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Abstract

Despite continued technological improvements, measurement errors

will always reduce or distort the information that any real experiment

can provide to quantify cellular dynamics. This problem becomes even

more serious in the context of cell signaling studies that are specifically

designed to quantify heterogeneity in single-cell gene regulation, where

important RNA and protein copy numbers are themselves subject to the

inherently random fluctuations of biochemical reactions. It is not clear how

measurement noise should be managed in addition to other experiment

design variables (e.g., sampling size, measurement times, or perturbation

levels) to ensure that collected data will provide useful insights on signaling

or gene expression mechanisms of interest. To address these fundamental

single-cell analysis and experiment design challenges, we propose a compu-

tational framework that takes explicit consideration of measurement errors

to analyze single-cell observations and Fisher Information Matrix-based

criteria to decide between experiments. Using simulations and single-cell

experiments for a reporter gene controlled by an HIV promoter construct,

we demonstrate how our approach can analyze and redesign experiments
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to optimally harvest fluctuation information while mitigating the effects

of image distortion.

Keywords: Single-cell, fluorescence in-situ hybridization (FISH),

stochastic gene expression, experiment design, model inference, measure-

ment noise, Fisher Information Matrix

1 Introduction

Heterogeneity in signaling and gene expression at the single-cell level has wide-

ranging biological and clinical consequences, from bacterial persistence ([46, 26,

27, 16]) and viral infections ([78, 91, 68, 8]) to tumor heterogeneity ([7, 52]).

Beside genetic and environmental factors, a significant degree of heterogeneity is

caused by biochemical noise ([53, 66, 17, 3]). Therefore, even genetically identical

cells grown in the same experimental conditions may display variability in their

response to environmental stimuli. This variability, often termed intrinsic noise

when it originates within the pathway of interest or extrinsic noise when it

originates outside the pathway of interest, obscures the underlying mechanisms

when viewed through the lens of deterministic models and bulk measurements

([57]). Yet, this so-called noise can be highly informative when examined through

the lens of single-cell measurements coupled with the mathematical modeling

framework of the Chemical Master Equation (CME) ([28, 1, 81]). Through

this joint experimental and modeling approach, mechanisms of signaling and

single-cell gene expression can be explained, predicted ([58, 59, 57]), or even

controlled ([56, 55, 5, 22]).

In this paper, we are concerned with how and when stochastic models

based on the CME could be inferred with high confidence from single-cell

experiments such as flow cytometry or optical microscopy (e.g., single-molecule

in situ hybridization, smFISH), from which data sets are produced in the

form of fluorescence intensity histograms ([36, 48, 93, 50]) or molecular count

histograms ([20, 64, 47]). These measurements, like any other experimental

technique, can be corrupted by errors arising from imprecise detection or data

processing methods. In flow cytometry, variations in the binding efficiency,

binding specificity, or intensity of individual fluorescent reporters or probes, or

the existence of background fluorescence, are unavoidable perturbations that may

obscure the true copy number of RNA or protein ([58, 70, 86]). While smFISH

data sets are generally considered to provide the‘gold standard’ for measuring

transcriptional heterogeneity, the estimation of molecular copy numbers in single
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cells depends heavily on image segmentation and spot counting algorithms

([4, 62, 65, 39]) that involve several threshold parameters, which are set ad

hoc and typically vary from one expert to another. In addition, the sensitivity

of smFISH measurements can be heavily affected by the length of the target

mRNAs, the number of probes ([76]), or the number of hybridization steps ([92]).

The inescapable fact of measurement noise motivates intriguing questions

on the design of single-cell experiments. For instance, under what conditions

can detailed statistical measurement noise models and cheap single-cell measure-

ments combine to replace accurate, yet more expensive experimental equipment?

How approximate or coarse (and therefore fast) can image processing be while

still faithfully retaining knowledge about parameters or mechanisms of interest?

These questions are becoming more pressing as new advances in fluorescence

tagging and microscopy technology are leading to more sophisticated experi-

mental protocols to produce ever-increasing data on complex signaling and gene

expression networks. Addressing these challenges is non-trivial, as it requires

careful consideration of the potentially nonlinear combination of measurement

noise and the biological question of interest.

The key contribution of this study is to provide new model-driven experiment

analysis and design approaches (Fig 1) that include explicit consideration of prob-

abilistic measurement errors in single-cell observations. The process begins with

one or more hypotheses written in the form of stochastic gene regulation models

(Fig 1A) with uncertain guesses for parameters or mechanisms. Predictions from

these biophysical models are then coupled with empirically determined or physi-

cally estimated statistical models, known as Probabilistic Distortion Operators

(PDOs), that explicitly estimate the effects of different types of measurement

errors that could be temporal, discrete, non-symmetric, non-Gaussian, or even

the result of their own stochastic process dynamics (Fig 1B). During model

inference, the biophysical and measurement distortion models are simultaneously

optimized to best explain the data (Fig 1C, right) and to quantify uncertainty in

their respective parameters (Fig 1C, left). During experiment design (Fig 1D),

sensitivity analysis is used to estimate which combinations of experimental

conditions, sampling procedures, or measurement strategies can be expected to

provide the most information to constrain the current set of hypotheses, and

the procedure is iterated in subsequent rounds of experimentation and model

refinement.

To address the specific question of model-driven single-cell experiment evalu-

ation and design (Fig 1D), we adopt the framework of the Fisher Information
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Matrix (FIM). The FIM is the basis for a large set of tools for optimal experiment

design in a myriad of science and engineering fields ([63, 18, 13, 69, 12, 89]),

and it has been employed in the study of identifiability and robustness of de-

terministic ODEs models in system biology ([31, 87]) as well as for designing

optimal bulk measurement experiments ([19, 25, 43]). As an early application

of the FIM to stochastic modeling of gene expression, Komorowski et al. ([42])

devised a numerical method to compute the FIM based on the Linear Noise

Approximation (LNA) of the CME, which they used to demonstrate the different

impacts of time-series, time snapshots, and bulk measurements to parameter

uncertainties. There have been subsequent work on approximating the FIM

with moment closure techniques ([69, 70]), with demonstrable effectiveness on

designing optimal optogenetic experiments( [71]). Under an assumption of ideal

measurements, Fox and Munsky ([23]) recently extended the Finite State Pro-

jection (FSP) algorithm ([23]) to compute a version of the FIM that allows for

time-varying and non-linear models that result in discrete, asymmetric, and

multi-modal single-cell expression distributions. By extending the FSP-based

FIM ([23]) to also account for realistic measurement errors, our new approach

can help scientists to decide which combinations of experimental conditions

and measurement assays are best suited to reduce parameter uncertainties and

differentiate between competing hypotheses.

To verify our proposed approaches, we simulate data for a simple bursting gene

expression model under many different types of measurement errors, and we show

that the FIM correctly estimates the effects that measurement distortions have

on parameter estimation (we explore more complicated models and distortions

in the Supplemental Text). To demonstrate the practical use of our approaches,

we apply them to analyze single-cell data for the bursting and deactivation

of a reporter gene controlled by an HIV promoter construct upon application

of triptolide (Trp). We show that the iterative use of FSP to fit distorted

experimental data, followed by FIM analysis to design subsequent experiments

can lead to the efficient identification of a well-constrained model to explain and

predict gene expression.
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2 Methods

2.1 Stochastic modeling of gene expression

The expression dynamics of genes or groups of genes in single cells are often

modeled by stochastic reaction networks ([54, 28, 1]). For these, the time-varying

molecular copy numbers in single cells are treated as a Markov jump process

{X(t)}t≥0 whose sample paths x(t) = (x1(t), . . . , xN (t)) take place in discrete

multi-dimensional space, where xi(t) is the integer count of species i at time t.

Each jump in this process corresponds to the occurrence of one of the reaction

events Rk (k = 1, . . . ,M), which brings the cell from the state x(t−) right before

event time t to a new state x(t+) = x(t−) + νk, where νk is the stoichiometry

vector corresponding to the k-th reaction. The probabilistic rate at which each

reaction occurs is characterized by its propensity (or reaction intensity) function,

αk(t,x,θ). The vector θ = (θ1, . . . , θd) is a d-dimensional vector of model

parameters. Intuitively, we interpret αk(t,x,θ)∆t as the probability for reaction

k to fire during the waiting interval [t, t + ∆t) for a sufficiently small waiting

time ∆t. The probability distributions pX(t,θ) of single-cell gene product copy

numbers model what is often termed intrinsic noise in gene expression. These

distributions are the solution of the chemical master equation (CME)

d

dt
pX(t,θ) = A(t,θ)pX(t,θ), (1)

where A(t,θ) is the infinitesimal generator of the Markov process described above

(see Supplemental Text S1 for detailed definition of A(t,θ)). Extrinsic noise can

be modeled by assuming a probabilistic variation for the model parameters, then

integrate (1) over that distribution ([71]). However, we focus on intrinsic noise

for the current investigation.

2.1.1 Computing the likelihood of single-cell data

Consider a data set D that consists of Nc independent single-cell measurements

(t1, c1), . . . , (tNc
, cNc

) where ci is the vector of molecule counts of cell i measured

at time ti. The likelihood function of the biophysical parameters θ given the

data set D is given by

L(θ|D) =

Nc∏
i=1

pX(ti, ci,θ)
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where pX(t,x,θ) is the probability of observing molecular counts x at time t,

obtained by solving the CME (1). Taking the logarithm of both sides, we have

the log-likelihood function

logL(θ|D) =

Nc∑
i=1

log pX(ti, ci,θ), (2)

which is mathematically and numerically more convenient to work with.

2.1.2 Sensitivity analysis

Taking the partial derivative of both sides of the CME (1) with respect to

parameter θℓ (ℓ = 1, . . . , d), we get

d

dt

(
∂pX(t, θ)

∂θℓ

)
=

∂A(t, θ)

∂θℓ
pX(t, θ) + A(t, θ)

∂pX(t, θ)

∂θℓ
.

When the state space of the Markov process is finite, we can collect the equations

above for ℓ = 1, . . . , d along with the CME (1) to form a joint system involving

the CME solution pX(t, θ) and its partial derivatives sX,ℓ(t,θ) ≡ ∂pX(t,θ)/∂θℓ,

given by

d

dt


pX(t, θ)

sX,1(t, θ)
...

sX,d(t, θ)

 =


A(t, θ) 0 . . . 0

∂θ1A(t, θ) A(t, θ) . . . 0
...

. . .

∂θdA(t, θ) 0 . . . A(t, θ)



pX(t, θ)

sX,1(t, θ)
...

sX,d(t, θ)

 .

This forward sensitivity system can be solved numerically with any standard

ODE solver. When the state space is infinite, a truncation algorithm based on

extending the Finite State Projection ([23]) can be applied to approximately

solve the forward sensitivity system (see SI Section 1 for more details).

Knowing the sensitivity of the distribution to parameter changes then allows

us to compute the sensitivity of the log-likelihood function with respect to

biophysical parameters θ1, . . . , θd using the formula

∂

∂θℓ
logL(θ|D) =

Nc∑
i=1

sX,ℓ(t, ci,θ)

pX(t, ci,θ)
,

where sX,ℓ(t,x,θ) ≡ ∂pX(t,x,θ)/∂θℓ is the sensitivity for the specific molecular
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counts x at time t.

2.1.3 Modeling distortion of measurements

Let y(t) be the multivariate measurement made on a single cell at time t,

such as the discrete number of spots in an smFISH experiment, or the total

fluorescence intensity, such as from a flow cytometry experiment. Because of

random measurement noise, y(t) is the realization of a random vector Y (t) that

is the result of a random distortion of the true process X(t). The probability

mass (density) vector (function) pY (t) of the discrete (continuous) observable

measurement Y (t) is related to that of the true copy number distribution via a

linear transformation of the form

pY (t,θ) = CX→Y (t,θ) pX(t,θ). (3)

Mathematically, CX→Y (t,θ) functions as a Markov kernel, and we shall call

it the Probabilistic Distortion Operator (PDO) to emphasize the context in

which it arises. Considered as a matrix whose rows are indexed by all possible

observations y and whose columns are indexed by the CME states x, it is given

entry-wise as

CX→Y (t,θ)(y,x) := Pr(Y (t) = y|X(t) = x,θ), (4)

where Pr stands for probability mass if Y is discrete or probability density if Y is

continuous. Together, equations (1) and (3) describe single-cell measurements as

the time-varying outputs of a linear dynamical system on the space of probability

distributions on the lattice of N -dimensional discrete copy number vectors. The

output matrix of this dynamical system is the PDO CX→Y . If the observations

c1, . . . , cNc
in the dataset D are assumed to be distorted according to the PDO

C, then the log-likelihood function (2) is changed into

logL(θ|D) =

Nc∑
i=1

log pY (ti, ci,θ) (5)

where pY (t,y,θ) are point-wise probabilities of the distribution pY (t,θ) defined

in (3).

There are many different ways to specify the PDO, depending on the specifics

of the measurement method one wishes to model. In this paper, we demonstrate
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various examples where the PDO is formulated as probabilistic models that

use simple distributions as building blocks (see Results and SI Section S3.2),

or as deterministic binning/aggregation (Results and SI Section S3.2). One

could even use a secondary CME to model the uncertain chemical kinetics of

the measurement process, such as the random time needed to achieve chemical

fixation in smFISH experiments or the dropout and amplification of mRNA that

occurs during single-cell RNAseq experiments (SI Section S3.3), or distribution

convolution to describe cell segmentation noise (SI Section S3.4). Despite the

variety of ways these measurement noise models can be derived, they all lead to

the same mathematical object (i.e., the PDO), which allows computation of the

FIM associated with that particular noisy single-cell observation approach, and

the effects of all PDO can be analyzed using the same computational procedure

as we describe next.

2.1.4 Computation of the Fisher Information Matrix for distorted

experimental measurements

In practice, when closed-form solutions to the CME do not exist, a forward

sensitivity analysis using an extension of the finite state projection algorithm

can be used to evaluate the probability distribution pX(t,θ) and its partial

derivatives ∂θjpX(t,θ) with respect to the kinetic parameters ([23]. Using eq. (3),

we can transform these into the distribution pY (t,θ) of Y (t). Furthermore, the

sensitivity indices sjY (t,θ) = ∂θjpY (t,θ), of the observable Y are computable

by back-propagating the sensitivities of the noise-free measurement distributions

through the PDO,

∂

∂θj
pY (t,θ) = CX→Y (t,θ)

∂

∂θj
pX(t,θ) + ∂θjCX→Y (t,θ)pX(t,θ). (6)

Then, the Fisher Information Matrix (FIM) F Y (t)(θ) of the noisy measure-

ments Y (t) at time t is computed by

[F Y (t)(θ)]i,j =
∑
y

siY (t,y,θ)sjY (t,y,θ)

pY (t,y,θ)
. (7)

Details of the numerical approximation can be found in SI Section S3.1. In this

formulation, we only need to solve the (usually expensive) sensitivity equations

derived from the CME once, then apply relatively quick linear algebra operations

to find the FIM corresponding to any new PDO for specific microscope, fixation
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protocol, or probe designs.

To convert the FIM between parameters defined in linear space to the same

parameters in logarithmic space, we apply the transformation:

[F Y (t)(log θ)]i,j = θiθj [F Y (t)(θ)]i,j . (8)

2.1.5 Parameter estimation and uncertainty quantification

Models are fit to experimental data in Matlab, (R2021b, [35]) using an iterated

combination of the builtin fminsearch algorithm (an implementation of the

Neldar-Mead simplex method, [44]) to get close to the MLE (i.e., to maximize the

likelihood in Eq. 5) followed by a customized version of the Metropolis Hastings

(MH) sampling routine, mhsample ([14]). All parameter searches were conducted

in logarithmic space, and model priors were defined as lognormal with log-means

and standard deviations as described in the main text. For the MH sampling

proposal function, we used a (symmetric) multivariate Gaussian distribution

centered at the current parameter set and with a covariance matrix proportional

to the inverse of the Fisher Information matrix (calculated at the MLE parameter

set) and scaled by a factor of 0.8, which achieves an approximately 20-50%

proposal acceptance rate for all combinations of PDOs and data sets. MH

chains were run for 20,000 samples. Convergence was checked by computing the

autocorrelation function and verifying that the effective sample size was at least

1000 for every parameter in every MH chain. All data, model construction, FSP

analysis, FIM calculation, parameter estimation, and visualization tasks were

performed using the Stochastic System Identification Toolkit (SSIT) available

at: https://github.com/MunskyGroup/SSIT using manuscript specific scripts

provided in folder CommandLine/Vo et al 2023.

2.2 Single-cell Labeling and Imaging

2.2.1 Cell Culture

The experiments presented here were performed on Hela Flp-in H9 cells (H-

128). The generation of the H-128 cell line has previously been discussed ([84]).

Briefly, Tat expression regulates the MS2X128 cassette-tagged HIV-1 reporter

gene in H-128 cells. The HIV-1 reporter consists of the 5′ and 3′ long terminal

repeats, the polyA sites, the viral promoter, the SD1 and SA7 splice donors, and

the Rev-responsive element. Additionally, the MS2 coating protein conjugated
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with a green fluorescent protein (MCP-GFP), which binds to MS2 stem loops

when transcribed, is expressed persistently by H-128 cells. Cells were cultured in

Dulbecco’s modified Eagle medium (DMEM, Thermo Fisher Scientific, 11960-044)

supplemented with 10% fetal bovine serum (FBS, Atlas Biologicals, F-0050-A),

10 U/mL penicillin/streptomycin (P/S, Thermo Fisher Scientific, 15140122), 1

mM L-glutamine (L-glut, Thermo Fisher Scientific, 25030081), and 150 µg/mL

Hygromycin (Gold Biotechnology, H-270-1) in a humidified incubator at 37°C
with 5% CO2.

2.2.2 smiFISH and Microscopy

Single-molecule inexpensive fluorescence in situ hybridization (smiFISH) was

performed following a protocol previously described ([88, 32]). This technique is

known as inexpensive, because the primary probes consist of a region binding

the transcript of interest plus a common sequence established as FLAP, which

is bound by a complementary FLAP sequence conjugated with a fluorescent

dye following a short PCR-cyle (the primary and FLAP-Y-Cy5 probes used

in this study were purchased from IDT, see Table 1). To perform smiFISH,

H-128 cells were plated on 18 mm cover glasses within a 12-well plate (∼ 105

cells/well), 24 h before the experiment. Some samples were exposed to 5 µM

triptolide (Sigma-Aldrich, 645900) for different incubation periods. Immediately

after these drug treatment periods, samples were washed out twice with RNAse

free 1XPBS, and fixed in 4% PFA at RT for 10 min, followed by 70% ethanol

permeabilization at 4◦C for least 1 h. After washing each sample with 150 µL

of wash A buffer (Biosearch Technologies, SMF-WA1-60) for 5 min, each cover

glass was set on a droplet (cells facing down) consisting of 45 µL hybridization

buffer (Biosearch Technologies, SMF-HB1-10) and 1 µL of the duplex smiFISH

probes (MS2-transcript-binding probe mix + FLAP-Y-binding region annealed

to FLAP-Y-Cy5) in a humidified chamber at 37◦C overnight. The following

day, samples were placed in a fresh 12-well plate, and the cells (facing up) were

incubated twice in wash A buffer at 37◦C for 30 min, first alone, and then

containing DAPI. Finally, cells were incubated with wash B buffer (Biosearch

Technologies, SMF-WB1-20) at RT for 5 min, and then mounted on a 15 µL

drop of Vectashield mounting medium (Vector Laboratories, H-1000-10), and

sealed with transparent nail polish.

Fluorescent images were acquired with an Olympus IX81 inverted spinning

disk confocal (CSU22 head with quad dichroic and additional emission filter
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wheel to eliminate spectral crossover) microscope with 60x/1.42 NA oil immersion

objective. Confocal z-stacks (0.5 µm step-size, 27 stacks in each channel) were

collected. Each field of view was imaged using four high-power diode lasers with

rapid (microsecond) switcher (405 nm for DAPI, 488 nm for MS2-MCP-GFP

reporter, 561 nm for cytosol marker, and 647 nm for smiFISH MS2-Cy5, exposure

time of 100 ms for all except smiFISH channel that was 300 ms) when samples

had cytosol marker or three lasers for samples without the marker. The system

has differential interference contrast (DIC) optics, built-in correction for spherical

aberration for all objectives, and a wide-field Xenon light source. We used an

EMCCD camera (iXon Ultra 888, Andor) integrated for image capture using

Slide book software (generating 60× images with 160 nm/pixel). The imaging

size was set to 624 x 928 pixels2.

2.2.3 smiFISH image processing

In this study, we employed Python to implement an image processing pipeline

comprising three steps: cell segmentation, spot detection, and data management

(as previously described in [72]). Nuclear segmentation on the DAPI channel

(405nm) was carried out using Cellpose ([82]) with a 70-pixel diameter as an

input parameter. Spot quantification for both the MS2-MCP-GFP reporter

channel (488 nm) and the smiFISH MS2-Cy5 channel (647 nm) was performed

independently, using BIG-FISH software ([34]). The spot quantification pro-

cedure employed a voxel-XY of 160 nm, a voxel-Z of 500 nm, and spot radius

dimensions of 160 nm and 350 nm in the XY and Z planes, respectively. This

process included the following steps: i) the original image was filtered using a

Laplacian of Gaussian filter to improve spot detection. ii) Local maxima in the

filtered image were then identified. iii) To distinguish between genuine spots and

background noise, we implemented both an automated thresholding strategy

and a manual approach involving the use of multiple threshold values between

400 and 550. The intensity thresholds (550 for MS2-MCP-GFP and 400 for

smiFISH MS2-Cy5) that resulted in the highest number of co-detected spots

in both channels were chosen. Additionally, we quantified the average nuclear

intensity for each color channel by computing the mean intensity of all pixels

within the segmented nuclear region. Data management involved organizing all

quantification data into a single dataset, including information on the specific

image and cell in which the spots were detected. All image processing codes are

available from https://github.com/MunskyGroup/FISH_Processing.
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3 Results

Many models have been used to capture and predict observations of single-cell

heterogeneity in gene expression ([58, 80, 15, 51, 59, 79, 75]). When selecting an

experimental assay to parameterize such models, one is faced with several choices,

each with its own characteristic measurement errors ([67]). Here, we start by

introducing several mathematical forms for probabilistic distortion operators

(PDOs) that can quantify these measurement errors. We then use a model

and simulated data to show how different measurement errors can affect model

identification, and we show how this can be corrected through consideration of

the PDO in the estimation process. Next, we show how models and PDOs can

be used in the framework of Fisher Information in iterative design of single-cell

experiments for efficient identification of predictive models. Finally, we illustrate

the practical use of the PDO, model inference, and FIM based experiment design

on the experimental investigation of bursting gene expression from a reporter

gene controlled by an HIV-1 promoter.

3.1 Distorted single-cell measurements sample a probabil-

ity distribution that is the image of their true molecular

count distribution through a linear operator

Most parameters needed to define single-cell signaling or gene expression models

cannot be measured directly or calculated from first principles. Instead, these

must be statistically inferred from datasets collected using single-molecule, single-

cell experimental methods such as smFISH ([64, 29]), flow cytometry ([48, 50]),

or live-cell imaging ([83, 24, 21]). In this work, we focus on the former two

experimental approaches in which collected data consists of independent single-

cell measurements taken at different times. Here, we consider measurement

distortion effects corresponding to probe binding inefficiency and spot detection

for smiFISH experiments, and in the supplemental text, we extend this to

consider effects of reporter fluorescence intensity variability in flow cytometry

experiments (Section S3.1), data binning (Section S3.2), effects of competition

with non-specific probe targets (Section S3.3), and effects of segmentation errors

(Section S3.4).

We first consider five formulations to define the measurement distortion matrix

(cf. eq. (4) in Methods, and illustrated in Fig 2), corresponding to scenarios in

which experimental errors arise from either inefficient mRNA detection, additive

12



false positives, or combinations. Specifically,

1. The first model supposes that ỹ is obtained from a “lossy” spot-counting

process applied on images taken in an smFISH experiment. We model

y|x = j with a binomial distribution B(pdetect, j), where each spot has

a chance pmiss := 1 − pdetect of being ignored by the counting algorithm,

resulting in underestimation of the true mRNA copy number. In the context

of optical microscopy, such a distortion might result from quantifying spots

at a single plane, where pdetect might represent the fraction of the imaged

section compared to the full volume of the cell, but similar error models have

also been proposed in the context of single-cell RNA sequencing ([45, 6]).

We call this distortion “Missing Spots”. Its PDO, CMS is illustrated in

Fig 2A for pmiss := 0.5 and can be defined:

[CMS ]i,j =

(
j

i

)
(1 − pmiss)

ipj−i
miss.

2. The second model is a simple variation of the first model in which pdetect(j)

varies with the number of mRNA molecules j. For example, the specific

formulation, pdetect := 1.0/(1.0 + 0.01j) implies that spot detection rate

degrades as the number of mRNA molecules in the cell increases, which

may correspond to the effect of co-localization and/or image pixelation

which could cause the under-counting of overlapping spots. We call this

model “Missing Spots with Varying Rate”, and CMSVR is illustrated in

Fig 2B and can be expressed:

[CMSVR]i,j =

(
j

i

)
pdetect(j)

i(1 − pdetect(j))
j−i.

3. The third model assumes that ỹ is the output of a spot-detection process

contaminated by false positives, e.g., due to background fluorescence noise

in the image that can appear to be spots. We model these false positives

by additive Poisson noise, making ỹ = j + ẽ where ẽ ∼ Poisson(λ). We

call this model “Poison Noise,” and CPN, which is illustrated in Fig 2C

for λ = 10 and can be expressed:

[CPN]i,j =
λj−i exp(λ)

(j − i)!
for i ≥ j and otherwise zero

4. The fourth model is a simple extension of the third model in which the
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number of detected spots given a true number, j, is a Poisson distribution

with a varying mean λ(j). Specifically, λ(j) := max (0, λ0 + λ1j), where λ0

is Poisson noise, and λ1 is the Poisson detection rate. We call this model

“Poisson Observation”, and CPO is illustrated in Fig 2D and expressed as:

[CPO]i,j =
λ(j)i exp(λ(j))

i!
.

5. The fifth model concerns fluorescent intensity integration measurements

(such as those used in flow cytometry). We use the model proposed in

([58]), in which ỹ = κ · j + η̃j + ε̃BG, where η̃j ∼ N (0, jσ2
probe) models

fluorescent heterogeneity and ε̃BG ∼ N (µBG, σ
2
BG) is the background noise.

The PDO is a hybrid matrix with discrete columns (i.e., its domain are

probability vectors over discrete CME states) and continuous rows (its

range consists of continuous probability density functions over the range of

fluorescence intensities). This PDO, which we label “Integrated Intensity”

and is illustrated in Fig 2E for µBG = 200, σBG = 400, κ = σ2
probe = 25,

can be expressed:

CII(y|j) =
1√

2π(σ2
BG + jσ2

probe)
exp

(
−(y − κj)2

2(σ2
BG + jσ2

probe)

)
.

For intensity measurement with finite resolution, CII can be defined over

discrete bins (e.g., (y0, y1], (y1, y2], . . .) by integrating as follows:

[CII]i,j =

∫ yi

yi−1

1√
2π(σ2

BG + jσ2
probe)

exp

(
−(y − κj)2

2(σ2
BG + jσ2

probe)

)
dy.

We stress that these PDOs are provided as just a few of many possible distortions

that could be modeled using the proposed framework. Other, more complex

distortion operators are discussed in Supplemental Text S3, including one where

a secondary CME is employed to model the uncertain chemical kinetics of the

measurement process (Section S3.3) and another to describe cell merging due to

image segmentation errors (Section S3.4).
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3.1.1 Measurement noise introduces bias and uncertainty into model

identification

To illustrate the impact of measurement distortion on parameter estimation

and our use of the PDO formalism to mitigate these effects, we begin with an

analysis of the random telegraph model (Fig 3A), one of the simplest, yet most

commonly utilized models of bursty gene expression ([61, 64, 83, 73, 74, 45]).

In this model, a gene is either in the inactive or active state, with transition

between states occurring randomly with average rates kON (to activate the gene)

and kOFF (to deactivate the gene). When active, the gene can be transcribed

with an average rate kr to produce mRNA molecules, each of which degrades

with an average rate γ.

To demonstrate how measurement distortions affect parameter identification,

and why explicit measurement error modeling is necessary, we use the bursting

gene expression model to simulate mRNA expression data where each cell is

distorted by the MSVR effect above (PDO reproduced in Fig 3B). Each data

set consists of five batches of 1,000 independent single-cell measurements that

are collected at five equally-spaced time points j∆t, j = 1, 2, 3, 4, 5 with ∆t = 30

minutes. We considered two methods to fit the telegraph model to these data

based on the Maximum Likelihood Estimator (MLE): one in which the likelihood

function ignores measurement noise, and one where measurement noise modeled

by the PDO is incorporated into the likelihood function (see Supplemental text S2

for their formulations). If one fails to account for measurement uncertainty, these

fits produce strongly biased estimates for the RNA production and degradation

rates as seen in Fig 3C,D (red). Because this bias is inherent to the measurement

technique, it cannot be corrected simply by averaging over more experiments. On

the other hand, using the distortion correction method, Fig 3C,D (dark green)

shows that the inaccurate spot counting procedure can be corrected by explicitly

accounting for measurement uncertainty in the modeling phase. Quantitatively

(see Table 2), the MLE fits that incorporate noise modeling have lower bias (in

terms of relative root-mean-squared errors) for all four parameters compared to

the uncorrected fits.

Figures 3C,D also demonstrate that the Fisher Information Matrix computed

for the noisy measurement (see eq. (7)) produces a close approximation to the

covariance matrix of the MLE (compare magenta and black ellipses). This

suggests that the FIM can provide a relatively inexpensive means to quantify the

magnitude and direction of parameter uncertainty, a fact that will be helpful in
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designing experiments that can reduce this uncertainty, as we will explore next.

3.1.2 Fisher Information Matrix Analysis reveals how optimal exper-

iment design can change in response to different measurement

distortions

Having demonstrated the close proximity between our FIM computation and

MLE uncertainty for simulated analyses of the bursting gene expression model,

we next ask whether the sampling period ∆t could be tuned to increase informa-

tion but using the same number of measurements. Recall that our simulated

experimental set-up is such that measurements could be placed at five uniformly-

spaced time points tj = j∆t, j = 1, 2, 3, 4, 5, with the sampling period ∆t in

minutes, and that at each time point we collect an equal number n of single-cell

measurements, chosen as n := 1000. We find the optimal sampling period ∆t

for each measurement distortion (MS, MSVR, PN, PO, and II), and compare

the most informative design that can be achieved for each class. Here, we

define ‘optimal’ in terms of the determinant of the Fisher Information Matrix,

the so-called D-optimality criterion, whose inverse estimates the volume of the

parameter uncertainty ellipsoid for maximum likelihood estimation ([2]). Figures

4A,B shows the information volume to the five kinds of noisy measurement

described above (Fig 2), in addition to the ideal noise-free smiFISH, at different

sampling rates. We observe that every probabilistic distortion to the measure-

ment decreases the information volume (but to different extents), and that each

measurement method results in a different optimal sampling rate. In Fig 4C-D,

we plot the three-sigma (i.e., 99.7%) confidence ellipsoids of the asymptotic

distribution of MLEs projected on the log10(kON ) − log10(kOFF ) plane and the

log10(kr) − log10(γ) plane.

3.2 FIM and PDO Analysis of Experimental Measure-

ments for HIV-1 Promoter Bursting Kinetics

To provide a concrete example for the use of the FIM and PDO in practice,

we performed single-cell measurements to quantify the relative measurement

distortion between different single-mRNA labeling strategies in HeLa (H-128)

cells (see Methods). We expressed a transcription reporter gene with 128 repeats

of the MS2 hairpin, and we simultaneously used both MCP-GFP (green labels

in Fig 5A) and smiFISH MS2-Cy5 (magenta labels in Fig 5A) to target the MS2

repeats. In each cell, both approaches detect similar patterns for the number
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and spatial locations of mRNA within the nuclei (Fig 5B-G). For our particular

choice of image processing algorithm ([72, 82, 34]) and intensity threshold for

spot detection (see Methods) and a two-pixel (x,y,z) Euclidean distance threshold

for co-localization detection, after analyzing 135 cells in steady-state conditions,

we found that 46.9% of mRNA spots (15,258 out of 32,526 total) were detected

in both channels (e.g., spots denoted by white triangles in Fig 5A). However,

many spots (21.3%, 6,913 spots) are detected only using smiFISH (e.g., those

denoted with magenta triangles) and 31.8% (10,355 spots) are only detected

using the MS2-MCP labels (e.g., green triangles). Due to differences in label

chemistry, background fluorescence, and image analysis errors, the quantified

distribution of mRNA expression depends heavily upon which assay is utilized

(compare Figs 5C-E to 5F-H). For example, we observed that analyses of cells

that have fewer than 10 spots in the smiFISH channel frequently result in large

numbers of spurious spots when the same cells are analyzed in the MCP-GFP

channel (black markers on left limit of Fig 5C and high density at zero in Figs

5D,E). These differences in measurement quantification support the need for

consideration of measurement distortions in subsequent analysis.

3.2.1 PDO measurement noise parameters can be calibrated using

single-cell experiments with multiple measurement modalities

To demonstrate the parameterization and selection of a PDO for these data,

we measured expression using smiFISH or MCP-GFP spot counts as well as

with total integrated fluorescence intensity in the FISH or GFP channels. These

measurements were collected for 135 cells at t=0 and 62 cells at t=300 min after

transcription deactivation by 5µM Trp. We then defined the detected smiFISH

spots as the “true” measurements {x1, . . . , xNc} and considered the MCP-GFP

spot counts, FISH intensity, and GFP intensity values as three different groups

of distorted observations {y1, . . . , yNc}. We then assumed three possible PDO

formulations for each measurement modality, including the simple “Poisson

Observation” (PO) and “Integrated Intensity” (II) PDOs from above, as well as

an extended “Spurious Gaussian” (SG) PDO that is formulated starting with

the II model but then extended to allow for a random fraction (f) of cells with

a true spot count of 10 or fewer cells to be miscounted as a random observation

drawn from a Gaussian (i ∼ N (µ, σ2)) distribution. For all PDOs, we assumed

that distorted quantities would be rounded to their nearest non-negative integer

value (e.g., negative values would be rounded up to zero). For a each PDO and
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its corresponding parameter set Λ, we calculate the corresponding PDO, C(Λ),

and the log-likelihood to observe {yi} given {xi} is computed as

logL({yi}|C, {xi}) =

Nc∑
i=1

log[C(Λ)]i=yi,j=xi .

We then independently maximize this likelihood function for each combination

of the three different distorted data sets (MCP-GFP spots, FISH intensity, GFP

intensity) and for the three PDO formulations (PO, II, SG). For each data set,

we finally select the PDO formulation that results in lowest Bayesian Information

Criteria (BIC ≡ k log(Nc) − 2 logL, where k is the number of parameters in the

PDO) for the t=0 and t=300 min data (Fig 6B). We also verified in all cases that

the PDO selection also maximized the likelihood of the predictions for held-out

data at t=18 min after Tpt treatment (Fig 6B). Upon fitting and selection based

on either BIC or cross-validation, we found that MCP-GFP spot count data

and GFP intensity distortions were best represented by the “Spurious Gaussian”

PDO (CSG), while the FISH intensity measurements were best represented by

the “Integrated Intensity” PDO (CII).

Figures 5C,F show the contours of the corresponding PDOs for the MCP-

GFP spot and FISH intensity data, respectively, and Figs 5D,E,G,H show the

PDF and CDF for the “true” smiFISH mRNA count data data at t=0 (blue

lines) compared to the distorted data (red lines). From the figures, we find the

distortion model does a good job to calibrate between the total mRNA and

MCP-GFP- or smiFISH-detected spot counts (compare blue and green lines in

Figs 5D,E,G,H and the BIC values for (0,300) min in Fig 5B). We next verified

that the PDO remains constant by showing that the same models and same

parameters also accurately reproduce the difference in total mRNA and MCP-

GFP or smiFISH measurements at a held out time of 18 min after application

of 5 µM Trp (see Fig 6, and BIC values for 18 min in Fig 5B).

3.2.2 The PDO allows estimation of predictive bursting gene expres-

sion model parameters from distorted data

We next asked if using the estimated PDO while fitting the MCP-GFP spot

data or the total FISH or GFP intensity data would enable the identification of

appropriate model parameters to predict the smiFISH mRNA counts. Based on

previous observations ([21]), we proposed a 3-state bursting gene expression model

(Fig 7A) where each of two alleles can occupy one of three states: (S1=OFF)
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where no transcription can occur; (S2=Poised) where the promoter is ready to

begin transcription; and (S3=Active) where transcripts are produced in rapid

bursts of mRNA expression. The model contains six parameters: kON and

kOFF are the promoter transition rates between the OFF and Poised states; ω

and kEx are the burst frequency and burst exit rates; and kr and γ are the

transcription and mRNA degradation rates, respectively. Based on previous

observation ([21]) that triptolide (Trp) represses transcription after an average of

5-10 min needed for diffusion of Trp to the promoter and completion of nascent

mRNA elongation and processing, we model the Trp response as a complete

inactivation of transcription (ω → 0) that occurs at t=5 min.

To specify a prior guess for the model parameters, we considered published

values from ([21]), where we used live-cell imaging of ON and Poised transcription

sites to determine the burst frequency ω ≈ 0.2 min−1 and that kr and kEx are

too fast to be estimated independently, but are related by a burst size of

kr/kEx = β ≈ 7.1 mRNA/burst. Also, based on observations in ([21]) that

transcription sites remain in the OFF or Poised/Active states for long periods

of 200 minutes or more, we assumed that kON and kOFF would be too slow

to estimate except under much longer experiments. We therefore estimated

kON = kOFF = 10−4 min−1, but we sought only to estimate the relative rate for

kOFF. We estimated a typical mammalian mRNA half-life of 60 min yielding a

rate γ = 5.8 × 10−3 min−1. With these baseline values as rough estimates, we

assumed a log-normal prior distribution with a standard log deviation of one

order of magnitude from the literature-based values for parameters {ω, β, γ} and

two orders of magnitude for the more approximate value for kOFF}. These initial

parameter guesses and prior uncertainties are summarized in Table 3(column 3).

Having specified parameter priors, we then took single-cell data for 135 cells

at steady state (t=0) and 62 cells at t=300 min after application of 5µM Trp,

and we applied the Metropolis-Hasting (MH) algorithm (20,000 samples) to

estimate rates and uncertainties for the four free parameters. As above, we

assumed that the total spot count analysis provided the “true” spot count, and

we considered four estimation problems using either the “true” smiFISH mRNA

counts, the MCP-GFP spot count data, the FISH intensity data, or the GFP

intensity data, each using the empirically estimated distortion operators from

before (e.g., Figs 5C,F,I for the MCP-GFP spots, smiFISH intensity, and GFP

intensity data, respectively). Table 3 presents the MLE parameter values after

this initial stage, and Fig 7B (left two columns) compare the resulting fits of the

model to the data. Figure 7B (right columns) shows scatter plots of parameter
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uncertainties for the parameter identification using either the smiFISH data (top

row) or with the three distortion measurements using the empirical distortion

operator (bottom three rows). From Figs 7B and Table 3, one can see that all

fits do a reasonable job to match their intended data, and when fit using the

PDO parameters, model predictions based only on the smiFISH and MCP-GFP

data match well to the total spot count analysis (Fig 7B, middle column).

3.2.3 The PDO-corrected FIM accurately estimates parameter un-

certainty after experimental analysis of the bursting gene ex-

pression model

We next used the maximum likelihood models when fit to the 0 and 300 min data

to compute the FIM for the corrected MCP-GFP and smiFISH measurements.

Because the parameters cover multiple orders of magnitude, we transform the FIM

to consider the parameters in log10 space (Eq 8). To adjust the FIM to consider

the case where there is a prior on the parameters, we add the inverse of the prior

covariance (in logspace) to the calculated FIM: FIMtotal = FIM+ Σ−1
prior. Given

that we only collected a single experimental data set for each time point, it is not

possible to directly compare the FIM to the spread of MLE estimates like we could

for simulated data. However, in Fig 7B (right columns) for the smiFISH mRNA

count and PDO-corrected MCP-GFP spots/intensity or smiFISH intensity data,

we can compare the uncertainty predicted by the FIM analysis to the posterior

uncertainty of our parameters given our data. This comparison shows that in

most cases the FIM does an excellent job to estimate the direction and magnitude

of parameter uncertainties (compare overlapping black and magenta ellipses in

Figs 7B and see Table 3 for direct comparison of estimated standard deviations).

However, it is important to note an exception where the FIM prediction does not

match the MH analysis for the largest distortion (GFP intensity measurements).

In this case, the FIM predicted variance is much larger than for the other cases

(note the change in scales in Fig 7B (bottom right)), but the posterior found by

the MH analysis is clearly non-Gaussian. As we will see in the next section, the

reason for this failure is likely that the (0,300) min experiment design with this

distortion provides insufficient information to identify the model.

20



3.2.4 PDO-corrected FIM analysis accurately ranks designs for most

informative transcription-repression experiment

To demonstrate the practical use of FIM for experiment design, we next asked

what design for a Trp-based transcription repression experiment would be best

to improve our model of mRNA expression identified in Fig 7. We restricted

the set of possible experiments to the previous data set (135 cells at t1=0

min and 62 cells at t2=300 min) plus an additional set of 100 cells at a new

time t3 after Trp application, where t3 could be any time in the allowable set

t3 ∈ [0, 6, 12, 18, . . . , 1200] min.

We drew 20 random parameter samples from the previous 20,000-sample MH

chains that were estimated using data at t1=0 and t2=300 min for each data

type. We computed the FIM for each parameter set and for every potential

choice for t3. Figure 8A shows the determinant of the expected covariance of

MLE parameters (Σ ≈ FIM−1, defined in log10 parameter space) versus t3

assuming direct observation of smiFISH mRNA (left) or distorted observations

of MCP-GFP spots, FISH Intensity, or GFP intensity (right). As expected,

distortion always increases expected uncertainty (compare Figs 8A(left) to the

other columns). We also find that the optimal time for the experiment can be

highly dependent on the particular assay. In particular, larger distortions require

earlier sampling times to prevent mRNA expression from falling below the noise

introduced by the distortion.

Although a complete validation of these designs would require a host of

experiments that are beyond the scope of the current investigation, we analyze

a new data set of 96 cells taken at t3 = 18 min to compare experiment designs

with time combinations of (0,18) min, (0,300) min, and (0,18,300) min. Figure

8B shows FIM predictions of uncertainty using parameters from the original

fit to the (0,300) min data (magenta) compared to the uncertainty estimate

using parameters fit to the final data set with all three time points (cyan). The

original and final FIM are in agreement for all combinations of experiment

designs (different groups of magenta and cyan bars) and for direct observations

of smiFISH mRNA (left) or for any of the distorted data sets. Moreover, upon

using the MH to estimate the posterior parameter distributions, Fig 8C shows

that both the original and the final FIM correctly predict the trend of parameter

uncertainties for each of the different experiment combinations. For example,

the FIM correctly predicts the result that a set of (135,62) cells at (0,300) min is

more informative than the larger set of (135,96) cells at (0,18) min if one uses the
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undistorted data (far left), but the opposite is true if one considers the distortion

due to measurements of GFP intensity (far right). Finally, Fig 8D shows the

variance in each parameter’s estimation for every measurement type as predicted

by the FIM analysis (horizontal axis) and verified using 20,000 MH samples of

the posterior (vertical axis). The results show a clear correlation between the

predicted and measured uncertainty under either the initial (t=0,300, magenta)

or the final (t=0,18,300, cyan) data sets. The analysis also correctly predicts

which parameters are well-identified under which measurements. For example,

the FIM analysis correctly predicts that the degradation rate γ (triangles) is well

identified using just t=0,300 min data for the undistorted data, the MCP-GFP

spot data, or the FISH intensity data, but requires the t=18 min data to be

identified using the GFP intensity data. In other words, the FIM analysis now

explains the failure to identify well-constrained parameters that we observed at

the end of the previous section, and correctly suggests that this failure can be

substantially ameliorated with an additional measurement of at 62 cells at 18

min.

4 Discussion

Parameter estimation is a major step in constructing quantitative models for

all physical or biological processes, and many such models for gene regulation

and cell signaling are now being inferred from quantitative single-cell imaging

experiments. Such measurements are subject to errors, where different labels

or different image processing can yield different measurement values (e.g., see

Figs 5 and 6). We have demonstrated that these experimental distortions can be

mathematically described using a general class of probability transition kernels

that we dub Probability Distortion Operators (PDOs, Figs 2,5B,E), and that these

PDOs lead to changes in the estimated parameters that are reflected not only in

the magnitudes but also in the directions of their uncertainties (Fig 4, 7 and 8).

We have introduced a new computational framework to systematically account

for these noise effects and provide a first step toward integrating PDOs into the

interpretation of single-cell experiments (Figs 5-8). Our results indicate that an

appropriate statistical analysis coupled with a careful tuning of experimental

design variables can meaningfully compensate for measurement noise in the data.

For example, our results indicate that, when used iteratively with small sets of

experimental data (e.g., less than a couple hundred cells at only two points in
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time), FIM analysis can correctly predict which subsequent experiments are most

likely to be informative, and which are unlikely to provide additional insight into

model parameters (Fig 8). Insight provided by such an integration of models

and experiments could allow for better allocation of experimental resources first

by helping to eliminate estimation biases that are due to experimental noise and

second by helping to identify specific experimental conditions that are less prone

to be impacted by those measurement artifacts.

Although the FIM is a classical tool for optimal experiment design that

has been used extensively in myriad areas of science and engineering ([63, 18,

13, 69, 12, 89]), it has not seen widespread adoption in the investigation of

biological processes, in part because biological processes are heavily subject to

heterogeneities that are not accounted for in traditional FIM analyses. However,

there has been some progress to extend these tools to the context of gene

expression modeling; for example, ([42]) proposes a method to approximate the

FIM for single-cell experiment data based on the Linear Noise Approximation

(LNA). Alternatively, the FIM has been approximated by using moment closure

techniques ([69, 70]). These approaches work well in the case of high or moderate

molecular copy numbers, but they break down when applied to systems with low

molecular copy numbers ([23]), and it is not clear how or if such approximations

can be modified to consider measurement noise and data processing noise that

are non-additive, asymmetric, or non-Gaussian as is the case for many biological

distortions. To circumvent these issues, our alternative framework directly

analyses the probability distributions of the noisy measurements. Explicitly

modeling the conditional probability of the observation given the true cell state

allows us to express the observation distribution as a linear transformation of

the true process distribution that is computable using the finite state projection.

This leads to a systematic way to develop composite experimental designs that

combine measurements at different fidelity and throughput levels to maximize

information given a budgetary constraint.

The current investigation provides a few examples and preliminary experimen-

tal data to illustrate the broad potential of the FIM and PDO formulations to

improve the interpretation and design of single-cell experiments. However, these

are limited at present, and there is much that remains to be done to elucidate

the full capabilities for these new techniques. For example, not only is additional

experimental testing needed to validate the use of FIM-based methods for a

broader range of experiment designs and imaging conditions, but the current

analyses also need further development (i) to allow for more complex definitions
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of PDOs, (ii) to expand the use of FIM and PDO analyses to situations where

prior knowledge and models are unavailable or limited, and (iii) to extend the

FIM analyses for use in important tasks of model reduction or model selection.

A few of these limitations and future directions are discussed as follows.

The current investigation uses high- and low-fidelity calibration experiments

to parameterize three different PDOs for different measurement modalities, se-

lects the PDO that minimizes the Bayesian Information Criteria in each case,

and confirms that this selection also led to the best prediction of held out data.

However, our search over possible PDOs was far from exhaustive, and it is

almost certain that more accurate PDOs could be found. Adjustments are easily

made so that PDOs can capture many different aspects of experimental error

or so that they can be applied to many different types of models. For example,

through experimental analysis of mRNA counts using different modalities (e.g.,

smiFISH and MCP-GFP labeling), we demonstrated how one could construct

the PDO based on empirical measurements (Fig 8). Similarly, one could examine

different microscopes, different cameras, different laser intensities, different image

processing pipelines, or any of a number of permutations to compare and quantify

differences between high-fidelity and noisy measurements of signaling or gene

expression phenomena. In the current work, we have relied on specific parame-

terized statistical distributions (e.g., binomial or Poisson as examined in Figs

3,4,5 or data binning or categorization in Section S3.2) or mechanistic distortion

models (e.g., integrated fluorescence intensity in Section S3.1, stochastic binding

kinetics in Section S3.3, or segmentation errors in Section S3.4) to formulate the

PDO. However, one could also envision parameter-free statistical methods based

on recent probabilistic machine learning methods (e.g., normalizing flows ([41])

for modeling the conditional distribution p(y|x) of a noisy label y given a vector

x of features. In either case, one would need only to calibrate the PDO once

for each combination of labeling, microscopy, and imaging techniques and then

one could to apply that PDO to many different biological processes, models,

parameter sets or experiment designs. For simplicity, we have assumed that

calibration data is available and that the PDO is constant in time. However, the

formulations of the PDO and FIM (Eqs. 3-7) are sufficiently general such that

these requirements can be relaxed. With these relaxations, the FIM could be

used either to guide experiment designs to aid the simultaneous identification of

both a parameterized PDO and the gene regulation model itself, or provide clear

guidance that such distortions lead to degeneracy in the FIM and indicate which

non-identifiable parameter combinations (i.e., the null space of the distorted
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FIM) are most in need of model reduction.

An important limitation of any model-based experiment design approach

is that to make predictions, one must have some prior knowledge about the

system under investigation. In the experimental example above, we used insight

gathered in a previous biological context (i.e., live-cell analyses of nascent

nascent transcription sites from [21]) to guess some model parameters (i.e., the

transcription burst sizes and frequencies), and we used general knowledge of the

cell line to guess other parameters (e.g., the half-life for mammalian mRNA). For

many single-cell optical microscopy investigations, such information is available

in advance, due to the fact that one must choose which genes or pathways to

investigate before designing smFISH probes or modifying cells and promoters to

express the MS2-MCP reporters, and this choice is typically based on experience

or previous investigations in the literature (e.g., on analyses of related genes

or pathways, in different environmental conditions, or with other exploratory

experimental techniques). However, for earlier stage exploratory investigations,

where such prior knowledge may not be available, one may need to collect some

preliminary data before building models (e.g., collect data for a small handful of

time points). In this case, computing the FIM after fitting to the first round

of experiments can help to elucidate which parameter sets of the models are

well-identified (i.e., vectors in parameter space corresponding to large eigenvalues

of the FIM after the initial experiment), which can be improved with different

experiment designs (i.e., vectors in parameter space that correspond to larger

eigenvalues of the FIM for different experiments), and which cannot be identified

for any experiment (i.e., vectors in parameter space that lie in the null space of

the FIM no matter what experiment is considered).

Although we have only considered one model in the main text for the current

investigation, the insight provided by the FIM could also be utilized to analyze

multiple candidate model structures, an important task that has previously

been explored under the assumption that smFISH yields exact measurements of

mRNA content [59, 37, 40]. As discussed above, the FIM is useful to identify and

prune highly-uncertain parameter combinations or remove unidentifiable model

mechanisms. For example, using the distorted FISH intensity measurements

at t=(0,300), the FIM analysis clearly shows that the burst frequency (log10 ω)

and burst size (log10 β) are jointly uncertain along the negative diagonal (Fig

7B, rightmost column), meaning that the average total production rate and

standard deviation (ωβ ≈ 1.04 ± 0.16s−1) could be well constrained, while the

individual parameters β = 5.0±5.8 and ω = 1.1±2.8 could not be independently
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identified. A similar observation holds using the MCP-GFP spot count data. In

both cases, without the constraint of the prior, this uncertainty would extend

to the limit where β is much less than one, at which point the proposed 3-

state model with parameters [kON, kOFF, ω, β, γ] reduces to an equivalent 2-state

model with parameters [kON, kOFF, kr ≈ ωβ, γ]. Indeed, Fig S11 shows that

this simpler model (Fig S11A) provides nearly (but not quite) as good fits to

the all data types when estimated from the t=(0,300) min data (Fig S11B,

left columns, compare fit likelihood and BIC values to Fig 7B), but these fits

have much less parameter uncertainty (Fig S11B, right columns). Moreover, for

the smiFISH mRNA counts, the MCP-GFP spot counts and the MCP-GFP

intensity data, the simpler model led to better predictions for the held out data

at t =18 min (Fig S11B, middle columns compare prediction likelihood values

to Fig 7B). Moving forward, if one’s goal were to differentiate further between

these or other competing hypotheses for model mechanisms, one could use FIM-

based experiment design to suggest conditions that promise strong uncertainty

reduction for several competing models at once. For example, Fig S12 shows

the variance reduction predicted for various possible experiment designs for

the reduced model. Comparing FIM analyses of potential experiment designs

to the results to the original model in Fig 8, we find that for all distortions,

experiments that reduce uncertainty for one model should also be effective for

the other. However, the purpose of the current study is only to introduce the

FIM+PDO formulation, and a complete analysis of the use of FIM insight for

model selection is left for future investigations.

Whether one starts with initial parameter and model structures guesses

from previous experimentation or based on a preliminary round of experiments,

subsequent model identification is most effective when pursued as an iterative

endeavor, requiring evaluation of uncertainty and model-driven experiment design

at each stage. For example, in our analysis of the HIV-1 reporter gene, initial data

at 0 and 300 min after Tpt revealed that the practical identifiability of parameters

depended heavily on which measurement was used. Assuming ideal measurements

(i.e., using smiFISH), Fig 8B shows that the model with (n=4) free parameters

could be identified to an log10-uncertainty volume of det(FIM−1) = 1.88×10−11

if we include the prior or det(FIM−1) = 1.91 × 10−11 if we do not include the

prior. However, using total FISH intensity, the model was much less certain

at det(FIM−1) = 6.39 × 10−9 with the prior or det(FIM−1) = 1.43 × 10−6

without the prior. Since the determinant of the n-parameter FIM scales with

the number of cells according to: det(αFIM) = αn det(FIM), it would take a
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factor of α = (1.43 × 10−6/1.91 × 10−11)1/4 = 16.6 times as many cells using

FISH-intensity to achieve the same accuracy as with the smiFISH mRNA data.1

Moreover, we also see that the optimal subsequent experiment design also depends

heavily on which measurement modality is used. For smiFISH experiments that

are assumed to be free from observation noise, the optimal next time point is

very late (t=696 min), whereas for the distorted observations, measurements

should be taken much earlier (e.g., at t=138 min for MCP-GFP spots, at t=0

min for FISH intensity, and at t=42 min for GFP intensity). Furthermore, in

the worse case, choosing the next experiment based on an incorrect assumption

for the PDO could lead to waste of experimental efforts – e.g., using the long

time as suggested by the smiFISH analysis would be almost entirely worthless if

used with one of the other measurements assays. The current study, which is

meant only to introduce the FIM and its use for experiment design, has limited

availability of experimental data (i.e., one replica with three time points) and

only for an artificial HIV-1 reporter construct. A full examination for the use of

FIM in iterative single-cell experiment design for endogenous gene regulatory

pathways is ongoing and will be described in future publications.

For the model under consideration to fit the HIV-1 promoter with the

128XMS2 stem-loop cassette, computing the CME solution took an average of

1.3s in Matlab on a 2019 MacBook Pro (2.6 GHz 6-Core Intel Core i7), computing

the FIM took an average of 40s (39.94s to solve the sensitivity to all parameters

and 0.06s to compute the FIM), and running the MH for 20,000 samples took

26,000s, thus the FIM estimates uncertainty roughly 650 times faster than

the MH. For use in experiment design, the cost savings provided by the FIM

can be much higher. Because one can reuse pre-computed sensitivities, the

computational cost is only 0.06s for each new experiment design (e.g., to explore

different numbers of cells, different PDOs, or different time point selections). In

contrast, using a traditional approach of generating and then fitting simulated

data (e.g., to generate MLE scatter plots as shown Figs 3C, 3D or S5), if one

liberally assumed that an experiment could be evaluated using only Ns =100

samples and that adequate fits could be achieved using only Nf =100 parameter

guesses (usually far more function evaluations are needed), then evaluating each

new experiment design would require one CME solution (1.3s) to generate data

1We note that total intensity is much easier to compute than spot detection and could in
principle be measured at lower microscope resolution or even with flow cytometry. Depending
upon available equipment, collecting 16.6 times as many cells could potentially be achieved at
a lower overall experimental cost!

27



and 1.3 ·Ns ·Nf = 13,000s to fit those data (217,000 times longer than the FIM

approach). Given a priori uncertainty in the model, in practice one would need to

redo both the FIM analysis (40s + 0.6s per experiment) or the simulation-based

analysis (13,000s per experiment) for many different parameter sets or model

structures (e.g., we show results from 20 parameter combinations in Figs 8A and

S12A), and the savings provided by the FIM becomes even more important.

Finally, although the presented approach is versatile and can in principle

be applied to any stochastic gene regulatory network, its practical use depends

on the ability to compute a reasonable approximation to the solution of the

chemical master equation (CME) as well as its partial derivatives with respect

to model parameters. Fortunately, there are now many relevant stochastic gene

expression models for which exact or approximate analytical expressions for the

CME solution are available ([61, 77, 85, 33, 10, 90]). Furthermore, the FSP

and similar approaches have been used successfully to solve the CME for many

non-linear and time-inhomogeneous regulatory models for which closed-form

solutions do not exist ([80, 15, 51, 59, 79, 75]). For example, SI Section S4

analyzes a model of the nonlinear genetic toggle switch, and the FIM and PDO

analysis is used to ask which species should be measured and for how many cells

in order to best identify model parameters. As another example, SI Section S5

analyzes a spatial stochastic model with a four-state gene expression model under

time varying MAPK activation signal and nucleus to cytoplasmic transport[57].

Admittedly, given the complexity of gene regulatory networks in single cells, there

will always be stochastic gene regulatory models whose direct CME solutions

are beyond reach. Nevertheless, continued advancements in computational

algorithms ([38, 9, 29, 49, 11, 30, 60]) are enlarging the set of tractable CME

models, which in turns can help accelerate the cycling between data acquisition,

model identification, and optimal experiment design in single-cell studies.
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Pressé. Gene expression model inference from snapshot rna data using

bayesian non-parametrics. Nature Computational Science, pages 1–10, 2023.

[41] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing

flows: An introduction and review of current methods. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 43(11):3964–3979, 2021.

[42] Micha l Komorowski, Maria J. Costa, David A. Rand, and Michael P. H.

Stumpf. Sensitivity, robustness, and identifiability in stochastic chemi-

cal kinetics models. Proceedings of the National Academy of Sciences,

108(21):8645–8650, May 2011. Publisher: National Academy of Sciences

Section: Biological Sciences.

[43] Clemens Kreutz and Jens Timmer. Systems biology: Experimental design.

The FEBS Journal, 276(4):923–942, 2009.

[44] Jeffrey C Lagarias, James A Reeds, Margaret H Wright, and Paul E Wright.

Convergence properties of the nelder–mead simplex method in low dimen-

sions. SIAM Journal on optimization, 9(1):112–147, 1998.

[45] Anton J. M. Larsson, Per Johnsson, Michael Hagemann-Jensen, Leonard

Hartmanis, Omid R. Faridani, Björn Reinius, Åsa Segerstolpe, Chloe M.
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Tables

Table 1: smiFISH probe sequences. Each primary probe has an added
common FLAP-Y binding sequence (TTACACTCGGACCTCGTCGACATGCATT)

Probe name Sequence Type

MS2-P1 ATCCGTTCAAAGGCCTATTGGTCCTTTGC Primary
MS2-P2 ATCCTCATGTACTAGCTTCCGAGTAATCT Primary
MS2-P3 AGCTTGGGTTATTACTCCAAGATCACCGC Primary
MS2-P4 TCCTGATAGGCTGTACTCATGCCTAC Primary
MS2-P5 GGGTAATCATTCTAGTGATATGATTCTGTGCC Primary
MS2-P6 GATCATACCGTATTCGTGTATGATTACATGGG Primary
MS2-P7 TAATTGTGCGGTCGCTGACTGATACTTCTA Primary
MS2-P8 TATTTCTCTCTGATACGCTGCGTACTCG Primary
MS2-P9 ACCCTAATGGTGTTTACAAATGGTGGTAGTCC Primary
MS2-P10 TGTTATTCTAATCCGTCACTATTGTTGACGGG Primary
MS2-P11 AAGCCTTACTGATGCTTCCGGTCCATT Primary
MS2-P12 ATCCTCATGTACTAGAGGCTCGGTACTC Primary

FLAP Y-Cy5 AATGCATGTCGACGAGGTCCGAGTGTAA Secondary
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Parameter True MLE fits Mean (Std) MLE fits rel. RMSE

Corrected Uncorrected Corrected Uncorrected

log10(kOFF ) −1.30 −1.30 ( 1.02 × 10−2) −1.27 ( 1.15 × 10−02) 7.87 × 10−3 2.83 × 10−2

log10(kON ) −1.82 −1.82 ( 2.16 × 10−2) −2.07 ( 2.30 × 10−2) 1.18 × 10−2 1.37 × 10−1

log10(kr) 0.699 0.698 ( 8.73 × 10−3) 0.526 ( 9.19 × 10−3) 1.25 × 10−2 2.48 × 10−1

log10(γ) −1.30 −1.30 ( 1.06 × 10−2) −1.15 ( 10−2) 8.18 × 10−3 1.14 × 10−1

Table 2: Performance of the maximum likelihood estimator (MLE) for estimating
bursting transcription kinetic parameters. The third and fourth columns compare
the mean and standard deviation of fits with and without PDO correction (labeled
Corrected and Uncorrected, respectively). The final two columns compare the
relative root-mean-squared errors (RMSEs) of these fits. For a quantity of
interest q and its n estimated values q̂i, i = 1, . . . , n, we define the relative

RMSE as

√∑n
i=1(q̂i−q)2

|q| .
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Table 3: Parameter priors, MLE estimates, Uncertainties upon Initial
Fit. Initial estimates after fitting to data at t =(0,300) min. MH results are
from a chain of 20,000 samples. All parameter values and standard deviations
values are shown in log10.

Parameter Quantity Prior smiFISH MCP-GFP Spots FISH Intens GFP Intens

kOFF (s−1)

log10(λ) -4.0 -4.215 -3.852 -3.840 -4.619

σp/MH 2.0 0.091 0.083 0.069 1.160

σFIM 2.0 0.071 0.060 0.070 0.308

ω (s−1)

log10(λ) -0.70 -2.173 -0.357 -0.505 -1.205

σp/MH 1.0 0.117 0.462 0.559 0.752

σFIM 1.0 0.077 0.356 0.475 0.335

β (s−1)

log10(λ) 0.85 2.110 0.710 0.524 1.262

σp/MH 1.0 0.104 0.451 0.556 0.428

σFIM 1.0 0.069 0.379 0.438 0.307

γ (s−1)

log10(λ) -2.2 -2.191 -1.965 -2.283 -2.036

σp/MH 1.0 0.031 0.043 0.053 0.695

σFIM 1.0 0.034 0.028 0.053 0.078
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Table 4: Parameter priors, MLE estimates, Uncertainties upon Final
Fit. Final estimates after fitting to data at t =(0,18,300) min. MH results are
from a chain of 20,000 samples. All parameter values and standard deviations
values are shown in log10.

Parameter Quantity Prior smiFISH MCP-GFP Spots FISH Intens GFP Intens

kOFF (s−1)

log10(λ) -4.0 -4.245 -3.734 -3.711 -4.761

σp/MH 2.0 0.066 0.050 0.063 0.962

σFIM 2.0 0.066 0.045 0.060 0.506

ω (s−1)

log10(λ) -0.70 -2.318 -0.105 -0.891 -0.591

σp/MH 1.0 0.066 0.478 0.533 0.396

σFIM 1.0 0.071 0.368 0.373 0.247

β (s−1)

log10(λ) 0.85 2.194 0.453 0.834 1.467

σp/MH 1.0 0.059 0.476 0.522 0.317

σFIM 1.0 0.057 0.427 0.454 0.227

γ (s−1)

log10(λ) -2.2 -2.200 -1.980 -2.322 -1.186

σp/MH 1.0 0.035 0.034 0.061 0.101

σFIM 1.0 0.036 0.028 0.062 0.072
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Figure captions



Figure 1: Proposed approach to analyze and design single-cell experi-
ments under measurement distortion. Box (A): One or more mechanistic
model hypotheses are proposed to describe gene regulation processes and are
associated with prior parameter guesses. These models are combined with exper-
iment design considerations (e.g., environmental, sampling, and measurement
conditions) and the chemical master equation framework is used to predict
statistics of single-cell gene expression. Box B: Empirical data and physical
models are used to define a probabilistic distortion operator C to estimate how
measurement errors (e.g., labeling inefficiencies, resolution limitations, or image
processing errors) affect observations. Box C: Searches over model and PDO
parameter space are conducted to identify model and parameter combinations
that maximize the likelihood of the observed (i.e., distorted) data. Box D:
Sensitivity analysis and the Fisher Information Matrix are computed and used
to analyze the information content for different mechanistic models, distortion
effects, or experiment designs. By estimating parameter uncertainties in the
context of different forms of measurement distortion, subsequent experiment
designs can help to alleviate measurement noise distortion effects (return to
Boxes A, B, and C).



Figure 2: Probabilistic distortion operators. (A) The “Missing Spots”
(MS) distortion model, where spots can randomly go missing. (B) The “Missing
Spots with Variable Rate” (MSVR) distortion, where the probability of missing
a spot increases with spot density. (C) The “Poisson Noise” (PN) model, where
false positive spots are added to the counted number of spots. (D) A “Poisson
Observation” (PO) model, where the detected spots follow a Poisson distribution
with mean proportional to the true number. (E) The “Integrated Intensity” (II)
model, where only a perturbed version of the total fluorescence is recorded per
cell. In each heat map, the color at point (x̃, ỹ) is the conditional probability
mass/density of the measurement y having value ỹ given that the true copy
number x has value x̃.



Figure 3: Estimating and correcting for how measurement distortion
affects model identification. (A): Schematic of the random telegraph
gene expression model. Parameter values: gene activation rate kON = 0.015
events/minute, gene deactivation rate kOFF = 0.05 events/minute, transcription
rate kr = 5 molecules/minute, degradation rate γ = 0.05 molecules/minute. (B):
A submatrix of the PDO for missing spots with varying rates, restricted to the
domain {0, . . . , 200} × {0, . . . , 100}. (C) and (D): Maximum likelihood fits to
validate FIM-based uncertainty quantification for observed mRNA distributions
under distortion model shown in (B). We simulated 1, 000 datasets and perform
maximum likelihood fits to these datasets using either a likelihood function that
ignores measurement noise (red, labeled ‘MLE with uncorrected likelihood‘),
or one whose measurement noise is corrected by incorporating the PDO (dark
green, labeled ‘MLE-PDO fits‘). The estimated density contours (delineating 10,
50, and 90 -percentile regions) of the fits are superimposed in light shades. Also
displayed are the three-sigma confidence ellipses computed by the FIM-PDO
approach or from sample covariance matrix of the corrected MLE fits. Panel
(C) shows the results in log10(kOFF ) − log10(kON ) plane, while panel (D) shows
them in the log10(kr) − log10(γ) plane. The intersection of the thick horizontal
and vertical lines marks the location of the true data-generating parameters.
See Table 2 for a quantitative comparison between the uncorrected MLE and
MLE-PDO.



Figure 4: Optimizing experiment sampling rate under different mea-
surement distortion effects. (A): Comparison of D-optimality criteria in
single-cell experiments with different types of measurement noise and at different
sampling intervals (∆t). In this settings, independent measurements are collected
at five equally-spaced time points k∆t, k = 1, 2, 3, 4, 5 with 1000 measurements
placed at each time-point. The ⋆ symbol marks the optimal point of each
curve and the bar charts in (B) visualizes the relative differences in D-optimal
achievable by the measurement methods at their respective optimal sampling
rates. (C) and (D): The three-sigma confidence ellipses projected onto the
log10(kON ) − log10(kOFF ) and log10(kr) − log10(γ) planes. These ellipses are
computed by inverting the FIMs of different measurement noise conditions at
their optimal sampling rates. All analyses use the model and parameters from
Fig 3.



Figure 5: Effect of labeling strategy on single-cell mRNA expression
quantification. A) Example image of a single-cell population expressing a
reporter gene controlled by an HIV-1 promoter and containing 128XMS2 stem-
loop cassette, in which the mRNA was simultaneously measured using MCP-GFP
labeling (green) and with smiFISH probes against MS2-Cy5 (magenta). A higher
resolution image of the indicated single nucleus is shown at the top; merged
image on the right includes DAPI and MemBrite cell surface stain 543/560 to
denote the cell nucleus and plasma membrane, respectively. Triangles denote
example mRNA that are detected in both channels (white, 34.8%), only in the
MCP-GFP channel (green, 37.5%) and only in smiFISH (MS2-Cy5) channel
(magenta, 27.7%). B) BIC of different combinations of PDO (columns) and
measurement type (rows) given an assumed ‘true’ measurement of smiFISH
mRNA. In all cases, PDO parameters are chosen to maximize likelihood for t =
0 and 300 min data, and t =18 min is predicted without changing parameters.
Blue shading denotes PDO selection is identical if based on BIC for (0,300)
min data or prediction of 18 min data. C) Scatter plot of the spot count using
MCP-GFP versus using smiFISH for data collected at t =0 min (black squares).
Shading and contour lines denote the levels of the PDO (log10 C) determined
empirically from the data. D,E) Empirical probability mass (D, bin size = 20)
and cumulative distributions (E, no binning) for smiFISH spot count (red) and
MCP-GFP spot count (blue). Predicted MCP-GFP spot distributions using
the smiFISH spot measurements and the estimated PDO are shown in green.
F-H) Same as (C-E) but for the total integrated intensity measurement of the
smiFISH channel. I-K) Same as (C-E) but for the total integrated intensity
measurement of the GFP channel.



Figure 6: Validation of PDO on held out data. A) Scatter plot of smiFISH
spot counts and MCP-GFP spot counts for data collected at t =18 min and
contour of PDO determined from data at t = (0, 300) min. B,C) PDF (bin
size = 20) and CDF for smiFISH mRNA detection (red) or with MCP-GFP
(blue) and MCP-GFP-based PDO-prediction of total mRNA (green). D-F)
Same format as (B-D) but for measurements of the total smiFISH fluorescence
intensity per cell.G-I) Same format as (B-D) but for measurements of the total
GFP fluorescence intensity per cell.



Figure 7: Identification of stochastic model for MS2X128 cassette-
tagged HIV-1 reporter gene. (A) Schematic of the 3-state bursting gene
expression model. (B) Results for model fitting, prediction, and uncertainty
quantification for measurements based smiFISH spots (top row), MCP-GFP
spots (row 2), total FISH intensities (row 3) and GFP intensities (row 4). Left
two columns show the measured and model-fitted probability mass vectors (PMV)
at 0 and 300 min after 5µM Tpt. Third column shows the model-predicted
and measured PMV for the corresponding (distorted) measurement modality
at 18 min after 5µM Tpt. Fourth column shows the model prediction without
distortion and measured PMV for the smFISH mRNA count at 18 min after
5µM Tpt. All histograms use a bin size of 20. Log-likelihood values for all
model-data comparisons (and BIC values for fitting cases, k = 4 parameters, N =
197 cells) are computed without binning and are shown below the corresponding
histograms. Right two columns show joint parameter uncertainty for model
estimation using data for 0 and 300 min after 5µM Tpt. In each case, the 90%
CI for prior is shown in cyan; Metropolis Hastings samples (N = 20,000) are
shown in dots; 90% CI for posterior is shown in dashed magenta; and FIM-based
estimate of 90% CI is shown in black. Horizontal and vertical dashed black lines
denote the “true” parameters and are defined as the MLE when using fit to
the smFISH counts and using all time points. Determinant of inverse FIM and
covariance of MH samples is shown below each pair of uncertainty plots (both
use log base 10).



Figure 8: Design of Subsequent Experiment for MS2X128 cassette-
tagged HIV-1 reporter gene. (A) Expected volume of uncertainty
(det(FIM−1)) versus time of third measurement assuming 100 cells and mea-
surement of: (left to right) smiFISH mRNA, MCP-GFP spots, FISH intensity,
or GFP intensity. Solid lines and shading denote mean ± SD for 20 parameter
sets selected from MH chains after fitting initial data (magenta, t =(0,300) min)
or final data (cyan, t =(0,18,300) min). Cyan and magenta vertical lines denote
the optimal design for the third experiment time assuming the corresponding
parameter values. (B) Expected volume of MLE uncertainty (det(FIM−1)) for
different sets of experiment times and measurement modalities and averaged
over 20 parameters sets sampled from the MH chains for initial fit (magenta) or
final parameter estimates (cyan). (C) Volume of MLE uncertainty (det(ΣMH)
estimated from MH analysis in the same experiment designs as B. (D) Posterior
variance versus FIM prediction of variance for each parameter (symbol key
at bottom right), for each measurement modality (different columns) and for
analyses based on different sets of data: t =(0,18) min (black), t =(0,300) min
(magenta), or t =(0,18,300) min (cyan). All MH analyses contain 20,000 samples.
Measurements include 135 cells at t = 0, 96 at t = 18, and 62 at t = 300.
Parameter uncertainties defined in log base 10 for all panels.
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