

USING MECHANISTIC MODELS AND MACHINE LEARNING TO DESIGN SINGLE-COLOR MULTIPLEXED NASCENT CHAIN TRACKING EXPERIMENTS

William S. Raymond ¹, Sadaf Ghaffari ², Luis U. Aguilera ³, Eric Ron ¹, Tatsuya Morisaki ⁴,
Zachary R. Fox ^{1,5}, Michael P. May ¹, Timothy J. Stasevich ^{4,6}, and Brian Munsky ^{1,3,*}

December 3, 2023

¹School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA

²Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA

³Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA

⁴Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA

⁵Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

⁶Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan

* Corresponding Author: Brian Munsky - brian.munsky@colostate.edu

ABSTRACT

mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Through simulation, we show that with careful application, this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. The proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell signalling applications requiring simultaneous study of multiple mRNAs.

Keywords: mRNA translation, Nascent chain tracking, Single-cell experiment design, Stochastic simulation, Machine learning, Totally asymmetric simple exclusion process

1 1 Introduction

2 mRNA translation is the process of reading messenger RNA strands to create functional proteins and is a crucial underpinning of
3 known cellular life. With such a vital role, mRNA translation has been the subject of intense study over the past decades (Neelagandan
4 et al., 2020; Das et al., 2021; Knight et al., 2020; Basyuk et al., 2020). Despite the focus, the effects that cellular signals have on the
5 translation of individual mRNA molecules remains elusive due to two key factors: the staggering amount of dynamics, mechanisms,
6 and modifications affecting the *in vivo* mRNA transcriptome heterogeneity and the limitations of experimental techniques that can
7 accurately and informatively probe these dynamics molecule-by-molecule and in a time-resolved manner. Previous methods used
8 to probe mRNA translation dynamics such as ribosomal footprinting (Brar and Weissman, 2015; Ingolia, 2016), RNA-seq (Wang
9 et al., 2009; Stark et al., 2019; Chen et al., 2019), proteomics/protein abundances (Aslam et al., 2017; Gorgoni et al., 2016), and
10 smFISH (Pichon et al., 2018; Cui et al., 2016) provide snapshot bulk data in high quantity, at the detriment of obscuring the temporal
11 dynamics of individual mRNA molecules. Pulsed SILAC, PUNch-P, BONCAT/QuaNCAT allowed mass spectrometry quantification
12 of recently translated protein abundances via treatment with noncanonical amino acids (Howden et al., 2013; Eichelbaum et al.,
13 2012). Methods such as FUNCAT/SUnSET bridged the gap of detecting active mRNA translation as well as subcellular location by
14 labeling nascent peptide chains and imaging in fixed cells (Dieck et al., 2012; David et al., 2012). FUNCAT-PLA and Puro-PLA then
15 provided spatial resolution and imaging of the recent protein production via detection with a proximity ligation assay (PLA) (Dieck
16 et al., 2015). Despite their innovations, these techniques require fixation or lysis of the cells of interests. As a consequence, none
17 of these methods are able to capture long-term temporal imaging of translation at a single-molecule level of the same mRNA
18 molecules (Chekulaeva and Landthaler, 2016).

19 Since 2016, Nascent Chain Tracking (NCT) has provided experimentalists with a technique to study single, actively translating
20 mRNA transcripts and quantify their dynamics with the use of a dual fluorescent labeling system (Cialek et al., 2020; Pichon
21 et al., 2018; Morisaki et al., 2016; Wu et al., 2016; Yan et al., 2016; Pichon et al., 2016). The key to this technique is multiple
22 epitope sequences that are placed on a tag within the coding region of the studied mRNA; After this tag region is translated,
23 fluorophore-conjugated intrabodies bind to the growing nascent polypeptide chain resulting in an amplified fluorescent spot. After
24 translation is completed, fluorescently-tagged single proteins are free to diffuse away. The mRNA molecule is tagged in the 3'
25 untranslated region with a hairpin loop repeat system recognized by fluorophore-conjugated MS2 or PP7 coat proteins, conferring a
26 constant intensity in a separate color channel for tracking purposes. The combination of these two elements gives a co-localized,
27 diffraction-limited, two-color spot trajectory denoting an mRNA location and a live nascent chain activity readout. NCT has
28 been utilized to investigate many processes of interest such as mRNA frameshifting (Lyon et al., 2019), mRNA IRES-mediated
29 translation (Koch et al., 2020), mRNA decay (Horvathova et al., 2017; Hoek et al., 2019), translation suppression during cellular
30 stress (Moon et al., 2019), and mRNA spot to spot heterogeneity (Boersma et al., 2019). NCT has also proven beneficial to extract
31 important biophysical parameters, including elongation rates, initiation rates and ribosomal densities (Morisaki et al., 2016; Wu et al.,
32 2016; Yan et al., 2016; Pichon et al., 2016), and microRNA mediated decay (Kobayashi and Singer, 2022; Cialek et al., 2022).

33 Notwithstanding NCT's current adoption and importance, application of NCT to understand how different cellular signals affect
34 translation of different mRNA is currently prevented by strong limits on the fluorophore color palette. Currently, only three or four
35 resolvable colors exist in most microscope settings; one color is dedicated to tracking the mRNA, leaving only two or three resolvable
36 colors to design experimental setups and constructs. Use of too many fluorescent probes with similar emission spectra leads to
37 imaging issues such as light bleed through into each channel. Additional laser wavelengths also limits the frame rates that one can
38 utilize due to the time required to switch laser or filters between each frame. While this has not proven detrimental to previous NCT
39 experiments that have explored one (Morisaki et al., 2016; Yan et al., 2016; Wu et al., 2016) or two (Lyon et al., 2019; Boersma
40 et al., 2019; Koch et al., 2020) translation products at a time, there is an anticipation that this limitation will become a roadblock for
41 designing future, more elaborate experiments, particularly for processes involving differential control of multiple mRNAs under
42 cellular stimuli. Specifically, we speculate that the current form of NCT technology has already reached its peak in experiments
43 where two different genes are correctly detected and differentiated on the same cell (Lyon et al., 2019; Koch et al., 2020; Boersma
44 et al., 2019).

45 Recently, machine learning has enjoyed an explosion of applications in biological and biomedical imaging contexts (Tchapga
46 et al., 2021; Haque and Neubert, 2020). Convolutional neural networks have achieved the state-of-the-art performance on a wide
47 variety of classification tasks such as speech recognition (Palaz et al., 2015), computer vision (Jarrett et al., 2009), natural language
48 processing (Liao et al., 2017), and in myriad biomedical contexts (Zhu et al., 2018; Feeny et al., 2020). For the purpose of our work,
49 we utilize 1D convolutional neural networks to classify signals from two mRNA species recaptured from a realistic noise model
50 and realistic mRNA translation model. One dimensional convolutional neural networks (CNNs) are well equipped to handle 1D

51 signals for classification and see frequent use for applications across the biomedical field such as ECG (Murat et al., 2020) and EEG
52 signals (Xie and Oniga, 2020).

53 Applying machine learning to NCT experiments cannot be done outright as of time of writing due to a lack of large and
54 standardized data sets, and it is not clear exactly how much data, and under which conditions, would be needed to build successful
55 classifiers. To more efficiently explore these questions, we generate large sets of realistic NCT experiment simulations using a
56 new pipeline, as detailed below. In brief, translation of nascent proteins and their corresponding Fluorescent intensity signals are
57 modeled with a codon-dependent Totally Asymmetric Simple Exclusion Process (TASEP) to consider elongation rate changes due to
58 codon selection along each mRNA transcript, as well as ribosomal collisions. In this paper, we use our previously described mRNA
59 translation mechanistic model—a full comprehensive explanation of this model and its parametrization can be found in (Aguilera
60 et al., 2019). Fluorescent intensity signals from the mechanistic model are then combined with our realistic video rSNAPed pipeline,
61 which applies a point spread function and adds a simulated cell background with microscope noise calibrated from real videos.
62 mRNA molecules freely diffuse with a set diffusion rate within the simulated cell mask to simulate Brownian motion. The resulting
63 intensity from the simulated videos are then processed as if they were real images to generate “simulated nascent chain tracking”
64 data. Through this means, we construct a controllable “experiment” whose measurement is a corrupted fluorescent signal, where we
65 can easily control various factors such as signal-to-noise ratio (SNR), spot size, diffusion rates and mechanisms, mRNA initiation
66 and elongation rates, and imaging conditions (frame rate / frame interval and number of frames taken).

67 In this paper, we use these simulations to demonstrate that high classification accuracy is achievable in principle using a machine
68 learning approach across a large range of biophysical and experimental parameters, even if two mRNAs are utilizing identical tagging
69 approaches and fluorescent colors. To extend NCT color palette, our computational pipeline of mRNA translation modeling, spot
70 simulation, spot tracking, and machine learning uses as features various statistics of the spot’s intensity fluctuations, such as their
71 moments, relative intensity ratios, and decorrelation times to discriminate between different mRNA species. This type of “temporal
72 multiplexing” could radically expand the number of mRNAs imaged in a cell. Different color fluorophores could be held in reserve
73 for mRNAs whose characteristics are too similar to each other, or eschewed altogether to increase microscope imaging speed and
74 decrease experiment cost. The entire pipeline can be used to explore potential NCT experimental designs without using valuable lab
75 time and resources. We envision that the proposed model-based strategies to tag multiple mRNAs using single color tags will add
76 new possibilities for future experimental NCT investigations.

77 2 Methods

78 2.1 Simulated NCT experiment pipeline

79 Figure 1 graphically describes the current study’s computational pipeline, which combines the RNA Sequence to NAscent Protein
80 SIMulator (rSNAPsim) and rSNAP Experiment Designer (rSNAPed) scientific libraries to generate synthetic training and testing data
81 sets for multiple experimental conditions. rSNAPsim is a Python module that provides simulated fluorescent intensity traces from a
82 given mRNA transcript using a codon-dependent TASEP to simulate ribosomal elongation (Aguilera et al., 2019). This mechanistic
83 model for translation assumes two parameters: the ribosomal *initiation rate*, k_i , is defined as the average number of ribosomes to
84 initiate translation per second, assuming that other ribosomes are not blocking the initiation site. The *elongation rate*, k_e is defined
85 as the global stepping rate (aa/s) averaged over all coding regions in the genome, again assuming no ribosome-to-ribosome exclusion.
86 Because the actual local stepping rates depend the specific codon usage of an mRNA, and because rSNAPsim includes a 9-codon
87 ribosome exclusion footprint that prevents two ribosomes from occupying the same site at the same time, the effective stepping rate
88 for each mRNA is based on the specific sequence of the mRNA. For full details on the rSNAPsim model, including calculations
89 for the individual codon elongation rates, see (Aguilera et al., 2019). We have shown previously that the rSNAPsim module can
90 reproduce much of the fluctuation statistics observed in NCT translation experiments (Aguilera et al., 2019; Lyon et al., 2019; Koch
91 et al., 2020). However, the movement of NCT spots across the cell background can lead to large drops in intensity when, for example,
92 a spot leaves a bright nuclear region and enters a dimmer cytoplasmic region. These movements from areas of high to low or low to
93 high backgrounds cause intensity fluctuations that are not due to the translation process itself but are, nevertheless, always present in
94 real experimental data.

95 rSNAPed is a second python module that accounts for artifacts of microscopy, motion relative to a heterogeneous cellular
96 background, and image processing effects. rSNAPed combines the rSNAPsim model intensity prediction with a point spread function,
97 a controllable signal-to-noise ratio, simulated cellular background based on experimental video of non-labeled cells, and simulated

NCT Experiment Design

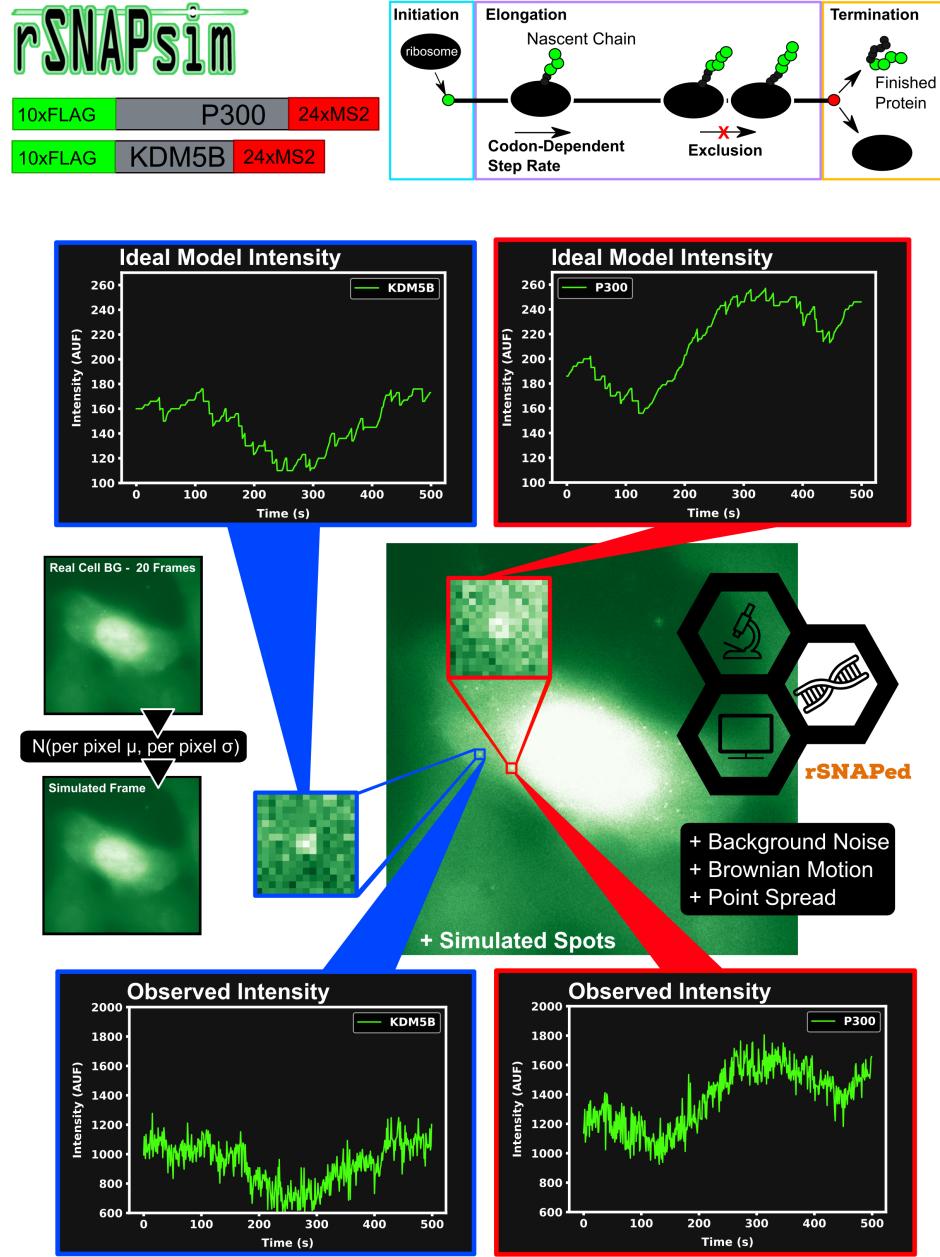


Figure 1: Overview of approach to simulate Nascent Chain Tracking data and assign labels. rSNAPsim provides simulated NCT fluorescent intensity trajectories from a codon-dependent TASEP model for each mRNA spot. rSNAPed adds experimental spatial movement (Brownian motion) and temporal noise by introducing a point spread function for each spot. Simulated cell background frames are generated randomly from a per pixel Gaussian distribution with their means and standard deviations taken from 20 frames of real blank cell backgrounds. Spots in videos are processed with the disk and doughnut method to generate simulated NCT intensity data.

98 motion for the NCT spots. To create a video for any length of time, rSNAPed takes 20-frame videos from one of seven unlabeled
 99 cells, randomly rotates and flips the videos and uses pixel-by-pixel statistics to formulate distributions from which to generate new
 100 simulated frames. Specifically, for each simulated frame, rSNAPed uses each pixel's empirical mean and standard deviation to draw

101 a new Gaussian distributed value for the respective pixel¹ Supplemental Figure S1 provides a comparison of real cell background
 102 video and a simulated video from rSNAPed. Simulated mRNA spots are added to this cell background by simulating a point spread
 103 function on a 3x3 pixel patch, which is centered at a position that moves according to Brownian motion. After simulating the NCT
 104 experiment, videos are processed to find intensity trajectories using the “disk and doughnut” method (Lyon et al., 2019), where the
 105 instantaneous signal is quantified as the difference between the average of the disk (3x3 patch centered at the spot) compared to the
 106 average of the doughnut (9x9 patch excluding the 3x3 disk patch). Units of intensity are reported as “units of mature protein” or UMP,
 107 which is calculated as the number of complete epitope tags in the NCT spot (i.e., if a simulation has two ribosomes downstream of a
 108 10xFLAG tag and one halfway through the tag, the intensity at that time is 25 epitopes or 2.5 UMP).

109 The combination of rSNAPsim and rSNAPed allows generation of vast amounts of synthetic video in different situations (e.g.,
 110 for different mRNA sequences, different biophysical parameters, and different imaging conditions) that can match the translation
 111 statistics and spatial heterogeneity that an NCT spot would experience as it moves around a cell. For each mRNA in each condition,
 112 we generate 2500 simulated NCT trajectories (5000 total trajectories for two mRNA types in the same video). These trajectories
 113 are collated from 100 independent NCT simulated cells, each containing 25 spots of each mRNA for 3000 seconds at one second
 114 resolution (25 spots \times 2 classes \times 100 cells = 5000 total NCT spots for 3000 seconds). Smaller data sets can be generated as needed
 115 from these full length data sets by slicing the 1 second \times 3000 frame video trajectories to the desired frame interval and number of
 116 frames.

117 By generating such data for multiple different potential experimental conditions, we can train and test our machine learning
 118 methods to ascertain which feasible experimental conditions are most favorable to allow for successful classification.

119 **2.2 Machine Learning**

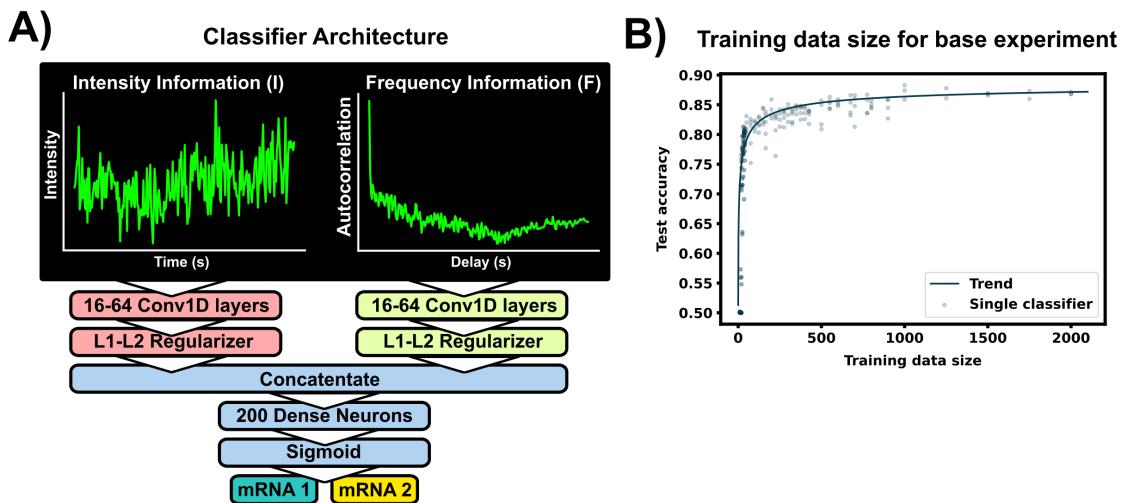


Figure 2: **Machine learning to classifier mRNA spots** (A) The ML model consists of two separate convolutional layers – one receiving a normalized fluorescent trajectory and the other an intensity autocorrelation. The filter outputs are regularized and concatenated for a dense layer of 200 neurons for classification. Fundamentally, this architecture learns off frequency and intensity information from the NCT trajectory. B) Accuracy of the architecture for different training data sets. A total of 4000 unique spot trajectories were split into 2-10 independent training data sets of the specified size. A classifier was trained with each training data set and tested on the same withheld validation set of 1000 NCT spots. A trend-line was added by fitting a Hill function to the test accuracy average across 15 bins in training data size ($y = 0.5 + \frac{0.39}{1 + (6.336/x)^{.521}}$). The architecture was applied on simulated P300 and KDM5B trajectories from the selected base experimental condition (5s frame interval, 64 frames, 0.06 1/s initiation rate, 5.33 aa/s elongation rate).

¹Problem pixels that have extremely large standard deviations (e.g., for a video where a given pixel’s intensity becomes extremely bright for one randomly-timed frame) are corrected to the 95th percentile of all pixels’ standard deviations.

Hyperparameter	Variable range
kernel size	1x3, 1x5, 1x7
number of kernels	16, 32, 64
batch size	16, 32, 64
epochs	50, 100

Table 1: Hyperparameter optimization grid

120 Figure 2A shows the machine learning architecture used to classify mRNA spots. Given two different mRNA species in the
 121 same cell and NCT observations that rely on identical tags, one could attempt to classify the mRNA based on their intensity signals,
 122 their particle sizes, or their x, y, and z coordinates over time (with z having poorer resolution than x and y). Of these, we focus on
 123 intensity signals, which contain both statistical moments, such as the signal means and variances, as well as signal frequency content,
 124 similar to that which could be obtained with methods like spectrogram analysis or fluctuation correlation spectroscopy (FCS). We
 125 apply convolutional neural networks to classify the NCT simulation data based on one or both types of signal intensity inputs. First,
 126 to prioritize extraction of features related to intensity statistics, we use min-max normalization of all intensity signals in the same
 127 video. Let $I_i(t)$ denote the intensity for spot $i \in (1, 2, \dots)$ and at frame number $t \in [0, 1, \dots, T - 1]$ that has been collected from a
 128 given NCT experiment or simulation video. Define I_{\max} and I_{\min} as the maximum and minimum spot intensities across all spots
 129 and all times in the video:

$$I_{\max} = \max_{i,t} I_i(t), \text{ and } I_{\min} = \min_{i,t} I_i(t). \quad (1)$$

130 The min-max normalization of each signal, $I_{i,\text{norm}}$, which scales features from zero to one for later convenience in machine learning,
 131 is computed as:

$$I_{i,\text{norm}}(t) = \frac{I_i(t) - I_{\min}}{I_{\max} - I_{\min}}. \quad (2)$$

132 Second, to prioritize features related to fluctuation frequencies, we use the normalized empirical auto-correlation function for each
 133 spot, $G_i(\tau)$, which is defined as the sample covariance between the signal fluctuation at frames t and $t + \tau$, is calculated as:

$$G_i(\tau) = \frac{1}{T - 1 - \tau} \sum_{t=0}^{T-1-\tau} \left(\frac{I_i(t) - \mu_i}{\sigma_i} \right) \left(\frac{I_i(t + \tau) - \mu_i}{\sigma_i} \right), \quad (3)$$

134 where t is an index corresponding to the frame number, τ is the correlation lag time; T is the total number of frames; and μ_i and σ_i
 135 are the i^{th} signal's trajectory average and standard deviation, respectively (Morisaki et al., 2016; Coulon and Larson, 2016).

136 The normalized inputs from Equations 2 and 3 are each passed to their own separate convolutional 1D layer and subsequent
 137 max pooling layer for feature extraction. For convenience, the two convolutional layers have the same size filter kernels and
 138 amount of filters. The extracted feature vectors from each input are concatenated and passed into one fully connected layer with a
 139 cross-entropy objective to classify the mRNA. The entire network (2 conv1D, 2 maxpooling, 1 dense) was trained end to end, and
 140 elastic net regularization is used to reduce over-fitting (Zou and Hastie, 2005). During training, data was split with an 80:20 ratio into
 141 training and testing sets, and training was performed with a 3-fold cross validation using a random search to select hyperparameters.
 142 Specifically, we searched over the possible combinations of options listed in Table 1 (Bergstra and Bengio, 2012), and selected the
 143 hyperparameter set that maximized validation accuracy. After training and hyperparameter selection, the final architecture was tested
 144 on the 20% withheld test data to quantify the model performance on unseen data.

145 2.3 Hardware

146 All machine learning experiments were done with TensorFlow 2.2.0 on 2x NVIDIA Geforce 2080 Supers. Simulated NCT
 147 experiments were generated on an AMD Ryzen Threadripper 3970X 32-Core Processor utilizing 8 threads for each simulated NCT
 148 experiment generation.

149 Time for generating one 5000 spot NCT experiment with base experimental conditions: $\approx 2\text{h } 44\text{m}$

150 Time for generating one 50-spot cell with base experimental conditions (short output + not saving video): ≈ 197 seconds

151 **2.4 Microscopy**

152 The seven background videos used for video generation in the rSNAPed were captured using a custom-built wide-field fluorescence
153 microscope with a highly inclined illumination regime with 488, 561, and 637 nm excitation beams (Vortran) ((Tokunaga et al., 2008;
154 Morisaki et al., 2016)). An objective lens of 60X, NA 1.49 oil immersion, Olympus, was used. The emission signals were split by an
155 imaging grade, ultra-flat dichroic mirror (T660lpxr, Chroma) and detected using two separate EM-CCD (iXon Ultra 888, Andor)
156 cameras via focusing with 300 mm tube lenses ultimately producing 100X images with a 130 nm/pixel resolution. JF646 signals
157 were detected with the 637 nm lasers and the 731/137 nm emission filter (FF01-731/137, Semrock). Cy3 signals were detected with
158 the 561 nm lasers and the 593/46 nm emission filter (FF01-593/46, Semrock)

159 The lasers, the cameras, and the piezoelectric stage were synchronized via an Arduino Mega board (Arduino) and image
160 acquisition was done with open source Micro-Manager software (Edelstein et al., 2014). An imaging size of 512x512 pixels² was
161 used and exposure time was set to 53.63 msec. This resulted an imaging rate of 13 Hz with 23.36 msec readout time and 13 Z-stacks
162 were captured at 500nm step size.

163 U-2 OS cells were loaded with Cy3-FLAG Fab and JF646-Halo-MCP 6 to 10 hours prior to imaging. Right before imaging,
164 cells were transferred into the stage top incubator set to a temperature of 37°C and supplemented with 5% CO₂ (Okolab). Acquired
165 4D (xyzt) images were processed to 3D (xyt) maximum intensity projections for the rSNAPed image generation.

166 **3 Results**

167 To begin our exploration of the potential to use NCT signal intensity fluctuations to differentiate mRNA species, we choose baseline
168 experiment using P300 (7257 NT) and KDM5B (4647 NT) mRNA, each with a 10xFLAG epitope tag. Both constructs are assumed
169 to have equal initiation and elongation rates of $k_i = 0.06$ 1/s and $k_e = 5.33$ aa/s, and both are assumed to be images for 64 frames
170 with a rate of one frame every five seconds.

171 **For typical mRNA and experiment designs, large training data sets may be needed to build an accurate classifier**

	Gene 1 - KDM5B	Gene 2 - P300	Imaging conditions
Parameters	$L: 4647$ NT $L_{tag}: 1011$ NT $k_e: 5.333$ aa/s $k_i: 0.06$ 1/s	$L: 7257$ NT $L_{tag}: 1011$ NT $k_e: 5.333$ aa/s $k_i: 0.06$ 1/s	64 frames 5s frame interval KDM5B SNR: 6.2 P300 SNR: 8.9
Statistics	$\mu_I: 19.3$ UMP $\sigma_I^2: 18.7$ UMP $t_{dwell}: 354$ s	$\mu_I: 28.2$ UMP $\sigma_I^2: 28.5$ UMP $t_{dwell}: 517$ s	

* NT = nucleotides, * aa = amino acids

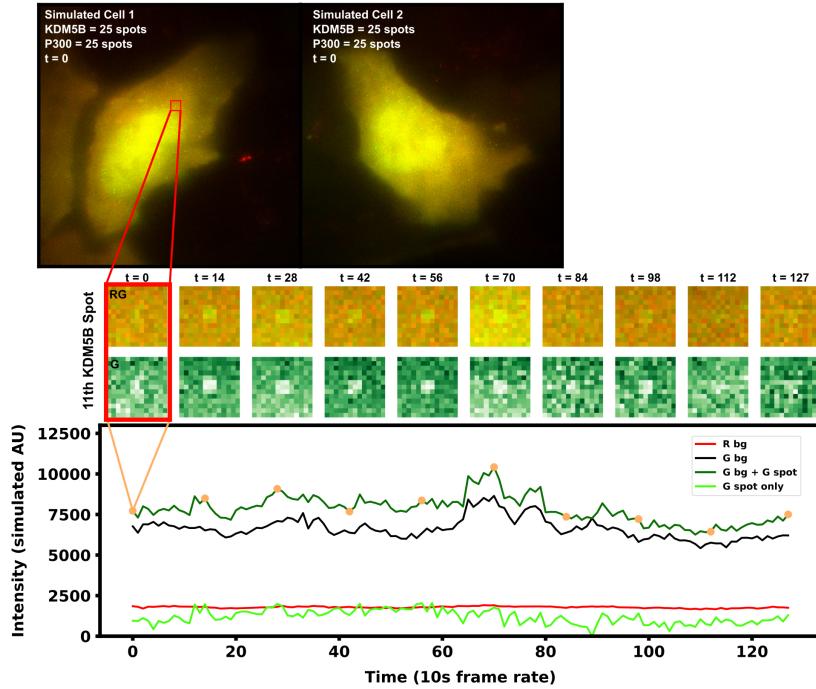
Table 2: Selected base experimental conditions, statistics are calculated before microscope noise addition via rSNAPed.

172 To see how much training data are needed to build an accurate classifier, we use the baseline mRNA designs and experimental
173 conditions (with 64 frames), and we trained our architecture with progressively increasing training data sizes. Figure 2B shows
174 the resulting accuracy on a withheld validation set of 1000 NCT spots, when the model is trained on independent training sets of
175 the different sizes. The accuracy of the classifier levels off at about 87% when the training data set reaches 800-1000 NCT spots.
176 Unfortunately, such a large amount of data is approaching unfeasible in current NCT laboratory settings, highlighting the need
177 for using mechanistic simulation to supplement data when training a classifier. It is important to note that this result is for the
178 experimental base conditions listed in Table 2; as we will discuss below, other parameter combinations can increase or decrease
179 classification difficulty and result in variations for the amount of training information required.

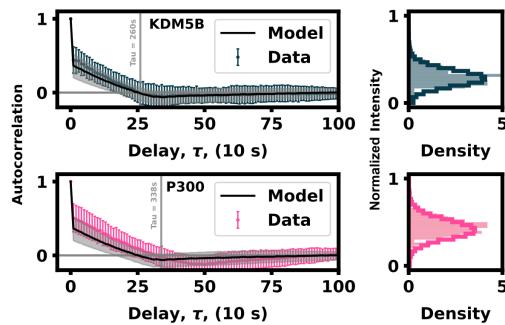
180 **Realistic simulations of nascent chain tracking for KDM5b and P300 mRNA reveal that two mRNA can be
181 distinguished using only their fluorescence intensity fluctuations.**

182 As a proof of concept and to further explain the process of labeling spots by their behaviors rather than by their colors, Figure 3
183 presents a example of our machine learning pipeline. Two simulated cells (Figure 3A, top) are generated using the baseline conditions
184 but with double the amount frames (128 instead of 64, but with the same 5s interval between frames) to better highlight the ribosomal

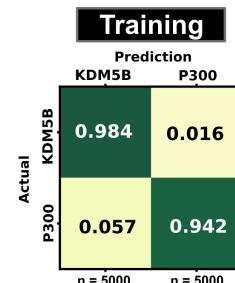
A) Process NCT videos to quantify spot intensity trajectories and intensity distributions



B) Infer simulation parameters from NCT data



C) Simulate large cohort of data and use to train classifier



D) Use classifier to label original videos

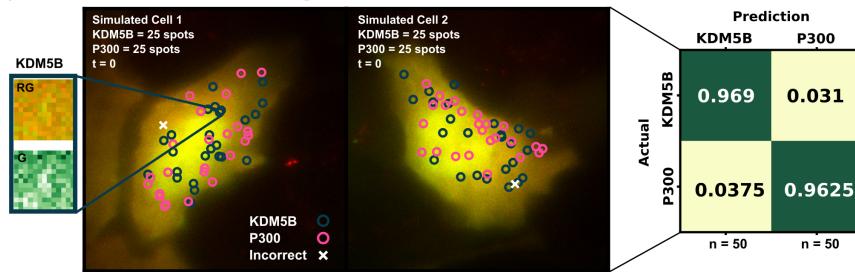


Figure 3: Example for labeling identically-tagged mRNAs in a simulated NCT experiment. (A, top) Two simulated cells with 25 KDM5B and 25 P300 spots translating at identical biophysical parameters. (A, bottom) Spot 11 in Cell 1 is highlighted in the intensity trace, showing the red background, green background, and extracted spot intensity via the disk and doughnut method. (B) Model parameters (k_i and k_e) are inferred by fitting auto-correlation functions and intensity distributions. (C) A classifier is trained with a large cohort of simulated data generated with the inferred parameters. (D) This classifier can then be used to label the original data or any subsequent data taken.

185 dwell-time difference between the two mRNAs. The two cells can be processed with a disk and doughnut approach (see Methods) to
 186 extract fluorescence intensity trajectories for each of the 100 spots (Figure 3A, bottom).

187 In practice, biophysical parameters could be estimated from these NCT measurements of fluorescence intensity trajectories
 188 (i.e., from the intensity distributions and autocorrelations) as done previously in (Aguilera et al., 2019) and illustrated in Figure
 189 3A. For simplicity of description, we assume that these parameters are known, although we will relax this assumption later in the
 190 investigation. Using these assumed parameters, we use our computational pipeline to simulate a training data set of 5000 NCT spots
 191 from simulated NCT experiments, and we use this simulated data to train a classifier (Figure 3C). With this classifier, the user can
 192 then finally label their original data artificially or use the trained classifier to label any newly collected data (Figure 3D).

193 **Simulations can reveal which aspects of experimental data are most informative for multiplexed mRNA
 194 classification**

Comparison Analysis	Variable Range	Constants
Imaging Dataset - Identical I_μ $I_{\mu,both} \sim 4.7 \text{ UMP}$	$k_{i,KDM5B}: 0.014139 \text{ s}^{-1}$ $k_{i,P300}: 0.009676 \text{ s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 1 every 1 seconds * Frames: 24000 * $k_e: 5.33 \text{ aa} \cdot \text{s}^{-1}$ * D: 0.21 pixels ² /s * SNR: 3
Imaging Dataset - Similar I_μ $I_{\mu,KDM5B} \sim 6.0 \text{ UMP}$ $I_{\mu,P300} \sim 4.7 \text{ UMP}$	$k_{i,KDM5B}: 0.01860 \text{ s}^{-1}$ $k_{i,P300}: 0.009676 \text{ s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 1 every 1 seconds * Frames: 24000 * $k_e: 5.33 \text{ aa} \cdot \text{s}^{-1}$ * D: 0.21 pixels ² /s * SNR: KDM5B (3.9) and P300 (3)
Imaging Dataset - Different I_μ $I_{\mu,KDM5B} \sim 13.7 \text{ UMP}$ $I_{\mu,P300} \sim 4.7 \text{ UMP}$	$k_{i,KDM5B}: 0.04242 \text{ s}^{-1}$ $k_{i,P300}: 0.009676 \text{ s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 1 every 1 seconds * Frames: 12000 * $k_e: 5.33 \text{ aa} \cdot \text{s}^{-1}$ * D: 0.21 pixels ² /s * SNR: KDM5B (8.9) and P300 (3)

Table 3: Long Imaging Time Datasets

195 For two different NCT spots within the same cell and under the same experimental conditions, our dual input architecture (Figure
 196 2A and Methods) utilizes both relative intensity differences and signal frequency content to classify spots. Using both features
 197 allows for improved classification robustness across parameter space. There are experimental conditions and biophysical parameters
 198 where intensity information is more useful, conditions where frequency is more informative, and conditions where a mixture of
 199 both information sources is utilized by our architecture. To highlight this, we simulated three separate data sets: one with markedly
 200 different intensity distributions, one with mostly overlapping distributions, and one with nearly identical intensity distributions,
 201 Table 3. For each of these conditions (which have different translation initiation rates), both P300 and KDM5b use the same
 202 average elongation rate, but because the genes have different lengths and different codon usages, they exhibit different ribosomal
 203 dwell time.

204 We applied our architecture to each of these data sets across a large swath of imaging conditions (i.e., different numbers of
 205 frames and frame intervals) to show our architecture's ability to self select which features to use for classification as well as highlight
 206 which imaging conditions are ideal for these experiments conditions. Figure 4A (left) shows that the first condition (different dwell
 207 times and different intensity distributions) is trivial to classify – Simply looking at which spots are brightest and which are dimmest
 208 is sufficient to reach than 90% accuracy in just a few frames. Figure 4A left) also shows that for mRNAs with such different intensity
 209 distributions, fluctuation frequencies are less informative, and the optimal frame interval should have as long a delay as possible so
 210 that each measurement is as statistically independent as possible.

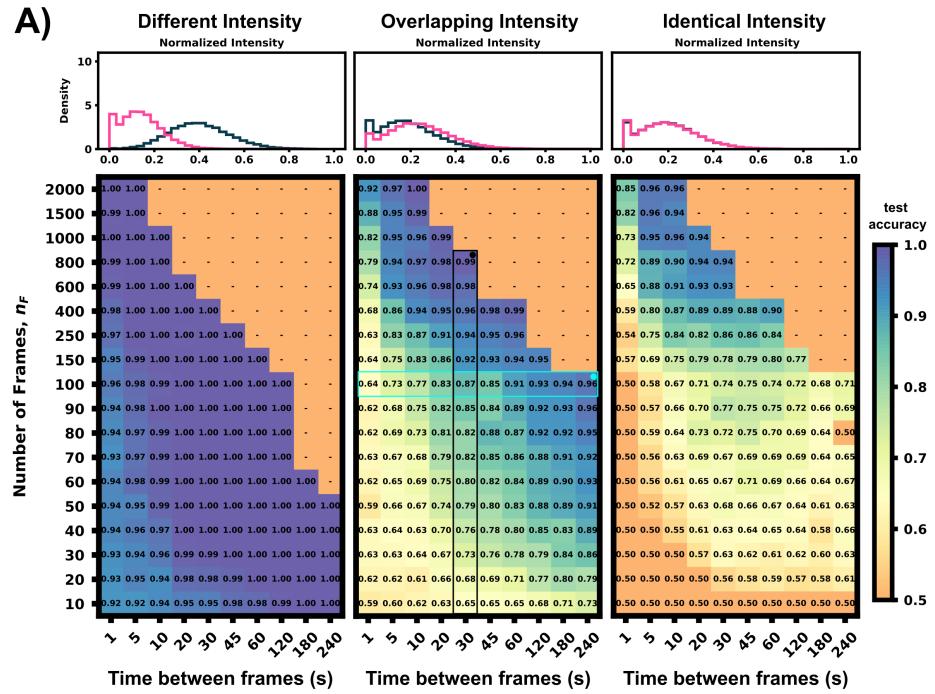
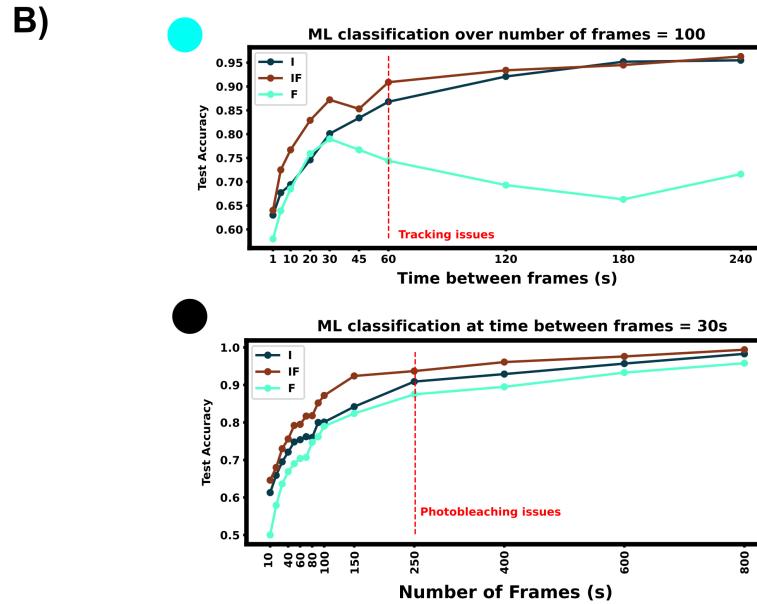


Figure 4: Classification accuracy versus imaging conditions and differences in mRNA intensity mean. (A) Accuracy versus frame interval and number of frames. (Left) For constructs with substantially different intensities, the classifier requires only a few frames for a high classification accuracy. (Middle) Overlapping, but non-identical, intensity conditions leverage both frequency and intensity information for classification. (Right) Identical intensity conditions can only classify using frequency information, which requires an ideal frame interval. (B) Accuracy of ML using Intensity only (I), Frequency only (F), and both (IF) versus frame interval (top) or number of frames (bottom). Plots for (IF) correspond to the vertical and horizontal regions highlighted in Panel A, middle.

211 Conversely, identical intensity conditions can be obtained by tuning the initiation rates such that each mRNA has the same
212 ribosomal occupation average over time, and thus almost identical intensities (there is a slight difference due to codon dependence and
213 ribosomal occupation probabilities per codon leading to varied occupation downstream of the tag region across each mRNA's length).
214 In this condition, our classifier can only learn on the autocorrelation function and frequency information. Expected ribosome dwell
215 times for P300 and KDM5B under these conditions are approximately 517 seconds and 353 seconds, respectively – a statistic that is
216 available to the classifier through the autocorrelation of its intensity fluctuation. Figure 4A (right) shows the test set classification
217 accuracy as a function of video frame intervals and total number of frames. This plot highlights a clear region of image settings that
218 would be sufficient to capture enough frequency information for classification, \approx 20-30 seconds between frames for over 150 total
219 frames. To be effective, the frequency-based classifier needs enough frames at the right intervals to sample the auto-correlation of
220 ribosomal movements. If the total video time is too short, too few ribosomes will complete translation, and the NCT intensity signal
221 would remain almost fully correlated with itself. As a result, one would have insufficient number of independent data points with
222 which to calculate an effective autocorrelation. Conversely, if one observes the process too slowly (i.e., approaching or exceeding
223 ribosomal dwell times), each frame would sample an independent set of ribosomes from the previous frame and any observed
224 correlations would arise only from artifacts of imaging noise.

225 Figure 4A (middle) shows an experimental condition where intensity distributions are similar enough such that both frequency
226 and intensity information provide useful information for classification. The ideal imaging still uses an intermediate frame interval
227 needed to capture the frequency differences, but classification is bolstered by the intensity information across the whole parameter
228 space, with 10 frames at any frame interval being sufficient to provide 60% accuracy.

229 To further probe how intensity distributions and frequency information each contribute to ML classification, Figure 4B shows
230 each half of the architecture applied separately to 100 frames at varying frame intervals and varying amounts of frames at a 30 second
231 frame interval (Highlighted row and column of Figure 4A, middle panel). Both individual halves Intensity distribution, (I), and
232 Frequency, (F), have roughly a similar accuracy until frame interval grows too large to obtain a good sampling of the autocorrelation
233 function (60s). When both features are available, (IF), the classifier has a marked improvement in accuracy compared to the individual
234 halves. It is important to note that we selected these specific experimental conditions such that there is partial information in both the
235 autocorrelation and the intensity moments. If the experiment is designed such that either frequency or intensity is more informative,
236 the proposed ML architecture adapts to rely more on that type of information and including the other will have marginal or no effect
237 on validation accuracy (e.g., Figure 4A left or right panel). Full classification heat-maps using architecture subsections are shown in
238 Supplemental Figure S2.

239 Although classification requires collection of a sufficient video length and at high enough temporal resolution, other experimental
240 considerations are missing in this first analysis but must be taken into account to constrain imaging conditions in a real laboratory
241 setting. Taking too many frames or a too short a frame interval may increase photobleaching effects that will require re-calibration
242 or computational correction or may necessitate the use of a lower laser power, which will reduce signal strength. Conversely,
243 choosing too low a frame interval (i.e., longer delays between images) could lead to spot tracking issues if particles diffuse too fast in
244 comparison to the frame rate or if there is too high a density of overlapping particles. This trade-off between too fast and too slow a
245 frame interval can be partially ameliorated by tracking only on the RNA tag channel with a higher frame interval and imaging in the
246 protein channel with a slower rate, but this solution requires more complex steps for image collection and processing.

247 **Simulated data is ideal for testing different experimental and biological conditions to probe the possibilities and
248 limitations of NCT multiplexing**

249 Now that we have a computational pipeline to generate simulated data and a flexible classifier to train using both intensity and
250 frequency information, we can explore multiple parameter spaces to guide experimental design toward conditions that are more
251 conducive for accurate classification. Additionally, by generating data over a large parameter swath, we can examine multiple
252 experiment setups that are unresolvable to obtain insight for what mitigation strategies an experimentalist could take to improve
253 classification results.

254 In this study, we limit the scope of exploration to five key variables (Table 4): mRNA length (L_{mRNA}), frame interval (time in
255 seconds between frames, FI), number of frames used (n_F), ribosomal initiation rate (k_i) and ribosomal elongation rate (k_e). We
256 choose these specific parameters because they are the most experimentally relevant as they influence how long of a video to take and
257 what types of mRNA constructs to design. Additionally, these five parameters directly influence one or both of the two statistics
258 we are using as learning features, specifically the decorrelation times and intensity levels. The selected parameters to explore and

Variable	Dynamic impacted when increased	Controllable
Frame interval (FI)	↑ information / resolution	
Number of Frames (n_F)	↑ information / resolution	Experimentally controllable
mRNA Length (L_{mRNA})	↑ ribosomal dwell time ↑ fluorescent intensity	Semi-controllable (Gene/tag selection)
Initiation Rate (k_i)	↑ fluorescent intensity	Semi-controllable (UTR Selection)
Elongation Rate (k_e)	↓ ribosomal dwell time ↓ fluorescent intensity	Semi-controllable (codon usage)

Table 4: Dynamics affected by selected variables to investigate with the NCT ML pipeline

259 a list of dynamics affected by each of these parameters are provided in Table 4. For example, an increase in mRNA length has a
 260 corresponding increase in ribosomal dwell time and therefore fluorescent intensity of a mRNA spot.

261 Although for the sake of brevity, we focus on the five parameters presented in Table 4, we note that our proposed simulation and
 262 classification pipeline is general and can be used to explore many other mechanisms of the translation or the imaging system. Other
 263 parameters of potential interest may improve or worsen classification accuracy. These include effects such as imperfect spot detection
 264 and tracking, non-equilibrium dynamics (all mRNA simulations in this paper are at steady state), differing diffusion dynamics
 265 (spatial considerations from cell morphology or dependence on mRNA translation state), or photobleaching effects. For example, to
 266 focus our analysis on our current parameters of interest, all data in the main text are generated without photobleaching effects and
 267 are recaptured using the specific coordinates of the simulated spots within the rSNAPed module; i.e., we are not relying on a spot
 268 detection and tracking algorithm.

269 A preliminary exploration of photobleaching and imperfect tracking is presented in the Supplemental Info section. We find
 270 that classification accuracy for perfectly tracked KDM5B and P300 mRNA spots remains high even with substantial levels of
 271 photobleaching (see Fig S3.D), at least provided that all NCT probes bleach at the same rate. In this case, the relative differences in
 272 fluorescence intensities and fluctuations (at higher frequency than the bleaching rate) can still be used for classification. However, we
 273 note that the number of correctly classified spots per cell depends heavily on the accuracy and completeness of tracking. Using the
 274 trackpy tracking pipeline (Allan et al., 2021), we can only track approximately 40% of spots for long contiguous time courses (Fig
 275 S3C), although classification accuracy for those spots is only slightly below that for perfect tracking (Fig S3.D). We note, however,
 276 that this preliminary analysis assumes a simple exponential decay model for photobleaching and only explores one option for particle
 277 tracking; a complete analysis would require in-depth examination of different photobleaching models (Miura et al., 2020; Wüstner
 278 et al., 2014) and should explore additional approaches for track linking (Shen et al., 2017).

279 In the current analyses, all mRNA translation models are run until they reach steady state (burn in time: 1000 seconds) before
 280 they are used to generate NCT spots, but rSNAPed allows for simulation of non-stationary conditions or experiment perturbations
 281 (e.g., Harringtonine treatment to interrupt translation, or fluorescence recovery after photo-bleaching (FRAP) to examine ribosome
 282 replacement as studied in (Wu et al., 2016; Wang et al., 2016; Pichon et al., 2016). Finally, in the current analyses, all spot motion is
 283 simulated using normal Brownian motion with a constant diffusion rate of $0.925 \mu\text{m}^2/\text{s}$ ($0.55 \text{ pixel}^2/\text{s}$) but settings for rSNAPed
 284 can easily be changed to allow for anomalous or temporal or mRNA state-dependent diffusion rates. In addition, beyond using just
 285 intensity and frequency, one could potentially improve classification using additional features for machine learning such as x, y, and
 286 z spatial positions or spot velocities.

287 Figure5(top) summarizes the set up for four parameter sweeps designed to explore the effects of selected parameters on ML
 288 classification: (CT1) compares pairs of mRNA with many different lengths, (CT2) compares two mRNA with many different
 289 combinations of shared elongation and initiation rates, (CT3) compares two mRNA each with different elongation rates, and (CT4)
 290 compares two mRNA each with different initiation rates. For each comparison, mRNA translation simulations use parameters
 291 selected from a survey of literature reporting experimentally measured rates (Morisaki et al., 2016; Wang et al., 2016; Wu et al.,
 292 2016; Pichon et al., 2016; Yan et al., 2016), and all parameters are shown in Table 5. For CT1, the mRNA length range selected
 293 (1200 - 7257 nt) covers 53% of the lengths in the human consensus coding sequences (current CCDS nucleotide release - 11.28.2021
 294 (Pujar et al., 2018)). A baseline NCT experiment was selected as 10xFLAG-p300 vs 10xFLAG-KDM5B with an initiation rate
 295 and elongation rate of 0.06 1/s and 5.33 aa/s at imaging conditions of 64 frames with a 5s frame interval. When parameters are
 296 held constant in the comparison analysis they are held to these values. The results of the various comparison tests are shown

Comparison Analysis	Variable Range	Constants
mRNA Length vs mRNA Length	mRNA length (without tag): 1200 NT - 7257 NT RRAGC - 1200 ORC2 - 1734 LONRF2 - 2265 EDEM3 - 2799 TRIM33 - 3333 MAP3K6 - 3867 COL3A1 - 4401 KDM5B - 4657 KDM6B - 4932 PHIP - 5466 DOCK8 - 6000 P300 - 7257	* Frame interval: 5s * Frames: 64 * k_i : 0.06 s^{-1} * k_e : $5.33 \text{ aa} \cdot \text{s}^{-1}$ D: $0.21 \text{ pixels}^2/\text{s}$ SNR: 3.7 (RRAGC) - 17.6 (P300)
k_e (both mRNAs) vs k_i (both mRNAs)	k_i : $0.01 - 0.1 \text{ s}^{-1}$ k_e : $2 - 12 \text{ aa} \cdot \text{s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 5s * Frames: 64 D: $0.21 \text{ pixels}^2/\text{s}$ SNR 1-36
k_e mRNA₁ vs k_e mRNA₂	k_e : $2 - 12 \text{ aa} \cdot \text{s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 5s * Frames: 64 * k_i : 0.06 s^{-1} D: $0.21 \text{ pixels}^2/\text{s}$ SNR KDM5B: 2.6 - 14.2 SNR P300: 3.9 - 23
k_i mRNA₁ vs k_i mRNA₂	$k_{initiation}$: $0.01 - 0.1 \text{ s}^{-1}$	* Gene 1: P300 (7257 NT) * Gene 2: KDM5B (4647 NT) * Frame interval: 5s * Frames: 64 * k_e : $5.33 \text{ aa} \cdot \text{s}^{-1}$ D: $0.21 \text{ pixels}^2/\text{s}$ SNR KDM5B: 1.3 - 9.3 SNR P300: 1.7 - 13.3

Table 5: Comparison analyses parameters

297 in Figures 5A-D and 6A-D, to be discussed individually below, and all full data sets are available upon request. Data sets can
 298 also be resimulated from the provided Github repository https://github.com/MunskyGroup/Multiplexing_project, DOI:
 299 <https://zenodo.org/record/7884701>.

300 **mRNAs with sufficiently different lengths can be differentiated using their fluctuation intensity signals**

301 To explore the effect of mRNA length differences on classification, we applied our architecture to NCT experiments where the
 302 only difference between mRNAs is their length (Figures 5A and 6A). In addition to the previous P300 and KDM5B constructs, ten
 303 new genes with approximately evenly spaced nucleotide length coding regions were selected from the human consensus coding
 304 sequence database, Table 5 row 1. A standard 1011 nucleotide 10x-FLAG tag was added to the N-terminus end of each before
 305 simulating the NCT experiments. We assume a common set of global cell translation parameters, that is, every mRNA has a common
 306 ribosomal initiation and elongation rate since all mRNA would be in the same cell and they have been designed to have identical
 307 UTRs. Specifically, for this parameter sweep, we assume that $k_e = 5.33 \text{ aa/s}$ and $k_i = 0.06 \text{ ribosomes/s}$ and that video is recorded
 308 for a moderate length of 64 frames at a rate of one frame every five seconds. For each NCT simulation, the longer of the two mRNA

Figure 5

Varying Imaging Conditions

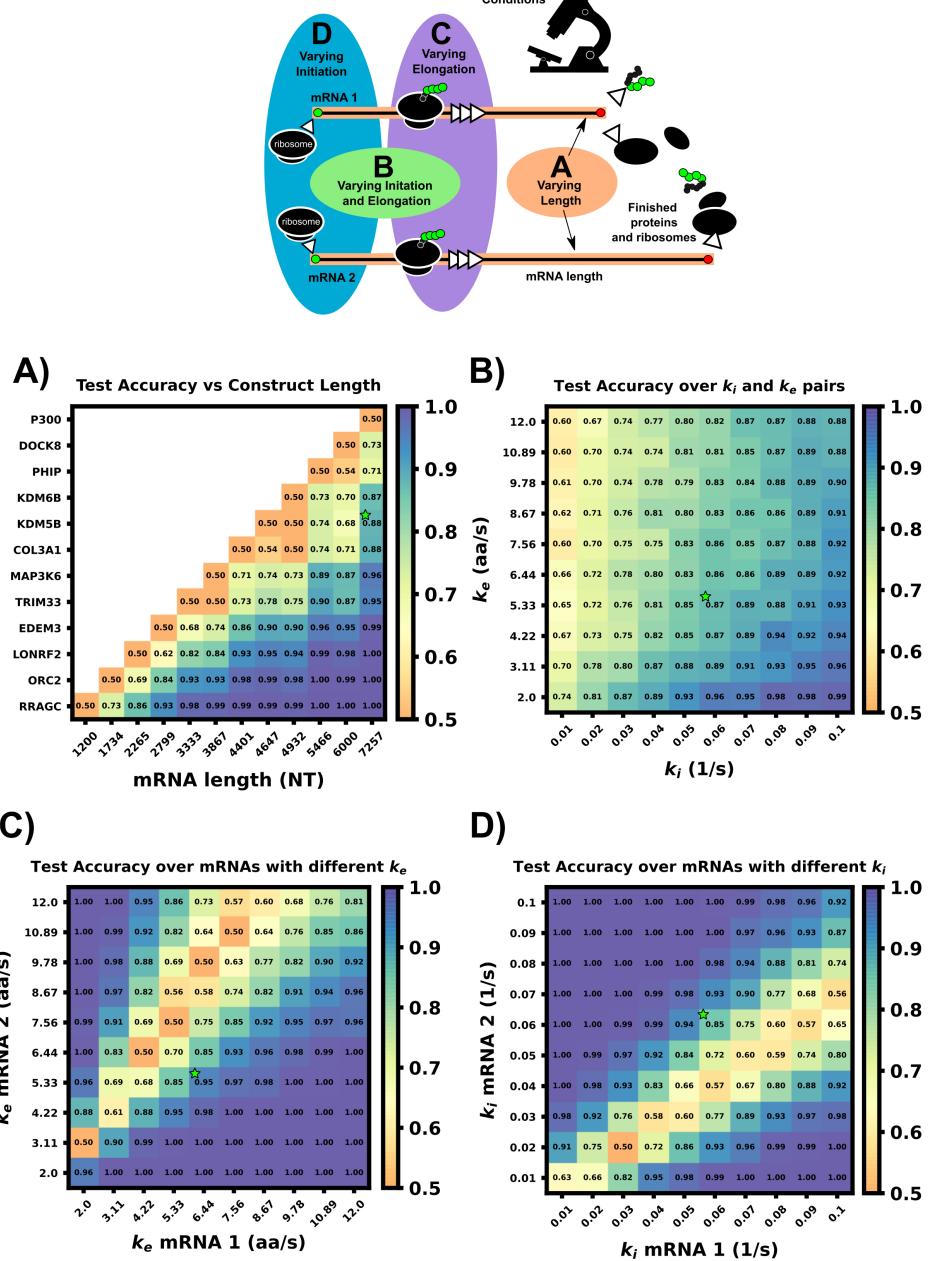


Figure 5: Comparison of ML test accuracy under variations in biophysical parameters. (Top) legend of which experimental parameters are changed for each panel. (A) Effect of construct length on classification test accuracy when trained on 4000 NCT spots and tested on 1000 withheld spots. Imaging conditions, initiation, and elongation are held constant while mRNA lengths are swept from 1200 NT to 7257 NT using different mRNAs. All classifiers are trained on 4000 NCT spots and tested on 1000 NCT spots to get the test accuracy. (B) Classification accuracy for P300 and KDM5B versus shared initiation and elongation rates. (C) Classification of P300 and KDM5B with shared initiation rate (0.06 1/s) but with different varying elongation rates. D) Classification of P300 and KDM5B with shared elongation rates (5.33 aa/s) and varying initiation rates. The green star in each panel denotes the default P300/KDM5B experiment with 5s frame interval, 64 frames, initiation rate of 0.06 1/s, and elongation rate of 5.33 aa/s.

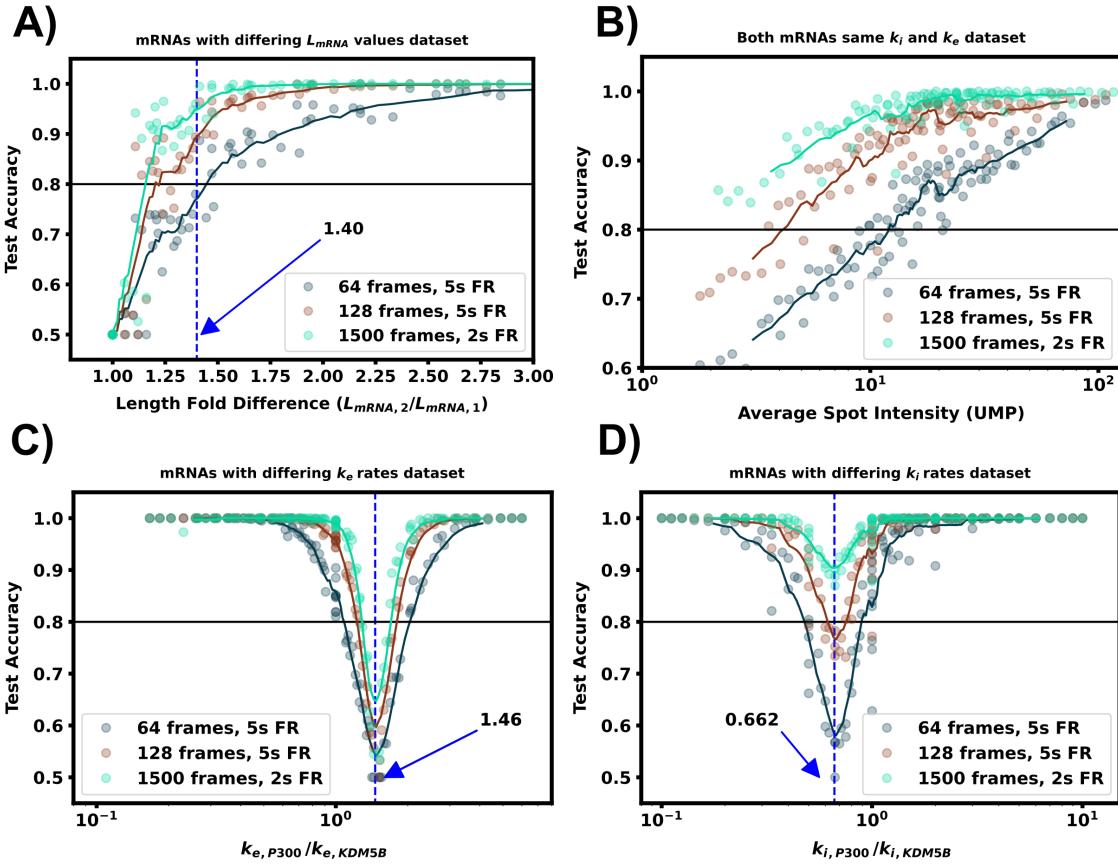


Figure 6: **Increasing video length to resolve difficult to classify mRNA combinations.** (A) Classification accuracy versus mRNA length fold difference, assuming identical tag designs and parameters and videos with 64, 128, or 1500 frames. (B) Classification accuracy for P300 and KDM5B with identical tags and parameters vs average P300 intensity (proxy for signal-to-noise ratio). As SNR, video length, and resolution increase, there is a corresponding increase in classification accuracy. (C) Classification accuracy versus ratio of P300 and KDM5B elongation rates. As parameters approach the dotted line at $k_{e,P300}/k_{e,KDM5B} = 1.46$, the frequency and intensity information is identical between the two mRNAs, and increasing video length provides only marginal improvements. (D) Classification accuracy versus ratio of P300 and KDM5B initiation rates. As parameters approach the dotted line at $k_{i,P300}/k_{i,KDM5B} = 0.662$, the two mRNA attain similar intensity means, but classification can be achieved through frequency content and is improved substantially by collecting longer videos.

309 species will retain ribosomes for longer periods of time and will therefore exhibit slower decorrelation times and higher average
 310 intensities.

311 For convenience, the difference between mRNA lengths can be quantified by the fold change:

$$\Delta L_{\text{fold}} = \frac{\max(L_{mRNA,1}, L_{mRNA,2})}{\min(L_{mRNA,1}, L_{mRNA,2})}. \quad (4)$$

312 As one should expect, Figures 5A and 6A show that as ΔL_{fold} becomes larger, the classification becomes easier for our machine
 313 learning architecture. For our simulated conditions and video length, we find that a 1.4-fold difference is sufficient to achieve greater
 314 than 80% classification accuracy of any two mRNA combinations of the 12 we selected. However, Figure 6A shows that one can
 315 lower the required length fold change by increasing the number of frames given. For example, if one extends imaging to 128 frames
 316 at 5s resolution (double the frames of the original condition), then one could achieve an 80% classification for a smaller $\Delta L_{\text{fold}}=1.1$.
 317 However, there is a diminishing benefit to adding extra video length; extending imaging to 1500 frames at 2s resolution (a barely
 318 achievable amount of data to collect with current NCT capabilities) provides only a marginal further improvement (compare teal and

319 brown lines). This diminishing return emphasizes the need for careful consideration when designing NCT experiments with multiple
 320 mRNAs with identical tags, either to avoid designs that would require an unobtainable amount of sampling or to reduce sampling for
 321 designs that can be differentiated with fewer imaging resources.

322 **mRNA with different lengths can be distinguished for a range of different combinations of their biophysical
 323 parameters.**

324 In the next comparison, we sought to understand how classification accuracy depends upon the biophysical parameters that govern
 325 translation dynamics. Specifically, Figures 5B and 6B explore how the accuracy to classify P300 and KDM5B constructs would
 326 depend on their shared rates of translation initiation and elongation (k_i and k_e , respectively). Because the two constructs have fixed
 327 lengths in this comparison, every combination of (k_i, k_e) yields the same ratio of intensity mean and decorrelation time. Therefore,
 328 classification should be possible across the entire parameter range, provided that one obtains a sufficient level of video sampling.
 329 Figure 6B and Supplemental Figure S3B show that indeed, once there is enough video resolution, all (k_e, k_i) pairs can be classified
 330 with higher than 90% accuracy. However, when constrained to a fixed number of frames and frame interval (e.g., 64 frames with 5s
 331 frame interval as considered in Figure 5B), some combinations of parameters yield signals that are brighter and are therefore easier to
 332 classify using intensity statistics. Specifically, when the initiation rate is high and the elongation rate is low, more ribosomes enter
 333 per second and remain longer on the mRNA. Conversely, “sparse” loading conditions prove harder to classify due to low ribosomal
 334 occupancy and rare ribosomal entry and thus, a lower signal to noise ratio.

335 In natural constructs, different 3' and 5' UTR sequences will affect the availability of initiation factors, and one should expect
 336 that translation initiation rates will vary from one mRNA species to the next (Gray and Wickens, 2003; Leppek et al., 2017; Fraser,
 337 2015; Mayr, 2016). To explore how differences in initiation rate would affect classification accuracy, Figures 5C and 6C compare the
 338 classification accuracy as a function of both mRNAs' unique initiation rates. In this case, it is possible for both mRNA to have very
 339 different or nearly identical intensity means depending on how close the ratio of the initiation rates compares to the inverse ratio of
 340 their lengths. For our particular case of KDM5B and P300 mRNA, if we neglect ribosomal collisions, the ratio of mean intensities
 341 can be estimated as (Aguilera et al., 2019):

$$\frac{I_{P300}}{I_{KDM5B}} = \frac{\left(1 - \frac{L_{tag}}{2L_{P300}}\right) \cdot \tau_{P300} \cdot k_{i,P300}}{\left(1 - \frac{L_{tag}}{2L_{KDM5B}}\right) \cdot \tau_{KDM5B} \cdot k_{i,KDM5B}}. \quad (5)$$

342 By setting this intensity ratio to unity, we can rearrange to find the corresponding ratio of initiation rates as

$$\frac{k_{i,P300}}{k_{i,KDM5B}} = \frac{\left(1 - \frac{L_{tag}}{2L_{KDM5B}}\right) \cdot \tau_{KDM5B}}{\left(1 - \frac{L_{tag}}{2L_{P300}}\right) \cdot \tau_{P300}} = \frac{\left(1 - \frac{1011nt}{2.5658nt}\right) \cdot 353s}{\left(1 - \frac{1011nt}{2.8268NT}\right) \cdot 517s} = 0.662, \quad (6)$$

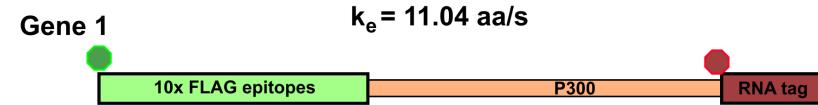
343 where we calculated the expected elongation times for the two mRNA (τ_{KDM5B} and τ_{P300}) under an assumption of sparse loading
 344 for the ribosomes (i.e., no collisions). Figures 5C and 6C show that when the two mRNAs' initiation rates approach this critical
 345 ratio, the accuracy decreases substantially. However, although these mRNAs may have similar intensities, their different lengths still
 346 result in distinct dwell times, and Figures 6C and S3 show that frequency information can still provide for accurate classification,
 347 especially as one increases the amount of video.

348 Figures 5D and 6D explore the opposite circumstance, where the two mRNA have the same initiation rate, but with two different
 349 elongation rates. In this case, it would be possible for both the intensity means and the dwell times to be identical for the two
 350 constructs if their elongation rates satisfy the ratio:

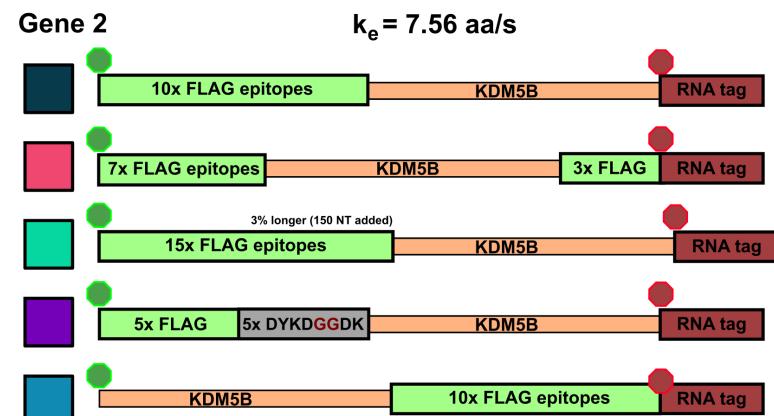
$$\frac{k_{e,P300}}{k_{e,KDM5B}} = \frac{\tau_{P300}/L_{P300}}{\tau_{KDM5B}/L_{KDM5B}} = \frac{2756aa}{1886aa} \cdot 1 = 1.46129. \quad (7)$$

351 Figures 5D and 6D show that NCT signals along this parameter manifold are virtually indistinguishable as the only variation between
 352 their statistics is the time ribosomes spend in the tag region. Specifically, ribosomes on P300 reach full intensity fluorescence
 353 1.46x faster than those on KDM5B. Increasing video resolution could potentially resolve parameter sets close to this manifold, but
 354 Figure 6D shows that accurate discrimination would require an unrealistic amount of NCT video. In conditions like these, it may be
 355 best to tag the mRNAs with different tag colors or use different tagging strategies as we discuss in the next section.

A) Changing tagging schemes to recover a differentiable experiment



B)



C) Differentiability of the design

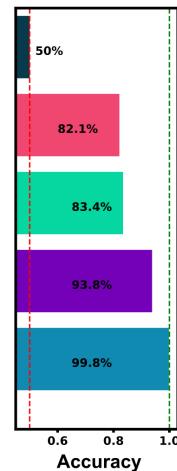


Figure 7: **Changing tag designs to improve classification accuracy.** (A) Tag design for P300 construct is kept fixed. (B) Five different tag designs for KDM5B created by splitting the tag, increasing or decreasing the amount of epitopes, or relocating the tag region to the 3' end. (C) Accuracy for classification corresponding to each of the design combinations, and all assuming an elongation rate ratio of 1.46, under which the original design was non-classifiable (Figs 5D and 6D). All alternative designs would dramatically increase classification accuracy.

356 mRNAs with similar fluctuations and intensities can be made more classifiable via intelligent design of tag 357 placements

358 Considering the comparisons in Figure 5A-D, we observed that there are several conditions under which machine learning may be
359 unable to classify NCT spots. Specifically, classification may fail when: (1) videos are too short to sample intensity distributions
360 or have a too poorly chosen frame interval to quantify intensity frequencies (Figure 4); (2) when signal intensities are too low to
361 capture the relevant statistics; or (3) when the mRNA lengths, initiation rates, or elongation rates combine such that both mRNAs
362 yield identical statistics for both intensity and frequencies. As discussed above, the solution to the first two “failure modes” is to
363 collect more information (i.e., longer videos with a more appropriate temporal resolution). In contrast, for conditions where intensity
364 and frequency statistics are nearly identical, such as in Figures 5C and 6C, no amount of extra information or imaging will be able
365 to tell these NCT spots apart. In such a circumstance, the similarity between the two mRNA could be ameliorated by changing
366 the mRNA constructs themselves. For example, one could alter the fluorescent signal statistics either by lengthening one of the
367 mRNAs in question or by employing an alternate tagging design. Changing the length of the mRNA with linker or junk regions may
368 introduce unwanted effects in the mRNA / protein targets under study, so changing the tag region is preferable. To demonstrate this
369 possibility, Figure 7A and B considers the case from above where the elongation rates of P300 ($k_e^{\text{P300}} = 11.04 \text{ aa/s}$) and KDM5B
370 ($k_e^{\text{KDM5B}} = 7.56 \text{ aa/s}$) differ by the critical factor of 1.46, such that the 10xFLAG-P300 and 10xFLAG-KDM5B constructs yield
371 identical intensity fluctuations that cannot be discriminated from one another. We then propose several modifications to the tagging
372 scheme for KMD5B to explore how different designs might affect classification accuracy as follows:

- 373 • 10x Flag Tag on the N-terminus of KDM5B (original ineffective design)
- 374 • Splitting the tag region to relocate 3 epitopes to the C-terminus
- 375 • Relocating the tag region to the C-terminus of KDM5B's CDS

376 • Adding 5 epitopes to the end of the 10x Flag Tag (adding in 5 ‘DYKDDDDK’ sequences separated by two glycines each)
 377 • Removing 5 epitopes from the 10x Flag Tag (mutating the last 5 epitopes from ‘DYKDDDDK’ to ‘DYKDGGDK’)
 378 • Relocating the 10x Flag Tag to the C-terminus of KDM5B’s CDS

379 Figure 7(C) shows that any of these permutations to the original 10x Flag tag on the 5’ end of KDM5B allows the two mRNAs
 380 to be classified with greater than 85% test accuracy. Each tagging strategy changes the intensity dynamics of KDM5B spots, shifting
 381 them away from similar means and variances of the P300 spots, allowing classification without resorting to using a different color
 382 tag. One should note that each of these strategies comes with its own potential drawbacks: Moving the 10x flag to the end doesn’t
 383 allow any information about the upstream translation dynamics to be captured in the NCT experiment, and removing / moving 5
 384 epitopes tag to the 3’ end creates a dimmer spot, potentially obscuring translation dynamics under study. Adding epitopes also has its
 385 own potential drawback of needing longer plasmids for transfection.

386 **Classifiers can retain accuracy despite uncertainties or assumption errors in biophysical parameters**

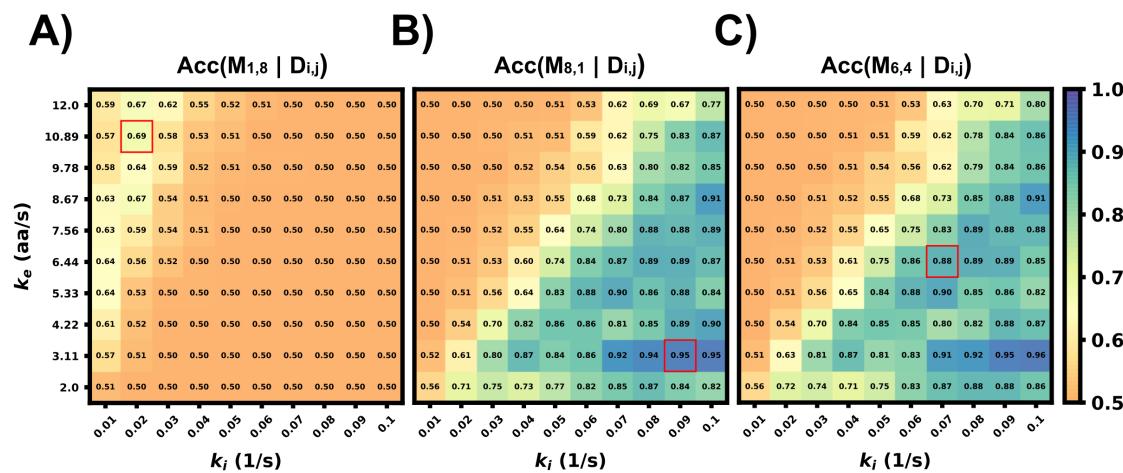


Figure 8: **Accuracy of classifier when trained with incorrect parameter assumptions.** Accuracy versus the actual rates k_e and k_i when the model is exclusively trained on three specific, but possibly incorrect, sets of these parameters: (A) ($k_i = 0.02\text{s}^{-1}$, $k_e = 10.89\text{aa/s}$), Average accuracy = 52.4%, (B) ($k_i = 0.09\text{s}^{-1}$, $k_e = 3.11\text{aa/s}$), Average accuracy = 70.1%, (C) ($k_i = 0.07\text{s}^{-1}$, $k_e = 6.44\text{aa/s}$), Average accuracy = 70.2%,

387 In the previous sections, we explored how well classification would work in the ideal situation in which the classifier is trained
 388 on data that match (in probability) to the circumstances of the testing data (although every intensity trajectory is different due to
 389 stochastic fluctuations in translation, motion, and cellular background noise). In other words, the stochastic model used to generate
 390 the training data was the same as the model used to generate the testing data. For a more realistic test of how well one might expect
 391 a classifier trained using simulated data to work when applied to experimental data, one must acknowledge that true biophysical
 392 parameters are unknown, and they may vary from cell to cell or from one individual mRNA to the next. For example, in the analysis
 393 of KDM5B and P300, it is reasonable to assume that the mRNA designs and lengths are known, but one might only have a rough
 394 estimate for the initiation and elongation rates based on analyses for other mRNA, cells, or conditions. Ideally, the classifier should
 395 still work despite finite errors in these parameter estimates. To explore how well a simulation-trained classifier might work when
 396 parameters are incorrect, Figure 8 shows the accuracy versus *unknown* rates k_e and k_i when the model is trained at three specific
 397 assumptions for those rates (denoted by red squares in Figure 8). When the model is trained with a fast elongation rate and a slow
 398 initiation rate (Figure 8A), classification accuracy is always poor (as discussed above, see Figure 5B). However, when the model is
 399 trained in a condition that is more conducive for accurate classification (Figure 8B), the accuracy is strong not only for the exact
 400 parameters under which the model was trained, but for a large range of surrounding parameter sets. The practical implication of this
 401 result is that one could in principle use an approximate model (e.g., the simulations presented in this study) to train a classifier and
 402 then reliably trust that classifier despite unavoidable but finite errors in the underlying model or parameter assumptions. To maximize

Comparison Analysis	Variable Range	Constants
Green Channel (4 spots)	mRNA length (without tag): * RRAGC (1200 NT) * LONRF2 (2265 NT) * MAP3K6 (3867 NT) * DOCK8 (6000 NT)	* Frame interval: 5s * Frames: 64 * k_i : 0.06 s^{-1} * k_e : $5.33 \text{ aa} \cdot \text{s}^{-1}$ D: $0.925 \mu\text{m}^2/\text{s}$ SNR: 3.7-15.2
Blue Channel (3 spots)	mRNA length (without tag): * ORC (1734 NT) * TRIM33 (3333 NT) * PHIP (5466 NT)	* Frame interval: 5s * Frames: 64 * k_i : 0.06 s^{-1} * k_e : $5.33 \text{ aa} \cdot \text{s}^{-1}$ D: $0.925 \mu\text{m}^2/\text{s}$ SNR: 5.2-14.9

Table 6: Multiplexing simulation parameters

403 the utility of such a classifier, we performed a search over all possible sets of parameters on which to train the model and asked
 404 which training set leads to a classifier that would work best when averaged over the unknown “true” parameters. Figure 8C) depicts
 405 the accuracy of this model (which is trained at $k_i = 0.07 \text{ s}^{-1}$ and $k_e = 6.44 \text{ aa/s}$) as a function of all parameters, and it results in an
 406 expected average classification accuracy of 70% but with classification greater than 80% for large regions of parameter spaces.

407 **Using combinations of intensity fluctuation information and different color mRNA tags, one could design
 408 experiments to distinguish several mRNAs within the same cell**

409 Finally, to highlight the how our proposed pipeline might be used to increase the potential of NCT experiments, we demonstrate it on
 410 the simulation of seven tagged species within a single cell. Using the Figure 5A heatmap, we selected four mRNAs species that
 411 were differentiable from each other with a higher than 90% accuracy for the green channel, and three mRNA species for the blue
 412 channel with the same accuracy threshold, Table 6 and Table 6. A single simulated “multiplex” cell video was generated with the
 413 conditions described in both tables. Ten spots for each of the seven mRNAs were added to the appropriate color channel for each cell.
 414 An additional class of non-translating spots was also added by taking 2500 trajectories from the opposite (no-spot) channel, but
 415 with the same Brownian motion. The ML architecture was adjusted to account for the multiple mRNA labels and the noise label for
 416 non-translating spots, and the final layer was set to a softmax layer and an output of the number of species in each color channel
 417 (four for blue and five for green, including one the non-translating spots in each channel). A model was trained with the process
 418 described in the ML section for each color channel using the matching data from the construct length dataset, (7500 NCT spots for
 419 blue, 10000 spots for green with 80:20 train-test split and three-fold cross validation). Test Video trajectories were normalized with
 420 the same min-max scaling as the training data.

421 After training, the models were applied to classify the simulated trajectories in 50 new multiplexing videos. Figure 9A shows
 422 representative images of the artificial ML labeling results applied to an example multiplexing video. Correctly identified spots are
 423 denoted by circles and incorrect classification results are shown with ‘x’. A representative crop for each spot type is shown on the
 424 left. Figure 9B shows the confusion matrix for each mRNA class and the blank trajectories. The green channel classifier had an
 425 81% accuracy (disregarding blank trajectories) and struggled mostly with the two middle length genes LONRF2 and MAP3K6. The
 426 blue channel classifier had a 91% accuracy disregarding noise only spots. As expected, the majority of misclassified spots were to
 427 their length neighbors that have the most similar statistics. The shortest, dimmest mRNA NCT spots, ORC2 and RRAGC, were still
 428 classifiable from the non-translating spots with almost 100% accuracy. 2.2% of RRAGC spots were misclassified as noise. Overall
 429 on the test video, the classifier correctly identified 64 out of 70 spots, demonstrating the potential to label multiple species in the
 430 same cell with a correct tagging scheme and ML labeling.

431 In addition to the discrete labels generated by the classifier, the softmax output (shown in Figure 9C, left) provides a quantification
 432 of the classification confidence for each spot. Figure 9C shows the effect of sorting all classified non-noise spots by their softmax
 433 output and discarding those spots with the lowest confidence for classification. By discarding 50% of the spots with the lowest
 434 confidences yields a dramatic improvement in accuracy for both the green channel (from 81% to 92%) and blue channels (from
 435 90% to 98%). In other words, although perfect classification may not be achievable, one can focus on confidently identified mRNA
 436 to analyse their behaviors, e.g., to determine how different mRNA types respond to subsequent cellular signals, drugs, or stress

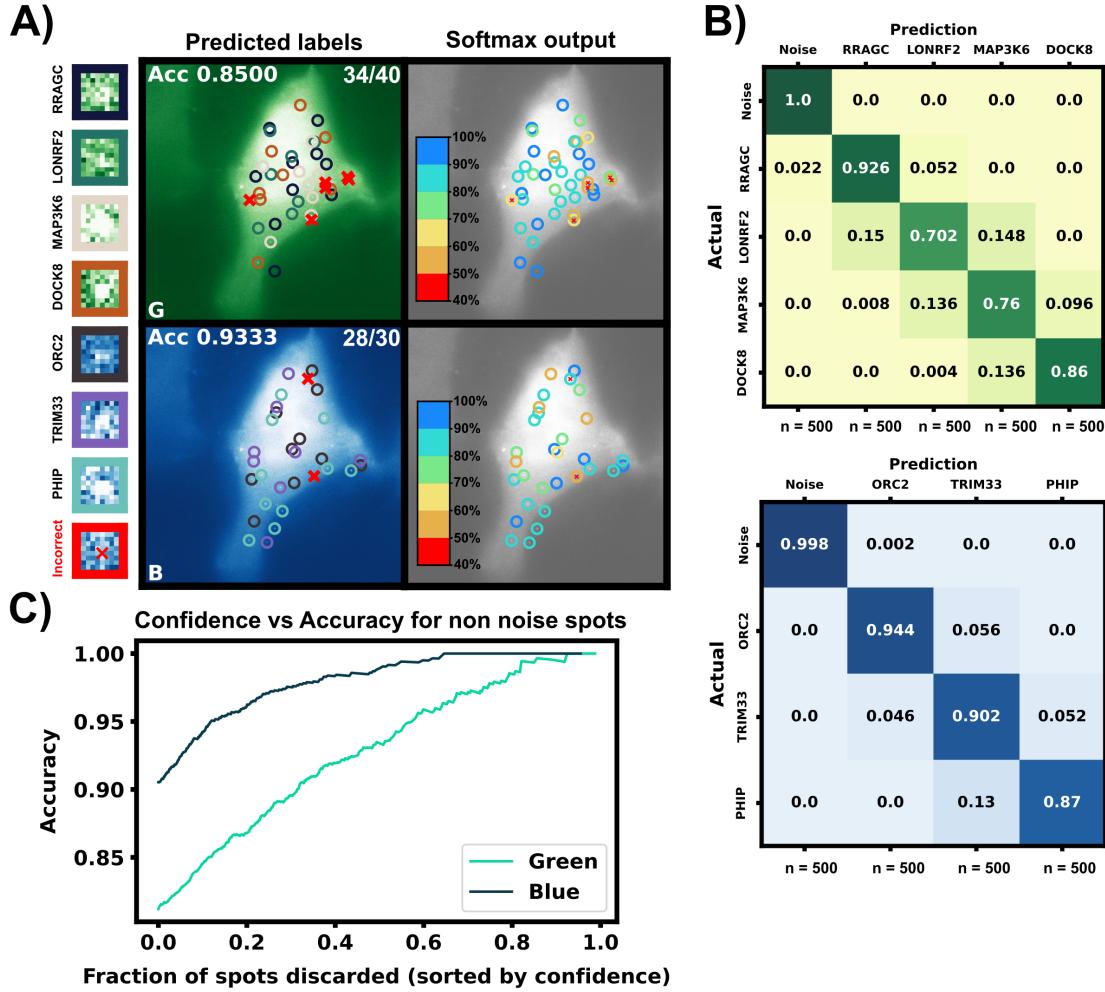


Figure 9: **Simulated multiplexing of seven different mRNA species in a single cell.** Ten mRNAs each of RRAGC, LONRF2, MAP3K6, and DOCK8 with identical were simulated in the green channel, and ten mRNAs each of ORC2, TRIM33, and PHIP were simulated in the blue channel with our pipeline, and all with identical tag designs and parameters. Our architecture was modified for multiclass labeling, and a model was trained for the green and blue channel for artificial labeling of the example video. (A) Example frame from video classification with seven different mRNA transcript types. Incorrectly labeled spots are marked with an X (6/70 spots). Crops of example spots are show to the left. (B) Confusion matrices for the green and blue channels when tested on 50 cells containing 10 spots of each mRNA. (C) Accuracy of the classifier versus the fraction of low-confidence spots that is discarded. If one only considers the 50% most confident spots, then accuracy rises to 93.4% and 98.9% for the blue and green channels, respectively.

437 perturbations. It is important to note, our architecture is small but no softmax calibration was used; a better metric of confidence
438 could potentially be obtained by using a softmax calibration in future works.

439 4 Conclusion and Future Work

440 Temporally- or spatially-resolved activation or repression of translation provides for a potent mechanism by which cells could rapidly
441 alter their protein content in response to cellular signals (Sonenberg and Hinnebusch, 2009; Fabian et al., 2010; Hershey et al.,
442 2012; Zhao et al., 2019; Peer et al., 2019). Recent advances in Nascent Chain Tracking (NCT) experiments has made it possible to
443 observe this regulation at the level of single mRNA molecules in living cells (Lyon et al., 2019; Moon et al., 2019; Koch et al., 2020;
444 Cialek et al., 2022; Kobayashi and Singer, 2022). However, limitations on the number of distinct fluorophores prevents current NCT
445 experiments from exploring more than one or two different mRNA species at a time.

446 In this work, we use computational simulations to propose a solution to circumvent this limitation. Specifically, we provide
447 a pipeline (Fig. 1) to combine mechanistic models (including detailed simulation of nascent protein elongation and corrupted by
448 fluorescence background and camera noise) with machine learning to classify mRNA species based on their fluctuating fluorescence
449 intensity signals in NCT experiments. We show that multiple mRNAs labeled with identical fluorescent tags could be distinguished
450 provided that the mRNAs have some variation in their intensity distributions or fluctuation frequency content, e.g., due to different
451 lengths (Figs. 5a, 6a) or different translation parameters (Figs. 5B-D). We also demonstrate how our computational pipeline could
452 help to guide the design of experiments to make it easier to access these features and distinguish between different types of translating
453 mRNA. Specifically, by changing multiple biophysical parameters or experimental design variables – e.g., changing tag design (Fig.
454 7), mRNA lengths (Fig. 5a), ribosomal elongation and initiation rates (Figs. 5 B-D), or the length and temporal resolution of NCT
455 movies (Fig. 4) – we explored which realistic designs of NCT experiments would provide insight for classification, and which would
456 not allow for NCT multiplexing.

457 Our realistic simulations show that that ML labeling accuracy higher than 80% can be achieved under reasonable NCT
458 experimental settings (Figs. 2-9). Longer videos with appropriately-chosen frame intervals would lead to a better classification of
459 NCT signals, albeit with diminishing returns (Figs. 4,6). A more strategic approach shows that selectively tagging pairs of mRNA
460 species to achieve the greatest difference in expected intensity or frequency content achieves higher classification with a minimal
461 number of frames (Fig. 9). We also demonstrated that different tagging strategies (Fig. 7) can help to separate hard to classify mRNA
462 species, with tag design options ranging from simply adding more tag epitopes to increase one mRNA's intensity, to relocating
463 or dividing the tag region between the 5' and 3' end of the CDS to alter the frequency content. Using these strategies, additional
464 fluorophore colors can be held in reserve for mRNAs that are too similar in their lengths or dynamics, and we demonstrate that
465 our multiplexing pipeline could distinguish seven different mRNAs at greater than 90% accuracy when using only two different
466 fluorescent tag colors and only one per gene (Fig. 9). Additional mRNA could be considered by combining multiple colors on the
467 same mRNA (e.g., mRNA with red and green could easily be distinguished from those with red or green alone).

468 Moreover, to evaluate the potential to transfer our model-based findings to real experiments, we verified that models learned from
469 one set of mechanistic parameters could correctly classify mRNA when tested on data that are generated using different parameters
470 guesses (Fig. 8). This fact that classification accuracy remains high despite inexact knowledge of the model parameters offers hope
471 that classifiers learned using approximate models could work on data from real experiments, without a need for collecting excessive
472 training data. Based on these promising results of our detailed simulations, we envision that the next generation of NCT experiments
473 will be able to track and differentiate multiple identically-tagged translating mRNA within the same cells (especially if these use the
474 identified experiment designs for tag positions, gene lengths, and video frame interval).

475 A limitation of our proposed use of simulations to train classifiers for experimental data, is that creating realistic simulations
476 requires prior knowledge of system parameters. Some of these parameters are known in advance (e.g., relative mRNA lengths and
477 codon usage), but others need to be estimated from literature values or preliminary experiments. In many cases, initial control
478 experiments would be needed to ensure that NCT constructs are working for individual mRNA, and these parameters could be
479 estimated for individual mRNA before attempting multiplexing experiments. In other cases, the important rates (elongation and
480 initiation) may remain similar for different mRNA provided they are analyzed in the same cell types. For example, in Aguilera et al.
481 (2019), three mRNA of different lengths were analyzed and elongation was found to be constant $k_{elongation} = 10.6 \pm 0.72 s^{-1}$
482 while k_i was similar among different mRNA, $k_i \in \{0.022 \pm 0.004, 0.05 \pm 0.01, 0.066 \pm 0.019\} s^{-1}$. To evaluate the potential to
483 transfer our model-based findings to real experiments where parameters are only partially known, we verified that models learned
484 from one set of mechanistic parameters could correctly classify mRNA when tested on data that are generated using different

485 parameters guesses (Figure 8). This fact that classification accuracy remains high despite inexact knowledge of the model parameters
486 offers hope that classifiers learned using approximate models could work on data from real experiments, without a need for collecting
487 excessive training data. Even in the case where initiation rates are highly variable for different mRNA (e.g., for different regulatory
488 elements in the 3' or 5' UTRs), there remains some hope to classify mRNA. In this case, with sufficiently long videos, nascent
489 protein fluctuation frequencies could be used to identify mRNA if the lengths are sufficiently different (e.g., Figures 5D, 6D, and S4).
490 However, if videos are too short, then one may still be able to differentiate between spots of different types based on their intensity
491 distributions, but without additional information about initiation rates (e.g., by collecting a handful of longer videos to assign labels
492 to each group of mRNA), it would be impossible to determine which mRNAs are which type, and additional experiments (e.g., direct
493 mRNA labeling using Fluorescence in situ Hybridization to quantify ribosomal load or spatial correlations (Kwon, 2013; Cui et al.,
494 2016; Burke et al., 2017)) may be required.

495 Although, for the sake of brevity, this paper does not explore all mechanisms that can be analyzed by the rSNAPsim and rSNAPed
496 computational pipeline (e.g., effects of tracking, photo-bleaching, variable probe-biding rates, ribosome pausing, etc.), future work
497 could expand on these capabilities along with further exploration of different machine learning approaches (e.g., different ML
498 architectures or different types of classifiers) or inclusion of additional features (e.g., including mRNA diffusion rates, cell position
499 information, fluorophore bleaching rates, etc.). Similarly, although the current manuscript has focused exclusively on supervised
500 learning techniques that require known ground truth (e.g., labels in simulated data), one could potentially improve the application to
501 real data through the addition of unsupervised machine learning or transfer learning approaches. For example, the simulation-based
502 pipeline proposed here could be used to design tags and experimental conditions, while unsupervised approaches may be applied
503 to differentiate spots in subsequent experiments. Finally, beyond the goal of multiplexing, we believe that our general approach
504 to combine detailed mechanistic models, realistic simulations of microscopy and image analyses effects, and machine learning
505 classifiers could help to design improved experiments that are more suited to other biological questions (e.g., to differentiate between
506 competing hypotheses for translation mechanisms rather than to differentiate different mRNA species as explored here).

507 **Conflict of Interest Statement**

508 The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be
509 construed as a potential conflict of interest.

510 **Author Contributions**

511 Conceptualization: ZRF, TM, ER, TJS, BM. Theory and computational modeling: WSR, LUA, ZRF, MPM, BM. Computational
512 Simulation: WSR, LUA. Machine learning: WSR, SG. Writing: WSR, BM. Editing: WSR, LUA, SG, TM, TJS, BM. Resources,
513 supervision, and funding acquisition: TJS, BM.

514 **Acknowledgements**

515 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
516 of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges
517 that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
518 the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of
519 Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
520 (<http://energy.gov/downloads/doe-public-access-plan>).

521 **Funding**

522 WSR, ER, and BM were supported by the NSF (1941870). LUA and BM were also supported by National Institutes of Health
523 (R35GM124747). TJS and TM were supported by the NSF (1845761).

524 **Data Availability Statement**

525 The data sets for this study can be resimulated, classifiers can be retrained, and figures can be remade from the code in the
526 MunskyGroup/Multiplexing-project Github Repository https://github.com/MunskyGroup/Multiplexing_project, DOI:
527 <https://zenodo.org/record/7884701>. Large videos files to remake the figures are stored at: <https://www.dropbox.com/scl/fo/cj4fd2o0nr5dfstngyh83/h?dl=0&rlkey=363ka3o1ur8jvywhh5mvolxqg>. Original saved classifiers, example videos,
529 and original data set CSVs are available upon request.

530 **References**

531 Aguilera, L. U., Raymond, W., Fox, Z. R., May, M., Djokic, E., Morisaki, T., et al. (2019). Computational design and interpretation
532 of single-rna translation experiments. *PLoS computational biology* 15, e1007425. doi:10.1371/journal.pcbi.1007425

533 Allan, D. B., Caswell, T., Keim, N. C., van der Wel, C. M., and Verweij, R. W. (2021). soft-matter/trackpy: Trackpy v0.5.0
534 doi:10.5281/zenodo.4682814

535 Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., and Rasool, M. H. (2017). Proteomics: Technologies and their applications.
536 *Journal of Chromatographic Science* 55, 182–196. doi:10.1093/CHROMSCI/BMW167

537 Basyuk, E., Rage, F., and Bertrand, E. (2020). Rna transport from transcription to localized translation: a single molecule perspective.
538 *RNA Biology* 18, 1221–1237. doi:10.1080/15476286.2020.1842631

539 Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization yoshua bengio. *Journal of Machine Learning
540 Research* 13, 281–305

541 Boersma, S., Khuperkar, D., Verhagen, B. M., Sonneveld, S., Grimm, J. B., Lavis, L. D., et al. (2019). Multi-color single-molecule
542 imaging uncovers extensive heterogeneity in mrna decoding. *Cell* 178, 458–472.e19. doi:10.1016/j.cell.2019.05.001

543 Brar, G. A. and Weissman, J. S. (2015). Ribosome profiling reveals the what, when, where and how of protein synthesis. *Nature Reviews Molecular Cell Biology* 2015 16:11 16, 651–664. doi:10.1038/nrm4069

545 Burke, K. S., Antilla, K. A., and Tirrell, D. A. (2017). A fluorescence in situ hybridization method to quantify mrna translation by
546 visualizing ribosome-mrna interactions in single cells. *ACS Central Science* doi:10.1021/acscentsci.7b00048

547 Chekulaeva, M. and Landthaler, M. (2016). Molecular cell minireview eyes on translation. *Molecular Cell* 63, 918–925. doi:
548 10.1016/j.molcel.2016.08.031

549 Chen, G., Ning, B., and Shi, T. (2019). Single-cell rna-seq technologies and related computational data analysis. *Frontiers in
550 Genetics* 10, 317. doi:10.3389/FGENE.2019.00317/BIBTEX

551 Cialek, C. A., Galindo, G., Morisaki, T., Zhao, N., Montgomery, T. A., and Stasevich, T. J. (2022). Imaging translational
552 control by argonaute with single-molecule resolution in live cells. *Nature Communications* 2022 13:1 13, 1–14. doi:10.1038/
553 s41467-022-30976-3

554 Cialek, C. A., Koch, A. L., Galindo, G., and Stasevich, T. J. (2020). Lighting up single-mrna translation dynamics in living cells.
555 *Current Opinion in Genetics and Development* 61, 75–82. doi:10.1016/j.gde.2020.04.003

556 Coulon, A. and Larson, D. R. (2016). Fluctuation analysis: Dissecting transcriptional kinetics with signal theory. *Methods in
557 Enzymology* 572, 159–191. doi:10.1016/BS.MIE.2016.03.017

558 Cui, C., Shu, W., and Li, P. (2016). Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications.
559 *Frontiers in Cell and Developmental Biology* 4, 89. doi:10.3389/FCELL.2016.00089/BIBTEX

560 Das, S., Vera, M., Gandin, V., Singer, R. H., and Tutucci, E. (2021). Intracellular mrna transport and localized translation. *Nature
561 Reviews Molecular Cell Biology* 22, 483–504. doi:10.1038/S41580-021-00356-8

562 David, A., Dolan, B. P., Hickman, H. D., Knowlton, J. J., Clavarino, G., Pierre, P., et al. (2012). Nuclear translation visualized by
563 ribosome-bound nascent chain puromycylation. *Journal of Cell Biology* 197, 45–57. doi:10.1083/JCB.201112145

564 Dieck, S. T., Kochen, L., Hanus, C., Heumüller, M., Bartnik, I., Nassim-Assir, B., et al. (2015). Direct visualization of identified and
565 newly synthesized proteins in situ. *Nature methods* 12, 411. doi:10.1038/NMETH.3319

566 Dieck, S. T., Müller, A., Nehring, A., Hinz, F. I., Bartnik, I., Schuman, E. M., et al. (2012). Metabolic labeling with noncanonical
567 amino acids and visualization by chemoselective fluorescent tagging. *Current Protocols in Cell Biology* doi:10.1002/0471143030.
568 cb0711s56

569 Edelstein, A. D., Tsuchida, M. A., Amodaj, N., Pinkard, H., Vale, R. D., and Stuurman, N. (2014). Advanced methods of microscope
570 control using μ manager software. *Journal of Biological Methods* 1, e10. doi:10.14440/jbm.2014.36

571 Eichelbaum, K., Winter, M., Diaz, M. B., Herzig, S., and Krijgsveld, J. (2012). Selective enrichment of newly synthesized proteins
572 for quantitative secretome analysis. *Nature Biotechnology* doi:10.1038/nbt.2356

573 Fabian, M. R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mrna translation and stability by micrornas. *Annual Reviews
574* doi:10.1146/annurev-biochem-060308-103103

575 Feeny, A. K., Chung, M. K., Madabhushi, A., Attia, Z. I., Cikes, M., Firouznia, M., et al. (2020). Artificial intelligence and
576 machine learning in arrhythmias and cardiac electrophysiology. *Circulation: Arrhythmia and Electrophysiology* , 873–890doi:
577 10.1161/CIRCEP.119.007952

578 Fraser, C. S. (2015). Quantitative studies of mrna recruitment to the eukaryotic ribosome. *Biochimie* 114, 58–71. doi:10.1016/J.
579 BIOCHI.2015.02.017

580 Gorgoni, B., Ciandrini, L., McFarland, M. R., Romano, M. C., and Stansfield, I. (2016). Identification of the mrna targets of trna-
581 specific regulation using genome-wide simulation of translation. *Nucleic Acids Research* 44, 9231–9244. doi:10.1093/nar/gkw630

582 Gray, N. K. and Wickens, M. (2003). Control of translation initiation in animals. <https://doi.org/10.1146/annurev.cellbio.14.1.399>
583 14, 399–458. doi:10.1146/ANNUREV.CELLBIO.14.1.399

584 Haque, I. R. I. and Neubert, J. (2020). Deep learning approaches to biomedical image segmentation. *Informatics in Medicine*
585 *Unlocked* 18. doi:10.1016/J.IMU.2020.100297

586 Hershey, J. W., Sonenberg, N., and Mathews, M. B. (2012). Principles of translational control: An overview. *Cold Spring Harbor*
587 *Perspectives in Biology* 4, a011528. doi:10.1101/CSHPERSPECT.A011528

588 Hock, T. A., Khuperkar, D., Lindeboom, R. G., Sonneveld, S., Verhagen, B. M., Boersma, S., et al. (2019). Single-molecule imaging
589 uncovers rules governing nonsense-mediated mrna decay. *Molecular Cell* 75, 324–339.e11. doi:10.1016/j.molcel.2019.05.008

590 Horvathova, I., Voigt, F., Kotrys, A. V., Zhan, Y., Artus-Revel, C. G., Eglinger, J., et al. (2017). The dynamics of mrna turnover
591 revealed by single-molecule imaging in single cells. *Molecular Cell* 68, 615–625.e9. doi:10.1016/j.molcel.2017.09.030

592 Howden, A. J., Geoghegan, V., Katsch, K., Efstatiou, G., Bhushan, B., Boutureira, O., et al. (2013). Quancat: quantitating proteome
593 dynamics in primary cells. *Nature methods* 10, 343–346. doi:10.1038/NMETH.2401

594 Ingolia, N. T. (2016). Ribosome footprint profiling of translation throughout the genome. *Cell* 165, 22. doi:10.1016/J.CELL.2016.
595 02.066

596 Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In
597 *2009 IEEE 12th International Conference on Computer Vision*. 2146–2153. doi:10.1109/ICCV.2009.5459469

598 Knight, J. R., Garland, G., Poyry, T., Mead, E., Vlahov, N., Sfakianos, A., et al. (2020). Control of translation elongation in health
599 and disease. *DMM Disease Models and Mechanisms* 13. doi:10.1242/DMM.043208/225210

600 Kobayashi, H. and Singer, R. H. (2022). Single-molecule imaging of microrna-mediated gene silencing in cells. *Nature Communications*
601 *2022* 13:1 13, 1–14. doi:10.1038/s41467-022-29046-5

602 Koch, A., Aguilera, L., Morisaki, T., Munsky, B., and Stasevich, T. J. (2020). Quantifying the dynamics of ires and cap translation
603 with single-molecule resolution in live cells. *Nature Structural and Molecular Biology* 27:12 27, 1095–1104. doi:
604 10.1038/s41594-020-0504-7

605 Kwon, S. (2013). Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules. *BMB reports*
606 doi:10.5483/BMBRep.2013.46.2.016

607 Leppek, K., Das, R., and Barna, M. (2017). Secondary structures tertiary structures interactions that orient rna double helices
608 into specific three-dimensional arrangements, often involving non-watson-crick base pairs. functional 5' utr mrna structures in
609 eukaryotic translation regulation and how to find them. *Nature Reviews molecular cell biology* doi:10.1038/nrm.2017.103

610 Liao, S., Wang, J., Yu, R., Sato, K., and Cheng, Z. (2017). Cnn for situations understanding based on sentiment analysis of
611 twitter data. *Procedia Computer Science* 111, 376–381. doi:<https://doi.org/10.1016/j.procs.2017.06.037>. The 8th International
612 Conference on Advances in Information Technology

613 Lyon, K., Aguilera, L. U., Morisaki, T., Munsky, B., and Stasevich, T. J. (2019). Live-cell single rna imaging reveals bursts of
614 translational frameshifting in brief. *Molecular Cell* 75, 172–183. doi:10.1016/j.molcel.2019.05.002

615 Mayr, C. (2016). Evolution and biological roles of alternative 3'utrs. *Trends in Cell Biology* 26, 227–237. doi:10.1016/J.TCB.2015.
616 10.012

617 Miura, K., Cordelières, F. P., and Klemm, A. H. (2020). Bleach correction imagej plugin for compensating the photobleaching
618 of time-lapse sequences [version 1; peer review: 4 approved, 1 approved with reservations] report report report report report.
619 *F1000Research* doi:10.12688/f1000research.27171.1

620 Moon, S. L., Morisaki, T., Khong, A., Lyon, K., Parker, R., and Stasevich, T. J. (2019). Multicolor single-molecule tracking of mrna
621 interactions with rnp granules. *Nature cell biology* 21, 162. doi:10.1038/S41556-018-0263-4

622 Morisaki, T., Lyon, K., DeLuca, K. F., DeLuca, J. G., English, B. P., Zhang, Z., et al. (2016). Real-time quantification of single rna
623 translation dynamics in living cells. *Science* 352, 1425–1429. doi:10.1126/science.aaf0899

624 Murat, F., Yildirim, O., Talo, M., Baloglu, U. B., Demir, Y., and Acharya, U. R. (2020). Application of deep learning techniques
625 for heartbeats detection using ecg signals-analysis and review. *Computers in Biology and Medicine* 120, 103726. doi:10.1016/J.
626 COMPBIOMED.2020.103726

627 Neelagandan, N., Lamberti, I., Carvalho, H. J., Gobet, C., and Naef, F. (2020). What determines eukaryotic translation elongation:
628 recent molecular and quantitative analyses of protein synthesis. *Open biology* 10, 200292. doi:<https://doi.org/10.1098/rsob.200292>

629 Palaz, D., Doss, M. M., and Collobert, R. (2015). Convolutional neural networks-based continuous speech recognition using raw
630 speech signal. In *2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (IEEE), 4295–4299.
631 doi:10.1109/ICASSP.2015.7178781

632 Peer, E., Moshitch-Moshkovitz, S., Rechavi, G., and Dominissini, D. (2019). The epitranscriptome in translation regulation. *Cold
633 Spring Harbor Perspectives in Biology* 11, a032623. doi:10.1101/CSHPERSPECT.A032623

634 Pichon, X., Bastide, A., Safieddine, A., Chouaib, R., Samacoits, A., Basyuk, E., et al. (2016). Visualization of single endogenous
635 polysomes reveals the dynamics of translation in live human cells. *Journal of Cell Biology* 214, 769–781. doi:10.1083/jcb.
636 201605024

637 Pichon, X., Lagha, M., Mueller, F., and Bertrand, E. (2018). A growing toolbox to image gene expression in single cells: Sensitive
638 approaches for demanding challenges. *Molecular cell* 71, 468–480. doi:10.1016/J.MOLCEL.2018.07.022

639 Pujar, S., O'Leary, N. A., Farrell, C. M., Loveland, J. E., Mudge, J. M., Wallin, C., et al. (2018). Consensus coding sequence (ccds)
640 database: a standardized set of human and mouse protein-coding regions supported by expert curation. *Nucleic Acids Research* 46,
641 D221. doi:10.1093/NAR/GKX1031

642 Shen, H., Tauzin, L. J., Baiyasi, R., Wang, W., Moringo, N., Shuang, B., et al. (2017). Single particle tracking: From theory to
643 biophysical applications. *Chemical Reviews* doi:10.1021/acs.chemrev.6b00815

644 Sonnenberg, N. and Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets.
645 *Cell* 136, 731–745. doi:10.1016/J.CELL.2009.01.042

646 Stark, R., Grzelak, M., and Hadfield, J. (2019). Rna sequencing: the teenage years. *Nature Reviews Genetics* 20:11 20,
647 631–656. doi:10.1038/s41576-019-0150-2

648 Tchapga, C. T., Mih, T. A., Kouanou, A. T., Fonzin, T. F., Fogang, P. K., Mezatio, B. A., et al. (2021). Biomedical image classification
649 in a big data architecture using machine learning algorithms. *Journal of Healthcare Engineering* doi:10.1155/2021/9998819

650 Tokunaga, M., Imamoto, N., and Sakata-Sogawa, K. (2008). Highly inclined thin illumination enables clear single-molecule imaging
651 in cells. *Nature Methods* 2008 5:2 5, 159–161. doi:10.1038/nmeth1171

652 Wang, C., Han, B., Zhou, R., and Zhuang, X. (2016). Real-time imaging of translation on single mrna transcripts in live cells. *Cell*
653 165, 990–1001. doi:10.1016/j.cell.2016.04.040

654 Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a revolutionary tool for transcriptomics. *Nature Reviews Genetics* 2008
655 10:1 10, 57–63. doi:10.1038/nrg2484

656 Wu, B., Eliscovich, C., Yoon, Y. J., and Singer, R. H. (2016). Translation dynamics of single mrnas in live cells and neurons. *Science
657 (New York, N.Y.)* 352, 1430. doi:10.1126/SCIENCE.AAF1084

658 Wüstner, D., Christensen, T., Solanko, L. M., and Sage, D. (2014). molecules photobleaching kinetics and time-integrated emission
659 of fluorescent probes in cellular membranes. *Molecules* 19, 11096–11130. doi:10.3390/molecules190811096

660 Xie, Y. and Oniga, S. (2020). A review of processing methods and classification algorithm for eeg signal. *Carpathian Journal of
661 Electronic and Computer Engineering* 13, 23–29. doi:10.2478/cjece-2020-0004

662 Yan, X., Hoek, T. A., Vale, R. D., and Tanenbaum, M. E. (2016). Dynamics of translation of single mrna molecules in vivo. *Cell* 165,
663 976–989. doi:10.1016/j.cell.2016.04.034

664 Zhao, J., Qin, B., Nikolay, R., Spahn, C. M. T., and Zhang, G. (2019). Molecular sciences translatomics: The global view of
665 translation. *International Journal of Molecular Sciences* doi:10.3390/ijms20010212

666 Zhu, Q., Li, X., Conesa, A., and Pereira, C. (2018). Gram-cnn: a deep learning approach with local context for named entity
667 recognition in biomedical text. *Bioinformatics* 34, 1547–1554. doi:<https://doi.org/10.1093/bioinformatics/btx815>

668 Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. *J. R. Statist. Soc. B* 67, 301–320

669 **Supplemental Info**

670 **Photobleaching and tracking experiment**

671 **Classification is possible with photobleaching and tracking errors.** To examine the effects of photobleaching on classification,
672 simulated videos were subjected to 11 different photobleaching rates before processing. 75 Simulated cell videos of 350 frames
673 at 1 second frame interval containing 25 spots of KDM5B and 25 spots of P300 with $k_i = 0.06 s^{-1}$ and $k_e = 5.33 aa \cdot s^{-1}$ were
674 simulated for each photobleaching rate ranging from 0.01% lost per 5 seconds to 5% lost per 5 seconds. Diffraction limited RNA
675 spots were added to the channel zero (red) for simulation of particles for tracking; These RNA tag spots were colocalized with the
676 channel one (green) spots for their corresponding NCT protein signal. Photobleaching was added post simulation by multiplying
677 the resultant videos by the normalized photobleaching curves shown in Supplemental Figure S3B. Sample videos are shown in
678 Supplemental Figure S3A for each photobleaching rate. Extrema were removed from each video channel by normalizing intensities
679 to the 0.05th and 99.9th percentile of intensity. Particle tracking was performed on each video after image processing. The video's
680 red channel was filtered for spots by applying a bandpass filter (skimage.difference.of_gaussians, low_sigma = 0.1, high_sigma =
681 5, truncate = 3) and Laplace of Gaussian's filter (scipy.ndimage.gaussian_laplace, sigma = 1.5). The filtered video was passed to
682 Trackpy (Allan et al., 2021). Trackpy was iteratively called on the filtered video's red channel with increasing until the number of
683 spots detected levels off (approximated derivative of # spots detected / intensity threshold = 0). The location where the number of
684 spots detected levels off is used as the final intensity threshold. Tracking efficiency results are shown in Supplemental Figure S3C.
685 This iterative Trackpy approach on average finds 120% of the true simulated number of spots – consisting of false positive spots
686 ~33%, real spots and real spots whose trajectories are not correctly linked resulting in multiple particle tracks from one spot, ~66%.
687 To filter out false positive spots and short detected trajectories, all spots were then matched with their minimum squared error divided
688 by the length of the tracked trajectory (time normalized squared error) to the true locations from their simulated video. Spots with an
689 error lower than 3 pixels were considered “real” particles and kept for classification tests, ~80% of real spots were recovered in some
690 form with this error matching. Additionally, any spot not detected for ≥ 300 seconds was excluded from classification. Percentage of
691 spots detected and kept for classification as a function of photobleaching rate is shown in the purple line in Supplemental Figure
692 S3C. Tracking is around 40% efficient at recovering long trajectory true spots unless the videos significantly photobleach before the
693 threshold of 300 seconds. All final spots used for classification were down-sampled to 60 frames at a 5 second frame interval for
694 classification. Classification was performed on the “perfect tracking” using 2000 training spots / 500 withheld spots. The “realistic
695 tracking” data set was trained on the maximum possible recovered spots from the 75 total cells while withholding 500 spots for
696 validation. Supplemental Figure S3D shows the accuracy versus photobleaching rates with “perfect tracking” and with the “realistic
697 tracking” from the Trackpy pipeline. Test accuracy stays level across photobleaching rates for both types of tracking; This would
698 change with longer videos that can supplement their classification with the frequency information of the autocorrelation – the videos
699 would be easier to classify with lower photobleaching rates where a better autocorrelation can be measured. However, at only 300
700 seconds of video, there is not enough time to acquire adequate dwell time information and the classifier is exclusively using intensity
701 differences to tell spots apart; With a consistent photobleaching across genes, these intensity differences are also consistent at any
702 given time point (until all intensity is lost). Greater in-depth simulations of photobleaching such as differing photobleaching rates for
703 different elements of the simulation or other photobleaching models and their effect on classification can be explored in the future.

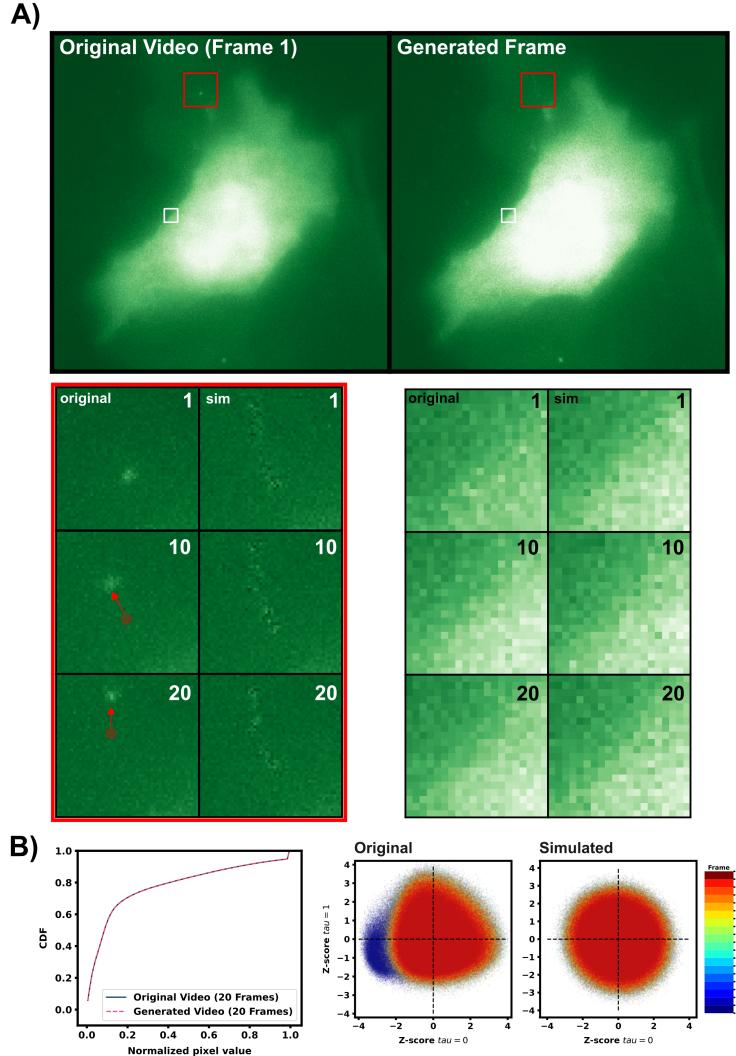


Figure 1: Gaussian generation of simulated cell backgrounds. Each pixel within the original blank cell video (20 frames) is fit to its own Gaussian distribution. New frames are generated pixel by pixel by pulling new values from that array of Gaussians. Standard deviations above the 95th quantile of the total video’s per pixel standard deviation are set to that 95th quantile value – that way problem pixels that may be dark for 19 out of 20 frames do not result in a massively wide Gaussian to pull from. For the purposes of visualization, videos were min max normalized by the 95th quantile intensity and the 1st quantile value of the original video. The red square highlights a region where a large moving feature in the original video is lost by the Gaussian generation approach. Large bright features that move over the course of 20 frames are represented as a larger standard deviation and a slightly higher Gaussian mean, resulting in a smeared “noisy” region in the generated videos that overlays the course of the original bright feature. The white box shows an example highlighted area with no moving feature. Below shows the CDF of each video’s histogram of normalized pixel values. We note that for all 7 background videos the first frame is noticeably dimmer than all the rest (blue region in panel B middle).

A)

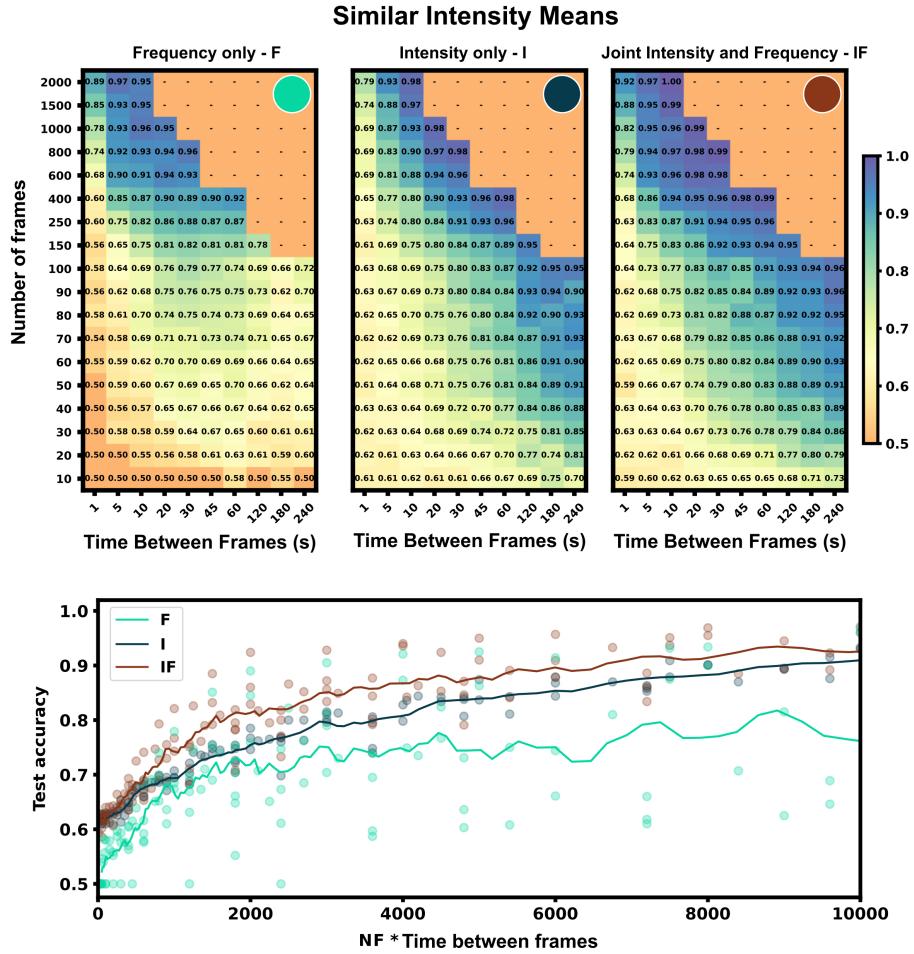


Figure 2: (Top) Accuracy of separate architecture halves (I, F) and joint architecture (IF) across a large range of frame rates and number of frames. Heat maps show each architecture half or the joint architecture applied on a NCT data set with different frequency content (decorrelation times, $\tau = 354$ s vs $\tau = 517$ s) and similar intensity means (4.7 UMP vs 6 UMP). (Bottom) Using both architecture halves increases average test accuracy across all conditions vs the individual feature architectures. All test accuracies from the heat maps above are plotted vs their video length ($NF * Time$ between frames) for the full architecture (IF), and each half architecture (I, F). A trend-line was generated with a moving average of 100 seconds.

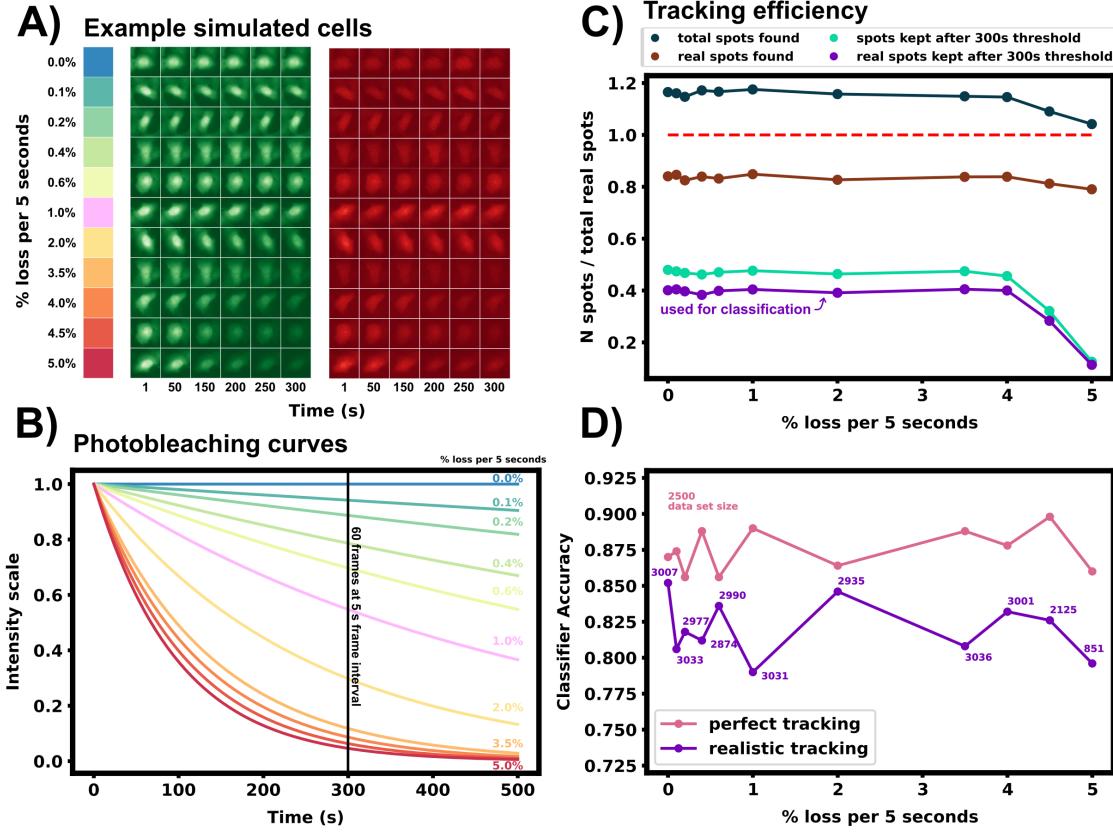


Figure 3: Effects of photobleaching and tracking on machine learning classification. A) Representative examples from 75 simulated cells of KDM5B and P300 at base conditions (Table 2) that were simulated at each of 11 different photobleaching rates. Tracking was performed on RNA spots in the red channel at a frame interval of 1 s. Translation was quantified in the green channel for 60 frames at a 5 s interval. B) Photobleaching intensity curves that scale video frames (red and green channels) to generate simulated cell videos (panel A). C) Efficiency for realistic tracking is reported as (# spots tracked / # total true spots). Total number of spots found by Trackpy per data set includes false positive spots, real trajectories, and real trajectories that are improperly linked or “fragmented,” resulting in more spots being found than real simulated spots. When filtering with a squared error to real simulated spots, 80% of real spots are recovered in full or fragmented form (brown line). Requiring any spot, real or fake, to be tracked longer than 300 seconds results in ~50% recovery until large photobleaching rates (green line). Filtering for spots with low matching error and existing longer than 300 seconds recovers ~40% of true spots until larger photobleaching rates (purple line). The purple line represents the detected spot subset that was used for training in the “realistic tracking” condition. D) Classification accuracy versus photobleaching loss rate under perfect tracking (pink) or realistic tracking with image processing errors (purple). 2,500 spots were used for training in the perfect tracking case. For realistic tracking, the actual number of identified and true tracks varies and is shown in purple numbers for each photobleaching rate (out of 7,500 total generated spots). When training classifiers, 500 spots were withheld for testing classification accuracy.

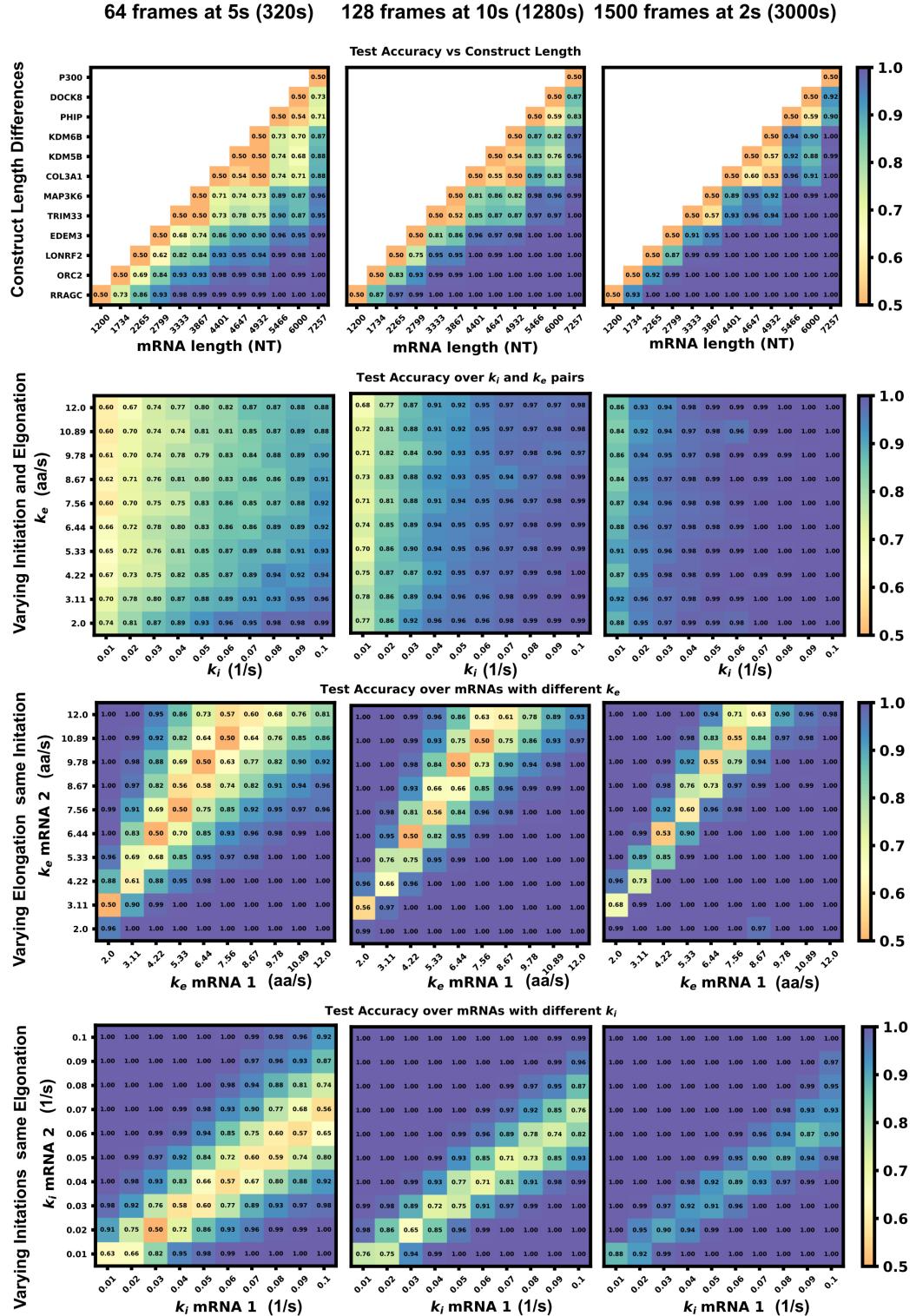


Figure 4: Machine learning accuracy for increased video size and resolution. Panels on left column are duplicated from Figure 5A-D in the main text (64 frames at 5s frame interval) and compared to the accuracy with increased video size of (middle) 128 frames at 10 s frame interval and (right) (1500 frames at 2 second frame interval)