worker has K; data samples in its local dataset ©;, with
|9,;| = K;, and i = 1,...,U. Denote (X;,yix) as the k-
th data sample of the i-th local worker. Let f(w;X; k, Yi k)
represent the loss function associated with each data sample

(Xi ks Yik)» where w = [wl, ... wP] of size D consists of the

parameters of a common learning model. The corresponding
population loss function for the whole datasets © and that for
the local dataset ©; of the i-th worker are denoted as F'(w) :=
Eo[f(W;Xik, ¥ik)] and Fi(w) = Eg, [f(W;X;k, yix)], re-
spectively, where © = [ J, ®;. For distributed learning, local
workers collaboratively learn w by minimizing

P1: w; = argmin F;(w;), st.,, w;=1z, Vi (1)
Wi
where z is an auxiliary variable to enforce consensus through

collaboration among distributed local workers.

A. Federated Learning

For standard FL designed in ideal learning settings and
network environments, the minimization of F;(w) is typically
carried out by the stochastic gradient descent (SGD) algorithm
[6], where local workers iteratively update their local models
in FL as

U
Witi1 = Wir — 5 2y VE (Wi X5k, Yiik), ()

where « is the learning rate and VFj(wyiXjk, Yjk) =
Z% VF(WeX5 kY. k)
J

Eo.
SF [B;]

is the local gradient computed

at each local worker using its randomly selected mini-batch
B; C ©; with the mini-batch size |B;|.

Note that (2) is the mathematical illustration of the itera-
tive local model update, whereas the second term of global
gradient averaging therein is typically implemented at the PS
and then sent back to local workers. Hence, communications
take place in every iteration until convergence, during which
the communication overhead to acquire the sum of all U local
gradients in (2) would be huge especially when U and D
are large. Moreover, for complicated non-convex problems,
distributed gradient-based FL solutions may converge to unde-
sired local optima and there is unfortunately a lack of effective
mechanisms to escape these traps.

B. Particle Swarm Optimization

As a bio-inspired algorithm, PSO is a stochastic optimiza-
tion approach based on the movement of particles (workers)
and the collaboration of swarms to iteratively and coopera-
tively search for an optimal solution to general optimization
problems [22], [23]. The loss function in PSO is assumed to be
globally common to all particles, i.e., F;(-) = F(-),Vi in the
problem P1 in (1). This is however not the case in distributed
leaning where Fj(-) is data-dependent and different worker-

by-worker, which will be explained in the next subsection.
In PSO, a swarm consists of a large set of particles,
1 = 1,2...,U. At the current iteration, the position w;; of
each particle ¢ presents a possible solution to the problem,
and meanwhile the velocity v;, of each particle i denotes
the updating direction for the next step. To find the globally
optimal value of F'(-), particles collaborate with each other to
update their velocities and positions in an iterative manner

Vi1 = CoVit + (Wi, — Wit) + ca(W] — wi), 3)
Wi+l = Wit + Viett, “)

where the velocity is updated as a combination of three sub-
directions: inertia v;; of the previous updating direction,
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individual direction towards each particle’s own historical best
parameter wﬁ ,=argmin,—, ... F'(w; »), and social direction
towards the globally best parameter found by the entire swarm
wi=argmin;—; ...y F(w},). The inertia weight c; is a pos-
itive number, while ¢; and co are positive and random (say,
uniformly distributed as ¢;~U(0, d., ), and ca~U(0, ., )) for

stochastic optimization.

C. Communication-efficient and Byzantine-robust Distributed
Swarm Learning

A major challenge from optimization problems to learning
problems with distributed data is the lack of a common
F(-) for global assessment, which however becomes F;(-;D;)
dependent on local dataset ®; in distributed learning. Facing
this challenge, we first introduce a very small amount of
global dataset’: D¢ = DF U D to be shared by all
workers, and then propose a novel edge learning framework
called communication-efficient and Byzantine-robust distribut-
ed swarm learning (CB-DSL). The CB-DSL algorithm is
implemented in Algorithm 1, and schematically illustrated

through the following iterative model updating steps.

At the local workers ¢ = 1,--- U, the model parameters
are updated in a way of integrating Bl-enabled PSO with Al-
enabled SGD

Wil = Wit + CoVie + c1(W), — Wie) 4+ ca (W — wit)

BI
—aVFi(wi; 0 UDS), %)

Al

where D¢ is a part of D and used for training to relieve the

non-i.i.d. problem.

Then, the local workers calculate their own historical min-
imum loss function values and maintain their own historical
best model parameters

. a
{Fiswhiont = arg min Fi(Wir,Dse), (6)

where D¢, is the other part of ® and used to provide fair-
value scores of local models for best-worker selection by
assessing the per-worker Ff +.1- Then, all workers report their
Ff,,, to the PS.

Comparing the received {FL” 441 )i from all local workers,
the PS selects the best worker 4}, , with the global optimum

function value
. g 1 _ . »
{i7 0, Flat = arg o - Fiia D

If FY | < F{, then the worker with the selected index i}, is
invited to upload its W%H,t 11 to the PS as the globally best
model parameter w{, , = w§}+17t+1. If Ff | > F{, then no
worker is invited to upload local model parameter and the PS
simply maintains the globally best model parameter and the

2For the implementation point of view, a small amount (e.g., 1% of all
datasets is adequate as used in our simulations) of globally shared dataset
can be generated by a generative adversarial network module for keeping the
privacy of workers’ own local data [24], which can be either pre-stored in the
IoT devices or broadcasted from the PS to all the local workers. The required
resources in sharing and local storage are quite low.

globally best loss function value from the previous iteration
as wi,; = w{ and FY,, = F}.

Upon receiving W%-Hvt 4 from the invited worker, the PS
further uses DY, to verify the reported model parameter.
If F(W%H,Hp@g) # F? ., then a Byzantine attack is
identified and the attacker is filtered out; the PS will inquire
the next best local worker, until confirmed.

Communication Efficiency. Note that our CB-DSL requires
U workers to share their function value Ff 1 Which is only
a scalar, and then invites only one local worker with the
global minimum loss function value calculated using @?c to
report its model parameter to the PS. Thus, our CB-DSL can
dramatically reduce the overall communication overhead and
energy consumption in edge networks.

Byzantine Robustness. In the process of collecting F,L.’ft 1S
from local workers, a malicious worker may send a fake F‘f 1
(< Ffiy) to fool the PS to invite the attacker to upload
its fake model parameter as the global optimum, which will
undermine edge learning. Thanks to ®, in our CB-DSL, it
enables the PS to screen and remove the potential Byzantine
attackers, resulting our Byzantine-robust CB-DSL.

Algorithm 1 CB-DSL

Initialization:
W;Z»D’O = W;,0, szo = Fz‘(wz"(),@g:), V’L,

1: for each iteration { =1:7 do

2:  at the local workers:

3: update the local model parameter w; ;41 via (5);

4: calculate the historical minimum loss function value
F},,, and maintain the corresponding historical best
model parameter wz +11 via (6);

5: send the scalar function value F}’,,, to the PS;

only the invited local worker sends W;Z ¢4 to the PS;

at the PS:
compare the received Ff’ 118, select the best worker
it,, and identify its function value as F/_; via (7);

9: if FY,, < F{, then invite the selected worker i}, ; to
upload its model parameter as the globally best model
parameter Wy, ; = W%+1,t+1;

10: else, no worker is invited and maintain the globally

best model parameter and function value from the
previous iteration as wi _, = w{ and F/ , = FY;

11 given wi. ., received from the invited worker,
t410
: p Gy __ 9 .
verify F(wiz+17t+1,®SC) == Iy ;
12: if an attacker is identified by F(w?. Hl,@fc) #*
t410

FY |, remove it and repeat line 8 until a legitimate
worker is selected.
13: end for

III. CONVERGENCE ANALYSIS

In this section, we first make some definitions and assump-
tions for convergence analysis. With these preliminaries, the
convergence behavior of our CB-DSL approach is theoretically
evaluated by deriving an upper bound of the convergence rate.
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A. Assumption and Definition

Assumption 1. (Lipschitz continuity, smoothness): The gradi-
ent VF;(w) of the loss function F;(w) at node ¢ is uniformly
Lipschitz continuous with respect to w, that is,

IVE;(Witt1) — VFi(Wie)|| < Ll|Wit1 — Wi, Vi, ¢, 3

where L is a positive constant, referred as the Lipschitz
constant for the loss function F;(-) [3].
To facilitate analyses, we rewrite wf , and wf in (5) as

Wft =W;t-1+ V;:'),tv C)
(10)

9 _ g
Wi = Wit—1 + Vi,

where v, and v{ denote the per-worker and globally optimal
velocities currently used at the i-th worker.
Then, the DSL velocity update v;;y; = BI + Al =
Wit+1 — Wi in (5) can be rewritten as
Vit+1 = CoVit + Cl(Vﬁt — (Wit —Wit—1))
+ea(v] — (Wi — Win—1)) — aVF;(wi)
=covig+ (vl = vie) +ca(v] — vii) — aVF(wiy)
=(co—c1 —e)vir +avi, + v —aVF(wiy), (1)

where we replace V F;(w; +; Dluﬁ,{i) by VF;(w; ) hereafter
for symbol simplicity.

We use 0; 4, 91 4» and 07 to denote the angles between Vit
and —V F;(w; ), between v, and —V F;(w; ;), and between
v{ and —VF; (wl +), for any i and ¢, respectively. Then we

i—VFi(wit)) p o (VI —VFi(wi.))

haVe COS 9 : (Vt— COS 9 = TP e
it = WA TVE Mol €80 = W7 Moo on
(V9 —VF;(wi.0))

cos 0] = oheF T Vit

We further assume that the above cosine- similarity measures
are bounded, whose lower and upper bounds are denoted as
q < cosbiy <q,q" < cost, <gq’,q? <cosb] <q’ u<
i t|| <P il

[vi.ell v/ v

o < P <ot 9 < Vel
TWFwiol = B < [Tr (w0l U S R T S
ud, Vi,t.

B. Convergence Bound

With the assumptions and definitions presented in Subsec-
tion IV.A, the convergence errors of the CB-DSL algorithm
are bounded by the following Theorem 1.

Theorem 1. For T communication rounds, the expected
convergence rate at each worker in CB-DSL is bounded by

F(Wi?o) - F(W*)
- TOg

T Y 2
vaa%,ﬂ\l | Vi, (12)

2c0—0e; b 3 s
#qu — Saupg? - c2udgd —

where g = o —
2 52
u’ + - (u)? +

4
2L((c2 - —deyCo+ 5+
62
-2 (w9)? + a?).

Proof: Please refer to our journal version [25]. |

6c160 62 L1 <2)

Remark 1. When cg, 6.,, and J., are all set to be 0, we
have &z = a — 2La? in (12), and CB-DSL degenerates
into FedAvg. As &g — (o — 2La?) = 2atla—0,, 4
2L((Be, o + eyo — ¢} — 5 S Sedeaypa %(UP)Q _
%(69)2) - %ﬂpqp - 5;2 u9qY > 0, CB-DSL converges faster
than FedAvg.

IV. MODEL DIVERGENCE ANALYSIS FOR THE CASE OF
NON-I1.I.D. DATA

Consider a C-class classification problem defined over a
compact space X and a label space ). The k-th data point
(Xi,k, Yi k) on the i-th local worker distributes over X x ) fol-
lowing the distribution p;. For the purpose of model divergence
analysis, suppose a genie worker who has the population data
that reflect the population distribution p of all local workers
that may differ from p;. The genie worker uses such knowledge
of p to search for the globally optimal solution to the learning
model, which serves as the reference to calibrate the model
divergence due to the distributed non-i.i.d. data. Then the o-
riginal population loss function F(w) := Eg[f(W;X; k. Yi k)]
can be rewritten as

c
F(w) =Y ply = Expy=clfe(x, W),
c=1
where f. denotes the probability for the c-th class, ¢ € {1,C}.

Then, the learning problem at the genie worker can be
formulated as

13)

c
P2: w" = argmin Zp(y = ) Exjy=c[fe(x, W)].

c=1

(14

By solving P2, the model obtained at the genie worker plays
as the globally optimal position in each communication round
of CB-DSL. Then according to (11), the velocity at the genie
worker in the (¢ + 1)-th communication round is updated via

Vi, = covi —aVF(w}). (15)

The model parameter at the genie worker in the (¢ 4+ 1)-th

communication round is updated as

W§+1 =wi + Vf+1- (16)

Given (5) and (16), the model divergence between the i-th
local worker and the genie worker is defined as
- Wi]+1 I
wa-H”

Next, we provide Theorem 2 to evaluate the model diver-
gence by deriving its upper bound theoretically.

[Wi,e+1

model divergence = (17)

Theorem 2. Under the assumption that VEy,—.[fc(x, w)] is
L.-Lipschitz for each class ce{1,C}, we have the following
inequality for the model divergence as

1
[Wiir = Wit || < 87 [[wio — will

t
+loo =1 —ea| Y B |viy — V||

=0

C
+a ) llpiy =)
c=1

where 3 = 1 + 042?:1171‘(1/ = ¢)Le and finaz(W]) =
max{ VEyj,—c[f.(x, W)},

—p(y =) Y frmaa(w)), (18)

Proof: Please refer to our journal version [25]. |

Remark 2. In (18), the initial model divergence (first term) and
the velocity divergence (second term) after (¢ + 1) communi-
cation rounds are iteratively amplified by 5. Since 8 > 1,
if different local workers start from different initial model
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parameters in the standard FL, then the model divergence will
still be enlarged, even though the local workers have i.i.d. data.

Remark 3. In (18), the third term 35 [|pi(y = ¢) — p(y =
¢)|| is the EMD between the data distribution on the i-th
local worker and the population distribution [26], when the
distance metric is defined as ||p;(y = ¢) — p(y = ¢)||. The
impact of EMD is affected by the learning rate o, the number
of communication rounds ¢, and the class-wise maximum

gradient fy,q0(W;).

V. EXPERIMENTAL RESULTS

This section demonstrates that our CB-DSL outperforms
the benchmark methods, with better learning performance and
faster convergence speed, on non-i.i.d. settings, even in the
presence of Byzantine attacks.

A. System and Dataset Setting

We perform empirical simulations by conducting a
handwritten-digit classification task based on the widely-used
MNIST dataset’. We set the total number of local workers
to be U = 50. To build the non-i.i.d. data setting upon the
MNIST dataset, we first sort all the 60000 training samples
based on the classification labels. Then we divide the 60000
training samples into 200 shards, each of which consists
300 samples, that are highly non-i.i.d. shard by shard [6].
We randomly allocate two shards to each local worker. The
globally shared scoring dataset @f; consists of 2000 data
samples, and the globally shared training dataset @5;‘ consists
of 600 data samples.

B. Different Approaches

We compare the proposed CB-DSL with FedAvg [6], given
either i.i.d. or non-i.i.d. data, for different cases of globally
shared dataset, including: (1) FedAvg without any globally
shared dataset €. (2) CB-DSL without any globally shared
dataset D the local workers use their own local dataset
to calculate Ff 1 (3) CB-DSL with a globally shared dataset
for scoring ZDE‘; the local workers use the globally shared
scoring dataset to calculate Fi’? , in CB-DSL. (4) FedAvg with a
globally shared dataset for training Dﬁ: the local workers use
both their own local dataset and the globally shared training
dataset to train their local models in standard FedAvg [6]. (5)
CB-DSL with a globally shared dataset for both training D¢
and scoring DC.: the local workers use both their own local
dataset and the globally shared training dataset to train their
local models and then use the globally shared scoring dataset
to calculate F}; in CB-DSL.

C. Evaluation and Comparison

In Fig. 1, when CB-DSL runs without @fj, it cannot work
properly in the non-i.i.d. setting. This is because CB-DSL
hinges on single best worker selection which however may
not hold the optimum model at all. Using ¢, can slightly

improve the learning performance of CB-DSL.When both a

3http://yann.lecun.com/exdb/mnist/

globally shared training dataset and scoring dataset are used as
D¢ =DF UDY, CB-DSL turns to outperform FedAvg. This
is because @fﬁ helps to relieve the local data heterogeneity
issue by making the local datasets to become more i.i.d.,
which decreases the EMD between the data distributions on
local workers and the population distribution as revealed by
our model divergence analysis in Section V. Besides, the
improvement on learning accuracy also indicates that our CB-
DSL solutions have an increased chance to jump out of local
optimum traps via the exploration-exploitation mechanism.

In Fig. 2, we provide the performance comparison in the
presence of the Byzantine attack. It is obvious that even
only one Byzantine attacker can fail FedAvg and CB-DSL
without ©F. On the other hand, the CB-DSL with D can
effectively defend the Byzantine attack, because the globally
shared dataset for scoring ©%, can help identify and screen
out the Byzantine attacker as explained in Algorithm 1.

In Fig. 3, we further evaluate the weight divergences effects
under the non-i.i.d. setting. As the communication rounds
increase, the weight divergences of CB-DSL with or without
D first increase and then flatten out after several commu-
nication rounds. The final steady-state weight divergence of
the CB-DSL with D¢ is much less than that of the CB-DSL
without ©¢, as depicted by the gap between the two curves in
Fig. 3. Such a nontrivial gap confirms the theoretical results
of Theorem 2: (1) the model divergence will be enlarged
as the communication rounds increase (this is because that
the initial model divergence is iteratively amplified by /3, as
explained in Remark 2); (2) the use of DE can reduce the
weight divergence (this is because that the use of D decreases
the EMD between the data distributions on local workers and
the population distribution, as explained in Remark 3).

Note that only one local worker is selected and invited to
send its model parameter to the PS in CB-DSL, while all
workers need to send their model parameters to the PS in
FedAvg. Therefore, the communication cost consumed in CB-
DSL is only % of that in FedAvg. In addition, we can see from
Fig. 1 that our CB-DSL with D uses fewer communication
rounds than FedAvg to achieve the same learning accuracy.
As a result, our CB-DSL is communication-efficient with less
communication rounds and less communication overhead per
round in practical applications.

VI. CONCLUSION

This work studies a novel communication-efficient and
Byzantine-robust distributed swarm learning (CB-DSL) ap-
proach for edge IoT systems, as a holistic integration of the
Al-enabled SGD and the Bl-enabled PSO. We propose to
introduce a globally shared dataset to overcome the major
challenging issues in edge learning including: the partially
observability of loss function in distributed learning problems,
the non-i.i.d. local data issues, and the potential Byzantine
attacks. We provide theoretical analysis of the convergence
behavior of the proposed CB-DSL, which indicates that our
method can achieve better learning performance than existing
distributed learning methods. Further, we provide the model
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Fig. 1: The performance comparison under the Fig. 2: The performance comparison with a  Fig. 3: The comparison of the weight
non-i.i.d. setting. Byzantine attacker. divergences under the non-i.i.d. setting.

divergence evaluation of the proposed CB-DSL in the non-
i.i.d. settings, which quantifies how a globally shared dataset
can improve the learning performance of the CB-DSL. Sim-
ulation results verify that our proposed CB-DSL solution can
improve learning performance in non-i.i.d. settings. Mean-
while, the communication saving by the CB-DSL inherits
the advantage of the bio-inspired PSO techniques with much
reduced communication cost than standard FedAvg.
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